Past and Prospective UK Energy Transitions: Insights from Historical Experience

Prof. Peter Pearson
Low Carbon Research Institute Wales (LCRI), Cardiff University and ICEPT

Lessons from Historical Experience of Energy Transitions
EPSRC/ E.ON funded Transition Pathways to a Low Carbon Economy Project Workshop
Imperial College London
24 February 2010
Outline

• The first British Industrial Revolution
 – What happened & why it happened here
• Energy services & their contribution to economic welfare
• Prospects & problems of a third, low-carbon industrial revolution
 – General Purpose Technologies
 – The Sailing Ship Effect & interactions between incumbent & new technologies
• Four scoping studies, with insights from past managed transitions
A Long-Run Perspective on Energy System Transitions

- Energy systems are complex evolutionary entities, so transitions mean interactions between
 - Fuels & energy converting technologies
 - Infrastructures (transport networks, pipes & wires…)
- Institutions (markets, companies, finance…)
 - Policy regimes (institutions, bureaux, regulations…)
 - Economic variables (prices, income/output…)
 - Environment & resources
 - And people…
Research on Energy System Transitions

- Research on developing country and past & future UK transitions
- Long collaboration with Roger Fouquet (now C3B)
- Estimates for fuels, energy carriers & energy services, of
 - Prices, consumption, expenditure
- Publications include:
 - ‘One Thousand Years of Energy Use’ (En. Jnl.)
 - ‘Five Centuries of Energy Prices’ (World Econs.)
 - ‘Seven Centuries of Energy Services’ (Lighting) (En. Jnl.)
 - Chapter: ‘Long Run CO2 Emissions & Environmental Kuznets Curves’
- Now engaged with the Transition Pathways to a low Carbon Economy consortium (EPSRC/E.ON)
Data Sources

- Early centuries: data incomplete: broad trends only, so approach with caution
 - Data mostly from Southern England
 - Market town records (Rogers, 6 vols. 1865-86)
 - Oxford & Cambridge Colleges, Eton & Westminster schools, hospitals, the Navy… (Beveridge, 1894)
 - Several centuries of tax data
- National markets/transport developed gradually
- C18th national income data: ‘controlled conjectures’ (Mokyr)
- C19th/20th: data range/quality grows
 - Companies/local authorities
 - Official enquiries/ Parliamentary Papers
 - Official government data series
Britain’s 1st ‘Industrial Revolution’: C16th-C19th Energy Transitions

• From a traditional agricultural economy, with limited
 – Productivity of scarce land
 – For food, clothing, housing & energy flows
• To new regime: growth/ welfare transformed by using
 – fossil stock (coal) for larger energy flows (Wrigley)
• With innovations including
 • Steam engine
 • Cotton mills & technologies
 • Substitution of coal/coke for wood in metal manufacture
 • Other social, political, institutional & technological changes
• Which helped drive mechanisation, urbanisation &
 Britain’s first ‘Industrial Revolution’
Fig. 1a: UK Final Energy Consumption, 1500-1800 (TWh)

- 1650: equal shares of woodfuels & coal
- Coal use grew: woodfuel stable

Fig. 1b: UK Final Energy Consumption, 1800-2000 (TWh)

- 1913: coal output & jobs peaked
- Depletion fears: Jevons, *The Coal Question* (1865)

Allen, 2009: why a British Industrial Revolution?

- Wages high relative to energy & capital costs, compared with other European & Asian countries, so that
- Innovations in steam engines & cotton mills & substitution of coal/coke for wood in metal manufacturing were uniquely profitable in Britain

Fig. 2: Real consumer fuel prices, 1500-1800 (p/kWh)

- Rising charcoal/coal price differential around 1650-1750 encouraged coal use
- Along with innovations in domestic & other uses of coal

Fig. 3: Energy intensity & prices

Inverse relationship between:

UK energy intensity (E/GDP)

and

Real energy prices (p/kWh)

We created an ‘average price of energy’ series from estimates of individual fuel prices & expenditure weights

Coal & New Steam Technologies in C18

- Engines pumped water from coal, copper & tin mines
 - Savery’s patent (1698-1733), Newcomen’s ‘atmospheric engine’ (1710-12)
 - By 1733, 110 Newcomen engines in 7 countries
 - Engines also linked to water wheels (rotary power)
- Watt’s separate condenser patent (1769-1800)
 - raised efficiency & royalties (B & W defended their patent…)
- Watt, Murdoch (1782) & others: rotary steam power, engines smaller & now drove machines
- By 1805: gas lighting in cotton mills (safer, cheaper; longer work day…)
- But only 2200 steam engines in mining & manufacturing by 1800
Fig. 4: Steam Engine Developments

- Thompson’s Atmospheric Beam Engine
 - Size of a house
 - Ran 127 years, pumping water in Derbyshire coal mines (1791-1918)

- Bell Crank Engine (Rotary Power)
 - Patented 1799 by William Murdoch
 - 75 built by Boulton & Watt, 1799-1819
 - This one ran 120 years (1810-1930)

- Both in Science Museum, London
Long Run Perspective: Steam Power Development & Diffusion

- High steam/water power price differential gradually overcome
 - By steam’s mobility advantage
 - More engine efficiency & control, from
 - Higher pressure & compound boilers (Cornwall; Woolf, McNaught - 1840s); and Corliss valves (1860s)
 - Parity in power shares ca. 1830
- Steam let production move from water/ wind power sites
 - Helped develop the factory system
 - Especially textiles: e.g. Manchester - ‘Cottonopolis’
- Railways & then ships (niches first) & trade
 - Developed national & international transport & market
Fig 5: Sources of Power, 1760-1907 (shares/ total)

(L.h.s. axis: % shares) (R.h.s. axis: total: 1000 hp)

Sources of Power, 1760-1907 (1000 hp)

Why was the First Industrial Revolution British?
Allen (2009):

- British late C16-C18 trade success (wool textiles) => rural industrialisation & urban growth
- London’s growth (1500 - 1800: 15,000 - 1 million) => woodfuel shortage => relieved by exploiting relatively cheaper coal (coal gave Britain cheap energy)
- Responsive agriculture raised food supply & labour productivity => freeing labour for manufactures
- City & manuf. growth => higher wages & living standards (inc. diet: beef, beer & bread)
- Trade success also created UK’s high wage economy
- High wages & cheap energy (coal) => demand for technology to substitute capital & energy for labour
 - Newcomen steam engines used more capital & coal, to raise labour productivity
 - Cotton mills used machines to raise labour productivity
 - New iron-making technologies substituted cheap coal for expensive charcoal & mechanisation raised output/worker
Fig. 6: Price of labour relative to capital & energy in several countries (Allen, 2009)

Greater incentive to mechanise in Britain (building labourer’s wage/index of rental price of capital - PPP adjusted).

Strong incentive to substitute fuel for labour in Britain (building wage rate/energy price in key cities in Europe & Asia - cheapest fuel in each city).
Allen (2009), cont.

• The engineering challenges of these (inefficient) ‘macro-inventions’ required ‘micro-inventions’=> growth of R & D, an important C18 business practice, supported by venture capital & use of patents to recoup development costs

• The high wage economy => rising demand for literacy & numeracy skills & gave parents income to purchase them => supplied Britain with skills for the ‘high-tech’ revolution

• The innovations were tailored to British conditions & for years were unprofitable in countries with lower wages & costlier energy

• But local learning eventually led to neutral technical progress => British engineers raised efficiency & reduced use of all inputs:
 – E.g. steam engine coal consumption fell from 45 pounds/horse power-hour in the early C18 to 2 pounds in the mid-C19

• By mid-C19 the technologies now profitable to use in countries like France, with expensive energy, & India, with cheap labour
Fig. 7: Pumping Engine Efficiency, 1727-1852 - Coal Consumption (Allen, 2009, 165)

Figure 7.1 Coal consumption in pumping engines: pounds of coal per horsepower-hour

Energy Services: UK lighting experience

• The energy is for energy services
 • *illumination*, transportation, cooked meals, refrigeration, comfortable temperatures…

• Evidence: extraordinary potential of innovation to
 – Reduce costs, enhance quality & raise welfare

• Example: UK lighting services (1300-2000)
 – Innovation in fuels & technologies, infrastructures & mass production, mostly post-1800, cut costs & improved access
 – With rising incomes, led to ‘revolutions’ in light use & quality
Fig. 8. UK Consumption of Gas, Kerosene & Candle Light (billion lumen-hours)

Fig. 9. UK Consumption of Kerosene, Gas & Electric Light, 1900-2000 (billion lumen-hours)

Fig. 10. UK Cost of Lighting from Gas, Kerosene & Electricity (£ per million lumen hours, 1800-2000)

Fig. 11. UK Price Ratio of Lighting from Competing Energy Sources, 1820-1950

- Kerosene/Gas
- Electricity/Gas

Ratio >1 means new source costs more than old.

By 2000: lighting costs fell to 1/3000 of 1800 cost; per cap. use rose 6500-fold: extraordinary rise in living standards

Fig. 12. UK Energy Service Transitions: Lighting – use of Candles, Gas, Kerosene & Electricity (1700-2000)

Source: authors' own estimates – see Sections II.2 and II.3

Billion: 10^9 (i.e. one thousand million)
Energy Service Indices

Fig. 13a. Efficiency of UK energy technologies, 1500-2000 (index: 1900=100)

![Graph showing efficiency of energy technologies from 1500 to 2000](image1)

Fig. 13b. Cost of consumer energy services, 1500-2000

![Graph showing cost of consumer energy services from 1500 to 2000](image2)

Fig. 13c. Energy services consumed, 1500-2000

![Graph showing energy services consumed from 1500 to 2000](image3)

- Substantial rises also in efficiency & use for industrial power, transport & heat

See also: Fouquet (2008), *Heat, Power and Light*, E. Elgar
A Long-Run Perspective on UK Transitions

- Transitions can yield remarkable improvements in welfare
- But new technology diffusion took time
 - Major productivity fx. of steam engines, locomotives & ships only observable after 1850 (Crafts…)
 - Few steam-intensive industries
 - 1800-1900: mining, textiles & metal manufactures accounted for >50% industrial steam power
- Not just steam: electric light slow to dominate gas (40 years: 1880-1920)
- Energy system inertia
 - First mover advantage & path dependence?
 - Mining & textile industries were first with steam
 - But slow with electricity in 2nd C19 Industrial Revolution
 - Relative to chemicals & engineering, shipbuilding & vehicles
Fig. 14: Turning over the Capital Stock takes Time…

- Thompson’s Atmospheric Beam Engine
 - Ran for 127 years (1791-1918) in coal mines

- B & W Bell Crank Engine
 - Ran 120 years (1810-1930)
Challenges of Low Carbon Transitions

1. How to develop low carbon technologies & practices
 - What features should they have?
 - What lessons/insights might we glean from past transitions?

2. Adoption of these technologies & practices
 - How do we get there from here?
 - Do we pay enough attention to interactions between new & incumbent technologies?

These questions lead towards
- The Sailing Ship Effect (SSE)/Last Gasp Effect (LGE)
- Macro/Micro Inventions (Allen) & GPTs
- The issue of pre-conditions, such as those identified by Allen in his analysis of why the 1st industrial revolution happened in Britain
Some Lessons from UK Energy Transitions

- Transitions can have profound effects on economy, welfare & environment
- But Allen identified the combination of relative prices plus cheap energy resources (coal) & physical, human & financial inputs as key conditions underlying the 1st industrial revolution
- But took multiple decades for measurable growth effects of steam power to appear
- Modern transitions *could be faster* – but still takes time
 - To build new enthusiasm, infrastructure & institutions
 - To escape the shackles of path dependence
 - Overcome ‘lock-in’ & turn over old capital stock
- And although evidence shows government *can make a difference*
- Most past transitions weren’t managed
The Future for Low Carbon Energy Systems?

• The first two UK Industrial Revolutions were about manufacturing
 – C18 revolution driven by textiles, iron & steam
 – end C19 2nd revolution: electricity, chemicals, petroleum & mass production

• Improved technology (e.g. energy & ICT), might help break link between energy services, fuel demands & CO2 emissions
 – Energy & ICT e.g. in smart grids) as General Purpose Technologies
 – Could enhance macro-level productivity

• A third and low carbon ‘Industrial Revolution’?
 – But could be expensive & take time‘
 – ‘Remember, very few people enjoyed the fruits of the first Industrial Revolution until it was nearly over’ (Mokyr)
The hypothesis of the **Sailing Ship Effect**

- Hypothesis: the advent of a competing new technology may stimulate innovation in an incumbent technology
 - for *some* mature technologies, in *some* circumstances
 - This ‘Sailing Ship effect’/ ‘Last Gasp Effect’ makes the incumbent technology more efficient & competitive
- Before being ultimately superseded by the successor technology
- Cited SSE/LGE examples include:
 - Late C19 improvements in sailing ships after the arrival of the steam ship
 - The response of gas lighting in the 1880s, via the Welsbach incandescent mantle, to the arrival of the incandescent lamp and earlier arc lamps
 - The response of carburettors in the 1980s to the introduction of electronic fuel ignition (Snow)
- But the SSE is a contested and sometimes fuzzy concept
Figure 15: Experience Curves & Financing Learning

Stern Review

PV Modules

Source: Stern Review, Figure 16.6

Source: Adapted from Harmon (2001).
Fig. 16
SSE/
Last
Gasp
Effects?

• But what if the incumbent’s experience curve shifts downwards (orange shading added)?
• Through SSE/LGE and/or fossil fuel prices?
• Bigger learning investment needed

Source: Adapted from Harmon (2001).

Potential Significance of the SSE Hypothesis for Lower Carbon Transitions & Policy

- Significantly increased (price/quality) competitiveness of incumbents, through SSEs & fossil fuel price shifts, could:
 - Slow newcomers’ sales & so delay their travel down experience curves
 - As they chase incumbents’ shifting experience curves
 - Slowing the transition by restraining penetration rates (McVeigh et al.)
 - Raising policy costs via higher subsidies for competitive penetration
 - While forecasts that don’t allow for SSEs could overestimate penetration

- So, appreciating SSEs/Last Gasps could matter, if there are mature technologies & we seek radical innovation
- Suggests giving proper attention to possible dynamic interactions between new & incumbent technologies
General Purpose Technologies

• Three key features:
 – *Pervasiveness*: have a broad range of general applications/purposes
 – *Technological Dynamism*: continuous innovation in the technology - costs fall/quality rises
 – *Innovational Complementarities*: innovation in application sectors – users improve own technologies, find new uses

• The penetration of a GPT in an economy involves a long acclimatization phase
 – In which other technologies, forms of organization, institutions & consumption patterns adapt to the new GPT

• Steam engines, ICE, electrification & ICT cited as examples
Two Reviews: (i) Castaldi & Nuvolari (2003)

- Reviews GPT by applying it to 19th century steam power development
- Economic impact of stationary steam technology not significant until mid-19th century
- The GPT model has some limitations.
 - Doesn’t capture the “local” aspect of accumulation of technological knowledge
 - Doesn’t take into account the interdependence among different technological trajectories (because it focuses on one particular technology as opposed to “constellations of major technical innovations”).
Two Reviews: (ii) Edquist and Henrekson (2006)

- Explore the impact of the steam engine, electrification & ICT – on productivity growth
- Finds that major technological breakthroughs do affect aggregate productivity growth
 - but slowly: 140 years for the steam engine, 40-50 years for electrification & ICT
- Each technological breakthrough offers a different lesson
- There is a complex interdependence between different technologies
 - ICT presupposed an extensive electricity network
 - Steam was used as a primary source for producing electricity.
A Third, Low-Carbon ‘Industrial Revolution’?

- Getting there from here
 - Means more than substituting a few low carbon technologies into existing uses & institutions
- Low carbon technologies need capacity:
 - To be widely used & diffused
 - For continuous innovation & cost reduction
 - To change what we do with them & how
- Hence to be somewhat like General Purpose Technologies?
 - E.g. ICT & energy combinations (like smart grids)
- But we know that GPTs take time to develop
 - May be slowed by path dependence, lock-in & Sailing Ship/Last Gasp Effects
 - So we need to be aware of & respond to interactions between new & incumbent technologies
 - And GPTs are contested – empirically & theoretically
A Low-Carbon ‘Industrial Revolution’?

- Relative prices & resources
 - If Allen’s (2009) messages about 1st industrial revolution hold for this revolution, where are the relative prices & physical, human & financial resources needed for risky innovation?
 - Role of carbon prices here?

- And does the low carbon revolution have to start in Britain? Other countries (China, India?) might be better placed

- But we have managed some past transitions
Some Examples of Managed Transitions

- **UK**
 - UK gas & electricity industries sought to shape & encourage energy uses & habits in C19 & C20
 - Petrol from ethanol (Distillers Co) & coal (Imperial Chemical Industries) in 1920s & 1930s
 - National Grid, 1930s
 - Nuclear plant development, post WWII
 - Scaling up electric power plant by CEGB & partners, 1960s
 - Transition from town gas to natural gas, 1960s

- **Other countries**
 - France: nuclear power, 1970s – post oil shocks
 - Brazil: Proalcool ethanol programme, 1970s – post oil shocks
Insights from Managed Transitions: Four Scoping Studies

In this workshop, we’ll hear about four scoping research studies that explore four previous UK transitions and the insights they might offer for low carbon transitions

- The postulated responses of an incumbent energy industry, especially end-C19 gas lighting, to the threat of new competition, i.e. the Sailing Ship Effect (Suzanne Wallis)
- The scaling up & rolling out of electric power plant by CEGB & partners, 1960s (Paul Reynolds)
- The transition/conversion from town gas to natural gas, 1960s (Scott Laczay)
- How the UK gas & electricity industries sought to shape & encourage energy uses & habits in C19 & C20 (Maria Gradillas)
Thank you!
Sources

