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Magnetic resonance imaging (MRI) offers the possibility tonon-invasively map the brain's
metabolic oxygen consumption (CMRO2), which is essential for understanding and
monitoring neural function in both health and disease. However, in depth study of oxygen
metabolism with MRI has so far been hindered by the lack of robust methods. One
MRI method of mapping CMRO2 is based on the simultaneous acquisition of cerebral
blood �ow (CBF) and blood oxygen level dependent (BOLD) weighted images during
respiratory modulation of both oxygen and carbon dioxide. Although this dual-calibrated
methodology has shown promise in the research setting, current analysis methods are
unstable in the presence of noise and/or are computationally demanding. In this paper,
we present a machine learning implementation for the multi-parametric assessment of
dual-calibrated fMRI data. The proposed method aims to address the issues of stability,
accuracy, and computational overhead, removing signi�cant barriers to the investigation
of oxygen metabolism with MRI. The method utilizes a time-frequency transformation
of the acquired perfusion and BOLD-weighted data, from which appropriate feature
vectors are selected for training of machine learning regressors. The implemented
machine learning methods are chosen for their robustness tonoise and their ability to
map complex non-linear relationships (such as those that exist between BOLD signal
weighting and blood oxygenation). An extremely randomizedtrees (ET) regressor is used
to estimate resting blood �ow and a multi-layer perceptron (MLP) is used to estimate
CMRO2 and the oxygen extraction fraction (OEF). Synthetic data with additive noise are
used to train the regressors, with data simulated to cover a wide range of physiologically
plausible parameters. The performance of the implemented analysis method is compared
to published methods both in simulation and within-vivo data (n D 30). The proposed
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method is demonstrated to signi�cantly reduce computationtime, error, and proportional
bias in both CMRO2 and OEF estimates. The introduction of the proposed analysis
pipeline has the potential to not only increase the detectability of metabolic difference
between groups of subjects, but may also allow for single subject examinations within a
clinical context.

Keywords: calibrated-fMRI, oxygen extraction fraction, CMR O2, OEF, machine learning

INTRODUCTION

Under normal conditions the brain's energy needs are met
via a continuous supply of oxygen and glucose for the local
production of ATP via aerobic metabolism (Verweij et al., 2007).
Any disruption of the supply of oxygen to the brain tissue
can have signi�cant consequences (Safar, 1988), and impaired
cerebral oxygen metabolism is associated with a wide variety of
neurological conditions (Frackowiak et al., 1988; Ishii et al., 1996;
Miles and Williams, 2008). Therefore, monitoring and mapping
the brain's consumption of oxygen is vital for understandingthe
diseases and mechanisms by which the metabolic consumption
of oxygen may be a�ected. The cerebral metabolic rate of
oxygen consumption (CMRO2) has traditionally been measured
with positron emission tomography (Frackowiak et al., 1980).
However, this method has some substantial limitations including
the use of ionizing radiation and the need for local production
of 15-oxygen labeled tracers. Due to these limitations there is
great interest in developing alternative, non-invasive, methods of
mapping CMRO2. One promising technique of non-invasively
mapping CMRO2 is the so-called dual-calibrated fMRI (dc-
fMRI) method (Bulte et al., 2012; Gauthier et al., 2012). This
method is �nding growing adoption in the research setting, and
has already been applied in Alzheimer's disease (Lajoie et al.,
2017), carotid artery occlusion (De Vis et al., 2015), and studies of
pharmacological modulation (Merola et al., 2017). For a review
of the method and details on the its practical application please
seeGermuska and Wise (2019). Despite the promise shown
by this technique, the reported between-session repeatability is
relatively low (Merola et al., 2018) and improvements in the
data acquisition and/or analysis are required if individualized
assessment is to be made possible.

One of the key di�culties in analyzing dual-calibrated fMRI
data is noise propagation through the analysis pipeline, which
leads to unstable parameter estimates. We have previously
presented regularized non-linear least squares �tting approaches
that utilize prior physiological knowledge to produce more
robust parameter estimates (Germuska et al., 2016, 2019). Even
though such regularization reduces the mean square error itdoes
so by trading o� a reduction in variance with an increase in
bias. An alternative approach to reduce the prediction error is
the use of noise insensitive machine learning regression methods.
Decision tree based regression methods, for example random
forest (Breiman, 2001) and extremely randomized trees (Geurts
et al., 2006), are robust to both output (Breiman, 2001; Geurts
et al., 2006) and input noise (Yue et al., 2018) and are able
to capture non-linear relationships between input features and

target parameters. This noise immunity is likely due to the
randomization included in the choices of features at splitting
nodes (random forest) and cut-points (extremely randomized
trees), which improve the generalizability of the regressors. For
non-linear mappings with a high degree of complexity arti�cial
neural networks, such as the multi-layer perceptron (MLP), a
feedforward network with multiple hidden layers, o�er a machine
learning method that is inherently robust to noise (Bernier et al.,
1999). In this paper we present an analysis pipeline comprised of
an extremely randomized trees regressor and a MLP, cascaded to
infer resting CBF and CMRO2 from dual-calibrated fMRI data. A
frequency-domain representation of simulated MRI data with the
additive noise is used to train each of the regressors. Simulated
data has the advantage overin-vivo data in this application as
it allows a balanced dataset to be generated that covers a broad
range of physiological variation. Such a dataset is essential to
avoid bias in parameter estimation and to provide generalizability
across groups and diseases. A frequency-domain representation
is chosen as it allows for convenient dimensionality reduction,
with most of the information of interest encoded at low temporal
frequencies, and takes advantage of the superior ability of
arti�cial neural networks to learn discriminative features from
frequency-domain representation of a signal compared to a time-
domain representation (Hertel et al., 2016). The performance
of the proposed machine learning (ML) implementation is
compared to an existing regularized non-linear least squares
(rNLS) method (Germuska et al., 2019) both in simulation
and in data acquired from a cohort of 30 healthy volunteers.
We hypothesized that the machine learning approach would be
able to achieve comparable or reduced prediction error with
signi�cantly reduced bias and computational overhead.

MRI DATA ACQUISITION

Thirty healthy volunteers (16 males, mean age 32.53� 6.06
years) were recruited to the study, seeSupplementary Table 1
for demographic data. The local ethics committee approved
the study and written informed consent was obtained from
each participant. Blood samples were drawn via a �nger prick
prior to scanning and were analyzed with the HemoCue Hb
301 System (HemoCue, Ängelholm, Sweden) to calculate the
systemic [Hb] value for each participant. All data was acquired
using a Siemens MAGNETOM Prisma (Siemens Healthcare
GmbH, Erlangen) 3T clinical scanner with a 32-channel receiver
head coil (Siemens Healthcare GmbH, Erlangen). The acquisition
protocol was as previously described (Germuska et al., 2019).
Brie�y, an 18-min dual-excitation pseudo-continuous arterial
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TABLE 1 | Range of physiological parameters used in the dc-fMRI data simulations for training of the machine learning regressors.

OEF CBF
(ml/100g/min)

[Hb]
(g/dL)

Mean capillary transit time
(CBVcap /CBF, s)

PminO 2

(mmHg)
Cerebral vascular reactivity
(% CBF/mmHg CO 2)

K

0.05–0.75 1–250 10–18 0.25–4.0 0–30 1–7 0.01–0.25

spin labeling (pCASL) and BOLD-weighted acquisition was
acquired during modulation of inspired oxygen and carbon
dioxide. Gas modulation was performed according to a protocol
previously proposed by our lab (Germuska et al., 2016), and
end-tidal monitoring was performed throughout the acquisition
from the volunteer's facemask using a rapidly responding gas
analyzer (PowerLabR
 , ADInstruments, Sydney, Australia). The
prototype pCASL sequence (Germuska et al., 2019) parameters
were as follows: post-labeling delay and label duration 1.5 s, EPI
readout with GRAPPA acceleration (factorD 3), TE1 D 10 ms,
TE2 D 30 ms, TRD 4.4 s, 3.4� 3.4 mm in-plane resolution, and
15 (7 mm) slices with 20% slice gap.

SYNTHETIC MRI DATA GENERATION

Synthetic data was simulated to match the 18-minin-vivo
acquisition protocol using standard physiological models forthe
change in BOLD signal (Bulte et al., 2012; Gauthier and Hoge,
2013; Wise et al., 2013), as summarized by Equation (1).
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Where,BOLD/BOLD0 is the fractional change in BOLD signal
due to a change in arterial oxygen content (CaO2) or CBF due
to either a hyperoxic or hypercapnic respiratory stimulus. M is a
lumped parameter that is equal toK � TE�

�
.1 � SvO2/ �

�
Hb

�� � .
Where K is a scaling factor dependent on the �eld strength,
resting venous blood volume, tissue structure, and water
di�usion e�ects in the extravascular space. [Hb] is the blood
hemoglobin concentration and SvO2 is the venous oxygen
saturation.# is the oxygen binding capacity for Hb (1.34 ml/g),
a is the Grubb exponent that couples blood volume and blood
�ow changes, andb is a �eld strength dependent constant that
summarizes the non-linear e�ects associated with the tissue
structure and water di�usion e�ects. The values ofa andb were
�xed to the optimized values (0.06 and 1) found byMerola et al.
(2016), which minimize the error in OEF estimates over a range
of vascular physiology. The subscript 0 represents the baseline or
resting state. The hyperoxic and hypercapnic stimuli are assumed
to be iso-metabolic, so CMRO2 D CMRO2,0.

The arterial spin labeling signal was modeled according to
the simpli�ed pCASL kinetic model (Alsop et al., 2015), and
physiological constraints on baseline parameters were applied
according to a simple model of oxygen exchange (Gjedde, 2002;

Hayashi et al., 2003) (Equation 2).

CMRO2,0 D D

"

P50
h

s
2

OEF0
� 1 � Pmin O2

#

(2)

Where D is the e�ective oxygen di�usivity of the capillary
network and can be expressed as a product of the e�ective oxygen
permeability and the capillary blood volume,D D � � CBVcap. P50
is the blood oxygen tension at which hemoglobin is 50% saturated
(26 mmHg), h is the Hill coe�cient (2.8) andPmin O2 is the
minimum oxygen tension at the mitochondria [which is thought
to be negligible in healthy tissue (Gjedde, 2002)]. In the modeling
we assume a �xed value fork of 3 mmol/mmHg/ml/min,
corresponding to a typical di�usivity of 3 (Mintun et al., 2001)
to 4 mmol/100 g/mmHg/min (Vafaee and Gjedde, 2000) for
CBVcap D 1–1.33 ml/100 g. The physiological parameter space
encompasses a wide range of plausible physiology including
both healthy and dysfunctional brain tissue, and is summarized
in Table 1. A summary of MRI abbreviations and all model
parameters used in the simulations is given inTable 2.

The partial pressure of arterial oxygen (PaO2) and change
in carbon dioxide (1 PaCO2) were modeled to match the range
of end-tidal recordings acquired from healthy volunteers.The
baseline PaO2 had a range of 90–120 mmHg,1 PaO2 was 200–
300 mmHg, and1 PaCO2 was set to 8–12 mmHg. Rectangular
stimulus blocks were convolved with a gamma density function
with shape parameter 0.5–2.5 to account for the variation in
biological rise and fall times of the hyperoxic and hypercapnic
stimuli. Drift in 1 PaCO2, which was observed in some subjects,
was included by adding a bandpass �ltered noise signal (fourth
order IIR �lter, lowcut/highcut D 0.005/0.05 of the Nyquist
frequency). Change in the arterial blood longitudinal relaxation
rate due to dissolved oxygen was included in pCASL calculations
as per (Germuska et al., 2019). Noise (BOLD tSNRD 90, pCASL
tSNRD 3 for CBFD 60 ml/100 g/min) was added to simulated
BOLD and pCASL time series. The pCASL noise was bandpass
�ltered (fourth order IIR �lter, lowcut/highcut D 0.05/0.8 of the
Nyquist frequency) and the BOLD noise was lowpass �ltered
(�rst order IIR �lter, highcut D 0.5 of the Nyquist frequency) to
match the noise characteristics of thein-vivo data. In addition,
the BOLD timeseries data was highpass �ltered with a 320 s cut-
o� using the �lter implementation in FSL (Jenkinson et al., 2012),
which is routinely used for de-trending fMRI data.Figure 1
shows 50 randomly generated pCASL and BOLD timeseries
overlaid with the temporal mean to demonstrate the typical
output of the simulations. Please note that the pCASL timeseries
are divided by the equilibrium magnetization of arterial blood
(M0blood), and the baseline signal has been set to zero for
display purposes.
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TABLE 2 | Summary of model parameters and abbreviation used in the dc-fMRI
data simulations and their de�nitions.

