EASILY MISSED?

Constipation in people with learning disability

Justin Coleman, Geoffrey Spurling

Chronic constipation is surprisingly common in people with learning disability. Communication difficulties, the vagueness of the symptoms, and the presence of other priorities often mean that carers and clinicians miss looking for this problem.

Why is it missed?
The usual trigger for doctors to consider this diagnosis is the specific mention of constipation by the patient, or the communicated history of an abdominal symptom. Patients with learning disability may be unable to communicate these, to either their doctor or carer. In addition to more intuitive presentations such as overflow diarrhoea or urinary incontinence, pain from constipation may present as distress, sleep disturbance, or behavioural changes, including self-harm. According to expert opinion, recognition of constipation in children with disability is commonly delayed, with symptoms often present for months or years beforehand. In a retrospective cohort of hospital deaths caused by intestinal obstruction, people with learning disability and constipation presented late and with minimal signs and symptoms.

Why does it matter?
In patients who are less able to indicate the site of pain, or perhaps the very existence of pain, it is important to consider this very treatable cause of unnecessary suffering. Chronic constipation is also associated with urinary and faecal incontinence (further increasing the risk of social stigma), chronic nausea, rectal prolapse, anal fissures, haemorrhoids, the need for manual evacuation, and hospital admission for faecal impaction.

When people with learning disability were asked to rate their health problems, those listing constipation were more likely to have their health rated as poor. Learning disability predicted fatal intestinal obstruction, and chronic constipation was a risk factor for this in one hospital-based study.

Case scenario
A 48 year old woman with mild intellectual impairment and epilepsy (for which she takes phenytoin) presented with left sided abdominal pain. She had mentioned this before but had denied constipation or diarrhoea. We found an archived radiograph showing moderate faecal loading. When pressed, she admitted not knowing what “constipation” meant and, in fact, had been manually evacuating but was too ashamed to tell anyone.

How common is it?
In a randomly selected institutionalised adult population of 215 people with learning disability (IQ <50), 149 cases (69.3%) had constipation.

In children with severe disabilities, estimates of the prevalence of constipation vary from 26% to more than 50%.

People with learning disability are more likely to be taking drugs that are associated with constipation, such as anticonvulsants, benzodiazepines, and antipsychotics. Other factors associated with constipation in people with learning disability include reduced physical mobility and refusal to eat.

Some causes of learning disability, whether inherited (such as Down’s syndrome) or acquired (such as cerebral palsy), are strongly associated with constipation. In one study, 74% of children at a cerebral palsy outpatient’s clinic had chronic constipation. In comparison, a Canadian study of the general adult population showed a prevalence of around 15%.

How is it diagnosed?
Clinical features
Actively consider constipation as a diagnosis in patients with learning disability. A focused history from the patient or carer regarding bowel habit (including faecal overflow) and abdominal pain is required, with careful attention to ensuring that the patient understands. We suggest that constipation be specifically considered during all learning disability checks as part of directed enhanced services in the United Kingdom.

Faeces may be palpable on abdominal examination, and rectal examination may show impacted faeces or rectal complications such as fissures or prolapse.

Investigations
Abdominal radiography, although usually unnecessary in the general population, is often confirmatory and can be a useful investigation in people with learning disability.

How is it managed?
Management principles include emptying the bowel and maintaining soft, lubricated stools in the long term (months, or even years if necessary). A small randomised controlled trial in neurologically impaired children showed that increasing dietary fibre significantly increases stool frequency and reduces painful defaecation. Effective agents include polyethylene glycol (which provides benefit over long periods for chronic constipation, including
KEY POINTS
• People with learning disability are prone to constipation, often because of medication, reduced mobility, or refusal to eat
• They may not communicate the typical symptoms to doctors and carers and sometimes present with apparently unrelated behavioural change; untreated constipation may cause unnecessary problems and occasionally even death
• Doctors should actively consider and exclude the diagnosis of constipation in people with learning disability using history, abdominal examination, and, where necessary, abdominal radiography
• Although ideally treatment should include increasing dietary fibre, laxatives are usually needed, sometimes for long periods

faecal impaction), 12 psyllium, and lactulose (on the basis of a systematic review of 20 commonly used agents). 13 Rectal suppositories or enemas are necessary only occasionally and should be considered a last resort in children. 14

Three before and after studies recommend regular toileting and behavioural treatments including rectal sensory biofeedback during defection and psychological support, 11 which may be especially important in people with learning disability. If available, health promotional materials with pictures and simple language are particularly helpful for those with learning disability. 15

Contributors: JC wrote the larger portion of the manuscript and is guarantor. GS first suggested the article, helped write the initial draft, and helped at every stage of the rewriting and editing.
Funding: No special funding.
Competing interests: All authors have completed the Unified Competing Interest form at www.icmje.org/coiDisclosure.pdf (available on request from the corresponding author) and declare: (1) No financial support for the submitted work from anyone other than their employer; (2) No financial relationships with commercial entities that might have an interest in the submitted work; (3) No spouses, partners, or children with relationships with commercial entities that might have an interest in the submitted work; (4) No non-financial interests that may be relevant to the submitted work.

Provenance and peer review: Not commissioned; externally peer reviewed.

Patient consent obtained.


A PATIENT’S JOURNEY
Dopa responsive dystonia

Karen Low, ¹ Teresa Harding, ² Philip Jardine ³

Karen Low helps Teresa Harding tell the story of her life with dopa responsive dystonia, which was not diagnosed until she was in her mid twenties

I was six when they sent me to the children’s hospital. The doctor told my mother, “I don’t know why you’ve brought this child here—you’re doing it for attention and you’ve wasted my time.” My mother says that if they had watched me walk out to the car they would have seen the problem, but they just thought I was attention seeking. In my old notes it says that I had a psychological problem.

My legs continued to deteriorate. I struggled to walk and sometimes collapsed in the street. I would gradually become worse as the day went on and my father often had to carry me. This continued until I was nine when my parents arranged a private appointment with a neurologist. They felt this was the only way to make someone see what was happening.

The consultant admitted me to Frenchay Hospital, Bristol, for observation. The floors were very slippery so I found it very difficult to walk and my feet pulled inward. Initially, my parents were told I had muscular dystrophy; but then the doctors decided that this was the wrong diagnosis because my muscles were not wasting away. I remained under the care of the neurologist for the next nine years, during which time I had five years of physiotherapy that caused my legs to become weaker, rather than stronger. Various tests, including a brain scan, found nothing wrong. I had iron callipers on both legs, and then I progressed to plastic splints. My posture became very poor and I continued to struggle to walk. On every annual visit I was told I was “unique” and that they had never seen anything like me before. They recommended that the only way to make someone see what was happening.

On every annual visit I was told I was “unique” and that they had never seen anything like me before. They recommended that the only way to make someone see what was happening.

This is one of a series of occasional articles by patients about their experiences that offer lessons to doctors. The BMJ welcomes contributions to the series. Please contact Peter Lapsley (plapsley@bmj.com) for guidance.
A DOCTOR’S PERSPECTIVE

The form of dopa responsive dystonia described here is inherited as an autosomal dominant trait and is caused by mutations in a gene for guanosine-5-triphosphate (GTP) cyclohydrolase (GCH1). This enzyme is essential for normal dopamine synthesis. The symptoms and signs of dopa responsive dystonia are varied, but onset of dystonia in early childhood with marked variation in symptoms throughout the day is typical. For this reason, there might be a mismatch between the child’s symptoms and the signs that are evident to a doctor at a particular time. A range of other neurological symptoms and signs have been described in this condition including tremor, spasticity, and ataxia. Many people with dopa responsive dystonia are misdiagnosed with other neurological conditions, but the diagnosis can be confirmed in several ways, including DNA analysis. Dopa responsive dystonia is often completely curable with levodopa (L-dopa) replacement. Some patients respond quickly to a low dose of L-dopa, whereas others need a larger dose and respond more slowly.

