Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Privacy-preserving crowd-sensed trust aggregation in the user-centeric internet of people networks

Azad, Muhammad Ajmal, Perera, Charith and Barhamgi, Mahmoud 2021. Privacy-preserving crowd-sensed trust aggregation in the user-centeric internet of people networks. ACM Transactions on Cyber-Physical Systems 5 (1) , 4. 10.1145/3390860

Full text not available from this repository.

Abstract

Today we are relying on the Internet technologies for various types of services ranging from personal communication to the entertainment. The online social networks (Facebook, twitter, youtube) has seen an increase in subscribers in recent years developing a social network among people termed as the Internet of People. In such a network, subscribers use the content disseminated by other subscribers. The malicious users can also utilize such platforms for spreading the malicious and fake content that would bring catastrophic consequences to a social network if not identified on time. People crowd-sensing on the Internet of people system has seen a prospective solution for the large scale data collection by leveraging the feedback collections from the people of the internet that would not only help in identifying malicious subscribers of the network but would also help in defining better services. However, the human involvement in crowd-sensing would have challenges of privacy-preservation, intentional spread of false high score about certain user/content undermining the services, and assigning different trust scores to the peoples of the network without disclosing their trust weights. Therefore, having a privacy-preserving system for computing trust of people and their content in the network would play a crucial role in collecting high-quality data from the people. In this paper, a novel trust model is proposed for evaluating the trust of the people in the social network without compromising the privacy of the participating people. The proposed systems have inherent properties of the trust weight assignment to a different class of user i.e. it can assign different weights to different users of the network, has decentralized setup, and ensures privacy properties under the malicious and honest but curious adversarial model. We evaluated the performance of the system by developing a prototype and applying it to different online social network dataset.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Computer Science & Informatics
Subjects: Q Science > QA Mathematics > QA76 Computer software
ISSN: 2378-962X
Date of Acceptance: 21 April 2020
Last Modified: 09 Feb 2021 15:02
URI: http://orca.cf.ac.uk/id/eprint/134101

Actions (repository staff only)

Edit Item Edit Item