Variable/
abbreviation

Expression (units)

OEF Oxygen Extraction Fraction (dimensionless)

CMRO2 Cerebral Metabolic Rate of Oxygen consumption (mmol/100 g/min)

CBF Cerebral Blood Flow (ml/100 g/min)

# Oxygen binding capacity of hemoglobin (1.34 ml/g)

[Hb] Hemoglobin concentration (g/dL)

CaO2 Arterial oxygen content (ml/ml)

PaO2 Arterial oxygen tension (mmHg)

SaO2 Arterial oxygen saturation (dimensionless)

SvO2 Venous oxygen saturation (dimensionless)

a Grubb exponent

b Venous morphology/deoxy-hemoglobin—BOLD exponent

BOLD Blood Oxygenation Level Dependent signal

ASL Arterial Spin Labeling

M0blood Arterial blood MRI signal equilibrium magnetization (dimensionless)

PLD ASL post-label delay time (1.0–3.0 s)

M Maximum possible BOLD signal (BOLD calibration parameter)

K BOLD scaling factorD M/([Hb] � (1 – SvO2))b

D Effective oxygen diffusivity of the capillary network (mmol/100
g/mmHg/min)

CBVcap Capillary blood volume (ml/100 g)

PminO2 Minimum oxygen partial pressure at the mitochondria (mmHg)

h Hill coef�cient (2.8)

k Effective permeability of capillary endothelium and braintissue
(mmol/mmHg/ml/min)

METHODS

A schematic diagram describing the analysis/training pipeline
is shown in Figure 2. ASL and BOLD timeseries data,
either simulated (as described in section Synthetic MRI Data
Generation) or in-vivo data, are Fourier transformed into
magnitude and phase data. This frequency domain data
is then truncated after the �rst 15 data points (low pass
�ltered) and combined with physiological recordings and
sequence parameters to create a feature vector for model
training/prediction (if in-vivodata is being analyzed). Parameter
estimation is carried out in a two-stage process; �rst the
resting blood �ow (CBF0) is estimated, and then rate of
oxygen consumption.

Truncation of the frequency domain data removes high-
frequency content that is unrelated to either the hyperoxic or
hypercapnic respiratory modulations and thus removes noise
from the training data. The resting blood �ow is estimated
separately from the rate of oxygen consumption to reduce the
complexity of the required mapping between the MRI data
and the target parameters. Additionally, the use of extremely
randomized trees (ET) regression rather than an arti�cial neural
network at this stage in the pipeline takes full advantage of the
noise immunity of decision tree based methods (Yue et al., 2018)
and reduces the potential of over�tting. The inclusion of the

FIGURE 1 | Example of simulated time-domain data (BOLD and ASL) with
added noise and variation in physiological parameters, showing periods of
hypercapnic (green) and hyperoxic (light blue) stimuli. The dark blue line
represents the mean time-course over the example time series. Note the
pCASL signal is normalized by the equilibrium magnetization of arterial blood
(MO) and has had the baseline signal subtracted for display purposes.

post-label delay in the feature vector is necessary to incorporate
an implicit slice timing correction for CBF0 calculation, while the
blood oxygenation parameters ([Hb],1 PaO2, SaO2,0, CaO2,0) are
included here due to the in�uence of dissolved oxygen on the
longitudinal relaxation rate of arterial blood. In total each feature
vector that is input into the ET regressor consists of 65 entries.

The result of the ET regression is then incorporated into
the feature vector (now 66 entries) and input into an ensemble
of MLPs to predict CMRO2,0/CaO2,0, from which CMRO2,0
and OEF0 can be calculated (CMRO2/CaO2 D OEF � CBF
via the Fick principle). The blood oxygenation parameters in
this case not only inform on the relaxation rate of arterial
blood, but also link the CBF and BOLD signal changes to the
underlying metabolic parameters as described by Equation (1). In
practice each MLP in the ensemble is trained individually, with
the average of their predictions being used for inference when
deployed for the analysis ofin-vivodata.

The ET regressor and MLP were implemented in Scikit
learn (Pedregosa et al., 2011). The extremely randomized trees
regressor was trained with the following options, number of
estimatorsD 50, bootstrapD True, and out-of-bag samples
were used to estimate theR2 on unseen data. A total of 50,000
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FIGURE 2 | Schematic diagram of the frequency-domain machine learning pipeline. Raw data is pre-processed prior to the construction of a feature vector. This initial
feature vector is used to estimate baseline perfusion. The perfusion estimate is then included in the feature vector fedinto an ensemble of multilayer perceptron
networks used to estimate the resting rate of oxygen metabolism.

simulations were used for training. The MLP network has two-
hidden layers and 50 nodes in each layer. The activation function
for each node was chosen to be a recti�ed linear unit (ReLU).
The ADAM solver was used for training with 1� 106 simulated
feature vectors and 10% of the data were used for early stopping.
Data simulation and training was repeated 40 times to create an
ensemble of MLP networks to further reduce the uncertainty in
parameter estimates (Sollich and Krogh, 1996).

