
Combining heuristic and exact methods to solve
the Vehicle Routing problem with pickups,

deliveries and time windows

Penny L. Holborn, Jonathan M. Thompson, and Rhyd Lewis

School of Mathematics, Cardiff University, Cardiff, Wales, UK
{holbornpl}@Cardiff.ac.uk

Abstract. The vehicle routing problem with pickups, deliveries and
time windows (PDPTW) is an important member in the class of ve-
hicle routing problems. In this paper a general heuristic to construct an
initial feasible solution is proposed and compared with other construction
methods. New route reconstruction heuristics are then shown to improve
on this. These reconstruction heuristics look to reorder individual routes
and recombine multiple routes to decrease the number of vehicles used
in the solution. A tabu search scheme where the attribute to be recorded
has been specifically adapted to the PDPTW is proposed. A new method
based on branch and bound optimisation attempts to optimise the final
ordering of requests in routes to further improve the solutions. Results
are analysed for a standard set of benchmark instances and are shown
to be competitive with the state of the art.

Key words: Vehicle Routing, pickup and delivery and tabu search

1 Introduction

The Vehicle Routing Problem (VRP) plays a central role in distribution man-
agement. It can be described as the problem of designing a set of routes that
start at a depot and visit a set of geographically scattered customer locations,
subject to a variety of side constraints. The VRP is known to be NP -hard due
to it being an extension of the well known Travelling Salesman Problem (TSP),
which is itself NP -hard. A helpful survey paper on the VRP is that of Laporte
& Osman [1].

The Pickup and Delivery Problem with Time Windows (PDPTW) was first
formulated by Savelsbergh and Sol [2]. The constraints are as follows: (1) each
vehicle must start at the depot and return to the depot before the end of its oper-
ating interval; (2) a request’s pickup must be scheduled before its corresponding
delivery; (3) loads present within a vehicle at any one time must not exceed the
maximum capacity of that vehicle; and (4) requests’ pickup and delivery time
windows must be adhered to. Note that a vehicle may wait at a location if some
waiting time is expected at the vehicle’s next destination and the problem is one
where all requests are known in advance and no uncertainty exists.

2 P.L. Holborn, J.M. Thompson, and R. Lewis

Early research surrounding the PDPTW was concerned with the transporta-
tion of people instead of goods and is sometimes known as the dial a ride problem
(DARP) [3–5]. The first metaheuristic proposed to solve the PDPTW was the
reactive tabu search approach of Nanry and Barnes [6]. A two phase method pro-
posed by Lau and Liang [7] developed this, where a construction heuristic was
followed by tabu search. Another approach is that of Li and Lim [8] who have
applied a tabu-embedded simulating annealing algorithm to solve the problem.
They also produced benchmark instances for the PDPTW which are generated
from Solomon’s 56 benchmark instances [9]. These have since been used as the
main basis for comparison of algorithms to solve the problem. Alternatively a
two-stage hybrid algorithm has been presented by Bent [10] where the first stage
uses a simple simulated annealing algorithm to decrease the number of routes,
while the second stage uses large neighbourhood search to decrease the total
travel cost. An adaptive large neighbourhood search heuristic has also been pro-
posed by Ropke [11]. Another approach to this problem is by Pankratz [12], who
use a grouping genetic algorithm (GGA) and this is extended to a multi-strategy
grouping genetic algorithm (MSGGA) by Ding et al. [13]. In addition Dergis and
Döhmer [14] show that the approach of indirect local search with greedy decod-
ing gives results which are competitive with both [8] and [12]. Metaheuristics
that apply learning mechanisms have been proposed by Lim et al. [15], specif-
ically a squeaky wheel optimisation and more recently ant colony System was
applied by Carabetti et al. [16].

In the design of our algorithm we first examine methods previously discussed
in the literature, such as initial construction heuristics, neighbourhood search
operators and tabu search. We will examine reconstruction heuristics previously
applied to the TSP and VRP and look to adapt and evolve these to the PDPTW.
Finally we augment our algorithm with a branch and bound method in order to
improve the results.

The rest of the paper is organised as follows. The problem is formulated
in Section 2. Section 3 provides details on the operators used in our algorithm
including the construction of initial feasible solutions, route reconstructions and
the branch and bound method. Section 4 provides information on the tabu search
heuristic and our algorithmic framework. Finally Section 5 gives computational
results and Section 6 provides a conclusion and directions for future research.

2 Problem Formulation

To define the PDPTW, let V = {v0, v1, . . . vn} be a set of geographically dis-
persed locations where v0 denotes the depot and n is even. The set N = V \{v0}
defines the set of pickup and delivery requests and is partitioned into two sub-
sets of equal size. The subset N+ denotes the set of pickup locations and N−

the set of delivery locations. Therefore, N+ ∪ N− = N , N+ ∩ N− = ∅ and
|N+| = |N−| = n

2 = number of pickup and delivery requests. In this problem
each location vi ∈ V has an associated demand qi, (q0 = 0), a service time si,
(s0 = 0) and a service time window [ei, li], (e0 = l0 = 0), where ei, is the earliest

Combining heuristic and exact methods to solve the PDPTW 3

time that service at location i can begin and li, the latest time that service at
location i can begin. With regards to the demand, qi > 0 for vi ∈ N+ and qi < 0
for vi ∈ N−. For each pair of nodes (vi, vj) (0 ≤ i ̸= j ≤ n) a non-negative
distance dij is known, dij = dji, where distance is equal to time. If a vehicle
reaches node vi before time ei, it needs to wait until ei before the service can
take place. Let Ai be the arrival time, Di be the departure time and Wi the
waiting time at location i. Then Di = max{Ai, ei} + si. If Ai < ei, then the
vehicle has to wait at location i and Wi = ei − Ai. Let M be the number of
vehicles, C be the maximum length of operating interval and Q the maximum
capacity of each vehicle.

To formulate the PDPTW, two variables are introduced:

xk
ij =

{
1, if vehicle k goes from node i to node j

0, otherwise.

yj = load of the vehicle at node j, after service at j

and a constant:

zij =

1, if node i and node j are the corresponding pickup and

delivery nodes of a single request

0, otherwise.

The constraints are as follows:

M∑
k=1

n∑
j=1

xk
ij = 1, ∀i ∈ V (1)

n∑
i=1

xk
i0 = 1, k ∈ [M] (2)

n∑
j=1

xk
0j = 1, k ∈ [M] (3)

n∑
i=1

xk
ih −

n∑
j=1

xk
hj = 0, ∀h ∈ V, k ∈ [M] (4)

zij = 1 ⇒
n∑

l=1

xk
li −

n∑
p=1

xk
pj = 0,∀i, j ∈ V, k ∈ [M] (5)

yj ≤ Q, ∀j ∈ V (6)

xk
ij = 1 ⇒ yi + qi = yj , ∀i, j ∈ V, k ∈ [M] (7)

xk
ij = 1 ⇒ Di + di,j ≤ Aj ⇒ Aj ≤ Dj ⇒ Di ≤ Dj ,

D0 = 0,∀i, j ∈ V, k ∈ [M] (8)

4 P.L. Holborn, J.M. Thompson, and R. Lewis

zij = 1 ⇒ Ai ≤ Aj ,∀i, j ∈ V (9)

A0 ≤ C (10)

In the above, constraint 1 ensures that each location is visited exactly once,
while constraints 2 and 3 ensure that each vehicle departs from and arrives at
the depot. Constraint 4 ensures that if a vehicle arrives at a location then it
must also depart from that location. Constraint 5 ensures that the pickup and
delivery of a request is carried out by exactly one vehicle. Constraints 6 and 7
together form the capacity constraints. Finally, the time window and precedence
constraints are ensured by 2 and 9 and the constraint on the maximum operating
interval is ensured by 10. The objective function is:

Minimise
M∑
k=1

∑
i,j∈N :i ̸=j

dijx
k
ij (11)

3 Algorithm operators

3.1 Construction methods

To construct an initial feasible solution a combination of random and greedy
heuristics are applied. The algorithm builds a feasible solution by inserting, at
each iteration, a random un-routed request into a current partial route or into
a new route using a greedy method. All feasible insertions of both the pickup
and delivery request are examined. The insertion which provides the minimal
increase in cost to the solution is accepted. This includes the option of inserting
the request into a new route. A similar method is also used in [12] and [14],
where it is shown that adding an element of randomness generates varied initial
solutions which are beneficial when applying neighbourhood operators as a larger
search space is examined.

