Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Atacama Cosmology Telescope: component-separated maps of CMB temperature and the thermal Sunyaev-Zel’dovich effect

Madhavacheril, Mathew S., Hill, J. Colin, Næss, Sigurd, Addison, Graeme E., Aiola, Simone, Baildon, Taylor, Battaglia, Nicholas, Bean, Rachel, Bond, J. Richard, Calabrese, Erminia, Calafut, Victoria, Choi, Steve K., Darwish, Omar, Datta, Rahul, Devlin, Mark J., Dunkley, Joanna, Dünner, Rolando, Ferraro, Simone, Gallardo, Patricio A., Gluscevic, Vera, Halpern, Mark, Han, Dongwon, Hasselfield, Matthew, Hilton, Matt, Hincks, Adam D., Hlo?ek, Renée, Ho, Shuay-Pwu Patty, Huffenberger, Kevin M., Hughes, John P., Koopman, Brian J., Kosowsky, Arthur, Lokken, Martine, Louis, Thibaut, Lungu, Marius, MacInnis, Amanda, Maurin, Loïc, McMahon, Jeffrey J., Moodley, Kavilan, Nati, Federico, Niemack, Michael D., Page, Lyman A., Partridge, Bruce, Robertson, Naomi, Sehgal, Neelima, Schaan, Emmanuel, Schillaci, Alessandro, Sherwin, Blake D., Sifón, Cristóbal, Simon, Sara M., Spergel, David N., Staggs, Suzanne T., Storer, Emilie R., van Engelen, Alexander, Vavagiakis, Eve M., Wollack, Edward J. and Xu, Zhilei 2020. Atacama Cosmology Telescope: component-separated maps of CMB temperature and the thermal Sunyaev-Zel’dovich effect. Physical Review D 102 (2) , 023534. 10.1103/PhysRevD.102.023534

[img]
Preview
PDF - Published Version
Download (5MB) | Preview

Abstract

Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component separation in CMB analyses has been performed exclusively using satellite data. In this paper, we implement a component separation method based on the internal linear combination (ILC) approach which we have designed to optimally account for the anisotropic noise (in the 2D Fourier domain) often found in ground-based CMB experiments. Using this method, we combine multifrequency data from the Planck satellite and the Atacama Cosmology Telescope Polarimeter (ACTPol) to construct the first wide-area (≈2100  sq. deg.), arcminute-resolution component-separated maps of the CMB temperature anisotropy and the thermal Sunyaev-Zel’dovich (tSZ) effect sourced by the inverse-Compton scattering of CMB photons off hot, ionized gas. Our ILC pipeline allows for explicit deprojection of various contaminating signals, including a modified blackbody approximation of the cosmic infrared background (CIB) spectral energy distribution. The cleaned CMB maps will be a useful resource for CMB lensing reconstruction, kinematic SZ cross-correlations, and primordial non-Gaussianity studies. The tSZ maps will be used to study the pressure profiles of galaxies, groups, and clusters through cross-correlations with halo catalogs, with dust contamination controlled via CIB deprojection. The data products described in this paper are available on LAMBDA.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Publisher: American Physical Society
ISSN: 2470-0010
Date of First Compliant Deposit: 18 September 2020
Date of Acceptance: 17 June 2020
Last Modified: 21 Sep 2020 15:00
URI: http://orca.cf.ac.uk/id/eprint/134934

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics