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The increased interdependencies between electricity and gas systems driven by gas-fired
power plants and gas electricity-driven compressors necessitates detailed investigation
of such interdependencies, especially in the context of an increased share of renewable
energy sources. In this paper, the value of an integrated approach for operating gas
and electricity systems is assessed. An outer approximation with equality relaxation
(OA/ER) method is used to deal with the optimization class of the mixed-integer non-linear
problem of the integrated operation of gas and electricity systems. This method
significantly improved the efficiency of the solution algorithm and achieved a nearly 40%
reduction in computation time compared to successive linear programming. The value
of flexibility technologies, including flexible gas compressors, demand-side response,
battery storage, and power-to-gas, is quantified in the operation of integrated gas and
electricity systems in GB 2030 energy scenarios for different renewable generation
penetration levels. The modeling demonstrates that the flexibility options will enable
significant cost savings in the annual operational costs of gas and electricity systems (up
to0 21%). On the other hand, the analysis carried out indicates that deployment of flexibility
technologies appropriately supports the interaction between gas and electricity systems.

Keywords: integrated gas and electricity systems, operation, renewable generation variability, electricity and
flexibilities, contingency

1. INTRODUCTION

The share of variable Renewable Energy Sources (RES) in the power generation mix is increasing
significantly in Great Britain (GB) to meet de-carbonization targets (National Grid Plc, 2016).
Gas plants are expected to contribute to the management of the variability of renewable energy
generation, which consequently will increase the interaction between gas and electricity systems
and increase challenges associated with the management of gas storage and linepack in the gas
transmission system. Therefore, operating the gas and electricity systems as an integrated energy
system is increasingly important.

Battery storage, Demand-Side Response (DSR), power-to-gas (P2G), and flexible compressors
can enhance the system flexibility needed to support more cost-effective balancing of electricity
demand and supply. Furthermore, these options can participate in the provision of various ancillary
services, including reserve and frequency regulation (Qadrdan et al, 2017b). Battery storage
facilitates the integration of wind into the grid through managing variation of the peak plants,
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FIGURE 7 | Change in annual electricity generation in the Multi case in respect to the Ref case.
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FIGURE 8 | (A) Electricity demand and available wind, and (B) gas terminal capacity on the day of supply interruption (other refers to Barrow, Burton point,

in demand in morning hours coincides with a reduction in wind
generation, as presented in Figure 8A, and (b) when gas supply
capacities in the St Fergus, Bacton, and Easington gas terminals
are constrained (Figure 8B).

5.3.1. Power Dispatch
The employment of flexibility options enables an effective
balancing of electricity supply and demand during gas supply

interruption and therefore reduces the need to import electricity
(which is assumed to be at highest cost) or coal plants, which are
characterized by high emissions. As seen in Figure 9, electricity
from interconnectors and coal is reduced by up to 36 and 50
GWh compared to the Ref case in the two stress conditions,
respectively. Hence, more accommodation of wind energy is
facilitated, which leads to cost savings for both natural gas and
power systems.
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FIGURE 9 | Change in the electricity in presence of different flexibility options during the day of gas supply interruption compared to the Ref case.

N P2G-H

- R ™

5.3.2. Gas Compressor Performance

Multi-directional compressors play a key role in mitigating the
impacts of gas supply interruption by redirecting gas flows
and maintaining gas supply to gas-fired power plants that
would be otherwise be affected by the supply interruption.
As is presented in Figure 10A, in the Multi case, especially
in the morning hours when a demand increase and a
sudden wind drop coincide, the compressors operate more
frequently to redirect the gas flow direction. In other cases,
the compressor performance is almost the same as the Ref
case, as the changes are small. This is due to the fact that, in
these cases, the flexibility of the gas system infrastructure is
not enhanced.

5.3.3. Locational Marginal Price of Gas

As was discussed, the large penetration of RES increases the
interaction of gas and electricity networks. Therefore, changes
in the level of wind generation will significantly influence the
operation of the gas system. In the case of no interruption
of gas supply, since there is still enough gas to meet the
demand, gas Locational Marginal Prices (LMP) are around
the gas price (0.35 £/cm). The gas system security will be
impacted, particularly during interruption in the gas supply
system. The index considered for the gas system security is
the amount of non-served gas demand. In the Ref case, the
gas supply interruption causes a loss of 0.033 mcm of gas
demand. This results in a significant increase in the gas LMP,
especially in Scotland after 11:00 a.m., when both gas and
electricity demand are high (Figure 10B). The gas LMP in
Scotland in the Ref case after 11 h is equal to the assumed
Value of Lost Load (VoLL) (11.1 £/cm Chaudry et al., 2008).
The use of flexibility options prevents gas load shedding during
the supply interruption. As is shown in Figure 10B, the use
of DSR and battery storage minimize the impact of the gas
supply interruption on the gas LMP (0.46 £/cm). In the Multi
case, the gas LMP is 0.72 £/cm, which indicates the efficacy of
multi-directional compressors in gas delivery to demand centers.
P2G prevents gas load shedding by producing hydrogen and
injecting it into the gas system. However, the LMPs are high
(3.4 £/cm) given that the wind generation is low and hydrogen

injection therefore cannot help significantly to obviate the gas
system congestion.

Overall, the modeling demonstrates that the investment in
flexibility in gas infrastructure will be driven by increased
requirements for flexibility in the electricity system. This will
require closer coordination of operation and investment in both
systems in order to facilitate cost-effective de-carbonization of
the electricity system.

On the other hand, the case studies indicate that enhancing
flexibility in gas and electricity networks could reduce
the dependency between gas and electricity systems by
addressing demand-supply balancing challenges as well as
gas supply interruptions.

6. CONCLUSION

An outer approximation with equality relaxation method is
proposed to effectively solve the optimization problem of the
operation of integrated gas and electricity systems. The modeling
approach developed is applied to demonstrate the benefits of an
integrated approach to the operation of interdependent gas and
electricity systems.

In addition, the modeling indicates that significant cost
savings and corresponding emissions reduction can be achieved
through enhancing the flexibility of the gas infrastructure. The
value of different flexibility options (battery storage, demand-
side response, power-to-gas, and multi-directional compressors)
for the operation of gas and electricity systems were investigated
for various scenarios representing different levels of wind
generation penetration. It was demonstrated that flexibility
options would enhance the ability of the system to accommodate
wind generation and simultaneously reduce the operating cost of
the gas and electricity systems by up to 21%.

It was demonstrated that during sudden drops in wind
generation as well as gas supply interruptions, the flexibility
options play important roles in enhancing the efficiency of
system operation and the security of gas supply. The ability
of the flexibility options to reduce the interaction between gas
and electricity networks in an integrated strategy highlights
the importance of reforming the current regulatory and
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FIGURE 10 | (A) Change in power consumed by the gas compressors on the day of supply interruption compared to the Ref case, and (B) gas LMP in Scotland on
the day of supply interruption.
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