Preliminary results have shown that this method outperforms the simple
greedy heuristic of Nanry and Barnes [6], which at each iteration inserts the
request from all remaining requests that involves the lowest additional cost to
the objective function. It also outperforms the method used by Li and Lim
[8], which first initialises a route with a request using criteria based on the
maximum increase to the objective function with routes then being completed
using a greedy method.

3.2 Route Reconstruction heuristics

To attempt to improve on the initial solutions constructed we first examine 2
neighbourhood operators of Li and Lim [8]. The first of these is a shift operator.
This denotes a reassignment of a request from one route to another. Secondly
an exchange operator swaps a request from one route with a request of another.
In both cases infeasible exchanges are forbidden and the operators attempt to
insert a request into a route without making any change to the current ordering
of that route. Naturally a higher proportion of neighbourhood moves will be

Combining heuristic and exact methods to solve the PDPTW 5

(a) Before reconstruction (b) After reconstruction

Fig. 1: Example of applying the single move within a route reconstruction

seen to retain feasibility if the existing ordering in a route can also be changed,
though of course this will also bring additional overheads. To achieve this we
suggest three different reconstruction heuristics.

The single move within a route heuristic randomly selects a request and
removes its pickup and delivery location from its route. It then attempts to insert
the pickup and delivery locations in all other feasible positions within that route.
If one exists, the insertion position which amounts to the largest reduction in
distance is accepted. An example is shown in Figure 1. This method is based on
that of Or -opt exchanges, see Or [17] but is adapted to the PDPTW.

The single route reconstruction attempts to reorder an entire route by
first removing all requests from that route and re-inserting them based on three
different methods. These are as follows: (1) by allocating at each iteration the
location at which the next service can begin first, (this is the maximum of the
time the vehicle can arrive at a location and the opening of the time window at
that location); (2) by allocating the first pickup location to the route at random
and each of the remaining pickup or delivery locations greedily; and (3) by
allocating the first pickup whose location is the maximum distance from the
depot first and then each of the remaining pickup or delivery locations greedily.
Each location (pickup or delivery) is inserted separately. An example of this
is shown in Figure 2. The single route reconstruction also attempts to reform
a route whilst inserting a request from another. It attempts to find a feasible
solution that includes the insertion of this request whilst also minimsing the
overall total distanced travelled over all routes.

(a) Before reconstruction (b) After reconstruction

Fig. 2: Example of applying the single route reconstruction to a route

6 P.L. Holborn, J.M. Thompson, and R. Lewis

(a) Before reconstruction (b) After reconstruction

Fig. 3: Example of applying the multiple route reconstruction to two routes

Finally the multiple route reconstruction attempts to form multiple
routes simultaneously. This is carried out for two routes with the aim of re-
ducing to one or three routes with the aim of reducing to two. All requests are
removed from the routes and the first route is initialised with the pickup whose
location is the maximum distance from the depot. For the case of the second
route, if one is used, the pickup which is maximum distance from the first is cho-
sen. The routes are then reconstructed simultaneously using a greedy heuristic.
For the second case this is only applied on a combination of routes, if at least
one of the routes is an outlier with regards to the number of requests present.
An example of this is shown in Figure 3.

3.3 Branch and bound method

To further improve our algorithm a method based on the large neighbourhood
search (LNS) of [10] for the PDPTW is incorporated. The main idea is to take
a part of a solution (in this case a single route or subset of that route) and find
the optimal solution for this sub-problem via a branch and bound routine.

The process starts with a set of currently adjacent locations. According to the
constraints of the problem, partly constructed solutions can be discarded: (a) if
the delivery location of a request is inserted before the corresponding pickup;
(b) if there remains a location still to be inserted that can no longer be feasibly
serviced within its time window; (c) if a location cannot be feasibly serviced
within its time window when placed after another location; (d) if the current
total distance travelled exceeds the minimum recorded so far; and (e) if the
minimum distance still to travel plus the current distance exceeds the minimum
found. The limit of the initial bound is the total distance travelled of the route
before the locations are removed. Branches are searched in the order of location
where service can begin first. The search terminates once a complete exploration
has taken place and the best solution is returned.

As this method is an exact approach it can be computationally expensive.
Our results suggest it can be applied to routes with up to 14 locations. In cases
where there are more than this, our approach is to apply branch and bound to
successive overlapping sub-sections. This ensures locations located closely to one
another are optimised in the same sub-section. In cases where n > 14 locations,
the route is split into 2

⌈
n
14

⌉
− 1 sub-sections. For example, if a route consists

of 28 locations it is split into 3 sub-sections containing locations 1-14, 7-21 and
14-28 respectively.

Combining heuristic and exact methods to solve the PDPTW 7

4 Overall Algorithm

To further improve the algorithm a tabu search heuristic is to be added to the
shift operator defined in Section 3.2. Within the the shift operator the request to
be reassigned is selected at random and all feasible insertion positions of both the
pickup and delivery are examined. If one is found, the insertion which provides
the largest reduction in total travel distance is accepted. It is found that adding
the exchange operator, both increased computational times and did not provide
an improvement to the results when used in conjunction with the reconstruction
heuristics.

From the literature, a tabu length and cycle length proportional to the num-
ber of requests to be serviced generally yields the most positive results, see [6]
who present a reactive tabu search approach to solve the PDPTW. Our tabu
search heuristic follows the general guidelines provided in [18] and a tabu tenure
equal to the number of requests, |N |, and a cycle length equal to the number of
locations to be visited, |2N | are found to be most promising. The stopping con-
dition is based on achieving a given number of iterations without improvement
to the objective function or there being no more feasible moves.

Fig. 4: Example of the tabu attributes added to the tabu list during a move by
the Shift operator

The attribute to be stored within the tabu list follows the approach of
[19] where edges removed and inserted within a solution are recorded for the
VRP with simultaneous pick-up and delivery. In our case this is adapted to the
PDPTW where the edges inserted into a solution are classed as the direct edges.
These are the locations either side of the new insertions i.e. the locations be-
fore and after the insertion of the pickup location and the delivery location of
a request. The edges removed from the solution are the indirect edges, i.e. the
the locations before and after the pickup and delivery location that has been
removed. The attribute to be recorded in the tabu list consists of both the in-
serted and removed pickup and delivery edges. If the arrangement of locations
in a route after the insertion results in both the pickup and delivery edge being
either directly or indirectly tabu then the move is disallowed. An example of the
attribute to be stored in this tabu list is shown in Figure 4.

Preliminary results suggest that applying the branch and bound method as
a final phase to the algorithm and not within the improvement phase yields

8 P.L. Holborn, J.M. Thompson, and R. Lewis

promising results. The branch and bound method optimises both routes and
sub-sections of routes therefore it limits the number of successful tabu moves
and reconstructions within the improvement phase as routes and sub-sections of
routes are at a local minima. Applying the tabu search heuristic and the branch
and bound method are computationally expensive. Investigations are performed
to determine if each method may be performed on a subset of the most promising
solutions and still achieve competitive results. Figure 5 contains a plot of the cost
after the initial construction phase compared to the cost after applying the tabu
search heuristic, and a plot of the the cost after the tabu search phase compared
to the cost after applying the branch and bound method. Both for 100 random
trials with the instance lc204. There is no correlation between achieving a lower
cost for an initial solution and achieving a lower cost for the final solution after
the tabu search heuristic. Therefore it will not be possible to select a proportion
of initial solutions with a certain initial cost to apply the tabu search heuristic to
achieve the most promising results. However there is a direct correlation between
achieving a lower cost after the tabu search heuristic and achieving a lower cost
after the branch and bound method. Therefore it seems reasonable to select a
small subset of of low cost solutions after application of the tabu search heuristic
which can then be improved via our branch and bound method.

(a) Tabu Search heuristic (b) Branch and bound method

Fig. 5: Scatter plot showing the before and after costs of each heuristic for 100
random trials with instance lc204

Our overall algorithm consists of first constructing an initial feasible solution
which is passed to the improvement phase consisting of the tabu search and
reconstruction heuristics outlined in Section 3.2 and above. These methods are
carried out until no further improvement can be made. This process is repeated
for a given number of iterations and the best 10% of solutions are passed to
the branch and bound procedure outlined in Section 3.3. This method differs
from others in the literature as a single run involves multiple restarts and only
a portion of the best found solutions are passed to the final improvement phase.
Preliminary results suggest that applying 300 iterations of the initial construc-
tion and improvement phase before passing 30 of the best found solutions to the
branch and bound method yields run times that improve on [12] and are similar
to that of [13]. This comparison is made using the average run time provided
and multiplying by the 30 trials that were required to achieve their best found

Combining heuristic and exact methods to solve the PDPTW 9

solutions. Only computational times for 10 runs of the algorithm of [14] are pro-
vided in the literature and are a significant improvement on the others stated,
however applying this figure to the case of 30 runs, these would also be com-
parable to our algorithm. The computational times of [8] will not be compared
as their description does not indicate whether these are average values. Caution
is needed when making a direct comparison between these computational times
due to differences in computer specification.

5 Experimental results

For our experiments we used instances derived by [8], which are based on Solomo-
n’s 56 VRPTW 100-customer instances [9]. Each has 100-106 nodes, (i.e. 50-
53 requests) and they are organised into 6 classes; lc1 and lc2 are clustered
instances; lrc1 and lrc2 are those where requests are partially clustered and
partially random; and lr1 and lr2 have randomly distributed requests. Instances
ending in a 1 have a short scheduling horizon and those with a 2 have a longer
scheduling horizon. Table 1 compares the results of our algorithm with those of
Li and Lim [8], Pankratz [12], Dergis & Döhmer [14] and Ding et al. [13].

Caution is needed when making a direct comparisons with these results as
our objective function is to minimise the total travel distance which is compa-
rable to that of [12]. Li and Lim [8] however use a prioritised objective function
with the order being: (1) minimise number of vehicles; (2) minimise total travel
distance; (3) minimise total schedule duration; and (4) minimise total waiting
time. The objective of Ding et al. [13] is similar to this although it does not
include minimising the total schedule duration. The objective of [14] is to min-
imise the number of vehicles followed by minimising the total travel distance.
For the approach of [8] the overall number of independent runs per instance is
not reported and the average solution quality is not discussed. The best results
of [12] and [13] are reported after 30 runs of their algorithm and for [14] best
results are reported after 10 runs. Our algorithms are implemented using C++
and executed on a PC under Windows XP with a 3.10GHz processor.

Considering the results in Table 1 our algorithm achieves the best known
solutions for 51 of the problem instances and with a total travel distance of
57662.02 are competitive with the state of the art. For [8] 40 of the best known
solutions are achieved with a total travel distance of 58184.91, [14] achieve 42
with a total travel distance of 57678.4 and [13] achieve 51 with a total travel
distance of 57652.05. The minimal total travel distance of 57638.48 is achieved
by [12], however with only 42 of the best known solutions found.

The initial improvement phase of our algorithm achieves an average total
travel distance for the 56 instances of 61162.92. This is a significant 40% improve-
ment from 101883.30 for the construction phase alone. This is further reduced
by the branch and bound method to 58302.08, a further decrease of 4.7%. For
the branch and bound method the average decrease in cost for the instances with
a longer scheduling horizon is 6.8 % with a 10.0% decrease in the lr2 instances.
For the instances with a longer scheduling horizon, the number of vehicles is

10 P.L. Holborn, J.M. Thompson, and R. Lewis

Table 1: Summary of results
Holborn et al. Li & Lim

[8]
Pankratz
[12]

Dergis &
Döhmer[14]

Ding et
al.[13]

Instance TD1 NV2 TDI 3 TDB4 CT5 TD1 TD1 TD1 TD1

lc101 828.94 10 828.94 828.94 92 828.94 828.94 828.94 828.94
lc102 828.94 10 828.94 828.94 367 828.94 828.94 828.94 828.94
lc103 827.86 10 830.58 827.87 679 827.86 827.86 827.86 827.86
lc104 818.60 9 828.17 818.60 1135 861.95 818.60 860.01 860.01
lc105 828.94 10 828.94 828.94 131 828.94 828.94 828.94 828.94
lc106 828.94 10 829.76 828.94 102 828.94 828.94 828.94 828.94
lc107 828.94 10 828.94 828.94 99 828.94 828.94 828.94 828.94
lc108 826.44 10 827.05 826.44 232 826.44 826.44 826.44 826.44
lc109 827.82 10 837.66 827.82 714 827.82 827.82 827.82 827.82
Total lc1 7445.41 89 7468.96 7445.41 3550 7488.77 7445.42 7486.83 7486.83
lr101 1650.80 20 1658.69 1650.80 44 1650.78 1650.80 1650.80 1650.80
lr102 1487.57 19 1515.57 1487.57 459 1487.57 1487.57 1487.57 1487.57
lr103 1292.68 14 1322.47 1292.68 391 1292.68 1292.68 1292.68 1292.68
lr104 1013.39 12 1095.19 1026.02 867 1013.39 1013.99 1013.99 1013.39
lr105 1377.11 16 1383.94 1377.11 142 1377.11 1377.11 1377.11 1377.11
lr106 1252.62 13 1261.18 1252.62 215 1252.62 1252.62 1252.62 1252.62
lr107 1111.31 12 1146.91 1111.31 475 1111.31 1111.31 1111.31 1111.31
lr108 968.97 11 989.88 968.97 438 968.97 968.97 968.97 968.97
lr109 1208.96 15 1271.37 1208.96 317 1239.96 1208.96 1208.96 1208.96
lr110 1165.83 14 1206.88 1166.90 696 1159.35 1165.83 1159.35 1159.35
lr111 1108.90 14 1144.68 1108.90 640 1108.90 1108.90 1108.90 1108.90
lr112 1003.77 12 1059.20 1021.80 929 1003.77 1003.77 1003.77 1003.77
Total lr1 14641.91 172 15055.96 14673.64 5614 14666.41 14642.51 14636.03 14635.43
lrc101 1703.21 14 1731.58 1703.21 98 1708.80 1703.21 1708.80 1708.80
lrc102 1558.07 12 1612.43 1558.07 300 1563.55 1558.07 1558.07 1558.07
lrc103 1258.74 11 1294.23 1258.74 417 1258.74 1258.74 1258.74 1258.74
lrc104 1128.40 10 1141.07 1128.40 481 1128.40 1128.40 1128.40 1128.40
lrc105 1637.62 13 1670.72 1640.15 290 1637.62 1637.62 1637.62 1637.62
lrc106 1424.73 11 1510.12 1439.66 242 1425.53 1424.73 1424.73 1424.73
lrc107 1230.14 11 1265.43 1230.14 357 1230.15 1230.14 1230.14 1230.15
lrc108 1147.43 10 1203.62 1147.43 369 1147.97 1147.43 1147.96 1147.43
Total lrc1 11088.34 92 11429.20 11105.80 2555 11100.76 11088.34 11094.46 11093.94
lc201 591.56 3 591.56 591.56 284 591.56 591.56 591.56 591.56
lc202 591.56 3 598.88 591.56 1416 591.56 591.56 591.56 591.56
lc203 591.17 3 625.56 591.17 1776 585.56 591.17 591.17 591.17
lc204 590.60 3 664.14 635.01 2835 591.17 590.60 590.60 590.60
lc205 588.88 3 603.78 588.88 1127 588.88 588.88 588.88 588.88
lc206 588.49 3 618.24 602.06 2316 588.49 588.49 588.49 588.49
lc207 588.29 3 598.08 588.29 1125 588.29 588.29 588.29 588.29
lc208 588.32 3 606.66 588.32 1237 588.32 588.32 588.32 588.32
Total lc2 4718.87 24 4906.89 4776.84 12116 4713.83 4718.87 4718.87 4718.87
lr201 1253.23 4 1297.60 1254.29 1756 1263.84 1253.23 1253.23 1253.23
lr202 1197.67 3 1355.43 1261.68 2602 1197.67 1197.67 1197.67 1197.67
lr203 949.40 3 1128.34 970.32 3809 949.40 952.29 949.40 949.40
lr204 849.05 2 1042.35 904.49 6153 849.05 849.05 849.05 849.05
lr205 1054.02 3 1168.50 1073.66 3327 1054.02 1054.02 1054.02 1054.02
lr206 931.63 3 1083.69 935.75 3800 931.63 931.63 931.63 931.63
lr207 905.45 2 1094.37 972.03 5471 903.06 903.60 903.06 903.05
lr208 734.85 2 882.29 752.46 7266 734.85 736.00 734.85 734.85
lr209 930.59 3 1049.56 947.17 3657 937.05 932.43 930.59 930.59
lr210 964.22 3 1108.68 988.93 3650 964.22 964.22 964.22 964.22
lr211 884.29 3 978.92 905.68 4976 927.80 888.15 896.76 884.29
Total lr2 10654.39 31 12189.72 10966.46 46467 10712.59 10662.29 10664.48 10652.00
lrc201 1406.94 4 1491.96 1436.85 1705 1468.96 1407.21 1406.94 1406.94
lrc202 1374.27 3 1508.18 1403.33 2600 1374.27 1385.25 1374.27 1374.27
lrc203 1089.07 3 1231.43 1127.13 3502 1089.07 1093.89 1089.07 1089.07
lrc204 818.66 3 920.82 826.70 4415 827.78 818.66 818.66 818.66
lrc205 1302.20 4 1423.97 1326.12 1989 1302.20 1302.20 1302.20 1302.20
lrc206 1159.03 3 1253.95 1185.97 3000 1162.91 1159.03 1159.03 1159.03
lrc207 1062.05 3 1241.62 1091.31 3311 1424.60 1062.05 1062.05 1062.05
lrc208 900.89 3 1040.26 936.53 4274 852.76 852.76 865.51 852.76
Total lrc2 9113.12 26 10112.19 9333.94 24797 9502.55 9081.05 9077.73 9064.98
Total 57662.02 434 61162.92 58302.08 95099 58184.91 57638.48 57678.40 57652.05

1 Total travel distance of best found solution

2 Number of vehicles required for best found solution

3 Average total distance travelled for 300 runs of the initial improvement phase

4 Average total distance travelled for 30 runs of the branch and bound method using the best found solutions from
the improvement phase

5 Total computational time in seconds for one run of the algorithm including 300 runs of the initial improvement
phase and 30 runs of the branch and bound method on the best found solutions

Combining heuristic and exact methods to solve the PDPTW 11

dramatically reduced compared to the instances with a shorter scheduling hori-
zon, resulting in significantly more requests allocated to each vehicle. Therefore
the problem now becomes one of finding the best ordering of requests to a route
rather than the allocation of requests to routes. In the case of the lr2 instances
this becomes increasingly difficult as locations are randomly dispersed, hence
the success of a method which specifically focuses on optimising large portions
of locations in routes such as our branch and bound method. Due to this our
algorithm performs consistently well across the varying instance types whereas
[8] and [12] struggle with the instances of a longer scheduling horizon, in partic-
ular lr2 and lrc2. The average coefficient of variation across each of the 6 classes
of instances ranges from 1% to 7% for the results after the initial improvement
phase and is reduced to less than 2% for all results after the branch and bound
method.

For the instances lc104 and lrc101, a solution has been found by both [14] and
[13] (and by [8] for the case of lrc101), that uses one less vehicle by increasing
the total travel distance in the solution. This is the best found solution when
the objective is to first minimise the number of vehicles, however these are the
only two cases which do not share an identical best found solution. This shows
the robustness of our algorithm to changes in the objective function as it also
achieved the two solutions stated above but they were disregarded due to the
increase in distance. Finally it should be noted that for [8] and [12] Euclidean
distances calculated directly from the instances were rounded to 2 decimal places
and this could account for some small discrepancies when comparing the total
distance travelled.

6 Conclusions

We have shown that the methods applied in this paper generate results which are
competitive with the state of the art results found in the literature. Our results
obtain the best known solutions in 51 out of a possible 56 instances with the
algorithm appearing to perform consistently well over all types of instance. One
of the main advantages of our approach is the speed of individual constructions.
In this case it has allowed us to produce large samples of solutions in times that
are consistent with other approaches. However reducing the number of runs of the
initial improvement phase still achieves promising results. This advantage can be
exploited when applying these methods to the dynamic PDPTW (DPDPTW)
where our algorithm will be repeatedly restarted over a rolling horizon framework
to incorporate the arrival of new requests and decisions will need to be made in
real time. The DPDPTW has received much less interest in the literature, hence
this will be the area for future research. For a recent survey on dynamic pickup
and delivery problems see [20].

References

1. Laporte, G., Osman, I.: Routing problems: A bibliography. Annals of Operations
Research 61 (1995) 227–262

12 P.L. Holborn, J.M. Thompson, and R. Lewis

2. Savelsbergh, M.W.P., Sol, M.: The general pickup and delivery problem. Trans-
portation Science 29(1) (1995) 17–29

3. Psaraftis, H.: An exact algorithm for the single vehicle many-to-many dial-a-ride
problem with time windows. Transportation Science 17(3) (1983) 351–357

4. Jaw, J., Odoni, A., Psaraftis, H., Wilson, N.: A heuristic algorithm for the multi-
vehicle advance request dial-a-ride problem with time windows. Transportation
Research Part B: Methodological 20 (1986) 243–257

5. Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. An-
nals of Operations Research 153(1) (2007) 29–46

6. Nanry, W., Barnes, J.: Solving the pickup and delivery problem with time windows
using reactive tabu search. Transportation Research Part B: Methodological 34(2)
(2000) 107–121

7. Lau, H., Liang, Z.: Pickup and delivery with time windows: algorithms and test case
generation. In: The 13th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI-2001, Dallas, USA. (2001) 333–340

8. Li, H., Lim, A.: A metaheuristic for the pickup and delivery problem with time
windows. In: The 13th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI-2001, Dallas, USA. (2001) 160–167

9. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research 35(2) (1987) 254–265

10. Bent, R., Van Hentenryck, P.: A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows. Computers & Operations Research
33(4) (2006) 875–893

11. Ropke, R., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation Science 40(4)
(2006) 455–472

12. Pankratz, G.: A grouping genetic algorithm for the pickup and delivery problem
with time windows. OR Spectrum 27 (2005) 21–41

13. Ding, G., Li, L., Ju, Y.: Multi-strategy grouping genetic algorithm for the pickup
and delivery problem with time windows. In: GEC ’09: Proceedings of the first
ACM/SIGEVO Summit on Genetic and Evolutionary Computation, New York,
NY, USA, ACM (2009) 97–104

14. Dergis, U., Dohmer, T.: Indirect search for the vehicle routing problem with pickup
and delivery and time windows. OR Spectrum 30 (2008) 149–165

15. Lim, H., Lim, A., Rodrigues, B.: Solving the pickup and delivery problem with
time windows using ”squeaky wheel” optimization with local search, AMCIS 2002
Proceedings (2002) 2335–2344

16. Carabetti, E., de Souza, S., Fraga, M.: An application of the ant colony system
metaheuristic to the vehicle routing problem with pickup and delivery and time
windows, Eleventh Brazilian Symposium on Neural Networks, 2010 (2010) 176–181

17. Or, I.: Traveling salesman-type combinatorial problems and their relation the
logistics of regional blood banking. PhD thesis, Northwestern University, Evanston,
IL. (1976)

18. Glover, F.: Tabu search part 1. ORSA Journal on Computing 1(3) (1989) 190–206
19. Montané, F.A.T., Galvão, R.D.: A tabu search algorithm for the vehicle routing

problem with simultaneous pick-up and delivery service. Computers and Opera-
tions Research 33(3) (2006) 595–619

20. Berbeglia, G., Cordeau, J.F., Laporte, G.: Dynamic pickup and delivery problems.
European Journal of Operational Research 202(1) (2010) 8–15

