Altered cerebrovascular response to acute exercise in patients with Huntington’s Disease

Authors and affiliations

J. J. Steventon1,2 H. Furby2,3, J. Ralph3, P. O’Callaghan4, A.E. Rosser2,6, R. Wise3, M. Busse5, K. Murphy1

1. Cardiff University Brain Research Imaging Centre, School of Physics and Astronomy, Cardiff University, UK. CF24 4HQ
2. Neuroscience and Mental Health Research Institute, School of Medicine, Maindy Road, Cardiff, UK. CF24 4HQ
3. Cardiff University Brain Research Imaging Centre, School of Psychology, Maindy Road, Cardiff University, UK. CF24 4HQ
4. Cardiology Department, University Hospital of Wales, Cardiff, UK
5. Centre for Trials Research, Cardiff University, UK
6. Cardiff Brain Repair Group, School of Biosciences, Museum Avenue, Cardiff University, UK. CF10 3AX

Corresponding Author: Jessica J Steventon, Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff University, UK. CF24 4HQ Phone: +44 (0) 29 206 88758. Email: steventonjj@cardiff.ac.uk

Running title: Exercise MRI in Huntington’s Disease

Keywords: neurodegeneration, plasticity, cerebral blood flow, MRI

Word count: 5,981
Abstract

Objective. To determine whether a single session of exercise is sufficient to induce cerebral adaptations in individuals with Huntington’s disease, and explore the time dynamics of any acute cerebrovascular response.

Methods. In this case-control study we employed arterial-spin labelling magnetic resonance imaging in 19 HD gene-positive participants (32-65 years old, 13 males) and 19 controls (29-63 years old, 10 males) matched for age, gender, body mass index and self-reported activity levels, to measure global and regional perfusion in response to 20-minutes of moderate-intensity cycling. Cerebral perfusion was measured at baseline and 15-, 40- and 60-minutes after exercise cessation.

Results. Relative to baseline, cerebral perfusion increased in HD patients yet was unchanged in control participants in the precentral gyrus, middle frontal gyrus and hippocampus 40-minutes after exercise cessation (+15 to +32.5% change in HD participants, -7.7 to 0.8% change in controls). CAG repeat length predicted the change in the precentral gyrus, and the intensity of the exercise intervention predicted hippocampal perfusion change in HD participants. In both groups, exercise increased hippocampal blood flow 60-minutes after exercise cessation.

Conclusions. Here we demonstrate the utility of acute exercise as a clinically sensitive experimental paradigm to modulate the cerebrovasculature. Twenty minutes of aerobic exercise induced transient cerebrovascular adaptations in the hippocampus and cortex selectively in HD participants and likely represents latent neuropathology not evident at rest.
Introduction

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by the expansion of a polyglutamine stretch within the Huntingtin gene (Gusella et al., 1993; Vonsattel and DiFiglia, 1998). Neuropathology in HD causes cognitive dysfunction, psychiatric symptoms, and a movement disorder characterized by involuntary movements and impaired motor control (Bates et al., 2002). The availability of genetic testing means at-risk HD family members can be identified early in the disease course and prior to the onset of symptoms. As a result, there is a drive to discover the earliest signs of neuropathology that can guide future therapeutics.

Current evidence suggests that long-term exercise interventions can produce functional improvements in a range of populations. Exercise studies using genetic mouse models of HD have produced promising results, with converging evidence showing an improvement, or delay, in the emergence of motor impairments (van Dellen et al., 2000, 2008; Pang et al., 2006; Harrison et al., 2013; Herbst and Holloway, 2015). Similarly a systematic review of 18 HD patient studies found evidence for beneficial effects of exercise on motor function, gait speed and balance (Fritz et al., 2017). Despite this, the mechanisms supporting these exercise-induced functional improvements in HD are unclear.

Evidence for a beneficial effect of exercise on HD neuropathology is largely limited to genetic rodent models of HD and remains equivocal. A reduction in striatal neuropathology has been observed in some studies (Pang et al., 2006; Harrison et al., 2013), whilst others have shown no effect of exercise on the degree of atrophy or mHtt aggregation (van Dellen et al., 2008). In a small patient study, a 9-month multi-disciplinary rehabilitation intervention which included exercise as a component increased brain volume in the grey matter, caudate and prefrontal cortex and improve cognition, although the independent contribution of exercise was not determined (Cruickshank et al., 2015).
Inconsistencies across studies in the type, dose and duration of exercise likely contribute to discrepancies in the literature and may be masking the therapeutic potential of exercise in HD. To address this, a focused investigation of the temporal dynamics of exercise is needed. Emerging evidence suggests regional exercise effects on the brain may overlap in terms of acute and long-term timescales (Weng et al., 2017). For example, in healthy adults, a single exercise session has been shown to improve motor function (Mang et al., 2014; Skriver et al., 2014) improve cognition (Winter et al., 2007; Coles and Tomporowski, 2008; Chang et al., 2012; Roig et al., 2012; Jo et al., 2018), increase peripheral neurotrophin and catecholamine biomarkers (Winter et al., 2007; Mang et al., 2014; Skriver et al., 2014) and alter cerebral perfusion (Smith et al., 2010; MacIntosh et al., 2014; Steventon et al., 2019). However, it is not clear whether the cerebrovascular response to the physiological provocation of exercise will be the same in a disease group where resting perturbations in the vascular system are present. In HD, structural and functional cerebral vascular abnormalities have been shown (Vis et al., 1998; Lin et al., 2013; Rahman et al., 2013; Hua et al., 2014; Drouin-Ouellet et al., 2015; Hsiao et al., 2015; St-Amour et al., 2015) and aggregation of mutant Huntingtin is present in the neurovascular unit (Drouin-Ouellet et al., 2015) which may affect the ability of the vascular system to respond to the demands of acute exercise.

The current study is the first to examine the cerebrovascular response to a single session of exercise in HD. Previous work has shown an altered peripheral response during and following exercise (Steventon et al., 2018), with metabolic and cardiorespiratory deficits found to reduce exercise performance and affect exercise recovery.

Arterial spin labelling (ASL) MRI is a quantitative, non-invasive method to measure tissue perfusion and uses magnetically labelled arterial blood water protons as an endogenous tracer. ASL MRI has been shown to be a reliable and repeatable method for quantifying tissue perfusion in aged and clinical populations (Kilroy et al., 2014), and has been shown to be
sufficiently sensitive to detect transient perfusion changes after exercise cessation in healthy populations (Smith et al., 2010; MacIntosh et al., 2014; Steventon et al., 2019). In stroke patients – a patient cohort where baseline cerebrovascular perturbations are evident - 20-minutes of low and moderate intensity cycling resulted in an intensity-dependent change in perfusion in the somatosensory cortex using ASL-MRI, along with an intensity-independent response in the basal ganglia (Robertson et al., 2015).

Here we examined the effect of exercise on the cerebrovasculature to establish if the acute response to a single session of exercise is different in HD. Our primary hypothesis was a differential effect of exercise on CBF in HD patients compared to controls, based on evidence of cerebrovascular abnormalities in HD (Drouin-Ouellet et al., 2015) and an altered cardiorespiratory response to submaximal exercise (Steventon et al., 2018).

Methods

The study design is detailed in Figure 1.

Participants

HD gene-positive participants (CAG length greater than or equal to 36, n = 19) were recruited from the South Wales HD research and management clinic, based in Cardiff, along with 19 healthy age matched controls. Gene carriers included participants in the pre-manifest (N=8) and manifest stages of disease (Stage I N=3; Stage II N=5; Stage III N=3). Premanifest participants are those that have not yet met traditional motor criteria for a diagnosis of HD, based on a Diagnostic Confidence Level rating of “4” according to the motor assessment section of the Unified HD Rating Scale (UHDRS). Manifest disease stages are based on total functional capacity (TFC) score on the UHDRS as defined previously (Shoulson and Fahn, 1979). Demographic and clinical data are shown in Table 1. All participants had a stable medication regime, defined as unchanged for four weeks. Exclusion criteria included any
physical or psychiatric condition that would prohibit the participant from completing the exercise test, the inability to independently use the cycle ergometer, the inability to follow the protocol instructions, uncontrolled arterial hypertension, any neurological condition other than HD, pregnancy or childbirth in the last 6 weeks, current and/or history of cardiac, vascular or respiratory/pulmonary conditions, illicit drug use in the last four weeks and any MRI contraindications. Data was collected with ethical approval from Wales Research Ethics Committee (15/WA/0074) and all participants gave informed consent according to the Declaration of Helsinki. All HD gene carriers were registered on a global longitudinal study of HD patients (ENROLL-HD; REC no. 04/WSE05/89) and had been examined on the UHDRS in the 6-month period prior to scanning thus the clinical and genetic data were available.

Exercise Intervention

The exercise intervention followed the procedures as described previously (Steventon et al., 2019). Participants underwent 20-minutes of moderate-intensity aerobic cycling on an upright ergometer (Lode Ergometer, Lode, Groningen, Netherlands) at a prescribed intensity of 50-70% of the maximal heart rate reserve (HRR) determined using the Karvonen formula (American College of Sports Medicine. et al., 2012).

During upright rest, the warm up and warm down period, and at three-minute intervals during exercise, lactate concentration was collected, blood pressure was measured and self-report ratings of perceived exertion were recorded using a 10-point Borg scale (Borg, 1974). After 20-minutes, participants completed a 2-minute warm down and then immediately returned to the MR scanner.

MRI acquisition and image processing

MRI of the brain was performed on a 3 T whole-body MRI system (GE Excite HDx, Milwaukee, WI, USA) equipped with a body transmit and eight-channel receive head coil.
For the quantitative measurement of cerebral perfusion (ml/100g/min) at baseline and at three
timepoints post exercise (Figure 1), a PICORE Pulsed ASL sequence was performed (Wong et
al., 1997) with a gradient-echo spiral readout at eight inversion times (TI1-8 = 400, 500, 600,
700, 1100, 1400, 1700, 2000ms, two separate scan series, echo time (TE) = 2.7 ms, TR =
variable, 15 slices [7 mm thick + 1.5 mm gap], slice delay = 52 ms, FOV = 198 mm, 64 × 64
matrix = ~ 3.1 mm² in-plane resolution, 20cm tag width). A Quantitative Imaging of Perfusion
with a Single Subtraction (QUIPSSII) (Wong et al., 1998) cut-off of the label was applied at
700 ms for TIs > 700 ms. To estimate the equilibrium magnetization (M₀) of arterial blood, a
single echo spiral k-space scan was acquired with the same parameters as above, minus the
ASL tag preparation. A minimum contrast scan (TE/TR = 11/2000 ms) was also acquired to
correct for field inhomogeneity (Wu et al., 2011).

A 3-dimensional T₁-weighted fast spoiled gradient echo sequence was acquired at baseline and
in the post-exercise scan session for image registration purposes (256 x 256, slice thickness =
1 mm giving a resolution of 1mm³, TR/TE of 7.90/3.0 ms).

At baseline and 20-minutes post exercise, a breath-hold challenge was performed to measure
cerebrovascular reactivity (10 end-expiration breath-holds of 15s length interleaved with 30s
periods of paced breathing) with a single-shot PICORE QUIPSS II pulse sequence (Wong et
al., 1998). However, due to difficulties following the task instructions and poor performance
of the breath-holds during acquisition, this data was not analyzed (see Supplementary Data).

CBF quantification followed the procedures described by Steventon et al. (2019). Data were
analysed in AFNI (Cox, 1996) and FSL (Jenkinson et al., 2012). Images were motion corrected,
brain extracted and an M₀CSF image was created following the procedures described by Warnert
et al. (2015). The M₀ for arterial blood was then calculated according to methods described by
Wong et al. (1998) with CSF as a reference. Perfusion quantification was performed on a voxel-
by-voxel basis using a two-compartment model (Chappell et al., 2010) and employing partial
volume correction (Chappell et al., 2011) to address signal contamination associated with atrophy.

Median grey matter values were calculated for the four perfusion images (baseline, post-1, post-2, post-3) to assess global perfusion. Based on the exercise literature (Pereira et al., 2007; Smith et al., 2010; MacIntosh et al., 2014), regional changes in perfusion were assessed in a number of a priori defined regions of interest (ROIs): the thalamus (a key hub for the motor system), the hippocampus (evidence for exercise-induced neurogenesis and blood flow changes (van Praag et al., 2005; Pereira et al., 2007; Steventon et al., 2019), and three key cortical ROIs involved in sensorimotor processing - the middle frontal gyrus, postcentral gyrus, and precentral gyrus. Perfusion was also examined in the caudate, based on the hallmark striatal pathology in HD (Paulsen et al., 2010).

ROIs were segmented from the T1-weighted image acquired in the same scan session and the median CBF values and arterial arrival time (AAT) - the time taken for blood to travel from the labelling slab to the tissue (Wang et al., 2003; Zappe et al., 2007), were calculated for each ROI.

Cardiorespiratory measures

Pulse waveforms and oxygen saturation were recorded (Medrad, PA, USA) and blood pressure measurements were collected using an arm-cuff before and after each scan (OMRON, Tokyo, Japan). Expired gas content was recorded (AEI Technologies, PA, USA) and sampled at 500 Hz (CED, Cambridge, UK) to obtain measures of $P_{ET}CO_2$. A respiratory belt was placed just below the ribs to monitor ventilation. Mean arterial pressure (MAP) was calculated as $(\text{systolic} + 2\times \text{diastolic})/3$. Supine resting heart rate and blood pressure were measured after 15-minutes rest.
Neuropsychological testing

To capture any functional cognitive gains, participants were invited to complete ‘baseline’ cognitive tests on a separate day within 1 month of completing the MRI session, before or after to control for order effects. The post-exercise tests were completed immediately after the second MRI scan, at approximately 60-90 minutes after exercise cessation.

Five pencil and paper tasks were used to measure cognitive functioning: [1] The Forward Digit Span (WAIS-IV) was used as a measure of verbal short-term memory. Participants were asked to repeat a digit sequence orally, beginning with two digits, and increasing in length by one digit following successful repetition of two lists of digits at a given length. [2] The letter verbal fluency test was used to assess verbal functioning. Participants were required to produce words beginning with a certain letter of the alphabet in three respective 60-s trials. [3] The Trail Making Test (part B) was used to measure visual attention, speed of processing, mental flexibility, and executive functions. Participants were presented with stimuli consisting of randomly placed numbers and letters and were required to connect the numbers of letters in sequence and alternating order (e.g. 1-A-2-B). [4] The Symbol Digit Modalities Test was used as a motor and psychomotor speed, with participants required to identify as many numbers [1-9] corresponding to a set of symbols in a single 90-s. [5] The Speed of Comprehension subtest from the Speed and Capacity of Language Processing (SCOLP) test was used as a measure of processing speed; participants were required to determine if a list of sentences were correct or incorrect within a 2-minute period. As motor speed may confound performance on many of the cognitive tests, participants completed a computer-based Speeded Tapping Test (Reitan, 1979) with their dominant hand, tapping the space bar as quickly as possible with their index finger. After 20 taps, the average number of taps per minute was calculated and averaged over three trials.
Clinical and genetic predictor measures

The motor component (total motor score; TMS) of the UHDRS provides a summed score of motor function including chorea, dystonia, motor impersistence, gait, rigidity, bradykinesia, finger tapping, and ocular movements. CAG repeat length was also used as a predictor.

Baseline fitness test

To measure baseline fitness, participants underwent an incremental cycle ergometer exercise test (1000W Cranlea, Human Performance Ltd, Birmingham, UK) on a separate day as described previously (Steventon et al., 2018). The test protocol consisted of 2 minutes of rest, 2 minutes of unloaded cycling, followed by 25-watt increments every 2 minutes, starting at 50-watts. The exercise test was symptom limited; individuals were instructed to pedal until discomfort or fatigue prevented them from maintaining the required cadence. Pulmonary gas exchange was measured on a breath-by-breath basis (MetaMax 3B, Cortex Biophysik GmbH, Leipzig, Germany), with the gas analyser calibrated before each session according to the manufacturer’s instructions. Heart rate was recorded continuously throughout using short-range telemetry (Polar S810, Finland). Breath-by-breath data were averaged every 30-seconds and $\dot{V}O_2$ peak, the objective measure of cardiorespiratory fitness, was recorded as the average oxygen uptake across the final 15-seconds before the termination of the test. In addition, self-reported physical activity levels were recorded using the International Physical Activity Questionnaire [IPAQ] (Craig et al., 2003).

Statistical analyses

An initial quality assessment examined any statistical outliers, defined as more than 3 standard deviations from the group mean, and removed them if found to be spurious (e.g. biologically implausible). To avoid biasing the results, all participants were included in the statistical analysis, including when missing data was present. A linear mixed effects model was used to assess change in cardiorespiratory physiology, cognition, and cerebral perfusion in a priori
defined region of interests (ROIs) in R (version 1.1.463) (R Core Team, 2016) using the lme4 package (Bates et al., 2015); between-subject effect: gene status [controls, HD], within-subject effect: time [baseline, post1, post2, post3] and hemisphere for perfusion analysis [left and right]; p-values were calculated from degrees of freedom estimated using Satterthwaite’s method (Kuznetsova et al., 2016). One advantage of a mixed effect model is the ability to estimate fixed effects from incomplete data (West and Galecki, 2012). For the perfusion analysis, PETCO₂ and age were demeaned and included as covariates in the model along with sex. Post-hoc analyses examined HD and control participants separately to assess the effect of exercise.

Where a significant gene effect on CBF was found, a follow up regression model was built from a set of a priori candidate predictor variables by entering and removing predictors based on Akaike Information Criteria, in a stepwise manner. The a priori predictors entered were a genetic predictor (CAG repeat length), a clinical predictor (UHDRS TMS), a performance-related predictor (average heart rate reserve [HRR] achieved during the intervention), and a physiological predictor (PETCO₂ change, known to modulate CBF).

For the cognitive tests with a motor component (Trail Making, SCOLP, Symbol Digit Modalities Test), motor speed was included as a covariate in the analyses. Age was a covariate in all cognitive analyses.

To compare performance and the physiological and perceptual response during the exercise intervention, heart rate, lactate, ratings of perceived exertion, work rate and cycling speed were averaged across the intervention period, excluding the warm up and warm down period, and compared between HD and control participants. All data are expressed as mean ± SEM unless stated.
Data availability

The CBF imaging data, physiological data, data analysis scripts and R code used for statistical analysis will be made available upon request for academic and non-commercial purposes.

Results

HD and control participants did not differ on gender, age, body mass index (BMI), fitness levels (measured using a VO2 peak test) and self-reported physical activity levels (all p > 0.05, Table 1). Unadjusted values are shown in Supplementary Table 1. The cerebrovascular reactivity data was not analysed due to insufficient statistical power (see Supplementary Information).

Physiological and self-reported response to the exercise intervention

There was no difference on any of the heart rate (HR) metrics between control and HD participants during the intervention; the exercise intervention caused a significant increase in HR compared to the upright rest period on the ergometer in both control and HD participants (exercise effect, p < 0.001). Control participants worked at an average 54.8 ± 6.1 % of their maximum, calculated using HR reserve, compared to 54.8 ± 10.3 % for HD participants (gene effect, p = 0.99). Average HR did not differ across the intervention for controls (126.8 ± 2.8 beats/min) and HD participants (127.2 ± 3.3 beats/min).

Mean lactate concentration across the intervention did not significantly differ between control participants (2.87 ± 0.22 mmol/L) and HD participants (2.23 ± 0.27 mmol/L; p = 0.07). Mean self-reported ratings of exertion were associated with the verbal anchor ‘moderate’ to ‘somewhat hard’ exertion on the Borg 0-10 RPE scale for both controls and HD participants in the legs (controls = 3.89 ± 0.22; HD = 4.25 ± 0.50, p = 0.53) and for breathing (controls = 3.38...
Results across the time course of the intervention are shown in Supplementary Figure 1.

Despite no differences in the physiological or self-reported response to the intervention, HD participants cycled at a significantly lower workload (60.93 ± 5.09 watts) compared to controls (90.86 ± 4.77 watts, F\textsubscript{1,35} = 18.29, p < 0.001, η2 = 0.34), whereas there was no group difference in cycling speed (controls = 69.67 ± 2.45 revolutions/min; HD participants = 71.63 ± 3.03 revolutions/min, p = 0.62).

Mean HR, MAP and PETCO\textsubscript{2} values for the baseline and post-exercise scan session are shown in Table 2. Exercise and gene did not interact on any measure (all p > 0.05). Exercise and gene status had a significant main effect on HR; HD participants’ HR was 7.77 ± 3.61 beats/min higher compared to controls (p=0.037). After the exercise session, HR remained elevated across both groups at 15-minutes (+7.88 ± 1.23 beats/min, p = 5.23e09), and 40-minutes post exercise (+2.50 ± 1.18 beats/min, p = 0.037), before returning to baseline levels after 60-minutes (+1.46 ± 1.21 beats/min, p = 0.22).

Exercise and gene status had no effect on MAP, with no evidence of exercise-induced hypotension when the post-exercise scan session began (p > 0.05).

PETCO\textsubscript{2} levels were similar for HD and control participants, and exercise-induced hypocapnia was observed across both groups of participants and persisted for 60-minutes post exercise, with a significant reduction in PETCO\textsubscript{2} from baseline at 15-minutes (t\textsubscript{88.5} = -2.48, p = 0.015), 40-minutes (t\textsubscript{88.5} = -2.96, p = 0.004) and 60-minutes post exercise (t\textsubscript{88.3} = -2.19, p = 0.03), see Figure 2H.

Regionally-specific effects of exercise on blood flow in HD

Absolute CBF values (estimated marginal means adjusted for age, sex and end-tidal CO\textsubscript{2}) are reported in Table 2; the change in cerebral blood flow (CBF) from baseline is shown in Figure 2 for the three post exercise time points.
Globally, exercise (p=0.80) and gene status (p=0.73) had no effect on grey matter CBF. A gene status \(x\) exercise interaction was found in the middle frontal gyrus and precentral gyrus; forty minutes after exercise cessation the exercise-induced CBF change from baseline was 13.67 ± 6.75 ml/100g/min higher in HD patients in the middle frontal gyrus \((t_{81.8} = 2.03, p = 0.046,\) Figure 2B) and 14.12 ± 5.71 ml/100g/min higher in the precentral gyrus in HD participants compared to controls \((t_{81.1} = 2.47, p = 0.016,\) Figure 2C). Post-hoc analyses found the change in CBF relative to baseline in the precentral and middle frontal gyrus was significant in the HD participants \((\text{precentral increase} = 11.73 ± 4.36\text{ ml/100g/min, } p = 0.010,\) MFG increase = 14.88 ± 5.65 ml/100g/min, \(p = 0.012\)), whereas the change was not significant in control participants \((\text{precentral decrease} = -4.61 ± 4.33, p = 0.29,\) MFG decrease = -2.25 ± 4.53, \(p = 0.62\)).

Controls and HD participants did not differ in precentral and middle frontal gyrus CBF at baseline \((p = 0.60\) and 0.32 respectively), 15-minutes post exercise \((6.20 ± 5.52\) and 2.60 ± 6.54 ml/100g/min respectively) and 60-minutes post exercise \((6.77 ± 5.96,\) and 0.89 ± 7.03 ml/100g/min; all \(p > 0.05\)). Exercise and gene status had no effect on CBF values in the postcentral gyrus.

In the subcortical ROIs, hippocampal CBF was 5.12 ± 2.45 ml/100g/min higher 60-minutes post exercise across all participants \((t_{205} = 2.07, p = 0.039\)). Additionally, an interaction between exercise and gene status was found \((F_{3,198} = 3.05, p = 0.03\)); at 40-minutes post exercise, the exercise-induced CBF change was significantly different between HD and control participants \((6.98 ± 3.51\text{ ml/100g/min; } t_{200} = 1.99, p = 0.048,\) see Figure 2G). Post-hoc analysis found this was driven by a significant increase in hippocampal CBF in HD participants 40-minutes after exercise cessation \((+6.53 ± 3.15\text{ ml/100g/min, } p = 0.04\)), whereas there was no significant change in control participants at this time \((1.28 ± 2.30, p = 0.58\)). Baseline hippocampal CBF did not differ between controls and HD participants \((t_{68} = 0.12, p = 0.90\)).
Exercise and gene status had no effect on CBF in the thalamus or caudate, and no effect on arterial arrival time (AAT) averaged across the grey matter or in any of the ROIs (all p > 0.05, Supplementary Table 1).

Predictors of the exercise-induced CBF response

VO2 peak was not correlated with baseline cerebral blood flow in grey matter or in the ROIs and gene status did not affect the relationship (all p > 0.05).

A regression model examined the predictors of the observed perfusion changes seen 40-minutes after exercise cessation; the scaled estimates for each predictor in the model for HD and control participants are shown in Figure 3.

In HD participants, HRR, PETCO2 change and TMS were entered into the regression model and explained 68.2% of the variance in exercise-induced CBF change in the hippocampus (p = 0.0001). HRR explained 42.8% of the variance alone (β = -148.8, p < 0.001), whilst PETCO2 and TMS were non-significant predictors (β = -0.62 and -0.35, p = 0.129 and 0.086 respectively).

In the precentral gyrus, 57% of the variance in CBF change was explained by the model which included CAG repeat length (β = -4.17, p = 0.031), PETCO2 change (β = 2.38, p = 0.022) and HRR during the intervention (β = -1.62, p=0.97). The clinical predictor (TMS) did not meet the criteria for entry into the model.

In the MFG, PETCO2 change (β = 3.20, p = 0.06), CAG repeat length (β = -4.26, p =0.16), and HRR (β = 17.26, p = 0.80) explained 29.1% of the CBF variance and the model was not significant (p=0.18).

In control participants at the same timepoint 40-minutes post exercise cessation, HRR and PETCO2 were not predictive of hippocampal CBF change (adjusted R^2 = 0.05, p = 0.20), MFG
CBF change (adjusted $R^2 = -0.13$, $p = 0.76$) or precentral CBF change (adjusted $R^2 = -0.08$, $p = 0.62$).

Cognitive performance is impaired following acute exercise

Cognitive test performance is shown in Table 3; HD participants performed worse on all cognitive tests (main effect of gene status, all $p < 0.05$) and had a significantly slower motor tapping speed compared to controls ($F_{1,33} = 17.06$, $p = 0.0002$).

A main effect of exercise was found for performance on the Stroop interference task ($p = 0.002$), symbol digits modality test ($p = 0.007$) and speed of comprehension SCOLP test ($p=0.003$), with worse performance observed following the exercise intervention compared to baseline (see Table 3). There was no interaction between the effect of exercise and gene status.

Discussion

Long-term exercise interventions improve motor functioning in people with HD (Khalil et al., 2013; Quinn et al., 2016; Fritz et al., 2017) although the underlying mechanism is poorly understood. Here, using a highly controlled acute exercise paradigm, we aimed to characterise the cerebrovascular response to a single session of aerobic exercise in people with HD using arterial spin labelling (ASL)-MRI. Our data showed twenty-minutes of moderate intensity cycling induced a transient regionally-selective cerebral perfusion response that was different in HD participants compared to control participants. Whilst exercise induced a non-significant negative change in cerebral blood flow (CBF) in control participants in the precentral and middle frontal gyri, a significant increase in CBF was observed in HD participants 40-minutes after exercise cessation. Likewise, in the hippocampus, an area previously shown to be selectively responsive to acute exercise (Steventon *et al*., 2019), CBF was significantly elevated 40-minutes after exercise in HD participants compared to controls. We further
observed an increase in hippocampal blood flow 60-minutes after exercise cessation in both controls and HD participants, in line with previous work (Steventon et al., 2019).

The differential effect of exercise on cerebral perfusion in HD participants compared to controls was hypothesised based on an altered cardiovascular response to exercise (Steventon et al., 2018) and resting cerebrovascular abnormalities (Drouin-Ouellet et al., 2015), however the direction of perfusion effects in HD participants was not anticipated, with an increase in CBF generally interpreted as beneficial in healthy cohorts. However, as an increase in CBF was not also seen in controls, the cerebrovascular response more likely reflects a latent pathology induced by exercise in HD participants. In support of this, cerebral hyper-perfusion has been documented previously in HD patients and animal models, observed as increased vessel density, increased cerebral blood volume and flow, increased blood brain barrier permeability and greater release of VEGF-A, an angiogenic growth factor, by astrocytes (Vis et al., 1998; Harris et al., 1999; Wolf et al., 2011; Chen et al., 2012; Franciosi et al., 2012; Lin et al., 2013; Hua et al., 2014; Hsiao et al., 2015). Increased angiogenesis coupled with a reduced number of pericytes and altered vascular reactivity has been observed in HD mice (Hsiao et al., 2015), suggesting a complex functional impairment which may impact neurovascular coupling and thus the cerebrovascular response to exercise.

The regional specificity of the exercise effects are particularly noteworthy and partly in agreement with previous work in young adults and stroke patients (MacIntosh et al., 2014; Robertson et al., 2015; Steventon et al., 2019), suggesting the observed effects are specific to the exercise intervention in the HD group. Moreover, CAG repeat length, a key factor in HD pathogenesis, was predictive of the cerebrovascular response to exercise in the precentral gyrus, with a larger post-exercise increase in CBF observed in participants with a lower CAG repeat length. The precentral gyrus, also known as the primary motor cortex, is a vital structure involved in executing voluntary motor movements and capable of cortical functional
reorganisation (Wall et al., 2002; Lee et al., 2003) and acute compensatory plasticity, with changes in functional organisation demonstrated over minutes, weeks, and longer durations (Wall et al., 2002; Lee et al., 2003; Weiss et al., 2004; Björkman et al., 2009). The regional effects were not explained by baseline resting hypo- or hyper-perfusion in the HD participants, however previous work has shown significant cortical thinning and locally decreased task related fMRI activation in both the middle frontal and precentral gyri in HD participants (Wolf et al., 2007, 2008; Rosas et al., 2008; Saft et al., 2008). This supports the concept that the regionally-selective effect in HD participants and not controls are due to underlying vascular alterations in HD, which convey an increased propensity for exercise-induced vascular adaptations. However, increased connectivity has been observed using resting-state fMRI in the precentral gyrus in pre-manifest HD. This could alternatively suggest regional compensatory changes occur in brain connectivity early on in HD(Koenig et al., 2014), and the observed relationship observed with CAG length suggesting the capacity for compensatory changes is dependent on genetic burden. Further research is warranted to test whether the observed increase in CBF could reflect a compensatory mechanism to support neuronal survival, as certain regions may be less vulnerable to hindered cerebral haemodynamics in individuals with a lower genetic load.

The regulation of CBF is controlled by neurogenic, metabolic, autoregulatory and systemic factors; exercise-induced changes in CBF may be accounted for by changes in some or all of these in HD participants. However, the temporal pattern of cardiorespiratory recovery after exercise cannot explain our results; heart rate, blood pressure and the end-tidal partial pressure of carbon dioxide (PETCO₂) were not differentially affected by exercise in HD and control participants. In both groups, blood pressure recovered to baseline levels prior to the post exercise scans and heart rate was elevated during both the 15- and 40-minutes post exercise scan, whereas a CBF difference was only observed at 40-minutes. PETCO₂ remained
significantly lower than baseline at all three post-exercise timepoint, and because PETCO₂ is known to modulate arteriolar diameter (Thomas et al., 1989; Ide and Secher, 2000; Ratanakorn et al., 2001) it was accounted for in the statistical model, and predicted the CBF change in the precentral gyrus in HD participants. However, this is unlikely to explain the differences seen between controls and HD participants; the magnitude of PETCO₂ change did not differ between the two groups and PETCO₂ did not account for the changes observed in the hippocampus and middle frontal gyrus. In a healthy vascular system, hypocapnia (observed here following exercise) causes an increase in cerebral vasoconstriction, therefore a reduction in CBF would be expected, rather than the observed increase in CBF seen in HD participants. However, impaired vascular reactivity to haemodynamic challenges has been shown in preclinical HD models, with a smaller increase in CBF following carbogen in HD mice compared to wild types, despite greater vessel density (Hsiao et al., 2015). Thus, the observed increase in CBF after exercise in HD patients may be due to a blunted hypocapnic response in HD participants, although the results from the regression model do not support this in all of the regions affected.

We intended to measure the CBF response to hypercapnia in this study to test this hypothesis, however the breath-hold paradigm we utilised was limited by highly variable and poor task performance in both groups and thus requires further optimisation before a robust measure of cerebrovascular reactivity can be obtained.

The temporal specificity of our results is particularly novel, with a difference between HD and controls observed 40-minutes after exercise cessation, but not at 15- and 60-minutes post exercise. One explanation for the CBF difference is a lag effect from the CVR breath-hold challenge, performed immediately before the 40-minute CBF scan, as during breath-holding, the increase in the partial pressure of CO₂ gives rise to increased CBF because of vasomotor reactivity. However, this is unlikely due to poor performance in both groups, with CO₂
increasing after a breath-hold on only half of the trials. More likely, it suggests there is a temporal window for acute exercise effects which may be driven by resting vascular perturbations in the HD participants. In support of this, work in stroke patients also show a transient time-dependent CBF response to exercise in distinct brain regions, with a reduction in CBF in the middle frontal gyrus observed 30-minutes post exercise, and returning to baseline by 50-minutes (Robertson et al., 2015).

Designing an exercise intervention to be physically and perceptually similar for the patient and control group was challenging given that HD patients have an altered metabolic and cardiorespiratory response to submaximal exercise (Steventon et al., 2018). Nevertheless, we achieved an equivalent moderate-intensity aerobic intervention with no difference in the peripheral physiological response or self-reported exertion, suggesting that the observed effects in HD are not due to a difference in intervention prescription. However, HD participants on average cycled at a lower workload to achieve the prescribed target heart rate, most likely due to an altered movement economy. The exercise intensity achieved by HD participants during the intervention predicted the hippocampal perfusion response, which may indicate that unlike the cortical regions, the exercise-induced hippocampal effect is intensity-dependent. It is plausible that cardiovascular changes observed in preclinical models and clinical HD (Wood et al., 2012; Buonincontri et al., 2014; Bellosta Diago et al., 2018; Steventon et al., 2018) may mediate the altered cerebral response observed. HD participants were found to have a higher heart rate across the study compared to controls, although no interaction effect was found with exercise. Future studies would combine comprehensive cardiovascular and cerebrovascular measures to investigate vascular impairments in HD in response to exercise.