Cerebral palsy describes a group of permanent disorders of the development of movement and posture, causing activity limitation, that are attributed to non progressive disturbances that occurred in the developing fetal or infant brain. Not all conditions that affect posture and movement and start in early childhood are a type of cerebral palsy. The prevalence of cerebral palsy varies throughout the world but is about 2 in 1000 live births in developed countries. The prevalence of DRD is unknown, but is a much rarer condition. In 14 years as a consultant paediatric neurologist I have diagnosed five new cases. There are likely to be many undiagnosed patients in the UK.

Magnetic resonance brain imaging is crucial in evaluating the cause of a patient’s cerebral palsy. Although normal brain imaging does occur in some people with cerebral palsy, this raises the possibility of an alternative diagnosis. The condition starts in early childhood and does not fluctuate markedly as the day goes by. Although the functional abilities of a child with CP might change over the years—for instance losing the ability to walk independently in adult life—a marked progression in symptoms should raise the possibility of an alternative diagnosis. Cerebral palsy does not usually recur within families. A first degree relative with cerebral palsy should certainly lead to the diagnosis being questioned. A growing list of rare genetic and metabolic disorders, can masquerade as cerebral palsy. Accurate diagnosis is important because some of these conditions are treatable—or even curable—and some might recur in families. No doctor can be omniscient. There will always be patients with rare conditions that the doctor is not familiar with. Keeping an open mind about potential diagnoses and listening carefully to the patient’s story is important. Philip Jardine

Living with my disability

I am quite an outgoing person and I had brilliant friends throughout school who really helped me. I have never let my illness get to me and nobody has been nasty about it, but I did suffer because I couldn’t do the same activities as everyone else. I could never go on school trips or to school camp, because in those days facilities to help disabled people did not exist.

So I lived with it—dragging my feet and not being able to walk without holding on to something or somebody for support. Most of the time I was forced to use a wheelchair.

In 1990 I moved to Clevedon with my future husband and had my first son. I had been told I would be unable to conceive, so it was a shock when I became pregnant. I love being a mum, but my disability made it difficult to begin with. Social services provided me with home help five days a week to assist me with the baby and housework.

My lowest point was after I had had my first son. I had gone over on my ankle many times. It was so painful and weak that I couldn’t look after my son properly, so I went to my GP.

I was sent back to Frenchay Hospital and saw a doctor who asked about my legs rather than my ankle injury, which was difficult to understand. He wanted to know how far I could walk and how things were during the day and the evening. When I asked him the reasons for these questions, he said “If we can get you on the right medication, it can change your life.”

The turning point

How right he was. I was told that I had a condition called dopa responsive dystonia. I was started on co-beneldopa 125 mg, one daily for the first week, increasing to six daily...
Acute cough in adults

Jochen W L Cals,1 Nick A Francis2

A healthy, non-smoking 54 year old woman consults with a severe acute cough. It started two weeks ago with symptoms of a common cold, but she is worried about its duration and would like something to “clear it up.”

What you should cover

• Ask about the duration and nature of cough, dyspnoea, wheezing, thoracic pain, upper respiratory tract symptoms, smoking, and use of drugs. Explore restrictions in activities as a result of the cough.
• Are the symptoms caused by a self limiting or serious illness? Acute cough (less than three weeks) is most commonly caused by self limiting infections of the respiratory tract. Consider other common causes: (passive) smoking, bronchial hyper-reactivity, use of angiotensin converting enzyme inhibitors, postnasal drip, and gastro-oesophageal reflux disease (unlikely with no history of heartburn or regurgitation).
• Consider pneumonia—factors associated with an increased risk include use of oral glucocorticosteroids, heart failure, chronic obstructive pulmonary disease (COPD), insulin dependent diabetes, serious neurological disorder, rheumatoid arthritis, Parkinson’s disease, cancer, and older age (especially over 80).
• Asthma must be considered but is unlikely with no history of respiratory or atopic problems. COPD should be considered in smokers. Persisting paroxysms of cough, sometimes with vomiting, suggest whooping cough. Assess for less common causes, including Q fever, pulmonary embolism, rheumatic fever, and streptococcal pharyngitis. Examine the pharynx for signs of upper respiratory tract infection; perform lung auscultation and percussion. However, clinical signs and symptoms do not reliably differentiate atypical from typical pneumonia.

What you should do

Physical examination and additional diagnostic testing

Gauge degree of illness by assessing fever, tachypnoea, tachycardia, and level of consciousness. CRB-65 scoring (new onset mental confusion, respiratory rate >30/min, blood pressure: systolic <90 mm Hg or diastolic <60 mm Hg, age ≥65) may be useful.

Examine the pharynx for signs of upper respiratory tract infection; perform lung auscultation and percussion. However, clinical signs and symptoms do not reliably differentiate atypical from typical pneumonia.

For suspected lower respiratory tract infection, near patient measurement of C reactive protein (CRP) can help...
differentiate serious disease from self limiting disease and has more diagnostic value than erythrocyte sedimentation rate and leucocyte count. A low C reactive protein (<20 mg/l) rules out pneumonia and can help in withholding antibiotics.

Microbiological tests are not routinely recommended in primary care. Chest radiography should be performed if serious illness (malignancy, heart failure) is suspected, although it has a limited role in primary care for detecting pneumonia on logistical and economic grounds.

If whooping cough is suspected and the patient lives close to a newborn infant or pregnant woman, antipertussis toxin IgG antibodies should be measured (single raised titre is 99% specific for diagnosis).

Advice and treatment

Patients often worry about coughs and expect antibiotics. Eliciting their main concerns and expectations, and their view on antibiotics, ensures the patient’s agenda is dealt with and “opens up” the conversation about antibiotics.

A symptomatic and prognostic diagnosis is better than an aetiological or anatomical one, because aetiology in acute cough is often not known. Discuss the association between smoking and symptoms, and consider a smoking intervention (see NICE guidance).

Dextromethorphan is an effective antitussive that suppresses cough reflex (number needed to treat (NNT) 3·8). Codeine has no greater efficacy but more side effects. Encourage self management strategies including rest, analgesics, antipyretics, and regular fluids. Home remedies such as lemon and honey may alleviate symptoms. Patients report some effect of expectorants, mucolytics, antihistamines (or decongestants), and inhaled bronchodilators, but little evidence supports or discourages their use. Potential benefits must be weighed against the risk of side effects. Antibiotics are not indicated in cough caused by upper respiratory tract infection and offer limited benefit in terms of cough resolution (NNT 6) in acute bronchitis. Potential benefits (improvement in mean duration of cough of less than one day) and adverse effects (nausea, diarrhoea, rash) must be balanced. Antibiotics are likely to be beneficial for community acquired pneumonia or lower respiratory tract infection with a potentially complicated course—follow local guidelines on first choice of agent. British Thoracic Society guidelines for community acquired pneumonia recommend amoxicillin 500 mg three times daily for seven days or, in case of penicillin hypersensitivity, doxycycline or clarithromycin. In whooping cough, treatment may not affect the patient’s symptoms, but a seven day course of erythromycin within 21 days of onset reduces the period of infectivity and may prevent transmission.

Consider hospital referral for patients who have lower respiratory tract infection with signs of severe illness, age over 80, comorbidity, or suspected pulmonary embolism or malignancy. CRB-65 scoring can help determine severity.

Create a safety net by discussing factors that should prompt reconsultation (such as haemoptysis, fever lasting more than four days, increasing dyspnoea and fast breathing, decreasing consciousness, and confusion) and back up your advice with an information leaflet (box).

Contributors: JWLC conceived the original idea for this article and wrote the first version. Both authors commented on all further versions. JWLC is guarantor.

Funding: JWLC is supported by a grant of the Netherlands Organisation for Health Research and Development (ZonMW) as an MD medical research trainee.

Competing interests: None declared.

Provenance and peer review: Not commissioned; externally peer reviewed.

Accepted: 18 January 2010

USEFUL READING


RECOMMENDED RESOURCES FOR PATIENTS

European Centre for Disease Control (www.antibiotic.ecdc.europa.eu)—Patient information brochure on acute cough, colds, and flu

European Centre for Disease Prevention and Control (http://ecdc.europa.eu/en/ead/antibiotics/Pages/messagesForPublic.aspx)—Advice on using antibiotics responsibly

NHS Direct (www.cks.nhs.uk/patient_information_leaflet/chest_infection_adult)—Patient information leaflet NHS on chest infection