Immunodominance of HLA-A2-Restricted Hepatitis C Virus-Specific CD8⁺ T Cell Responses Is Linked to Naïve-Precursor Frequency

Julia Schmidt, Christoph Neumann-Haefelin, Tayibe Altay, Emma Gostick, David A. Price, Volker Lohmann, Hubert E. Blum and Robert Thimme

Immunodominance of HLA-A2-Restricted Hepatitis C Virus-Specific CD8⁺ T Cell Responses Is Linked to Naïve-Precursor Frequency[†]

Julia Schmidt,1,2 Christoph Neumann-Haefelin,1 Tayibe Altay,1 Emma Gostick,3 David A. Price,3 Volker Lohmann,4 Hubert E. Blum,1 and Robert Thimme1,*

Department of Medicine II, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, United Kingdom; and Department of Molecular Virology, University of Heidelberg, Germany

Received 14 January 2011/Accepted 21 February 2011

The impact of naïve-precursor frequency on human virus-specific CD8⁺ T cell immunodominance is not well understood. Using a recently developed major histocompatibility complex (MHC) class I tetramer enrichment protocol, we found a conserved hierarchy and a >10-fold difference in naïve-precursor frequencies across three HLA-A2-restricted hepatitis C virus (HCV)-specific epitopes. Importantly, the NS₃1406 epitope with the highest naïve-precursor frequency in healthy donors was also the most frequently targeted epitope in a large cohort of chronically HCV-infected patients, both ex vivo and after in vitro stimulation. These results indicate for the first time that immunodominance in a human viral infection is linked to naïve-precursor frequency.

CD8⁺ T cells play an important role in the outcome of human viral infections, including hepatitis C virus (HCV) infection (23). Although viral pathogens encode thousands of potentially immunogenic determinants, CD8⁺ T cells recognize and respond to only a very small fraction of these potential viral epitopes. This phenomenon is called immunodominance. Factors that contribute to CD8⁺ T cell immunodominance include antigen processing and presentation, abundance of peptide-major histocompatibility complex class I (pMHC) molecules on antigen-presenting cells, and the number of naïve T cells that express complementary T cell receptors (25). The study of naïve antigen-specific CD8⁺ T cell frequency as a determinant of immunodominance has only recently become possible through the use of improved pMHC tetramer enrichment protocols. Importantly, these studies, performed in different mouse models, have largely suggested that CD8⁺ T cell response magnitude is dictated by naïve-precursor frequency (8, 16, 18). One recent study, however, performed in a mouse model of influenza virus infection, suggested that T cell immunodominance is determined instead by recruitment from the available pool of epitope-specific precursors and the duration of their continued expansion over the course of viral infection (10). Thus far, the impact of naïve-precursor frequency on T cell immunodominance has not been analyzed in human viral infections. Recently, however, the group of Matthew Albert reported a new strategy based on the combination of tetramer staining, magnetic-bead enrichment, and multiparametric flow cytometry (1). This experimental approach allowed for the first time the detection and analysis of naïve human CD8⁺ T cells specific for different epitopes (1). The authors reported a >100-fold differences in naïve-precursor frequencies against epitopes derived from MART1 (Melan-A), HIV, HCV, NY-ESO-1, and cytomegalovirus (CMV) that were conserved among individuals. Here, using the same novel approach, we set out to determine whether immunodominance hierarchies within HLA-A2-restricted HCV-specific CD8⁺ T cell responses are linked to naïve-precursor frequency.

Precursor frequency of naïve HLA-A2-restricted hepatitis C virus-specific CD8⁺ <i>T</i> cells. In a first set of experiments, we analyzed the naïve-precursor frequencies of CD8⁺ T cells specific for three well-described HLA-A2-restricted HCV epitopes (4, 13, 20) (Table 1) in seven healthy donors. The analysis was limited to three epitopes only, because a major limitation of the novel tetramer enrichment protocol for the analysis of naïve CD8⁺ T cells is the requirement for high volumes of blood. We did not include the frequently recognized HLA-A2-restricted NS₃1073 epitope in our analysis, since CD8⁺ T cell responses to this epitope may be influenced by past exposure to influenza virus (22, 24). However, the cross-reactivity between these viral epitopes is weak and mostly unidirectional, e.g., CD8⁺ T cells primed with the HCV epitope can be activated by the influenza epitope but not vice versa, questioning the relevance of heterologous immunity against this epitope (7). Importantly, by using the previously described combination of tetramer staining, magnetic-bead enrichment, and multiparametric flow cytometry (1), we were able to detect naïve HCV-specific CD8⁺ T cells in all seven healthy donors (Fig. 1). Although the cells were not detectable before the enrichment step, they could be clearly identified after enrichment, as shown for one representative subject in Fig. 1A. The cells displayed a naïve phenotype characterized by high expression of CD45RA, CD27, and CCR7 and low expression of CD11a (Fig. 1B). Of note, the median calculated precursor frequency of NS₃1406 epitope-specific CD8⁺ T cells was 1.47 x 10^{−4}, and thus >10-fold higher than the calculated precursor frequencies of CD8⁺ T cells specific for NS_{5B}2394 (5.12 x 10^{−7}) and the Core₃₂ epitope (5.46 x 10^{−7}) (Fig. 1C). Interestingly, the frequently recognized HLA-A2-restricted NS₃1073 epitope displayed similar precursor frequencies (5.06 x 10^{−6}) compared to NS₃1406 (data not shown). Since CD8⁺ T cell
responses to this epitope were suggested to be influenced by past exposure to influenza virus by some studies, as discussed above, we did not analyze this epitope in our further experiments. Although precursor frequencies varied significantly between epitopes, frequencies for each of the specific epitopes were conserved across the healthy donors tested. These results suggest that a clear hierarchy of naïve HCV-specific CD8+ T cell precursor frequencies exists in healthy donors.

Immunodominance of HLA-A2-restricted hepatitis C virus-specific CD8+ T cell responses during chronic infection. Next, we set out to determine whether the clear hierarchy of naïve precursor frequencies for these three epitopes might be linked to their relative immunodominance in chronically HCV-infected patients. For this purpose, we performed *ex vivo* tetramer analyses in a prospectively and randomly recruited cohort of patients with chronic HCV genotype 1 infection (*n* = 26). As shown in Fig. 2A and B, we observed clear patterns of immunodominance, with most responses targeting the NS3 1406 epitope (8/26 patients), followed by the NS5B 2594 epitope (2/26 patients) and finally the Core 132 epitope (0/18 patients). Importantly, the same immunodominance profile was also detectable after 2 weeks of antigen-specific stimulation. Accordingly, as shown in Fig. 2C and D, most expanded responses targeted the NS3 1406 epitope (8/20 patients), while substantially fewer responses targeted the NS5B 2594 (4/20 patients) and Core 132 (1/19 patients) epitopes. Although NS3 1406 epitope-specific CD8+ T cell responses were not detectable in all patients, these results indicate a clear immunodominance hierarchy with respect to these three epitopes. Notably, these results are in agreement with previous studies of HLA-A2+ patients with chronic HCV infection, in which NS3 1406 has been shown to be recognized more frequently than NS5B 2594. For example, Spangenberg et al. (21), Lechner et al. (13), and Racanelli et al. (19) found NS3 1406 epitope-specific responses in 8/27, 5/19, and 5/20 chronically HCV-infected HLA-A2+ patients, respectively; in contrast, NS5B 2594 epitope-specific responses were observed in 7/27, 0/10, and 3/20 patients, respectively. It is also notable that the Core 132 epitope was rarely targeted in most studies (5, 11–13, 21).

Expansion capability and antiviral efficacy of naïve HCV-specific CD8+ T cells is linked to precursor frequency. Since the immunodominance of the NS3 1406 epitope in chronically HCV-infected patients was present not only *ex vivo* but also after antigen-specific expansion *in vitro*, we next asked whether naïve CD8+ T cells would also be able to proliferate after antigen-specific stimulation and whether expansion capability could be linked to naïve-precursor frequency. For these experiments, we cocultured enriched CD8+ T cells derived from healthy donors for 12 days with mature autologous dendritic cells (DCs) pulsed separately with each of the three HLA-A2-restricted HCV peptides. As shown in Fig. 3A (data are for one representative patient), the number of NS3 1406 epitope-specific CD8+ T cells expanded *in vitro*. Peptide-specific stimulation and expansion led to downregulation of CD45RA and CCR7 and to upregulation of CD11a, indicating that these

TABLE 1. HLA-A2-restricted epitopes

<table>
<thead>
<tr>
<th>Epitope<sup>a</sup></th>
<th>Peptide length</th>
<th>Sequence</th>
<th>IC<sub>50</sub> (nM)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Core<sub>132</sub></td>
<td>9</td>
<td>DLMGYIPLV</td>
<td>14.5</td>
</tr>
<tr>
<td>NS<sub>3</sub>1406</td>
<td>10</td>
<td>KLVALGINAV</td>
<td>52.8</td>
</tr>
<tr>
<td>NS<sub>5B</sub>2594</td>
<td>9</td>
<td>ALYDVVTKL</td>
<td>11.8</td>
</tr>
</tbody>
</table>

*The subscript numerals indicate the amino acid positions. IC₅₀ 50% inhibitory concentration, determined using the Immune Epitope Database (IEDB [http://www.iedb.org]).

![FIG. 1. Enrichment and enumeration of naïve HCV-specific CD8+ T cells from healthy donors (*n* = 7).](http://jvi.asm.org/)

(A) Representative flow cytometry plots of peripheral blood mononuclear cells (PBMCs) from a healthy donor showing staining with the NS3 1406 HLA-A*0201 tetramer before and after magnetic-bead enrichment. Procedural details are similar to those described by Alanio et al. (1). In brief, PBMCs were incubated with FcR blocking reagent and then stained with pMHCI tetramer labeled with allophycocyanin (APC). Subsequently, labeled cells were incubated with anti-APC microbeads and passed over a magnetically activated column. The percentage of tetramer-positive CD8+ T cells is indicated before and after enrichment. (B) Representative phenotypic plots of peripheral blood mononuclear cells (PBMCs) from a healthy donor showing staining with the NS3 1406 HLA-A*0201 tetramer before and after magnetic-bead enrichment. Procedural details are similar to those described by Alanio et al. (1). In brief, PBMCs were incubated with FcR blocking reagent and then stained with pMHCI tetramer labeled with allophycocyanin (APC). Subsequently, labeled cells were incubated with anti-APC microbeads and passed over a magnetically activated column. The percentage of tetramer-positive CD8+ T cells is indicated before and after enrichment. (B) Representative phenotypic analysis of enriched tetramer-positive CD8+ T cells. Enriched tetramer-positive CD8+ T cells (shown in black) were stained for CD3, CD45RA, CCR7, CD27, and CD11a; a naïve phenotype (CD45RA hi CCR7 hi CD27 low CD11a low) was apparent in all cases. For reference, bulk CD8+ T cells are shown in gray. (C) Precursor frequencies of CD8+ T cells specific for NS3 1406, NS5B 2594, and Core 132 detected in healthy donors after tetramer staining, magnetic-bead enrichment, and multiparametric flow cytometry analysis (*n* = 7; one donor was not tested for Core 132). The total number of phenotypically naïve tetramer-positive CD8+ T cells (Tet+) relative to the total number of CD8+ T cells is indicated. A calculation similar to that of Alanio et al. (1) was used.
cells lost their naïve phenotype and acquired an effector-memory phenotype (Fig. 3B). Figure 3C summarizes the results derived from seven healthy donors. Of note, we were able to expand the pool of naïve NS31406 epitope-specific CD8^+ T cells in 5/7 cases. In contrast, expansion of NS5B2594 and Core132 epitope-specific CD8^+ T cells was barely detectable. Nevertheless, using higher numbers of enriched CD8^+ T cells in the assay, we were able to expand the population of NS5B2594-specific CD8^+ T cells. This indicates that NS5B2594-specific CD8^+ T cells exist in naïve individuals and confirms the biological relevance of low precursor frequencies detected ex vivo (data not shown). To further confirm the functionality and specificity of these expanded HCV-specific CD8^+ T cell populations, we also analyzed their antiviral efficacy. For these experiments, HuH7 cells that were transduced with a JFH1-based selectable subgenomic luciferase replicon and with the HLA-A*0201 gene (HuH7_A2-HCV cells) were pulsed separately with each of the three HCV epitopes. Subsequently, these cells were cocultured for 48 h with HCV-specific CD8^+ T cells previously expanded from the blood of healthy donors. Importantly, as shown in Fig. 3D, only the expanded NS31406 epitope-specific CD8^+ T cells were able to significantly inhibit HCV replication, as measured by luciferase activity. This effect was lost when the NS31406 epitope-specific CD8^+ T cells were depleted from the expanded cell pool, clearly indicating that these cells mediated the observed antiviral efficacy.

In summary, the results of this study show for the first time that CD8^+ T cell immunodominance hierarchies observed in a chronic human viral infection such as HCV infection can be linked to naïve-precursor frequency. Indeed, the NS31406 epitope, for which the highest naïve CD8^+ T cell precursor frequencies were consistently identified, was also the most frequently targeted of the three epitopes in chronically HCV-infected patients. Although a causal link cannot be proven in the human setting, it is interesting that these results are in agreement with a series of elegant mouse studies that support the important role of naïve T cell frequency as a determinant of T cell immunodominance (8, 16, 18). However, other factors, such as antigen abundance, processing efficiency, and HLA binding affinity, can also influence immunodominance. In this context, it is noteworthy that the three epitopes analyzed here display comparable HLA-A2 binding affinities (Table 1). Another factor that might influence immunodominance in viral infections is the degree of epitope sequence conservation.
Interestingly, the epitope with the highest naïve CD8+ T cell precursor frequency also displays the highest degree of sequence diversity in HCV genotype 1-infected patients (http://hcv.lanl.gov [9]), providing one possible explanation for why this epitope is not targeted in all chronically HCV-infected patients. On the other hand, viral escape mutations within the epitope could also contribute to the maintenance of the antiviral functions of HCV-specific CD8+ T cells, which otherwise can undergo exhaustion and lose their antiviral functionality (3, 6). Of note, naïve-precursor frequency also seems to be associated with the expansion capability of virus-specific CD8+ T cells. Indeed, NS3 1406 epitope-specific CD8+ T cell responses were dominant in cultures from healthy donors and chronically HCV-infected patients after in vitro stimulation. Thus, HLA-A2-restricted HCV-specific CD8+ T cell immunodominance appears to be a predetermined feature of the naïve CD8+ T cell repertoire that is relatively independent of virological factors. These findings may have implications for vaccine development and adoptive T cell therapy, both of which require the generation of functionally active virus-specific CD8+ T cells from the naïve pool of antigen-specific precursors (2, 14–15).

We sincerely thank all the study subjects. Recombinant human IL-2 was kindly supplied by the NIH AIDS Research and Reference Reagent Program, Germantown, MD.

This work was supported by the Deutsche Forschungsgemeinschaft (R.T., Heisenberg-Professorship TH-719/3-1; R.T./C.N.-H./V.L., FOR1202 “Mechanisms of persistence of hepatotropic viruses”). D.A.P. is a Medical Research Council (United Kingdom) Senior Clinical Fellow.

The authors declare no financial or commercial conflict of interest.

REFERENCES

2. Barnes, E., et al. 2008. Monocyte derived dendritic cells retain their func-
tional capacity in patients following infection with hepatitis C virus. J. Viral Hepat. 15:219–228.