The validation score for the extremely randomized trees
regressor for predicting resting cerebral blood �ow was 0.997,
slightly greater than the results obtained for a random forest
implementation (0.961). The validation score for the MLP
estimation of CMRO2,0/CaO2,0 were 0.923� 0.002. Training of
the MLP network was also undertaken while eliminating key
elements of the simulation or feature vectors to see how this
a�ected the performance of the MLP. When BOLD data was
excluded from the feature vector the validation score dropped
to 0.577. Excluding the CO2 and O2 stimuli (but including
the BOLD data) reduced the validation scores to 0.63 and
0.71, respectively.

A further 5,000 simulated datasets (with OEF restricted to
0.15–0.65, all other parameters as inTable 1) were constructed
to compare the performance of the proposed machine learning
implementation with a previously implemented regularized non-
linear least squares �tting method (Germuska et al., 2019).
Each method was compared to the simulated data using a
robust regression method (bisquare) in terms of the RMS error
and proportional bias. A bisquare cost function was used for
the regression to reduce the in�uence of outliers and allow a
robust estimate of the proportional bias. The rNLS �tting was
implemented with regularization applied to the resting OEF and
the e�ective oxygen di�usivity (D), as previously described. The

relative weighting between OEF and di�usivity regularization
was maintained constant, as per the optimization inGermuska
et al. (2019). However, the total weighting was varied to assess
the impact on OEF and CMRO2 error and proportional bias
(slope of the simulated parameter values plotted against the
parameter estimates).

RESULTS

Simulations
Analysis of the simulated data demonstrated a substantial
reduction in the RMS error of machine learning OEF estimates
compared to rNLS estimates. The bisquare RMS error was 0.047
when using the mean prediction from the 40 MLP networks,
and 0.055 for a randomly chosen MLP network. The rNLS
approach produced a minimum bisquare RMS error of 0.094.
The ML approach displayed negligible proportional bias in OEF
estimates (slope of true vs. estimated valuesD 0.982), whereas
rNLS estimates had variable levels of bias depending on the
level of regularization, seeFigure 3A for a summary of the
results. As expected from the OEF results, ML estimates of
CMRO2 also had signi�cantly reduced error and bias compared
to the rNLS implementation. The proportional bias for the ML
implementation was 0.977 compared to a minimum bias of
0.913 for the rNLS method. The bisquare RMS error in CMRO2
estimates for the ML implementation was 20.3mmol/100 g/min
(22.6 for an individual MLP network) whereas the error for rNLS
estimates ranged from 29.6 to 52.4mmol/100 g/min depending
on the level of bias (with greater bias coinciding with reduced
error) (seeFigure 3B).

Training of the MLP with reduced feature vectors (excluding
the BOLD data) or limited respiratory stimuli (excluding either
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FIGURE 3 | Root mean squared error and proportional bias in OEF0 (A) and CMRO2,0 (B) estimates for each analysis method �tting to simulated data (5,000
simulations). Solid blue line plots the error and bias for increasing regularization weighting for the regularized non-linear least squares analysis.

CO2 or O2 modulation) highlights the importance of each signal
and stimulus in estimate the rate of oxygen consumption. As
expected, removing the BOLD signal resulted in a signi�cant
reduction in the network's ability to estimate CMRO2 (validation
R2 reduced from 0.923 for the full model to 0.58). In this instance
there should be no information relating to OEF in the feature
vector and so the inference is based solely on the correlation
between baseline �ow and CMRO2 in the simulated data. Adding
the BOLD data back in but with only an O2 stimulus does
little to improve the performance of the network (R2 D 0.63).
This is not unexpected as the hyperoxic BOLD signal is largely
related to venous blood volume (Blockley et al., 2013) with
little in�uence from OEF. Perhaps unexpectedly, including the
CO2 stimulus but not the O2 stimulus signi�cantly improves
the ability of the network to infer resting CMRO2 (R2 D 0.71).
While this is still signi�cantly worse than the full model, it
suggests that some quantitative metabolic information maybe
extracted from hypercapnic calibration studies that are normally
employed to estimate relative changes in CMRO2 (Hoge, 2012).
Additionally, such results suggest that the simulation framework
could be utilized to optimize data acquisition by designing

respiratory stimuli that maximize the performance of the ML
implementation, and that such respiratory paradigms may be
di�erent compared to those for standard analysis methods
(which are unable to infer resting CMRO2 information from a
hypercapnic calibration experiment).

In-vivo
Due to the limited availability and technical challenges associated
with acquiring 15-oxygen PET data for CMRO2 mapping (the
gold standard approach) it is di�cult to directly validate the
in-vivo results obtained in this study. However, a number
of fundamental relationships between resting physiological
parameters have consistently been observed across groups
of healthy individuals. Here we compare these observed
relationships against the acquired data to infer the relative
error and bias for each analysis method. One of the most
frequently reported relationships in the healthy human brainis
that resting blood �ow is linearly correlated with resting oxygen
metabolism (Scheinberg and Stead, 1949; Lebrun-Grandie et al.,
1983; Leenders et al., 1990; Coles et al., 2006; Powers et al.,
2011). Additionally, PET data suggests that the OEF should
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FIGURE 4 | (A) Coef�cient of variation of gray matter OEF0 estimates vs. slope of [Hb]-OEF0 relationship for each analysis method (rNLS �tting evaluated with
increasing levies of regularization). The [Hb]-OEF0 slope has been normalized by the ML ensemble estimate of the [Hb]-OEF0 slope. (B) Coef�cient of variation of gray
matter OEF0 estimates vs. the slope of the CBF-CMRO2 relationship, normalized by the ML (ensemble) estimate of the CBF-CMRO2 slope. Solid blue line plots the
coef�cient of variation against the slope for increasing regularization weighting for regularized non-linear least squares analysis. The asterisk indicates the chosen level
of regularization for subsequent analysis/comparisons.

be approximately uniform across the cerebral gray matter (e.g.,
Hyder et al., 2016). Thus, we can use the coe�cient of variation
(COV) of gray matter OEF estimates as an indicator of parameter
error, and examine the variation in the slope of the CBF-
CMRO2 relationship to infer the proportional bias or sensitivity
to physiological variation of CMRO2 estimates.

As in the simulation experiments we investigated thein-vivo
analysis for varying levels of regularization in the rNLS analysis
and compare this to the ML results.Figure 4B plots the COV
in OEF estimates for increasing levels of regularization against
the slope of the CBF-CMRO2 regression (normalized by the
slope of the ML estimate). As predicted by the simulations, the
slopes of the ML estimates and the rNLS estimates are similar
when little regularization is applied, with the slope of the rNLS
estimates slightly reduced compared to the ML approach. As
more regularization is applied the COV of OEF estimates is
reduced and the slope between CBF and CMRO2 decreases,
clearly demonstrating the trade-o� between variance and bias.

Again, as predicted by the simulations, the COV in ML estimates
is signi�cantly less than COV in rNLS estimates for a similar
CBF-CMRO2 slope.

To investigate the bias in OEF estimates we take advantage
of another physiological relationship reported in the literature;
cerebral oxygen extraction is inversely related to [Hb] (Ibaraki
et al., 2010) and the closely related parameter Hct (Morris
et al., 2018). Taking the same approach as before we observein-
vivo results that closely match predictions from the simulation
(see Figure 4A). As in the simulations, the slope in the
[Hb]-OEF relationship is similar between the ML method
and rNLS approach for a moderate amount of regularization.
However, the slope is substantially increased when using minimal
regularization, and reduced when applying strong regularization.

Figure 5shows scatter plots of the gray matter CBF-CMRO2
and [Hb]-OEF relationships observed with the ML and rNLS
methods across the 30 healthy volunteers studied. The rNLS
results are shown for a single level of regularization, where the
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FIGURE 5 | Scatter plots of gray matter C8F-CMRO2 and [Hb]-OEF relationships observed with rNLS (A1 and A2) and ML ensemble (B1 and B2) methods across 30
healthy volunteers.

slope of the [Hb]-OEF relationship most closely matches thatof
the ML analysis (seeFigure 4). The coe�cient of determination
is greater for the ML approach for each relationship, withR2

values of 0.56 and 0.35 for the CBF-CMRO2 and [Hb]-OEF
relationships, compared to 0.34 and 0.14 for the rNLS approach
(p < 0.05 for all correlations).

