Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Omega-3 fatty acids and inflammation: novel interactions reveal a new step in neutrophil recruitment

Tull, Samantha P., Yates, Clara M., Maskrey, Ben, O'Donnell, Valerie Bridget ORCID: https://orcid.org/0000-0003-4089-8460, Madden, Jackie, Grimble, Robert F., Calder, Philip C., Nash, Gerard B. and Rainger, G. Ed. 2009. Omega-3 fatty acids and inflammation: novel interactions reveal a new step in neutrophil recruitment. PLoS Biology 7 (8) , e1000177. 10.1371/journal.pbio.1000177

[thumbnail of Tull 2009.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (436kB) | Preview

Abstract

Inflammation is a physiological response to tissue trauma or infection, but leukocytes, which are the effector cells of the inflammatory process, have powerful tissue remodelling capabilities. Thus, to ensure their precise localisation, passage of leukocytes from the blood into inflamed tissue is tightly regulated. Recruitment of blood borne neutrophils to the tissue stroma occurs during early inflammation. In this process, peptide agonists of the chemokine family are assumed to provide a chemotactic stimulus capable of supporting the migration of neutrophils across vascular endothelial cells, through the basement membrane of the vessel wall, and out into the tissue stroma. Here, we show that, although an initial chemokine stimulus is essential for the recruitment of flowing neutrophils by endothelial cells stimulated with the inflammatory cytokine tumour necrosis factor-α, transit of the endothelial monolayer is regulated by an additional and downstream stimulus. This signal is supplied by the metabolism of the omega-6-polyunsaturated fatty acid (n-6-PUFA), arachidonic acid, into the eicosanoid prostaglandin-D2 (PGD2) by cyclooxygenase (COX) enzymes. This new step in the neutrophil recruitment process was revealed when the dietary n-3-PUFA, eicosapentaenoic acid (EPA), was utilised as an alternative substrate for COX enzymes, leading to the generation of PGD3. This alternative series eicosanoid inhibited the migration of neutrophils across endothelial cells by antagonising the PGD2 receptor. Here, we describe a new step in the neutrophil recruitment process that relies upon a lipid-mediated signal to regulate the migration of neutrophils across endothelial cells. PGD2 signalling is subordinate to the chemokine-mediated activation of neutrophils, but without the sequential delivery of this signal, neutrophils fail to penetrate the endothelial cell monolayer. Importantly, the ability of the dietary n-3-PUFA, EPA, to inhibit this process not only revealed an unsuspected level of regulation in the migration of inflammatory leukocytes, it also contributes to our understanding of the interactions of this bioactive lipid with the inflammatory system. Moreover, it indicates the potential for novel therapeutics that target the inflammatory system with greater affinity and/or specificity than supplementing the diet with n-3-PUFAs.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Medicine
Systems Immunity Research Institute (SIURI)
Subjects: Q Science > QR Microbiology > QR180 Immunology
R Medicine > R Medicine (General)
Additional Information: 11 pp.
Publisher: Public Library of Science
ISSN: 1545-7885
Date of First Compliant Deposit: 30 March 2016
Last Modified: 05 May 2023 20:59
URI: https://orca.cardiff.ac.uk/id/eprint/28687

Citation Data

Cited 127 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics