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Abstract 

This paper examines the beneficial impact of information sharing in multi-echelon supply 
chains. We compare a traditional supply chain, in which only the first stage in the chain 
observes end consumer demand and upstream stages have to base their forecasts on incoming 
orders, with an information enriched supply chain where customer demand data (e.g. EPOS 
data) is shared throughout the chain. Two types of replenishment rules are analysed: order-
up-to policies and smoothing policies (policies used to reduce or dampen variability in the 
demand).  For the class of order-up-to policies, we will show that information sharing helps 
to reduce the bullwhip effect (variance amplification of ordering quantities in supply chains) 
significantly, especially at higher levels in the chain. However, the bullwhip problem is not 
completely eliminated and it still increases as one moves up the chain. For the smoothing 
policies, we show that information sharing is necessary to reduce order variance at higher 
levels of the chain. The methodology is based on control systems engineering and allows us 
to gain valuable insights into the dynamic behaviour of supply chain replenishment rules. We 
also introduce a control engineering based measure to quantify the variance amplification 
(bullwhip) or variance reduction. 

Keywords 

Supply chain management, replenishment rule, bullwhip effect, production smoothing, 

control theory. 
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Nomenclature 

 Forecasting constant used in exponential smoothing forecast, =1/(1+Ta) 
 Signalling factor 
AR Amplitude Ratio 
D Demand 
Dt Demand at time, t 

tD̂  Demand forecast at time, t 
L
tD̂  Demand forecast over L time units at time, t 
Ta
tD̂  Demand forecasted with the smoothing constant Ta at time, t 

DWIPt Desired Work In Progress at time t 
e The base of the natural logarithm, 2.7182…. 
FR Frequency response 
i The imaginary number 1  
i.i.d. Independent and identically distribution normal distribution 
n, j Echelon of the supply chain 
k The normal variant used to determine the safety stock in the Order-Up-To model 
L The physical production/ distribution lead-time, plus a time unit for safety stock 

and/or a time unit to ensure the correct order of events 
NSt Net Stock at time t ̂  Estimated standard deviation 

L
n̂  Estimated standard deviation at echelon n over L time units 

OUT Order Up To 
nO  Orders at echelon n 

tO  Orders at time t 
n
tO  Orders at echelon n at time t 

St Stock at time t  
t Time 
Ta Average age of exponential smoothing forecast 
TF Transfer Function of Orders 
Tm Number of periods used in the moving average 
Tn Time to adjust for errors in net stock 
TNSt Target Net Stock at time t 
Tp The physical production/ distribution lead-time 
Tw Time to adjust for WIP errors 
Var Variance 
VMI Vendor Managed Inventory 
w Frequency (Radians per sampling period) 
WIP Work In Progress 
WIPt Work In Progress at time t 
WN Noise Bandwidth 
z z-transform operator 
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1. Introduction 

In supply chains, the variability in the ordering patterns often increases as one moves up the 
chain, towards the factory and the suppliers. This variance or demand amplification was 
originally observed and studied by Forrester (1958, 1961). The Forrester paper inspired many 
authors to develop management games to demonstrate the variance amplification. The well-
known Beer Game was developed at MIT at the end of the fifties and Sterman (1989) reports 
on the major findings. In the Beer Game, order decisions have to be made in a supply chain 
consisting of a retailer, a wholesaler, a distributor and a factory. Only the retailer observes the 
customer demand, so the other supply chain members have to base their decisions on the 
incoming orders. Players of the Beer Game will experience that very small variations in 
customer demand can lead to exaggerated order swings further up the supply chain. Demand 
amplification has been very popular in the research community in the last few years and the 
phenomenon is now mostly denoted by the term ‘bullwhip effect’ (Lee, Padmanabhan and 
Whang 1997a, 1997b). Lee et al. (1997a and 1997b) give five important causes for the 
bullwhip effect: the use of ‘demand signal processing’, non-zero lead times, order batching, 
supply shortages and price fluctuations. Under demand signal processing, we understand the 
practice of adjusting the demand forecasts and, as a result of this practice, adjusting the 
parameters of the inventory replenishment rules frequently. By doing this, short-run 
fluctuations maybe overreacted too, which induces variance amplification. In other words, the 
replenishment rule used by the members of the chain may be a contributory factor to the 
bullwhip effect. Chen, Drezner, Ryan and Simchi-Levi (2000a and 2000b) have quantified 
the bullwhip effect for order-up-to policies based on exponential smoothing forecasts as well 
as moving average forecasts. Dejonckheere, Disney, Lambrecht and Towill (2001a) have 
shown that order-up-to policies always result in variance amplification, irrespective of the 
forecasting method being used and state this without making any assumptions about the 
demand pattern.  
Research has shown that such demand amplification can be constrained by proper design and 
re-engineering of the supply chain (see Berry, Naim and Towill, 1995). In particular the 
importance of designing the chain according to established Principles of Material Flow 
Control has been recognised (Towill and McCullen, 1999). In order to avoid the bullwhip 
effect, all causes should be eliminated at source.  Van Ackere, Larsen, and Morecroft (1993) 
provide a useful framework to classify the counter measures that can be taken in any supply 
chain to reduce or avoid the bullwhip effect. They distinguish three different approaches: (1) 
redesigning the physical process (such as lead-time reduction and eliminating a channel in the 
supply chain), (2) redesigning the information channels (such as providing customer demand 
data throughout the chain), (3) and redesigning the decision process (using different 
replenishment rules). In this paper, we are especially dealing with the second approach: the 
benefits of information sharing in supply chains.  
Van Ackere, Larsen, and Moorcroft’s third approach concerns the careful selection of the 
replenishment rule.  Order-up-to policies are very popular both in research as in practice 
since they are known to minimise inventory holding and shortage costs.   We are not 
concerned in this paper with the variance of the inventory levels. Here we are concerned with 
order variance as order-up-to policies always seem to result in order rate variance 
amplification. When production is inflexible and significant costs are incurred by switching 
up and down production quantities frequently, order-up-to policies may no longer be 
desirable or even achievable. These production (ordering) switching costs may be very large 
requiring a smooth production or ordering pattern. This problem is well known in the 
literature as the ‘production smoothing problem’ and a lot of decision rules exist that can 
avoid bullwhip, as they reduce variability in the demand pattern.  Although smoothing the 
demand pattern might increase the inventory related costs, the decision rule may still 
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outperform order-up-to policies in terms of total costs (inventory holding and shortage costs 
plus production switching costs). This will of course depend on the cost structure of the 
supply chain under consideration. We do not investigate the link between bullwhip and 
inventory variance here although Disney and Towill (2002) and Dejonckheere, Disney, 
Farasyn, Janssen, Lambrecht and Towill (2002) have examined this issue in a single echelon 
of a supply chain.  
In this paper we will show that in a multi-level supply chain, it is very beneficial to share 
customer demand information throughout the chain. Sharing customer demand information 
(e.g. EPOS data) is possible through new technologies available in many supply chains 
nowadays. All replenishment rules in this paper are analysed in two scenarios. The first 
scenario is the traditional supply chain in which only the retailer has access to customer 
demand, just as the original Beer Game is played. The second scenario is the supply chain 
with information sharing, which this paper denotes as the information enriched supply 
chain, after the seminal work of Mason-Jones (1998). The difference between the two 
scenarios is made clear in the Figure 1 below. The only difference to the traditional supply 
chain is that every chain member can now base its forecasts on the end consumer demand 
(instead of incoming orders);  Note that we are not modelling a Vendor Managed Inventory 
supply chain since, in our information enriched supply chain, every stage still has to ship the 
goods ordered by the previous member of the chain, i.e. the supplier does not have the 
authority (or the necessary inventory information) to deliver goods to the customer at his 
discretion.    For a detailed analysis of a Vendor Managed Inventory supply chain see Disney 
(2001).   For an extended guide to several variations of the information enrichment strategy 
see Mason-Jones (1998). 
We will look at two general classes of replenishment rules: the order-up-to policies, and the 
smoothing decision rules. For both policies, we will show the benefits of information sharing. 
When order-up-to policies are applied in a multi-level traditional supply chain, bullwhip can 
be dramatic at higher levels of the chain. In the next section, we give a real life case were the 
variance of the orders to the suppliers is over 100 times the variance of the customer demand. 
Chen et al. (2000b) quantified the bullwhip effect for order-up-to policies based on moving 
average forecasts. We will confirm those results and extend them to other forecasting 
policies. We show that when using order-up-to policies in a multi-level information enriched 
supply chain, the increase in variance will be much less (see also Chen et al. (2000b) and Lee 
et al. (2000)) than in a traditional supply chain. The last part of the paper examines a 
smoothing replenishment rule in a multi level supply chain. We show that information 
sharing is very crucial here as well. In the traditional supply chain, although bullwhip is 
reduced, the replenishment rule loses its smoothing characteristics at higher levels of the 
chain, whereas in the enriched chain, the replenishment rule is able to ensure order variability 
is not increased at higher levels of the supply chain.  A summary of the bullwhip generated 
by all polices analysed in this paper is presented together with several closed form 
expressions for bullwhip that we have found.     
 