Table 3 reports the results of a bivariate analysis of [Hb]
against OEF and CBF for both analysis methods. The slopes of the
relationship between OEF and [Hb] are similar to that reported
in healthy subjects byIbaraki et al. (2010), � 1.75 Hb (g/dL). As
per Ibaraki et al. the relationship between CBF and OEF did not
reach signi�cance (p D 0.44) for the ML approach, however a
signi�cant negative correlation was observed in the rNLS analysis
(p D 0.005). A univariate analysis of CMRO2,0 against CBF0
is consistent with that observed in healthy controls byPowers
et al. (2011)(b1 D 0.2) for both analysis methods,b1 D 0.32
(p < 0.001) andb1 D 0.24 (p < 0.001) for the ML and rNLS
approaches, respectively.

Figure 6 shows a comparison between CBF0, OEF0, and
CMRO2,0 parameter maps calculated with the ML method
(single MLP network and ensemble of 40 networks) and the
rNLS method. The image shows seven slices from a single
subject, which have been interpolated for display using cubic
b-spline interpolation (Ruijters and Thevenaz, 2012) using
FSLeyes (10.5281/zenodo.1470761). As expected OEF0 is not
well-estimated in the white matter, due to the T1 decay of the
arterial spin labeling signal and the longer arrival time of white
matter blood. Across gray matter containing voxels maps of OEF0

TABLE 3 | Results of a bivariate regression of [Hb] against CBF0 and OEF0 gray
mater estimates for 30 healthy volunteers analyzed with theML (ensemble of
MLPs) and rNLS �tting methods.

Predictor ML b1 (p-value) rNLS b1 (p-value)

OEF � 1.42 (0.001) � 2.23 (0.001)

CBF � 0.07 (0.44) � 0.37 (0.005)

Intercept 61.95 (< 0.001) 89.48 (< 0.001)

calculated with the ML methods are more uniform than those
calculated with the rNLS approach, with the ensemble approach
visibly outperforming the singe network MLP estimates. These
observations are consistent with the results of the simulations
and the gray matter COV observed forin-vivo OEF0 estimates.
However, it is also apparent from the images that each method
demonstrates sensitivity to regional susceptibility e�ects. For
example, in the pre-frontal cortex and inferior temporal lobesthe
images show greater variability in OEF0 estimates, with regions of
both over and under-estimation apparent. This instability islikely
due to reduced BOLD SNR in these locations and alteration of the
susceptibility of air in and around the nasal cavity and paranasal
sinuses due to modulation of the inspired oxygen content during
data acquisition. It is clear that the ML estimates, in particular
those made from the ensemble of MLPs, are more robust to such
regional susceptibility e�ects.

The in-vivo analysis also highlights the improvement in
computational e�ciency of the proposed method. The rNLS
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FIGURE 6 | Example parameter maps (CBF0, OEF0, and CMRO2,0) from a single subject for each analysis method. Machine learning estimates of OEF0 are more
uniform than regularized non-linear least squares estimates. Using an ensemble of MLP networks further reduces the spatial variation in OEF0 estimates.

approach took� 20 min to analyze a complete dataset on a
standard laptop (2.8 Ghz Intel Core i7, 16GB memory), while the
ML approach was able to complete the same analysis in� 10–
20 s (depending on the number of networks in the ensemble of
MLP regressors).

DISCUSSION AND CONCLUSIONS

Instability in parameter estimates made using noisyin-vivo
data may be reduced by incorporating prior knowledge of
physiological parameters (e.g.,Chappell et al., 2010; Frau-Pascual

et al., 2014; Mesejo et al., 2015; Germuska et al., 2016). Previous
investigation of such methods (Germuska et al., 2016) suggests
that they are an e�ective means to increase the robustness of
CMRO2 estimates made with dc-fMRI. However, these methods
are computationally expensive and must necessarily make a trade
o� between parameter uncertainty and parameter sensitivity.
Thus, they are not well-suited to high throughput or rapid data
analysis and care must be taken when using such methods not
to unduly bias parameter estimates toward the priors. In the
work presented here we take a di�erent approach by training a
machine learning implementation that is robust to input noise.
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Given an appropriately selected (or generated) training dataset, a
well-implemented solution will be unbiased, robust, and have a
low computational overhead.

Computer modeling suggests that the proposed method
outperforms previous analysis methods both in terms of
uncertainty and bias.In-vivo data supports the predicted
improvement in uncertainty with a signi�cant reduction in
the COV of gray matter OEF0 estimates when compared
to a regularized non-linear least squares �tting of the data.
Additionally, agreement was found between the predicted
behaviors of each method and their associated biases when
compared to reported physiological relationships. Qualitatively,
the in-vivo parameter maps suggest that the ML approach,
especially when paired with an ensemble implementation, is
more robust to physiological noise; producing physiologically
plausible parameter estimates in challenging brain regions,e.g.,
near the frontal sinuses. Such physiological noise was not
modeled in the training data so it is perhaps unexpected that
the ML method is robust to these noise sources. However, it
is plausible that the discriminative features identi�ed from the
frequency-domain representation of the data during training
are less sensitive to these regional susceptibility changesthan a
traditional time-domain �t of the data. It is possible that this
aspect of the ML approach could be enhanced by extending
the training data to include such regional susceptibility changes,
either on their own or in combination with a spatially informed
approach to data �tting.

The use of an ensemble of MLP networks reduced parameter
uncertainty in simulation and reduced the coe�cient of variation
in gray matter OEF0 estimatesin-vivo, demonstrating its utility in
this application. However, it is anticipated that enforcing network
diversity during training could make further improvements in
performance. As it is has previously been demonstrated that,
in the presence of noise, the performance of an ensemble of
networks can always be improved by explicitly encouraging
diversity during training (Reeve and Brown, 2018).

The machine learning implementation presented here
employs a combination of proven signal processing (time-
frequency transformation) and machine learning methods
(decision trees and fully connected arti�cial neural networks)
that have been shown to select appropriate features for
learning and are robust to input noise. The proposed analysis
pipeline demonstrates an improvement in both the accuracy
and precision in parameter estimates compared to published
methods, and is appropriate for the study of both healthy
volunteers and in clinical investigations. However, thereare still
many avenues that could be explored both in terms of signal
processing and machine-learning. For example time domain
data could be converted to 2D time-frequency representations,
such as a spectrogram, or into spectrogram-like representations
using wavelet transforms (for increased time resolution).This
type of pre-processing would open the door to the application
of 2D convolution neural networks (CNN) that have been so
successfully applied in the domain of image processing. It is
possible that the application of such approaches could further
improve the performance of machine learning when analyzing
dc-fMRI data. However, a thorough investigation of all available

machine learning methods and associated pre-conditioning of
the data is beyond the scope of the current study, which focuses
instead on the realization of a practical solution by combining
well-proven techniques for the analysis of signal data.

All in-vivo analysis in this manuscript is performed in the
absence of spatial smoothing, which is often employed to
improve statistical estimates made from fMRI data (Friston et al.,
1995). We chose not to employ spatial smoothing in this analysis
for two principle reasons: �rst any such spatial �ltering implies
a prior assumption regarding the spatial extent of any variation
(Rosenfeld and Kak, 1982), and can thus lead to unwanted loss
of sensitivity to physiological variation; second we did notwant
to increase the potential contamination of gray matter voxels
with non-tissue signals, such as CSF or macrovessels (both of
which are not included in the underlying signal model). The
current study does not make any direct comparison between
smoothed and unsmoothed analysis pipelines, however the
presented method clearly avoids any possible smoothing artifacts
that might otherwise bias the analysis.

A limitation of the proposed method is the need to train
new regressors for a given gas paradigm and set of acquisition
parameters, e.g., arterial spin labeling tagging duration, repetition
time and duration of the acquisition. In addition, there is a
requirement that thein-vivo gas manipulation does not deviate
signi�cantly from the range of simulated designs. While it is
a relatively straightforward process to retrain the regressors
with a new set of parameters, to match the local acquisition
protocol, the scope of the method could be increased if
individualized gas traces could be incorporated into the training
data; allowing a single pre-trained implementation to be applied
across studies.

The simulations andin-vivo results suggest that the proposed
analysis method could signi�cantly increase the utility of dc-
fMRI, reducing the number of participants needed to detect a
group di�erence in oxygen metabolism or oxygen extraction
fraction and o�ering more physiological interpretability of
metabolic di�erences or alteration due to a stimulus. In addition,
the signi�cant reduction in processing time and the improved
robustness of the individual parameter maps reduces two of the
hurdles restricting clinical implementation of such techniques.
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