Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Modelling the bulk properties of ambient pressure polymorphs of zirconia

Delarmelina, Maicon, Quesne, Matthew G. and Catlow, C. Richard A. 2020. Modelling the bulk properties of ambient pressure polymorphs of zirconia. Physical Chemistry Chemical Physics 22 (12) , pp. 6660-6676. 10.1039/D0CP00032A
Item availability restricted.

[img] PDF - Accepted Post-Print Version
Restricted to Repository staff only until 25 February 2021 due to copyright restrictions.

Download (2MB)

Abstract

We report a detailed survey of the calculated bulk properties of zirconia using GGA and meta-GGA functionals (PBE, PBEsol, RPBE, and TPSS), dispersion (Grimme's D2 and D3 approach), and on-site Coulomb repulsion correction (U = 2–8 eV). Structural, elastic, mechanical, and dielectric properties, as well as energetics, electronic structure, and phonon dispersion curves were computed and compared to previous investigations to identify the best DFT approach for a consistent in silico description of zirconia polymorphs. In general, inclusion of dispersion corrections led to only small changes in the calculated properties, whereas DFT+U (U = 2 or 4 eV) reduced the deviations of calculated properties from the experimental results, although deterioration of the structure and relative stabilities may be observed in some cases. Standard PBEsol, RPBE+U, and PBE+U were the best methodologies for a simultaneous description of the three polymorphs of ZrO2. RPBE+U, however, was the only functional to conserve the distinct structures and stabilities of c-, t-, and m-ZrO2 when U = 4 eV was used, resulting in the best in silico replication of the band gaps of ZrO2, whilst outperforming the other methodologies in the description of elastic, mechanical, and dielectric properties of this material. Overall, these results provide insight into the most appropriate DFT methodology for in silico investigations of ZrO2, and show that simultaneous description of all three ambient pressure zirconia polymorphs by DFT techniques with acceptable levels of accuracy can be achieved only when the correct choice of methodology is applied.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Chemistry
Cardiff Catalysis Institute (CCI)
Publisher: Royal Society of Chemistry
ISSN: 1463-9076
Date of First Compliant Deposit: 15 September 2020
Date of Acceptance: 25 February 2020
Last Modified: 15 Sep 2020 10:13
URI: http://orca.cf.ac.uk/id/eprint/131837

Citation Data

Cited 1 time in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics