Modelling General Properties of Nouns
by Selectively Averaging Contextualised Embeddings

Na Li'*, Zied Bouraoui’, Jose Camacho-Collados?,
Luis Espinosa-Anke®, Qing Gu!, Steven Schockaert®
!Nanjing University, China; 2CRIL Univ Artois & CNRS, France; *Cardiff University, UK
li.na@smail.nju.edu.cn, zied.bouraoui @cril.fr, {camachocolladosj,
espinosa-ankel,schockaerts 1} @cardiff.ac.uk, guq@nju.edu.cn

Abstract

While the success of pre-trained language mod-
els has largely eliminated the need for high-quality
static word vectors in many NLP applications, such
vectors continue to play an important role in tasks
where words need to be modelled in the absence
of linguistic context. In this paper, we explore how
the contextualised embeddings predicted by BERT
can be used to produce high-quality word vectors
for such domains, in particular related to knowl-
edge base completion, where our focus is on captur-
ing the semantic properties of nouns. We find that a
simple strategy of averaging the contextualised em-
beddings of masked word mentions leads to vectors
that outperform the static word vectors learned by
BERT, as well as those from standard word embed-
ding models, in property induction tasks. We notice
in particular that masking target words is critical
to achieve this strong performance, as the resulting
vectors focus less on idiosyncratic properties and
more on general semantic properties. Inspired by
this view, we propose a filtering strategy which is
aimed at removing the most idiosyncratic mention
vectors, allowing us to obtain further performance
gains in property induction.

1 Introduction

The success of contextualised language models (LMs), such
as BERT [Devlin et al., 2019], has led to a paradigm shift in
Natural Language Processing (NLP). A key feature of such
models is that they produce contextualised word vectors, i.e.
vectors that represent the meaning of words in the context of a
particular sentence. While the shift away from standard word
embeddings has benefited an impressively wide range of NLP
tasks, many other tasks still crucially rely on static representa-
tions of word meaning. For instance, in information retrieval,
query terms often need to be modelled without any other
context, and word vectors are commonly used for this pur-
pose [Onal et al., 2018]. In zero shot learning, word vectors
are used to obtain category embeddings [Socher et al., 2013;
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Ma er al., 2016]. Word vectors are also used in topic mod-
els [Das et al., 2015]. In the context of the Semantic Web,
word vectors have been used for ontology alignment [Koly-
vakis et al., 2018], concept invention [Vimercati et al., 2019]
and ontology completion [Li et al., 2019]. The word vectors
learned by standard word embedding models, such as Skip-
gram [Mikolov et al., 2013] and GloVe [Pennington et al.,
2014], essentially summarise the contexts in which each word
occurs. However, these contexts are modelled in a shallow
way, capturing only the number of co-occurrences between
target words and individual context words. The question we
address in this paper is whether the more sophisticated con-
text encodings that are produced by LMs can be used to ob-
tain higher-quality word vectors. Motivated by the aforemen-
tioned applications, we focus in particular embeddings that
capture the semantic properties of nouns.

To obtain static word vectors from a contextualised lan-
guage model, we can sample sentences in which a given word
w occurs, obtain a contextualised vector representation of w
from these sentences, and finally average these vectors [Bom-
masani et al., 2020; Vulic et al., 2020]. In this paper, we aim
to improve on this strategy. First, when obtaining a contextu-
alised representation of the target word, we replace that tar-
get word by the [MASK] token. This has the advantage that
words which consist of multiple word-pieces can be modelled
in a natural way. More fundamentally, our hypothesis is that
this will lead to representations that are more focused on the
semantic properties of the given word. In particular, because
the target word is masked, the resulting vector specifically
captures what that sentence reveals about the word. A bag of
masked sentences can thus be viewed as a bag of properties.
To illustrate this, consider the Wikipedia sentences in Table 1,
where occurrences of the word bananas were masked. From
BERT’s top predictions for the missing word, we can see that
these sentences indeed reveal different properties of bananas,
e.g. being edible, a dessert ingredient and a type of fruit.

This view of masked sentences as encoding properties sug-
gests another improvement over plain averaging of contex-
tualised vectors. Since some properties are intuitively more
important than others, we should be able to improve the fi-
nal representations by averaging only a particular selection of
the contextualised vectors. Consider the following Wikipedia
sentence: Banana equivalent dose (BED) is an informal mea-
surement of ionizing radiation exposure. By masking the



Masked sentence

BERT predictions

_are cultivated by both
small farmers and large land
holders.

they, these, crops, fields,
potatoes, gardens, vegetables,
most, vines, trees

Banoffee pie is an English
dessert pie made from ,
cream and toffee ...

cheese, sugar, butter, apples,
eggs, milk, chocolate, honey,

apple, egg

are a popular fruit

they, bananas, citrus, apples,

consumed worldwide with a
yearly production of over ...

grapes, these, fruits, potatoes,
berries, nuts

Table 1: Top predictions from BERT-large-uncased for sentences.

word “banana”, we can obtain a contextualised vector, but
this vector would not capture any of the properties that we
would normally associate with bananas. The crucial differ-
ence with the sentences from Table 1 is that the latter cap-
ture general properties, i.e. properties that apply to more than
one concept, whereas the sentence above captures an idiosyn-
cratic property, i.e. a property that only applies to a partic-
ular word. In the aforementioned application domains, static
word vectors are essentially used to capture the commonal-
ities between given sets of words (e.g. between training and
test categories in zero shot learning). Word vectors should
thus primarily capture the general properties of nouns. In-
spired by this view, we propose a simple strategy for identify-
ing contextualised vectors that are likely to capture idiosyn-
cratic properties. When computing the vector representation
of a given noun, we then simply omit these mention vectors,
and compute the average of the remaining ones.

2 Related Work

Several authors have analysed the extent to which pre-trained
LMs capture semantic knowledge. For instance, Forbes et
al. [2019] focused on predicting the properties of concepts
(i.e. nouns), as well as their affordances (i.e. how they can be
used). Weir et al. [2020] considered the following problem:
given a sentence that specifies the properties of a given con-
cept, can LMs be used to predict the concept? For instance,
given the input “A [MASK] is tasty, is eaten, is made of sugar,
is made of flour, and is made of eggs”, the aim is to pre-
dict cake. Some previous work has already explored the idea
of using the contextualised word vectors predicted by neu-
ral LMs for modelling word meaning. For instance, Amrami
and Goldberg [2019] obtain the set of contextualised vectors
predicted by BERT, for different mentions of the same word,
and then cluster these vectors to perform word sense induc-
tion. Mickus et al. [2019] analyse the distribution of contextu-
alised word vectors, finding that the vectors corresponding to
the same word type are largely clustered together. The distri-
bution of contextualised word vectors is also studied by Etha-
yarajh [2019], who furthermore explores the idea of learning
static word vectors by taking the first principal component of
the contextualised vectors of a given word (which has a sim-
ilar effect as taking their average). They find that the vectors
obtained from the earlier layers of BERT (and other LMs)
perform better in word similarity tasks than the later layers.

In contrast, Bommasani et al. [2020] found that the optimal
layer depends on the number of sampled mentions, with later
layers performing better with a large number of mentions.
Rather than fixing a single layer, Vulic et al. [2020] advo-
cated averaging representations from several layers.

3 Encoding Words with Mention Vectors

In this section we describe our strategy for obtaining static
word vectors from BERT. First, we provide some background
on the BERT model and we explain how we use BERT to ob-
tain mention vectors for a given word. Finally, we also intro-
duce our proposed filtering strategy.

Background and Notation BERT represents text frag-
ments as sequences of tokens. Frequent words are represented
as a single token, whereas less common words are represented
as sequences of sub-word tokens, called word-pieces. Given
an input sentence S = t;...tx, BERT predicts a contextu-
alised vector ¢;(.S) for each token ¢;. Together with this map-
ping ¢, which takes the form of a deep transformer model,
BERT learns a static vector tsparc for each word-piece ¢ in
its vocabulary Vpgrr. During training, some tokens are re-
placed by a special token [MASK]. If this is the case for the
i token of the sentence S, ¢;(S) encodes a probability distri-
bution over word-pieces, corresponding to BERT’s prediction
of which token from the original sentence was masked.

Obtaining Mention Vectors Let W be the set of nouns
for which we want to learn a vector representation. For each
w € W, we randomly sample N mentions of w from a given
corpus. From each of the corresponding sentences, we obtain
a vector by masking the occurrence of w and taking the con-
textualised vector predicted by BERT for the position of this
[MASK] token. We will refer to this vector as a mention vec-
tor. For w € W, we write u(w) for the set of all mention
vectors that are obtained for w. A key design choice in our
approach is that we mask the occurrences of w for obtain-
ing the mention vectors. This has two important advantages.
First, it allows us to specifically capture what each sentence
reveals about w. In particular, way reflects the properties of
w that can be inferred from typical sentences mentioning this
word, rather than the properties that best discriminate w from
other words. The result is that the vectors ways are quali-
tatively different from the vectors that are obtained by stan-
dard word embedding models, as we will see in the exper-
iments in Section 4. Second, since we replace w by a sin-
gle [MASK] token, we always obtain a single vector, even if
w corresponds to multiple word-pieces. In contrast, without
masking, the predictions for the different word-pieces from
the same word have to be aggregated in some way.

Filtering Idiosyncratic Mention Vectors Our aim is to
learn vector representations that reflect the semantic proper-
ties of nouns. One possible strategy is to compute the aver-
age Wayg of the mention vectors in u(w). However, some of
these mention vectors are likely to capture idiosyncratic prop-
erties. Our hypothesis is that including such mention vectors
degrades the quality of the word representations. To test this
hypothesis, we introduce a strategy for identifying idiosyn-
cratic mention vectors. For each mention vector m € p(w),



we compute its k nearest neighbours, in terms of cosine simi-
larity, among the set of all mention vectors that were obtained
for the vocabulary W, i.e. the set J,cy p(v). If all these
nearest neighbours belong to u(w) then we assume that m is
too idiosyncratic and should be removed. Indeed, this sug-
gests that the corresponding sentence expresses a property
that only applies to w. We then represent w as the average
w* of all remaining mention vectors, i.e. all mention vectors
from p(w) that were not found to be idiosyncratic.

4 Evaluation

Our aim is to analyse (i) the impact of masking on the av-
eraged mention vectors and (ii) the effectiveness of the pro-
posed filtering strategy. In Section 4.1, we focus on the task
of predicting semantic properties of words, while Section 4.2
discusses word similarity. In Section 4.3, we then evaluate the
mention vectors on downstream task of ontology completion.
Section 4.4 presents some qualitative analysis.'

Vector Representations. We use two standard word embed-
ding models for comparison: Skip-gram (SG) [Mikolov et al.,
2013] and GloVe [Pennington et al., 2014]. In both cases, we
used 300-dimensional embeddings that were trained on the
English Wikipedia®. For the contexualised vectors, we rely on
two pre-trained language models®: BERT-large-uncased [De-
vlin et al., 2019] and RoBERTa-large [Liu et al., 2019]. We
compare a number of different strategies for obtaining word
vectors from these language models. First, we use the input
vectors tsparic (Input). For words which are not in the word-
piece vocabulary, following common practice [Bommasani
et al., 2020; Vulic ef al., 2020], we average the input em-
beddings of their words-pieces. As the corpus for extracting
mention vectors, we use the May 2016 dump of the English
Wikipedia. We considered sentences of length at most 64
words to compute mention vectors, as we found that longer
sentences were often the result of sentence segmentation er-
rors. In the experiments, we only consider nouns that are men-
tioned in at least 10 such sentences. For nouns that occur more
than 500 times, we use a random sample of 500 mentions.
We compare two versions of the averaged mention vectors
(with masking): the average of all mention vectors (AVGy,y)
and the average of those that remain after applying the fil-
tering strategy (AVGg;,). As a baseline filtering strategy®, we
also show results for a variant where mention vectors were fil-
tered based on their distance from their mean (AVG,,). For
this baseline, we remove a fixed percentage of the mention
vectors, where this percentage is tuned as a hyper-parameter.
We also include several variants in which mention vec-
tors are obtained without masking. For words that consist
of more than one word-piece, we average the contextualised

'Implementation available at https:/github.com/lina-luck/rosv_
ijcai2l

>We used the vectors from http://vectors.nlpl.eu/repository/.

