Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Photochemical runaway in exoplanet atmospheres: implications for biosignatures

Ranjan, Sukrit, Seager, Sara, Zhan, Zhuchang, Koll, Daniel D. B., Bains, William, Petkowski, Janusz J., Huang, Jingcheng and Lin, Zifan 2022. Photochemical runaway in exoplanet atmospheres: implications for biosignatures. Astrophysical Journal 930 (2) , 131. 10.3847/1538-4357/ac5749

[thumbnail of Ranjan_2022_ApJ_930_131.pdf] PDF - Published Version
Available under License Creative Commons Attribution.

Download (1MB)

Abstract

About 2.5 billion years ago, microbes learned to harness plentiful solar energy to reduce CO2 with H2O, extracting energy and producing O2 as waste. O2 production from this metabolic process was so vigorous that it saturated its photochemical sinks, permitting it to reach "runaway" conditions and rapidly accumulate in the atmosphere despite its reactivity. Here we argue that O2 may not be unique: diverse gases produced by life may experience a "runaway" effect similar to O2. This runaway occurs because the ability of an atmosphere to photochemically cleanse itself of trace gases is generally finite. If produced at rates exceeding this finite limit, even reactive gases can rapidly accumulate to high concentrations and become potentially detectable. Planets orbiting smaller, cooler stars, such as the M dwarfs that are the prime targets for the James Webb Space Telescope (JWST), are especially favorable for runaway, due to their lower UV emission compared to higher-mass stars. As an illustrative case study, we show that on a habitable exoplanet with an H2–N2 atmosphere and net surface production of NH3 orbiting an M dwarf (the "Cold Haber World" scenario), the reactive biogenic gas NH3 can enter runaway, whereupon an increase in the surface production flux of one order of magnitude can increase NH3 concentrations by three orders of magnitude and render it detectable by JWST in just two transits. Our work on this and other gases suggests that diverse signs of life on exoplanets may be readily detectable at biochemically plausible production rates.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Publisher: American Astronomical Society
ISSN: 0004-637X
Date of First Compliant Deposit: 6 January 2023
Date of Acceptance: 16 February 2022
Last Modified: 19 May 2023 11:07
URI: https://orca.cardiff.ac.uk/id/eprint/155551

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics