Corrigendum

David E. Sugden a,*, Andrew S. Hein a, John Woodward b, Shasta M. Marrero a, Ángel Rodés c, Stuart A. Dunning d, Finlay M. Stuart c, Stewart P.H.T. Freeman c, Kate Winter b, Matthew J. Westoby b

a Institute of Geography, School of GeoSciences, University of Edinburgh, Edinburgh, EH8 9XP, UK
b Department of Geography, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
c Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, G75 0QF, UK
d School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

A R T I C L E I N F O

Article history:
Received 9 August 2018
Accepted 24 August 2018
Available online 5 September 2018
Editor: A. Yin

Summary

This corrigendum fixes an error in the reporting of 21Ne concentrations, which affected one batch of samples that included the bedrock depth profile from which cosmogenic 10Be, 26Al and 21Ne were modelled to constrain the age and exposure history of the Patriot Hills (Fig. 8 in the manuscript). Re-modelling the cosmogenic nuclide data using the corrected 21Ne data yields an apparent exposure age of 3.5–5.1 Ma. This corrects an age published as 2.1–2.6 Ma in Sugden et al. (2017), and reinforces the conclusion of the original paper that the glacial trilinne is pre-Quaternary and that the climatic conditions necessary for its erosion last occurred in the Mid-Miocene.

The revised Supplementary Table 1 has been updated with corrected 21Ne concentrations and consistent results of 10Be concentrations. The revised Supplementary Table 2 has been updated with 21Ne exposure ages for the affected batch of samples. Below, we describe the revised model results and present a revised Fig. 8. Tables 1 and 2, Fig. 8 and its caption replace those in the original paper. The corrections reinforce the conclusions of the original paper.

Revised depth profile modelling

21Ne, 10Be and 26Al concentrations were analysed at six depths within the 2 m core. Revised Fig. 8a models the best fitting exposure age and erosion rate for each individual nuclide assuming constant exposure since the bedrock was first exposed. The three nuclides reveal incompatible histories and thus show that the surface must have experienced a complex exposure-burial history. We then apply the Balco and Rovey (2008) method to test if the whole dataset is compatible with a single-cycle exposure-burial history. The linear fits show burial ages of 0.6 ± 0.5, 14 ± 2 and 8 ± 1 Ma for the 10Be–26Al, 21Ne–10Be and 21Ne–26Al isotope pairs, respectively. These discrepancies indicate a multi-cycle exposure-burial history. Using these data, we employ the global marine isotopic record of climate change collated by Lisiecki and Raymo (2005) as a basis for modelling an exposure-burial history that is compatible with the 21Ne, 10Be and 26Al concentrations (Revised Figs. 8b, 8c).

We assume that the bedrock surface was exposed during ice-free periods when the marine δ18O value is below a certain threshold, and totally shielded from cosmic radiation when the marine δ18O value is above the threshold. This threshold and the age of first exposure are parameters in the model. The modelling shows that the best fit to the measured concentrations is achieved with a δ18O threshold corresponding to current values between 3.40 and 3.43‰ (uplift corrected for the past), which are slightly higher than the current value of 3.23‰. The apparent age of first exposure is between 3.5 and 5.1 Ma. The optimum result reveals an
uplift rate of 0.14 \(\delta^{18}O \) \(^{\%o} \text{Ma}^{-1} \) and an average interglacial surface erosion rate of 1.5 m Ma\(^{-1} \). We recognise that there are uncertainties involved in relating Antarctic glaciations directly to the LR04 dataset, and yet random deviations from the record over 80 cycles will not have a major influence on the main conclusion that the bedrock was first exposed more than three million years ago.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.epsl.2018.08.053.

References

Revised Fig. 8. Modelling of the bedrock depth profile. (a) Plot showing the best model fits to each individual nuclide (inset plots) assuming constant exposure, and the incompatiable relationships between age and erosion rate that result from making this assumption (1σ confidence limits). The modelling assumes constant exposure, rock density of 2.60 g cm\(^{-3} \), and no \(^{10}\)Be or \(^{26}\)Al inheritance. Models with inheritances of 9.1 ± 1.3 \(\times 10^8 \) atoms g\(^{-1} \) fit the \(^{21}\)Ne dataset within 1σ. Results from the stable \(^{21}\)Ne database indicate that the total exposure time of the surface is 267 ± 65 ka and the average erosion rate was <0.3 mMa\(^{-1} \) during that time (1σ confidence limits). \(^{10}\)Be and \(^{26}\)Al production rates and corresponding attenuation lengths were calculated using Matlab code from online calculators formerly known as the CRONUS-Earth online calculators v. 2.3 (Balco et al., 2008) and a \(^{21}\)Ne/\(^{10}\)Be production rate ratio of 4.1 was assumed for spallation and fast muons (Balco and Shuster, 2009). (b) The S2 model runs described below in (c) that fit the \(^{21}\)Ne, \(^{10}\)Be and \(^{26}\)Al data within 1σ confidence limits. (c) The results of modelling an exposure-burial history marked by glacial cycles as represented by the LR04 isotopic marine record (Lisiecki and Raymo, 2005). The model runs that are compatible with the measured \(^{21}\)Ne, \(^{10}\)Be and \(^{26}\)Al concentrations (1σ) correspond to first exposure ages between 3.540 and 5.135 Ma. The model assumes that the surface is exposed during ice-free periods when the \(\delta^{18}O \) is under a certain threshold, and is totally shielded from cosmic radiation during ice-covered periods when the \(\delta^{18}O \) is above the considered threshold. Surface erosion rate during ice-free periods and continuous uplift relative to the \(\delta^{18}O \) were also tuned for the model to fit the data, yielding an erosion rate of 1.5 m Ma\(^{-1} \) and an uplift rate of 0.14%%o \(\delta^{18}O \) Ma\(^{-1} \). An ice-free erosion rate of 1.5 m Ma\(^{-1} \) corresponds to a total surface lowering of 21 cm and an average erosion rate of 0.04 m Ma\(^{-1} \) since the first exposure. As suggested by the best fits of the constant-exposure model to the \(^{21}\)Ne dataset, a \(^{21}\)Ne inheritance of 9.1 ± 1.3 \(\times 10^8 \) atoms g\(^{-1} \) is allowed. Results show a \(\delta^{18}O \) threshold corresponding to current values between 3.40 and 3.43%%o (uplift corrected for the past), which are slightly higher than the current value of 3.23%%o, and would be expected for a surface that is above the glacier surface today.