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Abstract

In humans KCNQ2/3 heteromeric channels form an M-current that acts as a brake on neuronal excitability, with mutations
causing a form of epilepsy. The M-current has been shown to be a key regulator of neuronal plasticity underlying associative
memory and ethanol response in mammals. Previous work has shown that many of the molecules and plasticity
mechanisms underlying changes in alcohol behaviour and addiction are shared with those of memory. We show that the
single KCNQ channel in Drosophila (dKCNQ) when mutated show decrements in associative short- and long-term memory,
with KCNQ function in the mushroom body a/bneurons being required for short-term memory. Ethanol disrupts memory in
wildtype flies, but not in a KCNQ null mutant background suggesting KCNQ maybe a direct target of ethanol, the blockade
of which interferes with the plasticity machinery required for memory formation. We show that as in humans, Drosophila
display age-related memory impairment with the KCNQ mutant memory defect mimicking the effect of age on memory.
Expression of KCNQ normally decreases in aging brains and KCNQ overexpression in the mushroom body neurons of KCNQ
mutants restores age-related memory impairment. Therefore KCNQ is a central plasticity molecule that regulates age
dependent memory impairment.

Citation: Cavaliere S, Malik BR, Hodge JJL (2013) KCNQ Channels Regulate Age-Related Memory Impairment. PLoS ONE 8(4): e62445. doi:10.1371/
journal.pone.0062445

Editor: Giorgio F. Gilestro, Imperial College London, United Kingdom

Received January 25, 2013; Accepted March 21, 2013; Published April 30, 2013

Copyright: � 2013 Cavaliere et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the EU FP7 Marie-Curie (IRG200632), Royal Society (2008/R1), BBSRC (BB/G008973/1), and from a Wellcome
PhD program (083361). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: james.hodge@bristol.ac.uk

Introduction

KCNQ (Kv7) channels mediate a range of important

physiological functions and are a hotspot of genetic diseases

and therefore target for existing and novel drug treatments. In

human cardiac muscle, KCNQ1 loss of function mutations result

in the most common form of cardiac arrhythmia, Long QT

syndrome, while gain of functions mutations cause Short QT

and atrial fibrillation [1,2]. KCNQ1 mutations also result in adult

onset type II diabetes [3,4]. In the nervous system KCNQ3 can

heteromultimerise with either KCNQ2 or KCNQ5 subunits to

form a channel that mediates a M-current, a current that is

suppressed by muscarinic acetylcholine receptor activation.

Because the M-current operates at resting membrane potential

it is well poised to regulate membrane excitability so that when

it is open it acts as a brake on action potential firing while if it

is suppressed it increases neural activity and neurotransmitter

release [5,6]. These features and its broad neuronal expression

allow KCNQ channels to have an important function in

synaptic plasticity and memory, alcohol response and nocicep-

tion [2,7,8]. KCNQ2 or KCNQ3 loss-of-function mutations result

in a developmental form of epilepsy called Benign familial

neonatal convulsions [2,5]. KCNQ4 loss-of-function mutations

are a common cause of autosomal dominant deafness and age-

dependent hearing impairment [9,10]. M-current inhibitors

increase excitability of cholingeric neurons and have shown

some promise as cognitive enhancers in models of dementia.

Conversely, M-current openers are of great interest as antic-

onvulsants, analgesics and treatments of psychiatric diseases

[2,5]. In mice expression of human dominant negative KCNQ2

transgene in hippocampal neurons increases neural excitability

and results in associative memory deficits [7].