An additional consideration is that exercise is a potent physiological stimulus upon the hypothalamo-pituitary adrenal (HPA) axis. There is evidence that the HPA axis is impaired in
HD (Kassubek et al., 2004; Petersén et al., 2005; Björkqvist et al., 2006; Soneson et al., 2010; van Wamelen et al., 2014), with mixed evidence of subtle alterations in neuroendocrine signalling, including cortisol (Aziz et al., 2009; Kalliola et al., 2015). Equivocal evidence for a modulating effect of cortisol on CBF (Hodkinson et al., 2014; Schilling et al., 2014; Handley et al., 2016) is sufficient to merit future exercise studies in HD collecting neuroendocrine measures along with cardiorespiratory data.

Functional improvements in cognition have been reported following long-term exercise interventions in healthy cohorts (Dustman et al., 1984; Kramer et al., 1999) as well as in Parkinson’s disease (Duchesne et al., 2015; Altmann et al., 2016) and Alzheimer’s disease (Ströhle et al., 2015; Teixeira et al., 2018). In this study, cognitive performance approximately one-hour after exercise cessation was worse than at baseline in HD and control participants alike, most likely due to fatigue associated with the lengthy testing session, rather than a direct effect of exercise. Whereas baseline cognitive tests were completed at the beginning of the experimental session on a separate day, the post-exercise testing was conducted approximately 3.5 hours into the experimental session. Cognitive data were a secondary outcome measure; it is plausible that transient cognitive gains returned to baseline levels by the time of testing, with the study not optimally designed to examine transient cognitive effects and appropriately control for fatigue. We were also likely underpowered to detect an effect, with acute gains in cognition previously reported with small effect sizes (Chang et al., 2012).

A limitation of our study is the heterogeneity of the HD group, which includes presymptomatic and manifest gene carriers. Therefore, we were unable to identify at what stage in the disease an altered response to exercise occurs. Future work in a pre-symptomatic group is required to provide insight into whether the observed exercise-induced brain changes are causally involved in early pathogenesis of HD.
Conclusions

Overall, we observed a differential response to a single session of exercise in HD and control participants, with a transient regionally-selective increase in perfusion in HD participants. The highly controlled acute exercise paradigm used may provide a framework for determining the key components that enable exercise to modulate a pathologically disturbed cerebrovasculature for therapeutic gain in HD. Further work is necessary to understand the extent and pattern of disruptions to the neurovascular unit in HD to inform the development of targeted exercise approaches.

Acknowledgments

Background data was used from Enroll-HD, a clinical research platform and longitudinal observational study for Huntington’s disease families intended to accelerate progress towards therapeutics; it is sponsored by CHDI Foundation, a nonprofit biomedical research organization exclusively dedicated to collaboratively developing therapeutics for HD. Enroll-HD would not be possible without the vital contribution of the research participants and their families. We also wish to acknowledge the individuals who contributed to the collection of the Enroll-HD data (https://www.enroll-hd.org/acknowledgments/).

Funding

JS and KM were supported by the Wellcome Trust (200804/Z/16/Z). Data was used from the Enroll-HD database, which is a clinical research platform and longitudinal observational study sponsored by CHDI Foundation.

Competing Interests

The authors report no competing interests in relation to the work described.
References

Harrison DJ, Busse M, Openshaw R, Rosser AE, Dunnett SB, Brooks S. Exercise attenuates neuropathology and has greater benefit on cognitive than motor deficits in the R6/1 Huntington’s disease mouse model. Exp Neurol 2013; 248: 457–469.

Jo JS, Chen J, Riechman S, Roig M, Wright DL. The protective effects of acute
cardiovascular exercise on the interference of procedural memory [Internet]. Psychol Res

Kalliolia E, Silajdžić E, Nambron R, Costelloe SJ, Martin NG, Hill NR, et al. A 24-Hour
Study of the Hypothalamo-Pituitary Axes in Huntington’s Disease. PLoS One 2015; 10:
e0138848.

of cerebral atrophy in early Huntington’s disease: a voxel based morphometric MRI study. J
Neurol Neurosurg Psychiatry 2004; 75: 213–220.

structured home-based exercise programme have on people with Huntington’s disease? A

and three-dimensional pseudo-continuous arterial spin labeling perfusion MRI in elderly
populations: Comparison with 15o-water positron emission tomography. J Magn Reson

connectivity of primary motor cortex is dependent on genetic burden in prodromal

Kuznetsova A, Brockhof P, Christensen R. ImerTest: Tests in linear mixed effects models.
2016

remapping within the motor system induced by low-frequency repetitive transcranial

R Core Team T. R: a language and environment for statistical computing. 2016

Legends for figures

Figure 1 Study design. MRI measures were recorded up to 65-minutes after exercise cessation. ASL: arterial spin labelling MRI. T1-w: T1-weighted structural MRI scan acquired for image registration purposes. Cycling was performed on an upright ergometer. * A scan to measure cerebrovascular reactivity (CVR) using a breath-hold design was acquired but not analysed due to poor performance.

Figure 2 Absolute change in cerebral blood flow (CBF) and end-tidal CO2 (bottom right panel) from baseline, measured at 15-, 40-, and 60-minutes following exercise cessation. Data shown are the marginal means adjusted for PETCO2, sex and age. Error bars represent the standard error of the mean. MFG: middle frontal gyrus * p < 0.05 gene effect. † p < 0.05, †† p < 0.01 main effect of exercise.

Figure 3. Linear model predictors of perfusion change 40-minutes after exercise cessation. HRR: heart rate reserve during exercise. TMS: total motor score. Scaled coefficient estimates, 95% confidence intervals and coefficient of uncertainty shown. Results of stepwise regression for predictors: * p <0.05, *** p < 0.001
Exercise MRI in Huntington’s Disease
Steventon et al.

TABLE 1	SOCIODEMOGRAPHIC, FITNESS, GENETIC AND CLINICAL DATA FOR HD AND CONTROL PARTICIPANTS. MEAN ± STANDARD ERROR MEAN (RANGE). ONE-WAY ANOVA OR CHI-SQUARED TESTS WERE USED TO COMPARE HD PATIENTS TO CONTROLS. IPAQ: INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE. MAP: MEAN ARTERIAL PRESSURE.		
	HD (n = 19)	Healthy controls (n=19)	**p*-value**
Gender (male, N)	13	10	0.32
Age	45.9 ± 2.2 (32-65)	42.2 ± 2.1 (29-63)	0.23
BMI	26.2 ± 1.3 (18-40)	27.6 ± 0.9 (22-40)	0.41
IPAQ	2723.2 ± 847.1 (0-10755) ‡	2807.4 ± 682.8 (396-13488)	0.94
VO₂ peak (ml/kg/min)	34.6 ± 2.5 (18-50)	37.4 ± 2.3 (25-61)	0.42
MAP (mmHg)†	92.70 ± 2.07	88.06 ± 2.77	0.19
CAG repeat length	43.7 ± 0.6 (41-50)		
Disease burden	370.3 ± 24.4 (208-575)		
UHDRS Total Motor Score	25.7 ± 4.4 (0-68)	N/A	
UHDRS composite score	12.13 ± 1.19 (2.8-18.6)	(Schobel et al., 2017)	
UHDRS Total Functioning Capacity	10.2 ± 0.8 (3-13)		

† Rest measures calculated after 15-minutes supine rest. ‡ One HD participant had an extreme high IPAQ score (353512) that was removed from the group mean data to avoid skew.
TABLE 2 ESTIMATED MARGINAL MEANS (± S.E.M) AFTER ADJUSTING FOR PETCO2, AGE AND SEX FOR CARDIORESPIRATORY AND CEREBROVASCULAR MEASURES AT BASELINE AND AFTER 20-MINUTES OF MODERATE INTENSITY EXERCISE. CON= HEALTHY CONTROLS. DATA IN BOLD REPRESENT A SIGNIFICANT EFFECT OF EXERCISE IN POST-HOC ANALYSES.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Post exercise scan session</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CON</td>
<td>HD</td>
</tr>
<tr>
<td>Cardiorespiratory measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR, beats/min</td>
<td>62.0 ± 2.2</td>
<td>69.8 ± 2.6</td>
</tr>
<tr>
<td>MAP, mmHg</td>
<td>87.5 ± 2.2</td>
<td>92.7 ± 2.1</td>
</tr>
<tr>
<td>PETCO2, mmHg</td>
<td>36.2 ± 1.2</td>
<td>34.7 ± 1.4</td>
</tr>
<tr>
<td>Perfusion (ml/100g/min) in ROIs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grey matter</td>
<td>52.8 ± 2.9</td>
<td>51.5 ± 3.2</td>
</tr>
<tr>
<td>Middle frontal gyrus</td>
<td>43.4 ± 4.2</td>
<td>38.8 ± 4.5</td>
</tr>
<tr>
<td>Postcentral gyrus</td>
<td>51.0 ± 4.7</td>
<td>48.5 ± 5.0</td>
</tr>
<tr>
<td>Precentral gyrus</td>
<td>54.4 ± 4.1</td>
<td>51.7 ± 4.4</td>
</tr>
<tr>
<td>Caudate</td>
<td>31.6 ± 3.1</td>
<td>24.3 ± 2.3</td>
</tr>
<tr>
<td>Thalamus</td>
<td>49.5 ± 4.8</td>
<td>41.1 ± 3.6</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>51.0 ± 4.7</td>
<td>48.5 ± 5.0</td>
</tr>
</tbody>
</table>
Exercise MRI in Huntington’s Disease
Steventon et al.

TABLE 3 CognitivE performance at baseline and approximately 75-minutes after exercise cessation. Means ± S.E.M. data are marginal means adjusted for age, and for the symbol digit score, SCOLP and Trail Making, also adjusted for motor speed.

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>HD</th>
<th>FDR-adjusted p values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Post exercise</td>
<td>Baseline</td>
</tr>
<tr>
<td>Symbol digit score</td>
<td>61.3 ± 2.9</td>
<td>57.2 ± 3.0</td>
<td>41.8 ± 3.1</td>
</tr>
<tr>
<td>SCOLP</td>
<td>84.5 ± 4.8</td>
<td>78.6 ± 4.9</td>
<td>52.1 ± 5.1</td>
</tr>
<tr>
<td>Digit Span (raw)</td>
<td>11.7 ± 0.5</td>
<td>11.8 ± 0.6</td>
<td>9.7 ± 0.6</td>
</tr>
<tr>
<td>Trail Making (s)</td>
<td>44.7 ± 11.7</td>
<td>51.3 ± 12.2</td>
<td>96.9 ± 11.8</td>
</tr>
<tr>
<td>Verbal Fluency</td>
<td>17.8 ± 1.2</td>
<td>15.5 ± 1.2</td>
<td>9.7 ± 1.2</td>
</tr>
<tr>
<td>Stroop Interference</td>
<td>50.1 ± 3.1</td>
<td>44.8 ± 3.1</td>
<td>36.0 ± 3.13</td>
</tr>
<tr>
<td>Motor Speed (taps/min)</td>
<td>452 ± 20.9</td>
<td>459 ± 21.3</td>
<td>337 ± 21.4</td>
</tr>
</tbody>
</table>
Hippocampus

Scaled estimate

Model
- HRR
- PETCO2
- TMS
- CAGlength

Middle frontal gyrus

Scaled estimate

Model
- HRR
- PETCO2
- TMS
- CAGlength

Precentral gyrus

Scaled estimate

Model
- HRR
- PETCO2
- TMS
- CAGlength

HD

Controls