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Magnetic resonance imaging (MRI) offers the possibility twon-invasively map the brain's
metabolic oxygen consumption (CMRQ@), which is essential for understanding and
monitoring neural function in both health and disease. Howeer, in depth study of oxygen
metabolism with MRI has so far been hindered by the lack of ralst methods. One
MRI method of mapping CMRQ is based on the simultaneous acquisition of cerebral
blood ow (CBF) and blood oxygen level dependent (BOLD) welged images during
respiratory modulation of both oxygen and carbon dioxide. Bhough this dual-calibrated
methodology has shown promise in the research setting, cuant analysis methods are
unstable in the presence of noise and/or are computationalldemanding. In this paper,
we present a machine learning implementation for the mulfparametric assessment of
dual-calibrated fMRI data. The proposed method aims to addrss the issues of stability,
accuracy, and computational overhead, removing signi cahbarriers to the investigation
of oxygen metabolism with MRI. The method utilizes a timedguency transformation
of the acquired perfusion and BOLD-weighted data, from whik appropriate feature
vectors are selected for training of machine learning regssors. The implemented
machine learning methods are chosen for their robustness tmoise and their ability to
map complex non-linear relationships (such as those that est between BOLD signal
weighting and blood oxygenation). An extremely randomizettees (ET) regressor is used
to estimate resting blood ow and a multi-layer perceptron KILP) is used to estimate
CMRO;, and the oxygen extraction fraction (OEF). Synthetic data thi additive noise are
used to train the regressors, with data simulated to cover a wde range of physiologically
plausible parameters. The performance of the implementedrealysis method is compared
to published methods both in simulation and within-vivo data (h D 30). The proposed
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method is demonstrated to signi cantly reduce computationtime, error, and proportional
bias in both CMRG, and OEF estimates. The introduction of the proposed analysi
pipeline has the potential to not only increase the detectabty of metabolic difference
between groups of subjects, but may also allow for single suject examinations within a
clinical context.

Keywords: calibrated-fMRI, oxygen extraction fraction, CMR 02, OEF, machine learning

INTRODUCTION target parameters. This noise immunity is likely due to the
randomization included in the choices of features at spigti
Under normal conditions the brain's energy needs are mehodes (random forest) and cut-points (extremely randomized
via a continuous supply of oxygen and glucose for the locatees), which improve the generalizability of the regressbor
production of ATP via aerobic metabolisfiv¢rweij et al., 2007 non-linear mappings with a high degree of complexity arti cial
Any disruption of the supply of oxygen to the brain tissueneural networks, such as the multi-layer perceptron (MLP), a
can have signi cant consequencesafar, 1988 and impaired  feedforward network with multiple hidden layers, o er a machin
cerebral oxygen metabolism is associated with a wide yaofet |earning method that is inherently robust to noisednier et al.,
neurological conditionsli’rackowiak etal., 1988; Ishiietal., 1996;1999_ In this paper we present an ana|ysis pipe"ne Comprised of
Miles and Williams, 2008 Therefore, monitoring and mapping an extremely randomized trees regressor and a MLP, cascaded t
the brain's consumption of oxygen is vital for understandthg  infer resting CBF and CMR&¥rom dual-calibrated fMRI data. A
diseases and mechanisms by which the metabolic consumptigfequency-domain representation of simulated MRI data wit th
of oxygen may be aected. The cerebral metabolic rate ofdditive noise is used to train each of the regressors. Sl
oxygen consumption (CMR§) has traditionally been measured data has the advantage overvivo data in this application as
with positron emission tomography~fackowiak et al., 1930 it allows a balanced dataset to be generated that coversaal bro
However, this method has some substantial limitationsudolg  range of physiological variation. Such a dataset is esseatia
the use of ionizing radiation and the need for local produntio avoid bias in parameter estimation and to provide generallitpb
of 15-oxygen labeled tracers. Due to these limitationsehier across groups and diseases. A frequency-domain represemtati
great interest in developing alternative, non-invasivetimds of  is chosen as it allows for convenient dimensionality reghrgt
mapping CMRQ. One promising technique of non-invasively with most of the information of interest encoded at low tempbr
mapping CMRQ is the so-called dual-calibrated fMRI (dc- frequencies, and takes advantage of the superior ability of
fMRI) method Bulte et al., 2012; Gauthier et al., 2D1Phis  artj cial neural networks to learn discriminative featisdrom
method is nding growing adoption in the research settingdan frequency-domain representation of a signal compared to atim
has already been applied in Alzheimers disedsgo(e et al., domain representationHertel et al., 2016 The performance
2017, carotid artery occlusiorife Vis etal., 201f5and studies of of the proposed machine learning (ML) implementation is
pharmacological modulation\(erola et al., 201)7 For a review compared to an existing regularized non-linear least scaiare
of the method and details on the its practical application pleasgNLS) method Germuska et al., 20)%oth in simulation
seeGermuska and Wise (2019Pespite the promise shown and in data acquired from a cohort of 30 healthy volunteers.
by this technique, the reported between-session repediatsli e hypothesized that the machine learning approach would be
relatively low (Vierola et al., 2018and improvements in the aple to achieve comparable or reduced prediction error with
data acquisition and/or analysis are required if indivilmed  signi cantly reduced bias and computational overhead.
assessment is to be made possible.
One of the key di culties in analyzing dual-calibrated fMRI MR| DATA ACQUISITION
data is noise propagation through the analysis pipeline, which
leads to unstable parameter estimates. We have previoustirty healthy volunteers (16 males, mean age 32.58.06
presented regularized non-linear least squares tting apphea years) were recruited to the study, sepplementary Table 1
that utilize prior physiological knowledge to produce morefor demographic data. The local ethics committee approved
robust parameter estimateS¢rmuska et al., 2016, 201&ven the study and written informed consent was obtained from
though such regularization reduces the mean square erowdés  each participant. Blood samples were drawn via a nger prick
so by trading o a reduction in variance with an increase inprior to scanning and were analyzed with the HemoCue Hb
bias. An alternative approach to reduce the prediction error i801 System (HemoCue, Angelholm, Sweden) to calculate the
the use of noise insensitive machine learning regressighaus.  systemic [Hb] value for each participant. All data was acguire
Decision tree based regression methods, for example randousing a Siemens MAGNETOM Prisma (Siemens Healthcare
forest Breiman, 200)Land extremely randomized tree§¢urts  GmbH, Erlangen) 3T clinical scanner with a 32-channel reeei
et al., 200§ are robust to both outputEreiman, 2001; Geurts head coil (Siemens Healthcare GmbH, Erlangen). The aciguisi
et al., 200p and input noise {ue et al., 201)8and are able protocol was as previously describedefmuska et al., 20).9
to capture non-linear relationships between input featured anBrie y, an 18-min dual-excitation pseudo-continuous aiiter
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TABLE 1 | Range of physiological parameters used in the dc-fMRI dataisulations for training of the machine learning regressors

OEF CBF [Hb] Mean capillary transit time PminO, Cerebral vascular reactivity K
(mI/200g/min) (g/dL) (CBVcap/CBF, s) (mmHg) (% CBF/mmHg CO »)
0.05-0.75 1-250 10-18 0.25-4.0 0-30 1-7 0.01-0.25

spin labeling (pCASL) and BOLD-weighted acquisition wasdayashi et al., 200§Equation 2).

acquired during modulation of inspired oxygen and carbon " #
dioxide. Gas modulation was performed according to a protocol

previously proposed by our labGermuska et al., 20),6and CMRQG oD D Psp" 1 Pnino, 2)
end-tidal monitoring was performed throughout the acquitit
from the volunteer's facemask using a rapidly responding gas

analyzer (PowerlLab, ADInstruments, Sydney, Australia). The Where D is the eective oxygen diusivity of the cgplllary
prototype pCASL sequenceérmuska et al., 20)parameters network and can be expressed as a product of the e ective oxygen

were as follows: post-labeling delay and label duration,IEP$ permeability and the capillary blood voluni2,D  CBVeap Pso
readout with GRAPPA acceleration (factdr3), TE; D 10 ms, is the blood oxygen tension at which hemoglobin is 50% s&tdra

TE, D 30ms, TRD 4.4s, 3.4 3.4mm in-plane resolution, and (26 MMHQ), h'is the Hill coe cient (2.8) andPmino, is the
15 (7 mm) in,ces with 20'% slice gap ' minimum oxygen tension at the mitochondria [which is though

to be negligible in healthy tissu&edde, 200. In the modeling
we assume a xed value fok of 3 mmol/mmHg/ml/min,

corresponding to a typical di usivity of 3NJlintun et al., 200}
SYNTHETIC MRI DATA GENERATION to 4 mmol/100 g/mmHg/min {/afaee and Gjedde, 200for

Synthetic data was simulated to match the 18-niimvivo CBVeap D 1-1.33 ml/100g. The physiological parameter space

acquisition protocol using standard physiological modelsther ~ €ncompasses a wide range of plausible physiology including

change in BOLD signalulte et al., 2012; Gauthier and Hoge, both healthy and dysfunctional brain tissue, and is sumuzei

2013; Wise et al., 20),2s summarized by Equation (1). in Tablel A summary of MRI abbreviations and all model
parameters used in the simulations is giverfable 2

OER

8 0 19 The partial pressure of arterial oxygen (Pa@nd change
1BOLD S CBE 1 %,C["%]@ 2 in carbon dioxide { PaCQ) were modeled to match the range
DM

BOLDY S 1 CBR @1 CaGo CMRO¢CBR > of en(_j-tidal recordings acquired from healthy volunteefhie
) "[Hb ’ baseline Pa@had a range of 90-120 mmHg,Pa® was 200—

(1) 300 mmHg, andl PaCQ was set to 8-12 mmHg. Rectangular
stimulus blocks were convolved with a gamma density function
with shape parameter 0.5-2.5 to account for the variation in

Where,BOLOBOLL, is the fractional change in BOLD signal piological rise and fall times of the hyperoxic and hypercapnic
due to a change in arterial oxygen content (GaOr CBF due  stimuli. Drift in 1 PaCQ, which was observed in some subjects,
to either a hyperoxic or hypercapnic respiratory stimulus. M is ayas included by adding a bandpass Itered noise signal (fourth
lumped parameter thatisequalk0 TE .1 SvQ/ Hb . order IR lter, lowcut/highcut D 0.005/0.05 of the Nyquist
Where K is a scaling factor dependent on the eld strengthfrequency). Change in the arterial blood longitudinal sedtion
resting venous blood volume, tissue structure, and waterate due to dissolved oxygen was included in pCASL calculstio
di usion e ects in the extravascular space. [Hb] is the bloodas per Germuska et al., 20).9Noise (BOLD tSNHD 90, pCASL
hemoglobin concentration and SyOis the venous oxygen tSNRD 3 for CBFD 60 ml/100 g/min) was added to simulated
saturation# is the oxygen binding capacity for Hb (1.34 ml/g), BOLD and pCASL time series. The pCASL noise was bandpass
a is the Grubb exponent that couples blood volume and blooditered (fourth order IR Iter, lowcut/highcut D 0.05/0.8 of the
ow changes, and is a eld strength dependent constant that Nyquist frequency) and the BOLD noise was lowpass Itered
summarizes the non-linear e ects associated with the tissuérst order IIR lter, highcut D 0.5 of the Nyquist frequency) to
structure and water di usion e ects. The values@afandb were  match the noise characteristics of thevivo data. In addition,
xed to the optimized values (0.06 and 1) found berola et al. the BOLD timeseries data was highpass Itered with a 320 s cut-
(2016) which minimize the error in OEF estimates over a rangeo using the Ilterimplementation in FSL {enkinson etal., 20),2
of vascular physiology. The subscript O represents the basalin which is routinely used for de-trending fMRI dat&igure 1
resting state. The hyperoxic and hypercapnic stimuli are assum shows 50 randomly generated pCASL and BOLD timeseries
to be iso-metabolic, so CMRI CMRO o overlaid with the temporal mean to demonstrate the typical
The arterial spin labeling signal was modeled according toutput of the simulations. Please note that the pCASL timeserie
the simplied pCASL kinetic model Alsop et al., 2013 and  are divided by the equilibrium magnetization of arterial btb
physiological constraints on baseline parameters were appli€i0y00q), and the baseline signal has been set to zero for
according to a simple model of oxygen exchange(lde, 2002; display purposes.
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TABLE 2 | Summary of model parameters and abbreviation used in the déMRI
data simulations and their de nitions.
Variable/ Expression (units) 0.08
abbreviation 0.06
OEF Oxygen Extraction Fraction (dimensionless) =
CMRO, Cerebral Metabolic Rate of Oxygen consumptionnimol/100 g/min) o
CBF Cerebral Blood Flow (ml/100 g/min) §
# Oxygen binding capacity of hemoglobin (1.34 ml/g) ﬂ_oﬂI
[Hb] Hemoglobin concentration (g/dL) <
Ca0O, Arterial oxygen content (ml/ml)
Pa0O, Arterial oxygen tension (mmHg)
Sa0, Arterial oxygen saturation (dimensionless) 0 4.5 9 135 18
SvO, Venous oxygen saturation (dimensionless) Thorie frmiris)
a Grubb exponent 0.02
b Venous morphology/deoxy-hemoglobin—BOLD exponent
BOLD Blood Oxygenation Level Dependent signal 0.015
ASL Arterial Spin Labeling g
MObiood Arterial blood MRI signal equilibrium magnetization (dimsionless) % 0.01
PLD ASL post-label delay time (1.0-3.0s) é"
Maximum possible BOLD signal (BOLD calibration parameter i
K BOLD scaling factorD M/([Hb] (1 — SvQ,)P 2
D Effective oxygen diffusivity of the capillary networknnol/100
g/mmHg/min) -0.005
CBVcap Capillary blood volume (ml/100 g)
PminO, Minimum oxygen partial pressure at the mitochondria (mmHg)
h Hill coef cient (2.8) Tienie {miiris)
k Effective permeabi!ity of capillary endothelium and braiissue FIGURE 1 | Example of simulated time-domain data (BOLD and ASL) with
(rmol/mmHg/mi/min) added noise and variation in physiological parameters, stwang periods of
hypercapnic (green) and hyperoxic (light blue) stimuli. ®dark blue line
represents the mean time-course over the example time serge Note the
pCASL signal is normalized by the equilibrium magnetizatioof arterial blood
METHODS (MO) and has had the baseline signal subtracted for displayypposes.

A schematic diagram describing the analysis/training pipelin
is shown in Figure2 ASL and BOLD timeseries data, post-label delay in the feature vector is necessary to incatpor
either simulated (as described in section Synthetic MRI Datan implicit slice timing correction for CBgcalculation, while the
Generation) orin-vivo data, are Fourier transformed into blood oxygenation parameters ([HH],PaG, SaQ o, CaG o) are
magnitude and phase data. This frequency domain datancluded here due to the in uence of dissolved oxygen on the
is then truncated after the rst 15 data points (low passlongitudinal relaxation rate of arterial blood. In total&afeature
Itered) and combined with physiological recordings and vector thatis inputinto the ET regressor consists of 65 entries
sequence parameters to create a feature vector for model The result of the ET regression is then incorporated into
training/prediction (ifin-vivo data is being analyzed). Parameterthe feature vector (now 66 entries) and input into an ensemble
estimation is carried out in a two-stage process; rst theof MLPs to predict CMRQ¢Ca0y o from which CMRGQ
resting blood ow (CBR) is estimated, and then rate of and OER can be calculated (CMR@CaO, D OEF CBF
oxygen consumption. via the Fick principle). The blood oxygenation parameters in
Truncation of the frequency domain data removes high-this case not only inform on the relaxation rate of arterial
frequency content that is unrelated to either the hyperoxic oblood, but also link the CBF and BOLD signal changes to the
hypercapnic respiratory modulations and thus removes noisanderlying metabolic parameters as described by Equatipmr(1
from the training data. The resting blood ow is estimated practice each MLP in the ensemble is trained individually hwit
separately from the rate of oxygen consumption to reduce théhe average of their predictions being used for inference when
complexity of the required mapping between the MRI datadeployed for the analysis of-vivodata.
and the target parameters. Additionally, the use of extrgmel The ET regressor and MLP were implemented in Scikit
randomized trees (ET) regression rather than an arti ciabnal  learn (Pedregosa et al., 2Q1The extremely randomized trees
network at this stage in the pipeline takes full advantage ef thregressor was trained with the following options, number of
noise immunity of decision tree based methodlsi€ et al., 2008 estimatorsD 50, bootstrapD True, and out-of-bag samples
and reduces the potential of over tting. The inclusion of the were used to estimate tH& on unseen data. A total of 50,000
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Ry Dat Pre-processing Extremely Randomized X, Ik, | Ensemble of MLP
|X1[lk0]| Trees Regressor : Regressors
BOLD - x,[t] Fourier Transform X X,k ]l
X,k ]l X1k
0 0
\/\/\/\ XK £X,[K] 2X k] Lo : 090
: . 2X [k, ] R
Z)(1[km] (_) O
g 0

o Xkl o i
ASL - x[t] Fourier Transform ik : X [.k 1l :
5 28 M4 )

|X2[k14]| el
Xk XK 2K i O CBR, | K 0 29 /@—'CMROZ /ca0,
F e \ X [K,] 000
sz[ku] ’: \ [Hb] o) O
Physiological Physiolggical [Hb] . ) Sa0 OO0
8 Equations . \ 20 (@)
Recordings Sa0,, g \ APaO, o 0
[Hb]  Sao,, APao, B :: V| cao,, O O @)
APaO,  Cao,, " ’ \* PLD i
Si2E CBF,
Feature Vector Feature Vector

FIGURE 2 | Schematic diagram of the frequency-domain machine learngpipeline. Raw data is pre-processed prior to the construdbn of a feature vector. This initial
feature vector is used to estimate baseline perfusion. Thegsfusion estimate is then included in the feature vector fethto an ensemble of multilayer perceptron
networks used to estimate the resting rate of oxygen metabam.

simulations were used for training. The MLP network has two+elative weighting between OEF and di usivity regularioati
hidden layers and 50 nodes in each layer. The activatiorntitimc  was maintained constant, as per the optimizationdermuska
for each node was chosen to be a recti ed linear unit (ReLU)et al. (2019)However, the total weighting was varied to assess
The ADAM solver was used for training with 1 10° simulated  the impact on OEF and CMR®error and proportional bias
feature vectors and 10% of the data were used for early stoppin@glope of the simulated parameter values plotted against the
Data simulation and training was repeated 40 times to create aparameter estimates).
ensemble of MLP networks to further reduce the uncertainty in
parameter estimate$¢llich and Krogh, 1996 RESULTS

The validation score for the extremely randomized trees
regressor for predicting resting cerebral blood ow was @,99 Simulations
slightly greater than the results obtained for a random $vre Analysis of the simulated data demonstrated a substantial
implementation (0.961). The validation score for the MLPreduction in the RMS error of machine learning OEF estimates
estimation of CMRQ ¢/Ca0; o were 0.923 0.002. Training of compared to rNLS estimates. The bisquare RMS error was 0.047
the MLP network was also undertaken while eliminating keywhen using the mean prediction from the 40 MLP networks,
elements of the simulation or feature vectors to see how thiand 0.055 for a randomly chosen MLP network. The rNLS
a ected the performance of the MLP. When BOLD data wasapproach produced a minimum bisquare RMS error of 0.094.
excluded from the feature vector the validation score droppedhe ML approach displayed negligible proportional bias in OEF
to 0.577. Excluding the COand O, stimuli (but including estimates (slope of true vs. estimated valDe8.982), whereas
the BOLD data) reduced the validation scores to 0.63 and\NLS estimates had variable levels of bias depending on the
0.71, respectively. level of regularization, seEigure 3A for a summary of the

A further 5,000 simulated datasets (with OEF restricted tagesults. As expected from the OEF results, ML estimates of
0.15-0.65, all other parameters asTable 1) were constructed CMRO; also had signi cantly reduced error and bias compared
to compare the performance of the proposed machine learnintp the rNLS implementation. The proportional bias for the ML
implementation with a previously implemented regularized non implementation was 0.977 compared to a minimum bias of
linear least squares tting methodGermuska et al., 20).9 0.913 for the rNLS method. The bisquare RMS error in CMRO
Each method was compared to the simulated data using estimates for the ML implementation was 2@ 01/100 g/min
robust regression method (bisquare) in terms of the RMS erro(22.6 for an individual MLP network) whereas the error for r8IL
and proportional bias. A bisquare cost function was used foestimates ranged from 29.6 to 52rnol/100 g/min depending
the regression to reduce the in uence of outliers and allow an the level of bias (with greater bias coinciding with reeldc
robust estimate of the proportional bias. The rNLS tting waserror) (seerigure 3B).
implemented with regularization applied to the resting OEF and Training of the MLP with reduced feature vectors (excluding
the e ective oxygen di usivity (D), as previously described.€Th the BOLD data) or limited respiratory stimuli (excluding eéh
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FIGURE 3 | Root mean squared error and proportional bias in OEf~(A) and CMRO; o (B) estimates for each analysis method tting to simulated data,000
simulations). Solid blue line plots the error and bias foréneasing regularization weighting for the regularized nelinear least squares analysis.