3We used https://github.com/huggingface/transformers.

*We have also performed initial experiments with a variant of
this filtering strategy, in which we first cluster the mention vectors
associated with a given noun w and then use the mean of the largest
cluster as the final representation. However, we found this strategy
to perform poorly while also being prohibitively slow to compute.

Dataset Type Nouns Classes
X-McRae Commonsense 513 50
CSLB Commonsense 635 395
Morrow Taxonomic 888 13
WN supersenses ~ Taxonomic 18200 25
BN domains Topical 12477 28

Table 2: Overview of the lexical classification datasets.

word-piece vectors. We consider the counterparts of AVGy,;,
AVGgy, and AVG,,,;, which we will refer to as NMy,s, NMgy,
and NM,,,; respectively. Note that these strategies only look
at the final layer. Previous work has found that earlier lay-
ers sometimes yield better results on lexical semantics bench-
marks [Bommasani et al., 2020]. For this reason, we also in-
clude a method that chooses the best layer for a given task
based on the tuning split, and then uses the representations at
that layer (NM_7,). Finally, Vulic et al. [2020] suggested to
take the average of the first £ layers. We also show results for
this approach, where the number of layers ¢ is again selected
for each task based on tuning data (NM<,).

4.1 Modelling Semantic Properties

Datasets. We consider lexical classification benchmarks in-
volving three types of semantic properties: commonsense
properties (e.g. table is made of wood), taxonomic proper-
ties (e.g. fable is a type of furniture) and topics or domains
(e.g. football is related to sports). In particular, we used two
datasets which are focused on commonsense properties (e.g.
being dangerous, edible, made of metal). First, we used the
extension of the McRae feature norms dataset [McRae et
al., 2005] that was introduced in [Forbes ezt al., 2019] (X-
McRae?). In contrast to the original McRae feature norms,
this dataset contains genuine positive and negative examples
for all properties. We considered all properties for which at
least 10 positive examples are available in the dataset, result-
ing in a total of 50 classes. Second, we considered CSLB
Concept Property Norms®, which is similar in spirit to the
McRae feature norms dataset. For this dataset, we again lim-
ited our analysis to properties with at least 10 positive ex-
amples. We furthermore consider two datasets that are fo-
cused on taxonomic properties. First, we use the dataset that
was introduced by Morrow and Duffy [2005], which lists in-
stances of 13 everyday categories (e.g. animals, fruits, fur-
niture, instruments). Second, we used the WordNet super-
senses’, which organises nouns into broad categories, such as
person, animal and plant [Ciaramita and Johnson, 2003]. As
a final dataset, we used the BabelNet domains® [Camacho-
Collados and Navigli, 2017], which are domain labels of lex-
ical entities, such as music, language, and medicine. Table 2
provides some statistics about the considered datasets.

Experimental Setup. For all datasets, we train a binary lin-
ear SVM classifier for each of the associated classes. In the

>https://github.com/mbforbes/physical-commonsense
®https://cslb.psychol.cam.ac.uk/propnorms
"https://wordnet.princeton.edu/download
8http://lcl.uniromal.it/babeldomains/
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X-McRae CSLB Morrow WordNet BabelNet
MAP F1 MAP F1 MAP F1 MAP F1 MAP Fl

GloVe 47.7 40.1 43.8 31.8 544 50.6 42.4 39.4 339 31.8
SG 57.7 49.3 533 399 76.6 61.2 53.2 53.2 45.5 39.6
Input  69.1 59.2 56.5 41.4 54.7 459 33.3 359 29.3 31.8
NMy:  70.8 61.3 60.8 459 73.0 56.2 45.6 43.5 38.7 38.8
NMox  68.5 58.6 62.1 47.8 74.3 68.2 419 43.2 39.8 39.2
NMy;,  45.0 42.2 49.0 36.0 62.7 48.8 31.9 33.6 31.2 32.8
NM_; 704 60.4 62.7 49.9 78.5 58.5 46.7 44.6 43.4 39.3
NM<; 70.6 60.9 63.3 48.8 76.4 62.9 46.6 44.8 42.6 40.1
AVGyy 72.5 62.8 59.3 46.5 77.5 67.3 66.5 60.9 57.4 52.1
AVG, 68.1 61.1 61.3 499 77.2 66.5 50.9 50.6 42.3 41.8
AVGy; 73.0 64.1 64.4 50.9 81.7 70.1 67.8 61.2 57.9 52.5

Table 3: Results (%) for BERT-large-uncased on the lexical classifi-
cation tasks, in terms of MAP and F1 scores (%).

X-McRae CSLB Morrow WordNet BabelNet
MAP F1 MAP F1 MAP F1I MAP F1 MAP Fl

GloVe 47.7 40.1 43.8 31.8 54.4 50.6 42.4 39.4 33.9 31.8
SG 57.7 49.3 533 399 76.6 61.2 53.2 53.2 45.5 39.6
Input  39.9 34.0 36.6 25.7 31.5 32.5 45.6 43.8 33.0 30.8
NMy:  65.2 54.4 572 429 752 62.5 53.0 50.9 41.2 40.5
NMouw  66.1 53.7 58.1 44.4 78.5 68.9 53.8 51.6 42.4 41.8
NMp;,  37.8 33.0 40.7 29.3 57.5 43.6 39.4 41.1 35.6 36.3
NM-, 65.2 559 60.5 45.6 79.0 67.5 53.0 50.9 43.4 40.3
NM<; 63.9 53.5 589 442 779 67.5 51.3 50.2 43.1 39.3
AVGy 72.1 63.9 54.6 44.8 72.4 57.8 62.3 56.5 53.2 49.3
AVG, 67.8 60.0 59.1 47.8 77.7 66.5 50.9 50.6 40.9 41.2
AVGg: 74.3 64.8 62.2 51.4 81.8 73.5 63.9 58.5 54.6 50.9

Table 4: Results (%) for RoOBERTa-large on the lexical classification
tasks, in terms of MAP and F1 scores (%).

case of X-McRae, we used the standard training and test splits
that were provided as part of this dataset. As no validation
set was provided, we reserved 20% of the training split for
hyper-parameter tuning. For the remaining four datasets, we
randomly split the positive examples, for each class, into 60%
for training, 20% for tuning and 20% for testing. Since these
datasets do not provide explicit negative examples, for the
test set we randomly select words from the other classes as
negative examples (excluding words that also belong to the
target category). The number of negative test examples was
chosen as 5 times the number of positive examples. For the
training and tuning sets, we randomly select nouns from the
BERT vocabulary as negative examples. The number of neg-
ative examples for training was set as twice the number of
positive examples. We report results of the SVM classifiers in
terms of F1 score and Mean Average Precision (MAP). The
latter treats the problem as a ranking task rather than a clas-
sification task, which is motivated by the fact that finding the
precise classification boundary is difficult without true neg-
ative examples. Details about hyper-parameter tuning can be
found in the supplementary materials’.

Results. The results are shown in Table 3 for BERT and in Ta-

*https://arxiv.org/pdf/2012.07580.pdf

SemEval SimLex WordSim
GloVe 70.5 43.7 78.2
SG 71.1 40.9 79.3
Input 63.3 50.9 72.9
NMla.rr 665 587 709
NMc (¢ = 24) 78.4 57.8 82.6
NMp; 51.6 434 50.0
AVGIast 554 41 0 609
AVGgy,; (k = 5) 64.0 42.6 67.6
NM< (¢ = 24) +SG 76.5 51 83.5
AVGy + SG 70.5 43.1 75.7
AVGg; (kK =5)+SG 75.2 432 78.9

Table 5: Word similarity results for BERT (Spearman correlation).

WordNet
50

2 N
3 &

Performance

@
&

- NM_,
—— NM<(

30

2 4 6 8 10 12 14 16 18 20 22 24
# Layer

Figure 1: Results of NM—r, and NM<;, per layer for WordNet su-
persenses with BERT.

ble 4 for ROBERTa. In all cases, we find that the best results
are obtained for the averaged mention vectors with our pro-
posed filtering strategy (AVGg;). The baseline filtering strat-
egy (AVG,,) is clearly not competitive, leading to worse re-
sults than AVGy,,, in most cases. Another clear observation
is that our proposed filtering strategy is clearly unsuitable for
the NM vectors. This is because without masking, the men-
tion vectors are clustered per word type [Mickus et al., 2019],
hence the filtering strategy simply removes the majority of the
mention vectors in this case; e.g. for X-McRae, without mask-
ing 83.1% of the BERT mention vectors are filtered, com-
pared to 39.7% with masking. Overall, strategies with mask-
ing outperform those without masking, often substantially.
Among the strategies without masking, NM—;, and NM<,
perform best, confirming the finding from earlier work that
the last layer is not always optimal [Bommasani et al., 20201,
although in contrast to Vulic et al. [2020] we do not find that
NMc, clearly outperforms NM—r,. For NM<, we find that
¢ = 24 is chosen for most of the cases, whereas for NM_,
layers 8-10 are often best. Figure 1 shows the performance
per layer for WordNet supersenses. Layer-wise results for all
datasets are provided in the supplementary materials.

4.2 Word Similarity

We now consider word similarity benchmarks, where the task
consists in ranking word pairs based on their degree of sim-
ilarity. This ranking is then compared with a gold standard
obtained from human judgements. We consider three stan-
dard word similarity datasets for nouns: the similarity portion
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Top quartile gold pairs ranked in bottom quartile

SimLex (right, justice), (adult, guardian), (bird, turkey), (bub-
ble, suds), (crowd, bunch), (flower, violet), (alcohol,
cocktail), (evening, dusk), (wisdom, intelligence), (mar-
ijuana, herb), (intelligence, logic), (sofa, chair), (com-
munication, language), (violin, instrument), (politician,

president), (rabbi, minister)

SemEval (cell, lock-up), (can, bottle), (coca-cola, coke), (obama,
clinton), (renaissance, renascence), (amazon, forest),
(english, american), (mercury, jupiter), (mercedes,
opel), (plato, aristotle), (orion, constellation), (playsta-
tion, wii), (nike, adidas), (backgammon, go), (kfc, mc-
donald’s), (guardian, times), (paint, photoshop), (jpeg,
pdf), (bible, gospel), (gauss, scientist), (chart, graph)

WordSim (mexico, brazil), (dollar, buck), (harvard, yale), (cell,
phone)

Bottom quartile gold pairs ranked in top quartile

SimLex (meat, bread), (winter, summer), (dog, cat), (floor, ceil-
ing), (south, north), (absence, presence), (chocolate,
pie), (bread, cheese), (river, valley), (sunset, sunrise),
(dog, horse), (cat, rabbit), (lawyer, banker), (wife, hus-

band), (bottom, top), (mouse, cat), (sun, sky)

SemEval (gravity, meteor), (wood, blanket)

WordSim (lad, wizard)

Table 6: Analysis of the similarity results for AVGy;;.

of WordSim [Agirre et al., 2009], the noun subset of SimLex
[Hill et al., 2015] and SemEval-17 [Camacho-Collados et al.,
2017]. Many word similarity datasets, such as MEN [Bruni et
al.,2014], RG-65 [Rubenstein and Goodenough, 1965] or the
full WordSim-353 [Finkelstein et al., 2002], measure related-
ness (or degree of association). In contrast, the datasets that
we consider here all mainly focus on similarity. In particular,
SimLex does not consider relatedness at all in the similarity
scale, while SemEval and WordSim only consider relatedness
in the lower grades of their similarity scales.