Most of the available research on bullwhip and information sharing uses a statistical 
methodology (see Lee et al. (1997a and 2000) and Chen et al. (2000a and 2000b)). They 
quantify the magnitude of variance amplification in supply chains for a few types of demand 
processes. In this paper, we will advocate a control engineering approach and are able to 
confirm and extend the results obtained through statistical analysis. The control engineering 
approach goes back to the work of Simon (1952), Vassian (1955), Adelson (1966), Forrester 
(1961) and Towill (1970, 1982). We also refer to Deziel and Eilon (1967), Bertrand (1986), 
John, Naim and Towill (1994), Towill (1999), Dejonckheere, Disney, Lambrecht and Towill 
(2001) and Disney (2001) for other contributions on replenishment rules and inventory 
fluctuations.  The control engineering methodology will enable us to gain important insights 
in the dynamic behaviour of the replenishment rules examined in this paper. The 
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methodology also allows us to quantify variance amplification (or variance reduction) at each 
level of the supply chain in response to a normally (i.i.d.) distributed demand from the end 
consumer.   Note that we do not investigate the effect on performance of the types of 
forecasting method chosen  (and it parameter(s) value) in relation to the demand process.    
 

ALL SUPPLY CHAIN PARTNERS UTILISE 
       MARKET SALES INFORMATION

EACH SUPPLY CHAIN PLAYER RECEIVES ORDER
    INFORMATION FROM THE LEVEL BEFORE

Warehouse Brewery

Order Decision Function

TRADITIONAL INFORMATION PIPELINE

ENRICHED SUPPLY CHAIN  INFORMATION PIPELINE

SALES
CONSUMER

Distributor
Retailer

Material Flow Pipeline

Information Flow Pipeline

 
Figure 1. The traditional supply chain versus the information enriched supply chain 

(Taken from Mason-Jones and Towill (1997)) 
 

 
The remainder of the paper is organised as follows. In section 2, bullwhip is analysed in a 
real life supply chain. In section 3, the control engineering methodology used to analyse 
replenishment rules and quantify variance amplification is explained. Section 4 analyses the 
benefits of information sharing for order-up-to policies. Three forecasting systems are 
integrated in the order-up-to system: exponential smoothing (Holt, 1957), moving average, 
and demand signal processing (Lee, 1997a and 2000a). Section 5 examines a smoothing 
replenishment rule and the impact of information enrichment.   
 

2. Bullwhip in a grocery supply chain  
Our real-world bullwhip example is based on a European retail supply chain.  Holmström 
(1997) analysed the orders flowing upstream from retail outlets.  He studied in depth a traffic 
building (high volume), low margin product, and a low traffic (low volume), high margin 
product.  Demand amplification was estimated via the bullwhip measure (standard 
deviation/average value) as discussed in detail by Fransoo and Wouters (2000).  We have 
then calculated the Bullwhip Factor as the ratio of the standard deviation estimated as the 
orders are passed up successive echelons in the supply chain.   
The results are shown in Table I.  They confirm the fears of many academic researchers and 
management theorists by demonstrating that bullwhip exists in the real world.  It is even 
larger than many theories predict, and promulgates wildly upstream exactly as Van Aken 
(1978) suggested based on his experiences at Philips plants (Eindhoven in Holland).  Note 
that the Bullwhip Factors yield important insights into the behaviour of the various “players” 
in the chain.  The downstream players (shops and wholesalers) are the biggest culprits in the 
sense of bullwhip generation.  They exhibit little difference in attitudes towards ordering 
policies for either low margin or high margin products with Bullwhip Factors around 3 to 1.  
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Player High volume/Low margin Low volume/High margin 
Retailer 2.60 3.14 

Wholesaler 2.88 3.05 
Factory 0.72 2.39 
Supplier 1.67 1.25 

Total SC bullwhip 9.0 28.61 
 

Table I.   Bullwhip effect in a grocery supply chain  
(Source; Holmström 1997) 

 
Not so the factory scheduler.  Not only does the scheduler treat the two products significantly 
differently, but adequately dampens down the volatility in the orders for the high volume 
product.  This is most likely to have been achieved via some version of level scheduling 
(Suzaki, 1987).  In contrast the scheduler is quite prepared to induce further substantial 
bullwhip into the system when considering the low volume product.  Deliveries from the 
factories exhibit some bullwhip, but of a secondary effect composed to the downstream 
“players”.  The total Bullwhip Factor over the entire chain is 9 to 1 (high volume product), 
and 28.60 to 1 (low volume product).  
 
Thus the highly volatile supply chain really does exist - it is not a figment of the imagination 
of academic researchers, and justifies the study of the many causes of bullwhip.  
Furthermore, the reduction of bullwhip via Business Process Re-Engineering Programmes to 
systematically root out the various causes is now a proven method of supply chain 
improvement.  Indeed, there is much more to the bullwhip problem than algorithm design, it 
clearly needs to be linked with business strategy.  Examples include this particular retail 
chain where bullwhip has been reduced by eliminating a major delay in the information flow 
path (Holmström, 1997).  Furthermore, in a global precision products supply chain, bullwhip 
has been reduced by 2 to 1 whilst concurrently increasing stock turns and reducing stock 
variability by similar factors (Towill and McCullen, 1999).   This is particularly important as 
Metters concludes that a 30% reduction in factory costs can follow from a bullwhip reduction 
program. 
 

3. A control engineering method to investigate replenishment rules 
The methodology used in the paper is control systems engineering, complemented with 
spreadsheet simulation.  We briefly introduce the most important concepts and techniques.  
 
a. Derive the transfer function 
In control systems engineering, the transfer function of a system represents the relationship 
describing the dynamics of the system under consideration.  It algebraically relates a system’s 
output to its input and is defined as the ratio of the z-transform of the output variable to the z-
transform of the input variable. The general form of the transfer function relating two signals 
within a system is then: 










p
p

q
q

zazaza

zbzbzb
KzF

...1

...1
)( 2

21

2
21         (1) 

Since supply chains can be seen as a system, with complex interactions between different 
parts of the chain, we may use a transfer function approach to model these interactions. For 
every replenishment rule, a transfer function will be developed that completely represents the 
dynamics of a particular replenishment rule.  Input to the system corresponds to the demand 
pattern and the output refers to the corresponding replenishment or production orders. For 
more details on control engineering and transfer functions, we refer the reader to the 
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appropriate literature, although Nise (1995) provides a good introduction.  Dejonckheere et 
al. (2001) show how the transfer function may be obtained by constructing a ‘causal loop 
diagram’ and a ‘block diagram’ for the replenishment rule under consideration.  For a 
historical overview of using the z-transform in production and inventory control applications 
we refer to Disney (2001). 
 
b. The Frequency Response plot 
To derive the ‘Frequency Response’ plot (FR) of a replenishment rule, we will present the 
rule with sinusoidal inputs of different frequencies; that means we want to know what orders 
(output) are generated when the demand (input) is sinusoidal. Since we are dealing with 
linear systems, we know that the output will also be a sine wave with the same frequency, but 
the amplitude and the phase angle may have changed. We will be particularly interested in 
the ratio of the amplitude of the generated orders (output) to the amplitude of the sinusoidal 
demand (input) i.e. the Amplitude Ratio (AR).  We will present the replenishment rule with 
sine waves of frequencies ranging from 0 to  radians per sample interval.  It is well known 
from Shannon’s Sampling Theorem, (Shannon et al, 1948) that sampled data systems can 
only detect inputs of frequencies up to  radians per sampling interval unit, hence the plot is 
only required for the frequencies 0 to .  For all these frequencies, we can find the AR and in 
this way draw the FR plot. Technically, the FR plot is made by letting z= eiw in the transfer 
function and calculating the modulus of the vector in the complex plane.  Because of the fact 
that any real life demand data can be seen as composed of different sinusoids, it makes sense 
to analyse responses to different sine waves. The FR plot immediately yields insight into the 
dynamic behaviour of the replenishment rule, without making any assumptions on the 
distribution of the demand pattern.  It will be used to make predictions on whether or not the 
replenishment rule will lead to variance amplification.  
 
c.  The Noise Bandwidth  
The Noise Bandwidth is a common metric in communications engineering.  It is formally 
defined as:  

dweTFW iw
N

2

0
)( 

          (2) 
 
where TF(eiw) is the steady state response to the excitation frequency w. (Garnell and East, 
1977). In words, WN is defined as the area under the squared frequency response of the 
system.  In order to calculate the noise bandwidth, the frequency response was calculated at 
set points of w and WN estimated via numerical integration with strips of 0.0001 radians per 
sampling interval of frequency. 
WN has an important attribute that allows us to use it as a metric for bullwhip effect. This is 
that for an input of “white” random noise (constant power density at all frequencies) and zero 
mean, WN is a direct measure of the variance at the output from the filter (see Towill, 1999). 
The noise bandwidth is thus directly related to the variance of the output when the system is 
subject to an input of “white random noise”, better known as a random input, or else, 
normally distributed input with no correlation.  More specifically, WN /  is a very accurate 
metric to predict the magnitude of change in the variance when the replenishment rule 
under consideration is applied to independently and identically distributed (i.i.d) normal 
demands. When (WN / ) > 1, the variance of the output (the orders) is larger than the 
variance of the input; hence we have variance amplification or bullwhip. This bullwhip 
measure has already been successfully used by Dejonckheere et al (2001) and later in this 
contribution we will verify the measure via a simulation based cross check. We will show 
that WN /   is equivalent to the Variation Ratio measure (Variance Orders/ Variance 
Demand) used by many authors to quantify the Bullwhip Effect. When (WN / ) < 1 
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however, the variance of demand is reduced by applying the replenishment rule and we do 
not have any bullwhip effect but a smoothing of the demand pattern. 
 
The control engineering based methodology used in the paper can be summarised by the 
following three-step procedure: 

1. Derive the transfer function of the replenishment rule under consideration. This is 
done by first drawing the block diagram of the replenishment rule. 
2. Draw the Frequency Response plot. The FR plot gives a valuable insight in the 
dynamic behaviour of the replenishment rule under consideration (bullwhip or 
smoothing) without making any assumptions on the demand pattern. 
3. Calculate WN /. This metric quantifies the magnitude of the Variance Ratio 
(Variance of output/ Variance of input) when the replenishment rule is applied to 
normally distributed demand patterns from the end consumer. If (WN / ) > 1, the 
replenishment rule creates bullwhip, if (WN / ) < 1, the replenishment rule smoothes 
order variance. 

 

4. Information enrichment in order up-to-policies  
Consider a simple supply chain consisting of a retailer, a distributor, a warehouse and a 
factory. The supply chain is denoted in this paper as a four level supply chain since ordering 
decisions have to be made by four members of the chain. We have two scenarios: the 
traditional supply chain scenario, and the information enriched supply chain. In the traditional 
scenario, we assume the following order of events: in each period t, the retailer first receives 
goods, then customer demand Dt is observed and satisfied; next, the retailer observes the new 
inventory level and places an order ret

tO  to the distributor. The distributor immediately 
receives the order in period t; but unlike the Beer Game, there is no ordering delay. The 
distributor also receives goods, fulfils the retailer order, and places an order dist

tO  to the 
wholesaler. The wholesaler immediately receives the order,…, and the process continues 
until the wholesaler and the factory have placed their orders. Any unfilled demand is 
backlogged in our model.  There is a fixed lead time between the time an order is placed at a 
stage i and when it is received at that stage, such that an order placed at the end of period t is 
received at the start of period t+L, where L =Tp+1 and Tp is the physical production lead-
time.     
In the information-enriched scenario, everything remains the same, except the fact that every 
stage in the chain in any period not only receives an order from the previous chain member, 
but also he receives the end consumer demand for the current period. This end consumer 
demand can then be used to forecast from.  Of course, the goods ordered by the previous 
member still have to be shipped downstream.  
 
In this section, we integrate three different forecasting systems in the order-up-to policy: 
exponential smoothing, moving average, and demand signal processing.  
 
4.1. Using exponential smoothing forecasting in order-up-to policies 
In any order-up-to policy, ordering decisions are as follows:  tt SO inventory positiont         (3)  
where 

tO  is the ordering decision made at the end of period t, 
tS  is the order-up-to level used 

in period t and the inventory position equals net stock plus on order (or WIP), and net stock 
equals inventory on hand minus backlog. The order-up-to level is updated every period 
according to L

t
L

tt kDS ̂ˆ          (4) 
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where L
tD̂ is an estimate of mean demand over L periods (

t
L
t DLD ˆˆ  ), L

t̂  is an estimation of 
the standard deviation of the demand over L periods, and k is a chosen constant to meet a 
desired service level. To simplify the analysis, we set k equal to zero and increase the lead-
time by one. Policies of this form are often used in practice: the value of L is inflated and the 
extra inventory represents the safety stock.  
Additionally, L is increased by one in order to ensure the correct order of events.   For 
example, we receive inventory and satisfy demand throughout the planning period and at the 
end of the planning period we observe inventory and place an order.  Thus, even if the 
physical production / distribution lead-time is zero, it does not appear in the order decision 
until the end of the next planning period.   Hence, L includes a nominal order of events delay.   
In other words L not only represents the physical lead-time, but also a safety lead-time and an 
order of events delay. Thus we have L=Tp+2, where Tp is the physical production / 
distribution lead-time.   
In this section, we use simple exponential smoothing to forecast demand.  The formula for 
simple exponential smoothing is well known to be:  

111
ˆ*)1(*ˆor)ˆ(*ˆˆ   ttttttt DDDDDDD       (5) 

Note that since we make the ordering decision at the end of the period, the current demand tD  
can be used in the forecast tD̂ . For simple exponential smoothing, the average age of the 
data in the forecast is equal to  /)1(   (Makridakis, 1978).  Let Ta be the average age of the 
data in the forecast, consequently )1/(1 Ta .  
Dejonckheere et al. (2001) have shown that for a single level order up to system (only one 
chain member (e.g. the retailer) has to make ordering decisions) the transfer function equals: 

TazzTa

TaTpTpTaz
TF 

 )2()3(
1

        (6) 

They’ve also shown that the replenishment rule has to result in bullwhip for every possible 
demand pattern, and they have quantified the variance ratio for independently and identical 
distributed (i.i.d). normally distributed demands.  
The goal of this section is to extend the analysis to multi-echelon supply chains for both the 
traditional supply chain scenario and the information enriched supply chain. In the analysis, 
we will follow the three-step procedure proposed in section 3. 
 
Step 1.  Derive the transfer functions 
In order to draw the frequency response plots, the transfer functions first have to be derived 
for all levels in the supply chain. It is can be easily shown with control engineering that in the 
traditional scenario, the single level transfer function (7) can just be multiplied n times in 
order to find the nth level transfer function.  
 

 






 n

j jj

jjjjn
n zTazTa

TaTpTpTaz
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O
TF

1

)2()3(
            (7) 

In the case where all members use the same smoothing constant (Ta) and have the same lead-
times (Tp), the multiplications can be translated into an exponent. 
For the information enriched scenario, the transfer functions for the first level in the chain 
TF1 is, of course, still equal to the single level transfer function; however, the higher level 
transfer functions TFn have to be derived. The block diagram for this derivation is given in 
Appendix A. The transfer functions turn out to be very simple and elegant.  If all supply 
chain members use different Ta-values and have different lead times Tp, then we have: 
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If the lead times and the forecasting parameters however are the same throughout the chain, 
then the transfer function further simplifies to: 

zTazTa

TpTanTpnTanz

D

O
TF n

n 
 )2()12(       (9) 

 
Step 2.  Plot the Frequency Response 
Using these transfer functions (7) and (9), we now plot for both scenarios the FR’s for an 
illustrative case where all four levels have Tp=3 and Ta=9.  
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Figure 2. Frequency Responses for an order-up-to policy with exponential smoothing 
forecasts in the traditional supply chain scenario (upper graph) and in the information 

enriched scenario (lower graph) 
 
From the Figure 2 above, we can see the impact of information sharing for the higher levels 
in the supply chain. The shape of the frequency responses remains the same, but the 
amplitude ratios are clearly lower in the second scenario.  
 
Step 3. The Noise Bandwidth 
By calculating the WN / metric at all levels in both scenarios (still with L=Tp+1=4 and 
Ta=9), we obtain the following graph:  
 
From Figure 3, we can observe that the bullwhip factor (the ratio of the variance of the orders 
at an echelon in relation to the variance of the end consumer demand) gets very large (up to 
25 for echelon 4) in higher levels of the supply chain.  This is in line with the real world 
supply chain of Table 1, but here again the beneficial impact of information sharing in the 
supply chain is clearly illustrated. There is still bullwhip at all levels of the chain in the 
information enriched scenario, however the increase in variance amplification is much less 
than it is in the traditional supply chain. The increase now seems to be linear with the level in 
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the chain, whereas it seemed to be geometrical in the traditional case. The same conclusion 
can be made for other values of Ta. 
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Figure 3.  Variance ratio for order-up-to (OUT) policies with exponential smoothing for 

both scenarios 
 
In order to test our control engineering based Variance Ratio predictions (WN /), we 
developed a spreadsheet, simulating a four level supply chain with order-up-to policies based 
on exponential smoothing. We inserted a random input signal1, and then computed the 
variances of the ordering patterns of the four supply chain members.  Next, we computed the 
variance ratios (variance of orders at level n / variance of end consumer demand) at all four 
levels. We then repeated the simulation for the information enriched supply chain. The results 
are presented in Table II below. Row a gives the control engineering based predictions of the 
variance ratios at the four levels in both scenarios and row c gives the simulation-based 
predictions. (Note that we still use Ta=9 and L=Tp+1=4). 
 

 Traditional Supply Chain Supply chain with 
information enrichment 

Echelon 1 2 3 4 1 2 3 4 
a) Control engineering theory 2.263 5.164 11.839 27.223 2.263 4.053 6.368 9.211
b) Statistical lower bound 2.263 5.062 11.39 25.628 2.263 4.052 6.368 9.21 
c) Simulation results 2.259 5.15 11.889 27.146 2.259 4.044 6.358 9.203
% GAP a-c 0.176 0.271 0.422 0.282 0.176 0.222 0.157 0.086
d) Average GAP a-c 0.288 % 0.16% 
% GAP b-c 0.177 1.708 4.197 5.591 0.177 0.197 0.157 0.076
e) Average GAP b-c 2.91% 0.152% 

 
Table II.  Verifying the control engineering based predictions through simulation for 

the exponential smoothing forecasting procedure 
                                                 
1 An independent and identically distributed normal demand pattern with a mean of 100 and a 
standard deviation of 10, 10000 time-periods long was used.  The same demand signal is used 
throughout this paper. 
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From Table II we can conclude that our control engineering based predictions are accurate, 
(but remember that the demand signal may not be statistically perfect in the simulation cross-
check).  The percentage deviation is never more than 0.5%.  On average the gap is 0.288% 
for the traditional mode and 0.16% for the information-enriched mode.  Table II also includes 
a cross-check against the statistical lower bound given by Chen et al. (2000a) and extended2 
here to for the information-enriched supply chain. 
 
4.2. Using moving average forecasting in order-up-to policies 
We still use the order-up-to policy described in (1-2), but now with a moving average 
forecasting procedure used to update the order-up-to levels St. The demand forecast of period 
t, 

tD̂ , is defined as;  

Tm

D

D

Tm

m
mt

t

 
1

0ˆ                      (10) 

This policy in a single level supply chain is analysed in Dejonckheere et al. (2001). We now 
extend the analysis to multi-level supply chains. We therefore have to repeat the three-step 
procedure, analogous to the previous section (4.1), in order to analyse the benefits of 
information sharing on the bullwhip effect. For the transfer functions (step 1 of the 
procedure), we refer to Appendix B.  The block diagram needed to derive the multi-level 
transfer functions is given in Appendix A.  The transfer functions are quite simple and 
elegant, even for higher levels in the supply chain. We will now immediately plot the FRs for 
both scenarios for an illustrative case were all four levels have L=Tp+1=4 and Tm=19 (step 
2), and also the variance ratio predictions for both scenarios in our 4 level supply chain (step 
3).   
 
The conclusions are completely similar to the order-up-to policies based on exponential 
smoothing forecasts analysed in section (4.1). We still have bullwhip at all levels of the 
supply chain and the variance ratio increase with the level in the chain. However, it can be 
seen from the Figures 4 and 5 that information sharing can significantly reduce the increase 
in variance amplification at higher levels of the chain. Without information enrichment, the 
variance amplification increases in a geometric manner, whereas in the information-enriched 
scenario, the bullwhip effect increases linearly. 
 
 
 
 
 
                                                 
2 Chen et al 2000a gives the lower bound for a single level of the supply chain as 
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authors via an analogy with the tight bounds for the moving average forecast presented by Chen et al 
2000b.  
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Figure 4.  Frequency Responses for an order-up-to policy with moving average forecasts 
in the traditional supply chain scenario (upper graph) and in the information enriched 

scenario (lower graph). 
 

The control engineering based variance ratios for both scenarios have been tested with our 
spreadsheet simulation. Moreover, for this order-up-to policy based on moving average 
forecasts, a statistical bound can be found in literature. Chen et al. (2000b) have statistically 
computed a lower bound on the variance ratio (variance amplification) for the traditional 
supply chain scenario (also often called a decentralised scenario): 
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with n being the level in the chain, Tm the same moving average constant at all levels, and Li 
the lead time for level n. And for the information enriched (also called centralised scenario), 
they have found the following tight bound for variance amplification at level n in the chain: 
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Figure 5.  Variance ratios for order-up-to policies with moving average forecasts for 
both scenarios 
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In Table III below, we present the variance ratio predictions in both supply chain scenarios 
based on control engineering (row a), on the statistical bounds give in Equations 11 and 12 
(row b) and based on simulation (row c). The parameters used for the comparison were Tm 
=19 and L=Tp+1=4 for all levels in the chain. 
 

 Traditional supply chain Supply chain with 
information enrichment 

Echelon 1 2 3 4 1 2 3 4 
a) Control engineering theory 1.665 2.993 5.718 11.43 1.665 2.607 3.826 5.321
b) Statistical lower bound 1.665 2.772 4.614 7.682 1.665 2.607 3.826 5.321
c) Simulation results 1.653 2.974 5.821 12.604 1.653 2.587 3.82 5.387
% GAP a-c 0.72 0.634 1.801 10.271 0.721 0.767 0.157 1.24 
d) Average GAP a-c 3.357% 0.721% 
% GAP b-c 0.72 7.287 26.159 64.07 0.721 0.767 0.157 1.24 
e) Average GAP b-c 24.56% 0.721% 

 
Table III.  Comparison of different variance ratio predictions for order-up-to policies 

based on moving average forecasts 
 
From Table III it can be seen that for the information enriched scenario, the statistical tight 
bound are exactly equal to our control engineering predictions, even up to three decimal 
places.  This confirms that our transfer function analysis is correct and WN/ is indeed a 
very good bullwhip measure. For the traditional scenario, Chen et al. (2000b) only had a 
lower bound on variance amplification. From Table III, we see that this lower bound 
significantly underestimates the variance amplification at higher levels in the chain.  
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In row d and e, we give the percentage gap between the simulated and the (WN/) 
predictions.  On average, the deviations are quite satisfactory for both scenarios.  
 
 
4.3 Using ‘demand signalling’ forecasting in order-up-to policies  
Consider the following inventory policy:  

)( 11   tttt DDSS  ,  and  tt SO  inventory positiont,       (13) 
where 

tO  is the ordering decision made at the end of period t, 
tS  (St-1) is the order-up-to level 

at the end of period t (t-1), 
tD  (Dt-1) is the observed demand during period t  (t-1) and  is the 

‘signalling factor’, which is a constant between zero and one. We still have an order-up-to 
policy, but the order-up-to level is updated every period using the most recently observed 
demand information. Policies of this type are called ‘demand signal processing’ by Lee et al. 
(1997a). For  = 1, (20) is quite an intuitive policy, often used by players of the Beer Game. 
If the retailer experiences a surge of demand in one period, it will be interpreted as a signal of 
high future demand and a larger order will be placed.  The behaviour of this policy in a one 
level supply chain was examined in Dejonckheere et al. (2001). The policy turned out to 
create a huge bullwhip effect. 
We will repeat again the three-step procedure for the demand signalling policy in a multi-
level supply chain. The block diagram can be found in Appendix A.  From the block diagram, 
the multi level transfer functions (step 1) have been derived. They are presented in Appendix 
B. With the transfer functions, the Frequency Responses can easily be plotted (step 2) and the 
Noise Bandwidths can be calculated (step 3) for our multi-level supply chain in both the 
traditional and the information-enriched scenario.  This is done in the Figures 6 and 7 below 
for an illustrative signaling factor  = 0.6. 
As can be seen in the Figure 7 above, this policy creates large amounts of bullwhip for all 
levels and in both scenarios. In all cases, there is an overshoot for all different frequencies 
and the overshoot increases proportionally with frequency. This is intuitively clear since we 
only use the two most recent demand observations and these short-run demand fluctuations 
correspond to high frequency signals.  
Sharing information again significantly reduces the increase in bullwhip. In the traditional 
chain, the variance ratio at level four is up to 172; with information sharing, this is reduced to 
17, thus ten times lower. Note that we have a log scale on the Y- axis of Figure 7. With a 
normal scale, we would again have a geometric versus an approximately linear increase in 
bullwhip for the two different scenarios.  
The predictions are again very close to the simulated results as can be seen from the Table IV 
below. 
 

 Traditional Supply Chain Supply chain with 
information enrichment 

Echelon 1 2 3 4 1 2 3 4 
a) Control engineering theory 2.92 10.37 41.044 172.09 2.92 6.28 11.08 17.32 
b) Simulation results 2.939 10.498 41.729 175.5 2.939 6.346 11.257 17.748
% GAP a-b 0.66 1.24 1.67 1.98 0.66 1.06 1.6 2.47 
Average GAP a-b 1.39% 1.45% 

 

Table IV. Verifying the control engineering based predictions for demand signal 
processing OUT policies through simulation 
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Figure 6.  Frequency Responses for the demand signalling policy with moving average 
forecasts in the traditional supply chain scenario (upper graph) and in the information 

enriched scenario (lower graph). 
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Figure 7.  Variance ratios for demand signalling for both scenarios 
 

 



Dejonckheere, J., Disney, S.M., Lambrecht, M.R. and Towill, D.R., (2004), “The impact of information enrichment on the bullwhip effect in supply chains: A control engineering 
perspective”, European Journal of Operational Research, Vol. 153, No. 3, pp727–750. ISSN: 0377-2217. DOI: 10.1016/S0377-2217(02)00808-1. 

 17

 
4.4. Conclusions for order-up-to policies 
In this section, we have analysed three types of order-up-to policies: order-up-to policies with 
exponential smoothing forecasts, order-up-to policies with moving average forecasts, and 
‘demand signalling’ order-up-to policies. For the three policies, we applied the three-step 
approach explained in section 3. First, for all policies, we were able to derive the multi-level 
transfer functions for both the traditional supply chain and the information enriched supply 
chain. The transfer functions were very simple and elegant, even for higher echelons in the 
supply chain. Second, we plotted FRs and third, we computed variance ratio predictions (WN 
/) for the three policies under both scenarios. Our control engineering based predictions 
were verified via simulation and turned out to be very accurate.  For the moving average 
forecasting policy, the predictions were identical with statistical bounds found in literature.   
For the three policies, the same conclusions could be made. In a traditional scenario, bullwhip 
increases geometrically with the level in the chain and gets alarmingly large at higher 
echelons in the supply chain. Information sharing is able to reduce the increase in bullwhip 
significantly; the increase in now linear as the orders proceeds up the chain. However, 
bullwhip is not eliminated with information sharing! There is still bullwhip at all levels in the 
chain, and the variance ratio still increases with the level in the chain.  
Note that we confirm some results found in literature (Chen et al., 2000a and b) and extend 
others. A first extension is the fact that in our approach, the different members in the chain 
are allowed to use different forecasting parameters. Secondly, we are able to make interesting 
conclusions based on the Frequency Responses (step 2) without having to make any 
assumptions on the demand pattern.    

5. Information sharing with a smoothing replenishment rule  
Order-up-to policies seem to unavoidably result in a bullwhip effect when demand has to be 
forecasted.  Even with information sharing, bullwhip still increases with the level in the 
chain.   In this section we analyse a general decision rule that does not have this drawback.  
We first analytically explain the smoothing decision rule, next, we analyse the rule in a multi-
level supply chain for both scenarios with the three-step procedure explained in section 3.  
This decision rule is a natural extension of the Inventory and Order Based Production Control 
System (IOBPCS) model introduced by Towill, (1982) and Automatic Pipeline, Inventory 
and Order Based Production Control System (APIOBPCS) due to John, Naim and Towill 
(1994).  Disney, Naim and Towill (1997) and Disney and Towill (2001b) have analysed and 
optimised this rule for inventory and bullwhip costs.  APIOBPCS has been shown to be a 
general case of the linear production rule due to Deziel and Eilon (1967), which has some 
very interesting robustness and stability properties that have been identified by Disney (2001) 
and exploited by Disney and Towill (2001a). 
 
The decision rule 
The order quantity in period t, Ot, is given by: 

)(1)(1ˆ
tttt

Ta
tt WIPDWIP

Tw
NSTNS

Tn
DO  ,                (14) 

where Ta
tD̂  is the demand forecast using simple exponential smoothing with parameter Ta, 

TNSt a target net stock level, NSt is the current net stock in period t, DWIPt is the desired WIP 
level, and WIPt finally is the current work in process (or on-order) position in period t.  TNSt 
is the target net stock level, similar to the safety stock in order-up-to policies.  It is updated 
every period according to the new demand forecast and equals Ta

tD̂ . DWIPt is updated every 

period as well, Ta
tt DLDWIP ˆ)1(  .  Note that we only have L-1 orders in WIP when the 

lead time is L because of our order of events: the ordering decision is made at the end of the 
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period and by this time one order has already been received and thus disappeared from the 
WIP. Ta, Tn and Tw are the key parameters or controllers of the decision rule. The policy can 
be described in words as ‘ordering quantities are set equal to the sum of forecasted demand, a 
fraction (1/Tn) of the discrepancy of finished goods net stock, and a fraction (1/Tw) of our 
on-order position discrepancy.’  
  Relationship with order-up-to policies 
Before we derive the transfer function, it is important to see the difference between policy 
(14) and an order-up-to policy. We defined the order-up-to policy as follows: 

 L
t

L
tt kDO ̂ˆ inventory positiont                  (15) 

For simplicity, we have set k = 0 and increase the lead time L by one period. Inventory 
position equals net stock (NS) + products on order (WIP). We then successively obtain: 
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               (16) 

So (16) turns out to be completely analogous to the smoothing rule presented in (14) with 
parameters Tn = Tw = 1.  In an order-up-to policy, the order quantity is a summation of the 
demand forecast, a net stock discrepancy (or error) term and a WIP discrepancy term, but 
both the net stock and WIP errors are completely taken into account. This is the key 
difference with our decision rule (14) in which the errors are included only fractionally. 
These fractional adjustments will exactly be the reason why the decision rule (14) will be 
able to generate smooth ordering patterns. Another difference is that in our smoothing 
decision rule, we have two separate feedback loops (one for the net stock and one for the 
WIP), whereas in an order-up-to policy, there is only one joint feedback loop for the 
inventory position. At first sight, these are small differences, but the impact is dramatic. Note 
that the decision rule presented in (14) is a very general rule. For this paper, we use 
exponential smoothing to forecast demand, but it is obvious that other forecasting methods 
can be used in (14). The astute reader will easily observe that order-up-to policies are actually 
a special case of our general rule, namely the case Tn = Tw = 1.  
  The smoothing behaviour of the rule for a single level supply chain  
Dejonckheere et al. (2001) have shown that for a single level supply chain (only one chain 
member (e.g. the retailer) has to make ordering decisions) the transfer function equals: 
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    (17) 

Dejonckheere et al. (2001) showed that this decision rule (14) is capable of generating 
smooth ordering patterns. For an illustrative parameter setting Ta=8, Tn=4, Tw=4, (hereafter 
denoted parameter setting (8/4/4)) and when applied to normally distributed demands, the 
decision rule will reduce variance of demand down to approximately one third. Although 
there is still some moderate overshooting at a few low frequencies, this was more than 
compensated by filtering out the higher range of the frequency spectrum. The goal of this 
section is to extend the analysis to multi-echelon supply chains for both the traditional and 
the information enriched supply chain scenario.  In the analysis, we will follow the three-step 
scenario proposed in section 3. 
 
Step 1.  Derive the transfer functions 
For the traditional supply chain scenario, the general transfer function for level n is then as 
follows: 
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When all supply chain members use the same parameter values and the lead-times are the 
same, then the transfer functions can be simplified to: 
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Next, for the information-enriched scenario, the general transfer function (see Appendix C for 
the block diagram) for level n is then: 
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where when n=1: X1=1, n=2,……., Xn=TFn-1 

 
Finally, for the information-enriched scenario, and with all supply chain member using the 
same parameters and having the same lead-time, we have:  
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where when n=1: X1=1, n=2,……., Xn=TFn-1 

 
Step 2. Plot the frequency response 
Using these transfer functions, we plot the FRs for an illustrative case where all lead times 
are 3 time periods and all supply chain members use the parameter setting (8/4/4). 
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Figure 8.  Frequency responses for the smoothing decision rule (14) in the traditional 
supply chain scenario (upper graph) and in the information enriched scenario (lower 

graph). 
 
In the upper graph, we see the dynamics of our smoothing rule in the traditional supply chain. 
The overshooting at the low frequencies increases quite a lot for higher levels in the supply 
chain.   This means that we’re not sure anymore whether or not the decision will reduce order 
variability at those levels.  The benefits of information sharing are clearly shown in the lower 
graph; the frequency response remains more or less identical at higher levels in the chain. 
This is a very desirable result, because it means that we will be able to keep the order 
variability acceptably low throughout the chain.  
 
Step 3. The noise bandwidth 
Finally, we computed WN / for a four level supply chain in both scenarios. The results are 
given in the Figure 9 below: 
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Figure 9.  Variance Ratios for the smoothing policy for both scenarios 
 
Figure 9 plots the variance ratios for the parameter setting (8/4/4) at all levels in the chain. 
We can clearly see that information sharing is essential to ensure smoothed demand signals 
throughout the chain. In the traditional supply chain, from level four onwards, the decision 
rule would not reduce variance anymore and will actually create bullwhip. 
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Note that the selection of the parameters is not the scope of this paper, for this see Disney, 
Naim and Towill (1997) and Disney and Towill (2001b). Of course, more or less variability 
reduction could be obtained by selecting other parameters. In this paper, we wish to 
emphasise the dynamics of the decision rule (14) in multi-level supply chains: information 
sharing helps to avoid variance amplification at higher levels in the chain. 
Finally, also for this decision rule, we cross-checked the control engineering variance ratio 
predictions with spreadsheet simulation. The results are summarised in Table V below. They 
confirm again that the WN / is a very accurate tool to predict variance ratios for normally 
distributed demands 
 

 Traditional supply chain Supply chain with 
information enrichment 

Echelon 1 2 3 4 1 2 3 4 
a) Control engineering theory 0.423 0.4828 0.773 1.376 0.423 0.407 0.42 0.434
b) Simulation results 0.432 0.493 0.787 1.398 0.432 0.417 0.433 0.45 
% GAP a-b 2.07 2.15 1.84 1.68 2.07 2.48 2.99 3.72 
Average GAP a-b 1.94% 2.82% 
 

Table V.   Verifying the control engineering based predictions through simulation 

6. Summary 
Where possible, we have found the following closed form expressions for bullwhip that are 
highlighted in Table VI.   Note that completely general closed form expressions have yet to 
be found in some cases, but amazingly information enriched supply chains are generally 
tractable, whilst the traditional supply chain closed forms involve transcendental equations 
and we have yet to find generic solutions.    In such cases the graphs and results presented in 
this paper were produced via enumeration of equation 2.   

 

7. Conclusion 
In this paper we have shown the benefits of sharing end customer demand information 
throughout a multi level supply chain. We have compared a traditional (decentralised) supply 
chain with a (centralised) supply chain with information enrichment for two classes of 
replenishment rules: order-up-to policies and smoothing policies.  Our methodology was 
based on control systems engineering. We have used a three-step procedure to analyse all 
replenishment rules that are treated in the paper: first, the transfer function is derived, second, 
the Frequency Response is plotted, and finally, the Noise Bandwidth is calculated.  Based on 
the Noise Bandwidth, we are able to predict the magnitude of variance increase (or decrease) 
for normally distributed demands. The predictions have been verified through simulation, and 
compared with results from statistical analysis if available in the literature, and they have 
proved to be very accurate. 
Order-up-to policies are often used both in practice and in research because they are known 
to minimise inventory and shortage costs. However, as shown, they do have some serious 
drawbacks. We have integrated three types of forecasting in the order-up-to system 
(exponential smoothing, moving average, and ‘demand signal processing’) and all of them 
created variance amplification or bullwhip. In the traditional supply chain, whatever 
forecasting method was used, the magnitude of bullwhip increases geometrically upstream in 
the supply chain. Information sharing is very beneficial, if not indispensable, for order-up-to 
policies, since then the magnitude of bullwhip can be significantly reduced for higher levels 
in the chain.  
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Graphs produced via numerical integration of 
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Table VI. Summary of closed form expressions for bullwhip  

 
More specifically, for the supply chains with information enrichment, the increase of 
bullwhip will generally be of a linear nature with the level in the chain instead of geometrical. 
However, the bullwhip cannot be completely eliminated through information sharing: there is 
still variance amplification at all levels, and the magnitude of amplification still increases 
upwards the chain.  Hence if production is inflexible and significant costs are involved in 
following fluctuating order rates, order-up-to policies may not be optimal. In the last section 
of the paper we have therefore analysed a class of policies that are able to reduce variance of 
demand and thus have a smoothing or dampening impact.  We have also shown that 
information sharing is very crucial for these policies as well. In the traditional supply chain, 
such a smoothing policy can lose its dampening abilities at higher levels of the chain, 
whereas in the information enriched chain, smoothed order rates may be realized by all levels 
in the chain.  
 



Dejonckheere, J., Disney, S.M., Lambrecht, M.R. and Towill, D.R., (2004), “The impact of information enrichment on the bullwhip effect in supply chains: A control engineering 
perspective”, European Journal of Operational Research, Vol. 153, No. 3, pp727–750. ISSN: 0377-2217. DOI: 10.1016/S0377-2217(02)00808-1. 

 23

Acknowledgements 
This research was supported by the Fund for Scientific Research-Flanders (Belgium) under 
project G.0051.03 and by the Cardiff Young Researchers Initiative. 
 
Appendix A: Block diagram for multi-level order-up-to policies in the 
information enriched scenario 
 

 
Figure A.1.  Block diagram for Order-Up-To supply chains 

 

Where when n=1: X1=1, n=2,……., Xn=TFn-1 
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Appendix B: Transfer Functions for order-up-to policies and the smoothing replenishment rule with different 
forecasting methods in both the traditional and information-enriched scenario 
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Appendix C: Block diagram for the multi-level smoothing decision 

rule in information enriched scenario 

 
Figure C.1.  Block diagram for the smoothing replenishment rule supply chain 
 

when n=1: X1=1, n=2,……., Xn=TFn-1 
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Footnotes 
1 An independent and identically distributed normal demand pattern with a mean of 100 and a 
standard deviation of 10, 10000 time-periods long was used.  The same demand signal is used 
throughout this paper. 
2 Chen et al 2000a gives the lower bound for a single level of the supply chain as 


 

2
221

)(
)( 22L

L
DVar

OVar , which is easily extended for a multi-level traditional supply 

chain to  





 n

j j

jj
jj

n
L

L
DVar

OVar

1

22

2
2

21
)(
)(


 .  The statistical lower bounds for the 

information enriched supply chain is given by 
n

n

n

j
j

i

n

j
j

n

L

L
VarD

OVar




 












 
2

2

21
)(

2

1 .   

This was found by the authors via an analogy with the tight bounds for the moving average 
forecast presented by Chen et al 2000b. 
 

 