Drosophila has a single KCNQ (dKCNQ) channel that is most

highly expressed in the nervous system [11–13], but like

mammalian KCNQ1 [2] is also expressed in the heart.

dKCNQ encodes a slowly activating and deactivating Kv

current that can be suppressed by muscarinic acetylcholine

receptor agonists and hence is an M-current [12,14]. dKCNQ

has been shown to have important age-dependent cardiac

function, with hearts from young dKCNQ loss-of-function mutant

flies showing arrhythmias similar to those seen in aged wildtype

flies, whose hearts shows age dependent reduction in dKCNQ

expression [13]. dKCNQ has many features of the M-current

including conserved acute block by low concentrations of

ethanol and broad neuronal expression [15]. Furthermore,

targeted expression of KCNQ-RNAi in Drosophila neurons in-

creased neural excitability, while KCNQ overexpression de-

creased excitability in vivo. dKCNQ loss-of-function mutant flies

increased ethanol sensitivity and tolerance with acute activation

of dopaminergic neurons by heat-activated TRP channel or

KCNQ-RNAi expression shown to produce ethanol hyperexcit-

ability [15]. In this study we characterise the role of dKCNQ

mutants on memory, showing that dKCNQ expression decreases

in the brain with aging and is linked to age-dependent cognitive

deficits.
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Figure 1. KCNQ signalling is required in the mushroom body a and b neurons for short-term memory. A.–C. Adult brains containing
a Gal4 enhancer trap (KCNQNP3423) in the KCNQ gene locus revealed broad neuronal expression of KCNQ (labelled by membrane bound GFP in green
(B)) especially in the fly memory structures of the mushroom body a and b neurons and surrounding neurons known to be visualised by DLG-A (Ruiz-
Cañada et al., 2002) staining (in magenta (A), co-localised structures in white (C)). D. Initial (2 min) memory was reduced in the KCNQ mutant (black
bar) and flies with reduced KCNQ levels (dark grey bars) in all neurons (Elav-Gal4, uas-KCNQ-RNAi) (p,0.05) compared with controls (CSw-, KCNQ
control, and Gal4, +, white bars) but did not lead to any change in memory (p.0.05) between the remaining genotypes. E. KCNQ mutants and flies
with reduced KCNQ in the mushroom body (OK107-Gal4 or MB247-Gal4, uas-KCNQ-RNAi), DPM (amn-Gal4, uas-KCNQ-RNAi) (p,0.001) or all (Elav-
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Materials and Methods

Drosophila Stocks
The KCNQ deletion mutant contained an imprecise excision of

the EP2074 element (KCNQ186) that removes all the 59 and

transmembrane regions of the channel and therefore is a null [13].

The KCNQ control was a precise excision of the element (KCNQ97)

leaving the gene completely intact [13]. uas-KCNQ flies allowed

Gal4 promoter driven overexpression of KCNQ [13] while uas-

KCNQ-RNAi (Bloomington stock 27252) allowed Gal4 targeted

knockdown of the channel. The KCNQ stocks were kind gifts of Dr

Rolf Bodmer. Elav-Gal4, uas-mCD8-GFP and OK107-Gal4 [16]

were gifts from Dr Leslie Griffith. OK107-Gal4, Gal80ts [17] was

a gift from Dr Yi Zhong. c305a-Gal4 [18], MB247-Gal4 [19] and

Amn(c316)-Gal4 [20] stocks were gifts of Dr Scott Waddell.

Wildtype flies were Canton S w- (CSw-) from a stock previously

maintained in the Waddell lab. All KCNQ mutant, Gal4 and uas

lines were out crossed with the relevant CSw- line prior to

behavioural analysis. All genotypes and all other crosses were

raised on corn-meal agar medium at 2262uC and 60610%

humidity under 12:12 hr light-dark cycle.

Immunohistochemistry
Adult fly brains were dissected in HL3.1 (70 mM NaCl, 5 mM

KCl, 10 mM NaHCO3, 115 mM sucrose, 4 mM MgCl2 5 mM

trehalose, 1.5 mM CaCl2, and 5 mM HEPES, pH 7.3) and

isolated brains were fixed in 4% paraformaldehyde in HL3.1 for

30 min before being washed in HL3.1 [21]. The samples were

permeabilised in HL3.1 with 0.1% triton X (HL3.1-Tx) for 1 hr,

and then blocked for 1 hr in HL3.1-Tx with 0.1% BSA and 2%

normal donkey serum (HL3.1-Tx-BSA-NDS). In order to the

visualise the mushroom body and antennal lobe, brains were

incubated with (1:2000) rabbit anti-Drosophila DLG (PDZ1-2)

a protein known to be highly expressed in these memory-related

structures [22] overnight at 4uC in HL3.1-Tx-BSA-NDS. After

washing three times in HL3.1-Tx for 20 min, the brains were

incubated with anti-rabbit Alexa-648 conjugated secondary

antibody (1:400 in HL3.1-Tx-BSA-NDS) for 2 hr at room

temperature. Finally the brains were washed three times HL3.1-

Tx before being mounted in Vectorshield (Vector Laboratories).

Samples were stored at 4uC in the dark until examination using

a Leica TCS SP5 confocal microscope. The endogenous KCNQ

expression pattern was determined by visualising membrane

targeted GFP expressed using KCNQ-Gal4 reporter lines

(KCNQNP3423-Gal4, uas-mCD8-GFP).

Olfactory Aversive Conditioning
All experiments were performed at 25uC and 70% humidity

under red light using the olfactory aversive conditioning protocol

[23]. Groups of ,100 1–4 day old male and female flies received

either 1 cycle of training during which they were exposed

sequentially to one odour (conditioned stimulus, CS+; 3-octanol
(1:74) or 4-methylcyclohexanol (1:57) diluted in mineral oil) for

1 min paired with electric 60 V DC shock (US) and then to

a second odour (CS-; the reciprocal odour) for 1 min without

electric shock separated by a 30 sec rest period when they were

exposed to fresh air. Memory was measured after 1 (,2 min

memory) training session at the choice point of the T-maze. To

measure STM, flies were trained with 1 training cycle were stored

for 1 hr and then allowed to distribute in the T-maze. LTM was

assessed by giving flies either 5 cycles of spaced training cycles

separated by 15 min rest intervals and then storing the flies for

24 hr before distribution in the T-maze. A performance index (PI)

was calculated as the number of flies that distributed in the CS-

arm minus the flies in the CS+ arm, divided by the total number of

flies. Therefore a PI of 1.0 would be equivalent of 100:0

distribution where all the flies avoided the CS+ (perfect memory),

while a 50:50 distribution would give a PI of zero (no memory). To

test the effect of ethanol on Drosophila learning, flies were kept in

bottles containing instant media (Formula 4–24 (R); Carolina

biological supply company, Burlington, NC, USA) containing

10% ethanol in water containing a small amount of blue dye

(0.05% Bromophenol blue) ,12 hr before testing. The controls

were given the same water-blue dye solution but lacking ethanol.

The blue dye was used to monitor whether the flies had actually

drunk the ethanol solution; this was confirmed as all the flies had

blue abdomens prior to the test. For OK107-Gal4, Gal80ts

experiments [17] flies were raised at 18uC and then shifted to

30uC allowing KCNQ transgene expression 1–2 days prior and

during behavioural testing. Olfactory acuity was quantified by

exposing naive flies to the odour versus air in the T-maze during

a 2 min test trial. The performance index was calculated by

counting the number of flies avoiding odour divided by total

Gal4, p,0.01) neurons have a significant reduction in 1 hr STM compared to controls (CSw-, KCNQ control and Gal4, +), while KCNQ overexpression
(light grey bars) had no effect (p.0.05) with these promoters. F. Mushroom body a/b neuron expression of the KCNQ transgene in the KCNQ mutant
background (KCNQ mutant; MB247-Gal4, uas-KCNQ) rescued the KCNQ mutant memory deficit with its memory being greater (p,0.05) than KCNQ
mutant with Gal4 or uas alone (KCNQ mutant; MB247-Gal4 and KCNQ mutant; uas-KCNQ) but statistically indistinguishable (p.0.05) from control
(CSw- wildtype) levels. Data in D-F were analysed by 1-way ANOVA with Bonferroni post-hoc test. G. 1 hr memory was measured in OK107-Gal4,
Gal80ts, uas-KCNQ-RNAi and OK107-Gal4, Gal80ts, CSw- control flies raised at 18uC throughout development and then tested at 18uC conditions that
prevent transgene expression (white bars). These scores were compared to the 1 hr memory of the same genotypes raised at 18uC throughout
development and then shifted to 30uC allowing KCNQ transgene expression 2 days prior and during behavioural testing (black bars). 2-way ANOVA
indicates significant differences due to interaction between temperature and genotype (p = 0.0195). Post-hoc analysis showed OK107-Gal4, Gal80ts,
uas-KCNQ-RNAi had less (p,0.05) memory at 30uC compared to flies at 18uC flies (,100 flies per n). In this and all subsequent figures, error bars
represent SEM with no asterisk p.0.05, *p,0.05, **p,0.01 and ***p,0.001. n is denoted by the number between the x axis and genotype names
with experiments performed on multiple different days (,100 flies were used per n, unless otherwise stated).
doi:10.1371/journal.pone.0062445.g001

Figure 2. KCNQ signalling is required for long-term memory. A.
5 cycles of spaced training produces 24 hr LTM in KCNQ control flies
that is absent (p,0.001) in the KCNQ mutants. Data were analysed with
unpaired t-test.
doi:10.1371/journal.pone.0062445.g002

KCNQ Regulates Age-Related Memory

PLOS ONE | www.plosone.org 3 April 2013 | Volume 8 | Issue 4 | e62445



number flies. Shock reactivity was quantified by placing grids in

each arm of the T-maze, and applying shock via the grid in one

arm of the maze during a 2 min test trial. The performance index

was calculated by counting the number of flies avoiding shock

divided by total number flies [24]. Ethanol avoidance was

quantified by placing a solution of 40% ethanol in the odour

cup of one arm of the T-maze during a 2 min test trial. The

performance index was calculated by counting the number of flies

avoiding 40% ethanol divided by total number flies. All statistical

analysis for behavioural data were performed and plotted with

Graphpad Prism software.

Quantitative RT-PCR
Age-matched flies were frozen in liquid nitrogen and de-

capitated by vortexing. Heads were collected and an equal

number of heads from each genotype were homogenised. Trizol

was added directly in to the homogenised heads and RNA was

extracted according to manufacturer’s instructions (Invitrogen).

RNA was DNAase treated (Ambion Inc) and reverse-transcribed

(Retroscript, Ambion). KCNQ mRNA was measured using a Taq-

Man Kit(KCNQ - Dm01846741_g1) and was normalised to Rpl23

(Rpl23-Dm02151827_g1) mRNAas a control allowing standardi-

sation between the samples for aging experiments. The cDNA

Figure 3. KCNQ mediates age-related memory impairment. A. Quantitative RT-PCR data show a dramatic age dependent reduction (p,0.05)
in KCNQ expression in adult brains (20 flies per n). B. 1 hr memory after 1 cycle training was compared between young (1–5 days old, white bars) and
aged (25–30 days, black bars) adults. 2-way ANOVA indicates significant differences in memory due to age (p = 0.0013) and genotype (p = 0.0008).
Post-hoc analysis revealed that memory becomes significantly impaired in aged as opposed to young CSw- wildtype (p,0.01) and KCNQ control
(p,0.05) flies. KCNQ mutant flies had equally low (p.0.05) memory whether young or old. C. Overexpression of KCNQ in the mushroom body
rescues memory impairment of young and old KCNQ mutant flies. 2-way ANOVA indicates significant differences in memory due to age (p,0.01) and
genotype (p,0.001). Post-hoc analysis revealed that memory becomes significantly impaired in aged as opposed to young CSw- wildtype (p,0.01),
while the memory of KCNQ mutant; OK107-Gal4, uas-KCNQ rescue flies stays similarly high (p.0.05) in young and old flies as opposed to KCNQ
mutant with Gal4 or uas alone (KCNQ mutant; OK107-Gal4orKCNQ mutant; uas-KCNQ) whose memory was similarly low in young and old flies
(p.0.05).
doi:10.1371/journal.pone.0062445.g003
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concentration was measured using Roche’s Light Cycler system

and using multiplexing on a Stratagene Mx3000P system

(Stratagene). All statistical analysis of data were performed and

plotted with Graphpad Prism software.

Results

KCNQ Signalling Regulates Mushroom Body Dependent
Associative Memory
Adult flies were tested for associative memory using the

olfactory aversive conditioning [23]. Anatomically, neurons critical

for Drosophila memory include those of the mushroom body that

are labelled by OK107-Gal4 [16]; these can be subdivided into a,
b and c neurons labelled byMB247-Gal4 (which expresses strongly

in a/b neurons but only weakly in c neurons, [19]) and a’/b’
neurons labelled by c305a-Gal4 [18]. The mushroom body-

associated dorsal paired medial (DPM) neurons are also important

for memory. They express the memory gene amnesiac (amn) and can

be labelled by amn(c316)-Gal4 that expresses in the DPM [20].

KCNQ is broadly expressed in the brain [12,15]. Using a Gal4

promoter enhancer trap within the KCNQ gene to drive GFP

expression (Figure 1B), it appears KCNQ is expressed in the adult

mushroom body a/b and surrounding neurons (Figure 1C),

structures that are known to mediate memory formation and

ethanol behaviour [24–26]. Compared with controls (Figure1D),

the KCNQ mutant had reduced initial memory 2 min after

training, as did flies with pan-neural KCNQ knockdown. KCNQ

mutants and flies with pan-neural, DPM or mushroom body

neuron deficient KCNQ completely lacked the ability to form short-

term memory (STM) assessed 1 hr after training (Figure 1E).

In order to map this STM phenotype further, we selectively

knocked-down KCNQ in different parts of the mushroom body,

finding that the a/b neurons that appear to express KCNQ

(Figure 1C) were required for KCNQ’s role in STM (as opposed to

a’/b’ neurons (Figure 1E) which do not seem to express KCNQ

(Figure 1C)). KCNQ overexpression in any part of the mushroom

body, DPM or all neurons did not change memory measured at

2 min or 1 hr (Figure 1D–E). We also found that expression of

KCNQ in a/b neurons using MB247-Gal4 in a fly otherwise

completely lacking KCNQ; rescued the KCNQ mutant STM defect

to normal (Figure 1F). Acute reduction of KCNQ levels in the

mushroom body was sufficient to decrease 1 hr memory compared

with controls (Figure 1G), showing that KCNQ is required post

developmentally to mediate physiological changes underlying

memory. We then wished to determine the role of KCNQ in

long-term memory (LTM) which is formed after spaced training

and lasts about 7 days and is protein synthesis and CREB

dependent [17,27]. We found that the KCNQ mutant showed

a drastic reduction in LTM (Figure 2A). No difference in ability of

the flies to sense the odour (Figure S1A–B) or shock (Figure S1C)

was observed between genotypes, showing that KCNQ mutants do

not change peripheral sensory processing, but rather the memory

defects are due to loss of KCNQ function in the mushroom body.

Drosophila Display Age Dependent Memory Deficits that
are Rescued by Mushroom Body KCNQ Expression
Fly associative memory is known to decrease with age [28] and

KCNQ expression decreases in old fly hearts leading to age related

cardiac impairments [13]. Therefore we decided to test whether or

not KCNQ was involved in age dependent memory decline. We

first determined KCNQ expression in heads over the lifespan of

Drosophila (,50 days, [28]) using quantitative RT-PCR. We found

that by 25 days KCNQ expression had declined to about 10% of

the level of 5 day olds (Figure 3A). Therefore, we tested STM of

young (1–5 day old) as opposed to aged (25–30 day old) flies.

Whereas control flies displayed an age dependent decrease in 1 hr

STM (Figure 3B), KCNQ nulls were completely unable to form

STM whether they were young or old. Previous experiments have

implicated the amn DPM and mushroom body neurons in

mediating the effect of age on 1 hr memory [28–30], with

expression of a PKA transgene in mushroom body neurons

restoring age-related memory impairment. We therefore over-

expressed KCNQ in the mushroom body (Figure 3C) of KCNQ

mutants and demonstrate rescue of age-dependent memory

impairment. These experiments are consistent with decreases in

KCNQ signalling being central forage dependent decrements in

memory. This experiment also confirms that in young flies

expression of KCNQ using mushroom body Gal4 lines (Figure 1F

and 3C) in a fly otherwise completely lacking KCNQ rescues the

KCNQ mutant STM defect to normal.

Figure 4. Ethanol disrupts memory in wildtype flies an effect removed by the KCNQ mutation. A. Flies received an overnight (,12 hr)
exposure to 10% ethanol and were tested for 2 min memory. 2-way ANOVA showed a significant effect due to genotype and ethanol (p,0.05). Post-
hoc analysis showed that in KCNQ control ethanol caused a reduction (p,0.05) in memory compared to water. The reduction in memory was
removed by the KCNQ mutation that had similarly low memory with or without ethanol (p.0.05). B. Ethanol content of KCNQ mutant and control
(CSw- wildtype) flies exposed to 10% ethanol solution for ,12 hr was similar (p.0.05, unpaired t-test, 20 flies per n).
doi:10.1371/journal.pone.0062445.g004
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Ethanol Disrupts Memory an Effect Mimicked by KCNQ
Mutation
Previous work has shown that many of the molecules and

plasticity mechanisms underlying changes in ethanol behaviour

and addiction are shared with those of associative memory with

ethanol known to disrupt synaptic plasticity and memory in

humans [29,30]. Furthermore ethanol has been demonstrated to

directly inhibit the M-current in dopaminergic neurons of the

ventral tegmental area (VTA) a region of the brain important for

ethanol reinforcement [26,31]. Likewise it has been shown that

dKCNQ shows conserved blockade by ethanol, with reduction in

KCNQ function causing increased ethanol sensitivity and

tolerance via changes in dopamine neurons [15]. Consequently

we investigated whether or not ethanol disrupted fly memory.

Wildtype flies were exposed to 10% ethanol solution for ,12 hr

and then immediately tested for 2 min memory (Figure 4A),

although the flies did not appear sedated or intoxicated after the

exposure or during the memory test, ethanol was found to reduce

their memory. As KCNQ maybe a direct target of ethanol that is

required for memory, we tested the KCNQ mutant and found that

this resulted in a loss of the reduction in memory. This suggests

that KCNQ is the plasticity molecule blocked by ethanol

interfering with memory. No change in ethanol content was

found between genotypes and was ,10 mM at the time of the

memory test (Figure 4B), this would be sufficient to block

a significant proportion of neural KCNQ channels

(IC50 = 19.8 mM, [15]).

Discussion

Drosophila KCNQ displays conserved electrophysiological and

pharmacological properties with mammalian neuronal KCNQ2/3

channels, with both mediating a slowly activating and non-

inactivating Kv current called a M-current due to its suppression

by muscarinic acetylcholine receptors [12,14]. In the hippocam-

pus, expression of a dominant negative human KCNQ2 transgene

was found to suppress the M-current [7]. This resulted in

a decrease in the afterhyperpolarization (after a train of action

potentials, the increase in Ca2+ activates K+ channels leading to

a pronounced hyperpolarization) and caused deficits in associative

memory. Kv channels have also been implicated in plasticity

underlying fly memory [32–35] consistent with the conspicuous

expression of Kv currents in mushroom body neurons [34,36,37].

We have extended these studies by showing dKCNQ has a role in

immediate memory, STM and LTM without peripheral defects.

Targeted reduction of KCNQ in the mushroom body a/b neurons

was sufficient to reduce memory, while expressing KCNQ in the

same neurons in a fly otherwise completely lacking KCNQ rescued

the KCNQ mutant memory phenotype to normal (Figure 1F).

These results show KCNQ is required in the mushroom body a/
b neurons in order for the fly to form STM. We found that the

KCNQ memory phenotype resulted from reduced KCNQ

function in the adult mushroom body (Figure 1G), showing that

the role of KCNQ in formation is an acute physiological one as

opposed to a developmental one. Mushroom body and DPM

neurons have been suggested to respond to acetylcholine [27,38–

42] and muscarinic acetylcholine receptor activation is known to

suppress the dKCNQ current [12,14]. Therefore cholinergic

stimulation would be expected to close dKCNQ channels causing

depolarization and increasing firing and/or release from the DPM

and mushroom body neurons. This might be expected to result in

induction of plasticity and strengthening of recurrent activity in the

DPM-mushroom body loop that could potentially consolidate

memory. In addition the DPM neurons are thought to be

serotonergic with serotonin playing an important role in the DPM

mediated memory [43], interestingly serotonin has be shown

inhibit KCNQ currents in mammalian neurons [44,45], it is not

known if this is also true for KCNQ currents in Drosophila neurons.

The effect of KCNQ mutation on LTM maybe through

disruption of appropriate changes in resting membrane potential

of memory neurons, which are required to remove the Mg2+ block

of Drosophila NMDA glutamate receptors that is necessary for

LTM and CREB-dependent gene expression [46].

On the basis of our data, high ethanol levels would be expected

to cause significant or complete KCNQ blockade [15], disrupting

synaptic plasticity and memory formation, thereby leading to

alcohol induced amnesia or blackout. Consistent with this

proposition we found that ethanol disrupts fly memory, an effect

that was removed in the KCNQ mutant background (Figure 4A).

This suggests that KCNQ is a key molecule that ethanol interacts

with in the plasticity machinery involved in memory. Given the

conserved role of mammalian KCNQ in ethanol response and

memory [15], we suggest that it is likely this will also be the case

for mammals.

Fly memory is known to reduce with age [28], as does KCNQ

expression and function in the heart [13]. We found that KCNQ

brain expression dramatically decreases with age and this is

accompanied by an age-dependent decrease in memory

(Figure 3A). Young KCNQ mutant flies that have low levels of

KCNQ comparable to the low levels of KCNQ in aged wildtype flies

have comparably reduced levels of memory. As mushroom body

neurons are known to be important for mediating changes in

memory performance with age [28,29] and mushroom body

knockdown of KCNQ completely removed 1 hr memory

(Figure 1E), we overexpressed a KCNQ transgene in the mushroom

body (Figure 3C) of a fly otherwise completely lacking KCNQ and

found that this restored age-related memory impairment with

young and old flies having similarly high memory. In summary we

show reduction in KCNQ function in mushroom body neurons

mediates age-dependent cognitive decline.

In mammals, KCNQ specific modulators have been suggested

to alleviate memory deficits associated with age related memory

diseases such as Alzheimer’s disease [2]. It is not clear how

KCNQ-mediated mechanisms may affect memory in aged

animals. However, based on the contribution of KCNQ2/3 to

hippocampal afterhyperpolarizations and memory [7], one can-

didate mechanism would involve reduced neuronal KCNQ, as this

modulates afterhyperpolarization duration that is known to

change with memory and in aged animals [47–49]. Recently,

KCNQ channels have been implicated in age-dependent decre-

ments in the memory of primates [50], suggesting that KCNQ

function in cognitive impairments accompanying aging are likely

conserved from flies to humans. Furthermore, PKA signalling has

been implicated in age-related memory impairment in flies and

mammals [28,29,50,51] with the mammalian KCNQ channel

open state being increased by PKA [50,52], suggesting that the

mushroom body neuron KCNQ-mediated memory and age-

dependent memory defects maybe due to an interaction with

PKA.

The genetic and experimental tractability of Drosophila com-

bined with its ,50 day lifespan and molecular conservation with

human make it a convenient and powerful genetic model [28] to

study further the age-dependent KCNQ cognitive deficits. We

have shown that KCNQ neuronal function in memory and

ethanol response are evolutionarily conserved with mammals,

allowing further development of Drosophila models of KCNQ

neuronal function and channelopathies to elucidate KCNQ
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signalling networks, mechanisms of aging and potential screening

for new disease therapies.

Supporting Information

Figure S1 A. KCNQ channel mutants display normal olfactory

acuity and shock reactivity. Experimental and control (CSw-

wildtype or KCNQ control) flies similarly (p.0.05) avoided OCT

A. and MCH B. odour used in the memory assay. C.
Experimental and control (CSw- wildtype or KCNQ control) flies

similarly (p.0.05) avoided the arm of the T-maze delivering 60 V

DC electric shock. Data in A-C were analysed by 1-way ANOVA

with Bonferroni post-hoc test.

(TIFF)
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