Table 5 shows the results of the word similarity experi-
ments (for BERT). For SimLex, which is least affected by
relatedness, all BERT based representations outperform SG,
but the masking based strategies underperform GloVe. For
the two other datasets, the masking based strategies under-
perform the SG and GloVe baselines. In all cases, the filtering
strategy AVGgy; improves the results of AVGy,y, but the best
results are consistently found without masking. To analyse
the complementarity of the representations, we also experi-
ment with strategies where two different representations are
concatenated (after normalising the vectors). For AVGy;, this
considerably improves the results, which shows that SG and
AVGg;; capture complementary aspects of similarity. To better
understand the reasons for the under-performance of AVGyg,
Table 6 shows all pairs that are within the top quartile of most
similar pairs according to the gold ratings while being in the
bottom quartile according to the AVGyg;; vector similarity, and
vice versa. As can be seen, the pairs with high gold ratings but
low vector similarity include several hypernym pairs (shown
in blue) and named entities (shown in green). Conversely, the

Wine SUMO

SG 13.8 13.5 8.3 72 334
Input 222 14.2 12.1 94 36.5
NMgs 18.5 12.5 16.2 12.3 389
NMpi 20.3 15.6 133 11.2 354
AVGyy  23.0 20.0 16.9 11.5 41.4
AVGgy 245 243 229 13.0 46.4

Econ Olym Tran

Table 7: Results (% F1) for ontology completion for BERT.

saint
NMus  st, sainthood, saintliness, stob, strontianite, sanctuary
AVGy,y st, pope, monsieur, prince, martyr, sage, antipope

AVGy;; martyr, bishop, archangel, sage, patriarch, deacon
emeritus
NM,, adviser, incumbent, appointment, retirement, honorarium

AVGy, dean, visiting, hod, excellency, chair, professor, assistant

AVGy;; fellow, laureate, excellency, provost, principal, hod
rent
NM,, rentier, rental, lease, tenant, landlord, renter, leasehold

AVGy, lease, rental, royalty, mortgage, scrip, wage, cash

AVGy;; lease, mortgage, purchase, loan, expense, royalty, debt
austrian
NM,, austria, vienna, archduke, wiener, innsbruck, graz

AVGy, slovak, czech, dutch, hungarian, brazilian, russian
AVGyy, Dbavarian, dutch, slovak, belgian, russian, canadian

Table 8: Nearest neighbours for selected target words, in terms of
cosine similarity, for the vocabulary from WordNet supersenses.

pairs with low gold ratings but high vector similarity include
mostly co-hyponyms and antonyms'® (shown in red).

4.3 Ontology Completion

We now consider the downstream task of ontology comple-
tion. Given a set of ontological rules, the aim is to predict
plausible missing rules [Li er al., 2019]; e.g. suppose the on-
tology contains the following rules:

Beer(x) — AlcoholicBeverage(x)
Gin(z) — AlcoholicBeverage(x)

As these rules have the same structure, they define a so-called
rule template of the form

*(x) — AlcoholicBeverage(x)

where « is a placeholder. Since substituting the placeholder
by beer and gin makes the rule valid, and since wine shares
most of the semantic properties that beer and gin have in com-
mon, intuitively it seems plausible that substituting x by wine
should also produce a valid rule. To predict plausible rules in
this way, Li et al. [2019] used a graph-based representation
of the rules. The nodes of this graph correspond to concepts
(or predicates) while edges capture different types of interac-
tions, derived from the rules. The predictions are made by a
Graph Convolutional Network, where skip-gram embeddings

19Tt should be noted that antonyms are purposely given low gold
scores in SimLex as per their annotation guidelines.



Target Masked sentence

banana Some countries produce statistics distinguishing be-
tween ___ and plantain production, but four of ...

sardine Traditional fisheries for anchovies and ___ also have op-
erated in the Pacific, the Mediterranean, and ...

lamb Edison’s 1877 tinfoil recording of Mary Had a Little
___, not preserved, has been called the first ...

pineapple  In October 2000, the Big __, a tourist attraction on the

Sunshine Coast, was used as a backdrop for ...

salamander The southern red-backed salamander (Plethodon serra-
tus) is a species of ___ endemic to the United States.

Table 9: Examples of sentences whose corresponding mention vec-
tors were filtered.

of concept names are used as input node embeddings. In this
experiment, we replace the skip-gram vectors by our averaged
mention vectors and evaluate the resulting predictions on four
well-known domain-specific ontologies (i.e. Wine, Economy,
Olympics and Transport) and on the open-domain ontology
SUMO. We used the pre-processed versions of these ontolo-
gies, and corresponding training and test splits, from Li et
al. [2019]1'!. As our focus is on evaluating the usefulness of
the word vectors, we only generate templates for concepts
whose names occur at least two times in Wikipedia. Further-
more, as the hyper-parameters of the GCN model are sensi-
tive to the dimensionality of the input representations, we use
SVD to reduce the dimensionality of our vector representa-
tions from 1024 to 300, allowing us to keep the same hyper-
parameter values as for the skip-gram vectors. For more de-
tails about the experimental methodology, we refer to [Li et
al., 2019]. As this ontology completion model is computa-
tionally expensive, we restrict the set of baselines for this ex-
periment, and show results for BERT only. The results are
presented in Table 7, in terms of F1 confirm that the average
mention vectors considerably outperform skip-gram vectors,
and that the filtering strategy leads to further improvements.

4.4 Qualitative Analysis

Nearest neighbours. In Table 8, we show the nearest neigh-
bours of four selected words. Some of the listed examples
clearly illustrate how the proposed filtering step is success-
ful in prioritizing general semantic properties. For instance,
in the case of emeritus, filtering leads to lower ranks for
university-related terms (e.g. dean and chair) and higher
ranks for honorary positions (e.g. fellow and excellency).
For rent, the filtering strategy increases the rank of concepts
related to monetary transactions (e.g. “purchase” and “ex-
pense”). The effect of masking can be clearly seen in all ex-
amples, where strategies with masking (AVGy,; and AVGgy,)
more consistently result in neighbours of the same kind. For
example, for austrian, the masked variants consistently select
demonyms, whereas the neighbours for NM,,,,; include vari-
ous terms related to Austria. The example of saint also high-
lights how the need to average multiple word-piece vectors

"https://github.com/bzdt/GCN-based-Ontology-Completion

6 L original 6 original
we e + filtered out + filtered out
. Lt :: »  static «  static
4 R ‘ o 4
*
e w ., .
a' n"’ *
2 P
ek Ty 2
w¥
s
I SRt
Vs * 0
*
- #x
I
o -2
Wt
4 .
N
* o Ay & 5
. 2 .

-5.0 -25 0.0 25 5.0 7.5 10.0 -4 -2 0 2 4 6 8

Figure 2: Plots of the mention vectors for sapling (left) and cock-
roach (right) from the Morrow dataset, showing the mention vectors
which are removed by the filtering strategy (blue) and the corre-
sponding static vector (red).

can introduce further noise, as some of the selected neigh-
bours for NMy,,, are included because they contain st as a
word-piece, despite not being semantically related.

Examples of filtered mentions. Table 9 provides some ex-
amples of sentences whose resulting mention vector was fil-
tered, for words from X-McRae. The sentence for banana as-
serts a highly idiosyncratic property, namely that the words
banana and plantain are interchangeable in some contexts.
The example for sardine is filtered because sardines and an-
chovies are often mentioned together. The examples for lamb
and pineapple illustrate cases where the target word is used
within the name of an entity, rather than on its own. Finally, as
the example for salamander illustrates, highly idiosyncratic
vectors can be obtained from sentences in which the target
word is mentioned twice. To further illustrate the behaviour
of the filtering strategy, Figure 2 depicts which mention vec-
tors are filtered for two examples; further examples can be
found in the supplementary materials. The figure shows that
the strategy is adaptive, in the sense that a large number of
mention vectors are filtered for some words, while only few
vectors are filtered for other words. This clearly shows that
our strategy is not simply removing outliers, which is in ac-
cordance with the poor performance of the AVG,,; baseline.

5 Conclusion

We have analysed the potential of averaging the contextu-
alised vectors predicted by BERT to obtain high-quality static
word vectors. We found that the resulting vectors are qualita-
tively different depending on whether or not the target word
is masked. When masking is used, the resulting vectors tend
to represent words in terms of the general semantic properties
they satisfy, which is useful in tasks where we have to identify
words that are of the same kind, rather than merely related.
We have also proposed a filtering strategy to obtain vectors
that de-emphasise the idiosyncratic properties of words, lead-
ing to improved performance in the considered tasks.
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