Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

A Text Mining Approach to the Prediction of Disease Status from Clinical Discharge Summaries

Yang, H., Spasic, Irena, Keane, J. A. and Nenadic, G. 2009. A Text Mining Approach to the Prediction of Disease Status from Clinical Discharge Summaries. JAMIA Journal of the American Medical Informatics Assocation 16 (4) , pp. 596-600. 10.1197/jamia.M3096

Full text not available from this repository.

Abstract

Objective The authors present a system developed for the Challenge in Natural Language Processing for Clinical Data—the i2b2 obesity challenge, whose aim was to automatically identify the status of obesity and 15 related co-morbidities in patients using their clinical discharge summaries. The challenge consisted of two tasks, textual and intuitive. The textual task was to identify explicit references to the diseases, whereas the intuitive task focused on the prediction of the disease status when the evidence was not explicitly asserted. Design The authors assembled a set of resources to lexically and semantically profile the diseases and their associated symptoms, treatments, etc. These features were explored in a hybrid text mining approach, which combined dictionary look-up, rule-based, and machine-learning methods. Measurements The methods were applied on a set of 507 previously unseen discharge summaries, and the predictions were evaluated against a manually prepared gold standard. The overall ranking of the participating teams was primarily based on the macro-averaged F-measure. Results The implemented method achieved the macro-averaged F-measure of 81% for the textual task (which was the highest achieved in the challenge) and 63% for the intuitive task (ranked 7th out of 28 teams—the highest was 66%). The micro-averaged F-measure showed an average accuracy of 97% for textual and 96% for intuitive annotations. Conclusions The performance achieved was in line with the agreement between human annotators, indicating the potential of text mining for accurate and efficient prediction of disease statuses from clinical discharge summaries.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Medicine
Subjects: R Medicine > R Medicine (General)
Publisher: BMJ Publishing Group
ISSN: 1067-5027
Last Modified: 15 Nov 2013 10:15
URI: http://orca.cf.ac.uk/id/eprint/29188

Citation Data

Cited 20 times in Google Scholar. View in Google Scholar

Cited 28 times in Scopus. View in Scopus. Powered By Scopus® Data

Cited 12 times in Web of Science. View in Web of Science.

Actions (repository staff only)

Edit Item Edit Item