COy or O, modulation) highlights the importance of each signalrespiratory stimuli that maximize the performance of the ML
and stimulus in estimate the rate of oxygen consumption. Asmplementation, and that such respiratory paradigms may be
expected, removing the BOLD signal resulted in a signi candi erent compared to those for standard analysis methods
reduction in the network’s ability to estimate CMRQ@validation  (which are unable to infer resting CMRQOnformation from a

R2 reduced from 0.923 for the full model to 0.58). In this instan hypercapnic calibration experiment).

there should be no information relating to OEF in the feature

vector and so the inference is based solely on the correlatidin-vivo

between baseline ow and CMRQGn the simulated data. Adding Due to the limited availability and technical challengesoasated

the BOLD data back in but with only an Ostimulus does with acquiring 15-oxygen PET data for CMR@napping (the
little to improve the performance of the networl{ D 0.63). gold standard approach) it is dicult to directly validate the
This is not unexpected as the hyperoxic BOLD signal is largelyi-vivo results obtained in this study. However, a number
related to venous blood volumeBlockley et al., 20)3with  of fundamental relationships between resting physiological
little in uence from OEF. Perhaps unexpectedly, includingth parameters have consistently been observed across groups
CO; stimulus but not the Q stimulus signi cantly improves of healthy individuals. Here we compare these observed
the ability of the network to infer resting CMRO(R? D 0.71).  relationships against the acquired data to infer the retativ
While this is still signi cantly worse than the full model, it error and bias for each analysis method. One of the most
suggests that some quantitative metabolic information rbay frequently reported relationships in the healthy human bran
extracted from hypercapnic calibration studies that are nalign  that resting blood ow is linearly correlated with restingygen
employed to estimate relative changes in CMRBoge, 201Y.  metabolism Gcheinberg and Stead, 1949; Lebrun-Grandie et al.,
Additionally, such results suggest that the simulatiomfeavork 1983 Leenders et al., 1990; Coles et al., 2006; Powers et al.
could be utilized to optimize data acquisition by designing2011. Additionally, PET data suggests that the OEF should
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FIGURE 4 | (A) Coef cient of variation of gray matter OEf estimates vs. slope of [Hb]-OER relationship for each analysis method (rNLS tting evaluatewith
increasing levies of regularization). The [Hb]-OEElope has been normalized by the ML ensemble estimate of thedb]-OER, slope. (B) Coef cient of variation of gray
matter OER, estimates vs. the slope of the CBF-CMR@ relationship, normalized by the ML (ensemble) estimate di¢ CBF-CMRGQ; slope. Solid blue line plots the
coef cient of variation against the slope for increasing reglarization weighting for regularized non-linear least s@res analysis. The asterisk indicates the chosen leve
of regularization for subsequent analysis/comparisons.

be approximately uniform across the cerebral gray matter.,(e.gAgain, as predicted by the simulations, the COV in ML estimates
Hyder et al., 201 Thus, we can use the coe cient of variation is signi cantly less than COV in rNLS estimates for a similar
(COV) of gray matter OEF estimates as an indicator of parameteCBF-CMRQ slope.
error, and examine the variation in the slope of the CBF- To investigate the bias in OEF estimates we take advantage
CMRGO;, relationship to infer the proportional bias or sensitivity of another physiological relationship reported in the liteenae;
to physiological variation of CMR@estimates. cerebral oxygen extraction is inversely related to [Hibja¢aki

As in the simulation experiments we investigated thevivo et al., 201D and the closely related parameter Hd¥ldrris
analysis for varying levels of regularization in the rNLSlgmis et al., 2018 Taking the same approach as before we obseerve
and compare this to the ML result&igure 4B plots the COV  vivo results that closely match predictions from the simulation
in OEF estimates for increasing levels of regularizatiomires  (see Figure 4A). As in the simulations, the slope in the
the slope of the CBF-CMRfOregression (normalized by the [Hb]-OEF relationship is similar between the ML method
slope of the ML estimate). As predicted by the simulations, thand rNLS approach for a moderate amount of regularization.
slopes of the ML estimates and the rNLS estimates are similetowever, the slope is substantially increased when usingnaihi
when little regularization is applied, with the slope of the I8IL regularization, and reduced when applying strong regulaiozat
estimates slightly reduced compared to the ML approach. As Figure 5shows scatter plots of the gray matter CBF-CMRO
more regularization is applied the COV of OEF estimates isnd [Hb]-OEF relationships observed with the ML and rNLS
reduced and the slope between CBF and CMRicreases, methods across the 30 healthy volunteers studied. The rNLS
clearly demonstrating the trade-o between variance andsbi results are shown for a single level of regularization, wttbe
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FIGURE 5 | Scatter plots of gray matter C8F-CMRQ and [Hb]-OEF relationships observed with rNLS (Al and A2) drML ensemble (B1 and B2) methods across 30
healthy volunteers.

slope of the [Hb]-OEF relationship most closely matches tifat TABLE 3 | Results of a bivariate regression of [Hb] against CBFand OEF, gray
the ML analysis (seléigure 4) The coe cient of determination  mater estimates for 30 healthy volunteers analyzed with theIL (ensemble of
is greater for the ML approach for each relationship, with ~ M-PS) and LS tting methods.

values of 0.56 and 0.35 for the CBF-CMR@nd [Hb]-OEF  pregictor ML bl (p-value) TNLS b1 (p-value)

relationships, compared to 0.34 and 0.14 for the rNLS approach

(p< 0.05 for all correlations). OEF 1.42 (0.001) 2.23(0.001)
Table 3 reports the results of a bivariate analysis of [Hb]CBF 0.07 (0.44) 0.37 (0.005)

against OEF and CBF for both analysis methods. The slopes of titercept 61.95 0.001) 89.48 (< 0.001)

relationship between OEF and [Hb] are similar to that repdrte
in healthy subjects biparaki et al. (201Q) 1.75 Hb (g/dL). As
per Ibaraki et al. the relationship between CBF and OEF did natalculated with the ML methods are more uniform than those
reach signi cancef D 0.44) for the ML approach, however a calculated with the rNLS approach, with the ensemble approach
signi cant negative correlation was observed in the rNL8Igsis  visibly outperforming the singe network MLP estimates. These
(p D 0.005). A univariate analysis of CMR@against CBF  observations are consistent with the results of the sinoreat
is consistent with that observed in healthy controlsywers and the gray matter COV observed for-vivo OER, estimates.
et al. (2011)b1 D 0.2) for both analysis methodbl D 0.32 However, it is also apparent from the images that each method
(p < 0.001) andol D 0.24 f < 0.001) for the ML and rNLS demonstrates sensitivity to regional susceptibility e edter
approaches, respectively. example, in the pre-frontal cortex and inferior temporal lobles
Figure 6 shows a comparison between GBFOER, and images show greater variability in Of€stimates, with regions of
CMRQO, o parameter maps calculated with the ML methodboth over and under-estimation apparent. This instabilitiikely
(single MLP network and ensemble of 40 networks) and thelue to reduced BOLD SNR in these locations and alteratiohef t
rNLS method. The image shows seven slices from a singdisceptibility of air in and around the nasal cavity and pasata
subject, which have been interpolated for display using cubisinuses due to modulation of the inspired oxygen content dgirin
b-spline interpolation Ruijters and Thevenaz, 20lasing data acquisition. It is clear that the ML estimates, in parécu
FSLeyes (10.5281/zenodo.1470761). As expected SHIOt those made from the ensemble of MLPs, are more robust to such
well-estimated in the white matter, due to thg @ecay of the regional susceptibility e ects.
arterial spin labeling signal and the longer arrival time dfite The in-vivo analysis also highlights the improvement in
matter blood. Across gray matter containing voxels maps dfi)E computational e ciency of the proposed method. The rNLS
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FIGURE 6 | Example parameter maps (CBF, OER), and CMRO; ) from a single subject for each analysis method. Machine leaing estimates of OEl are more
uniform than regularized non-linear least squares estimes. Using an ensemble of MLP networks further reduces the spél variation in OEf estimates.

approach took 20min to analyze a complete dataset on eet al., 2014; Mesejo et al., 2015; Germuska et al.) 2Pfgvious
standard laptop (2.8 Ghz Intel Core i7, 16GB memory), whike th investigation of such methodssgrmuska et al., 20} Suggests
ML approach was able to complete the same analysislii- that they are an e ective means to increase the robustness of
20 s (depending on the number of networks in the ensemble cEMRO, estimates made with dc-fMRI. However, these methods

MLP regressors). are computationally expensive and must necessarily makea trad
0 between parameter uncertainty and parameter sensitivity.
DISCUSSION AND CONCLUSIONS Thus, they are not well-suited to high throughput or rapid data

analysis and care must be taken when using such methods not
Instability in parameter estimates made using noisyvivo to unduly bias parameter estimates toward the priors. In the
data may be reduced by incorporating prior knowledge ofvork presented here we take a di erent approach by training a
physiological parameters (e.Ghappell et al., 2010; Frau-Pascualmachine learning implementation that is robust to input noise.
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Given an appropriately selected (or generated) training ddtas machine learning methods and associated pre-conditionihg o
well-implemented solution will be unbiased, robust, anddav the data is beyond the scope of the current study, which facuse
low computational overhead. instead on the realization of a practical solution by combai
Computer modeling suggests that the proposed methoavell-proven techniques for the analysis of signal data.
outperforms previous analysis methods both in terms of All in-vivo analysis in this manuscript is performed in the
uncertainty and bias.In-vivo data supports the predicted absence of spatial smoothing, which is often employed to
improvement in uncertainty with a signi cant reduction in improve statistical estimates made from fMRI datai¢ton et al.,
the COV of gray matter OEJ estimates when compared 1995. We chose not to employ spatial smoothing in this analysis
to a regularized non-linear least squares tting of the datafor two principle reasons: rst any such spatial Itering impéie
Additionally, agreement was found between the predictec prior assumption regarding the spatial extent of any variatio
behaviors of each method and their associated biases whé€Rosenfeld and Kak, 198Zand can thus lead to unwanted loss
compared to reported physiological relationships. Qualitgiiy  of sensitivity to physiological variation; second we did n@nt
the in-vivo parameter maps suggest that the ML approachto increase the potential contamination of gray matter vexel
especially when paired with an ensemble implementation, i&ith non-tissue signals, such as CSF or macrovessels (ioth o
more robust to physiological noise; producing physiologicall which are not included in the underlying signal model). The
plausible parameter estimates in challenging brain regiergs, current study does not make any direct comparison between
near the frontal sinuses. Such physiological noise was nsmoothed and unsmoothed analysis pipelines, however the
modeled in the training data so it is perhaps unexpected thgpresented method clearly avoids any possible smoothing etgifa
the ML method is robust to these noise sources. However, that might otherwise bias the analysis.
is plausible that the discriminative features identi ed rinathe A limitation of the proposed method is the need to train
frequency-domain representation of the data during tragin new regressors for a given gas paradigm and set of acquisition
are less sensitive to these regional susceptibility chathgesa parameters, e.g., arterial spin labeling tagging duratiepetition
traditional time-domain t of the data. It is possible that thi time and duration of the acquisition. In addition, there is a
aspect of the ML approach could be enhanced by extendinggquirement that thén-vivo gas manipulation does not deviate
the training data to include such regional susceptibilitacbes, signi cantly from the range of simulated designs. While & i
either on their own or in combination with a spatially inforrde a relatively straightforward process to retrain the regoess
approach to data tting. with a new set of parameters, to match the local acquisition
The use of an ensemble of MLP networks reduced parametgrotocol, the scope of the method could be increased if
uncertainty in simulation and reduced the coe cient of vation  individualized gas traces could be incorporated into the firagn
in gray matter OEf estimatesn-vivo, demonstrating its utility in  data; allowing a single pre-trained implementation to be applied
this application. However, itis anticipated that enforcingwmerk  across studies.
diversity during training could make further improvements i The simulations andh-vivo results suggest that the proposed
performance. As it is has previously been demonstrated tha&nalysis method could signi cantly increase the utility of-d
in the presence of noise, the performance of an ensemble @¥1RI, reducing the number of participants needed to detect a
networks can always be improved by explicitly encouragingroup di erence in oxygen metabolism or oxygen extraction
diversity during training Reeve and Brown, 20).8 fraction and oering more physiological interpretability of
The machine learning implementation presented herametabolic di erences or alteration due to a stimulus. In atitat,
employs a combination of proven signal processing (timethe signi cant reduction in processing time and the improved
frequency transformation) and machine learning methodsobustness of the individual parameter maps reduces two of the
(decision trees and fully connected arti cial neural netk®) hurdles restricting clinical implementation of such techuoes.
that have been shown to select appropriate features for
learning and are robust to input noise. The proposed analysis
pipeline demonstrates an improvement in both the accuracDATA AVAILABILITY STATEMENT
and precision in parameter estimates compared to published
methods, and is appropriate for the study of both healthyThe python code for the machine learning implementation
volunteers and in clinical investigations. However, thare still  proposed in this article can be found in the fml_pMRI repository
many avenues that could be explored both in terms of signdittps://zenodo.org/badge/latestdoi/189416118. We do hete
processing and machine-learning. For example time domaiethical consent to make thm-vivo datasets acquired for this
data could be converted to 2D time-frequency representation study publically available.
such as a spectrogram, or into spectrogram-like representtion
using wavelet transforms (for increased time resolutiof)is
type of pre-processing would open the door to the applicatiorETHICS STATEMENT
of 2D convolution neural networks (CNN) that have been so
successfully applied in the domain of image processing. It i$he studies involving human participants were reviewed and
possible that the application of such approaches could furthespproved by School of Psychology Research Ethics Committee
improve the performance of machine learning when analyzin@gardi University. The patients/participants provided their
dc-fMRI data. However, a thorough investigation of all avalda written informed consent to participate in this study.
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