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Formation of Seasonal Groups and Application of Seasonal Indices

(Accepted for publication in the Journal of the Operational Research Society)

J.E. Boylan, H. Chen, M. Mohammadipour, A.A. Syntetos

Abstract

Estimating seasonal variations in demand is a challenging task faced by many 

organizations. There may be many SKUs to forecast, but often data histories are short,

with very few complete seasonal cycles. It has been suggested in the literature that 

group seasonal indices (GSI) methods should be used to take advantage of 

information on similar SKUs. This paper addresses two research questions: (1) how 

should groups be formed in order to use the GSI methods? and (2) when should the 

GSI methods and the individual seasonal indices (ISI) method be used? Theoretical 

results are presented, showing that seasonal grouping and forecasting may be unified, 

based on a Mean Square Error criterion, and K-means clustering. A heuristic K-means 

method is presented, which is competitive with the Average Linkage method. It offers 

a viable alternative to a company’s own grouping method or may be used with 

confidence if a company lacks a grouping method. The paper gives empirical findings 

which confirm earlier theoretical results that greater accuracy may be obtained by 

employing a rule which assigns the GSI method to some SKUs and the ISI method to 

the remainder.

Keywords: forecasting, seasonality, grouping, clustering
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1. Introduction

The estimation of seasonal demand patterns is often a challenging task. For some 

organizations, it is a task that must be accomplished for many hundreds or thousands 

of stock-keeping units (SKUs). Demand histories may be short for these items, with 

few complete seasonal cycles. As product life cycles shrink, such short data histories 

are becoming increasingly common. Consequently, making accurate seasonal

estimates for individual SKUs is becoming much more difficult for many products. 

The implications of inaccurate forecasts may be severe, with detrimental effects on 

service levels and stock-holdings, ultimately leading to obsolescent stock if remedial 

action is not taken.   

As complete seasonal cycles for individual SKUs may be few, but SKUs themselves 

may be common, there is an opportunity to take advantage of the abundance of time 

series by pooling data from many SKUs to estimate seasonal patterns. This idea is not 

new. Duncan et al. (1993) suggested that the use of information on similar time series 

should benefit forecasting accuracy for a particular series. This argument seems 

plausible, and reflects the practice in many organizations where seasonality is 

calculated not at the individual item level, but at the product group level. Similarly, 

seasonality at local level is often estimated using data at a regional or national level.

This practice of seasonal grouping by product or location prompts some questions.

How similar must seasonal profiles be for products to benefit from seasonal grouping? 

Is it always advantageous to group if the products have homogeneous profiles? 

Ouwehand et al. (2005) commented on the few publications dealing with aggregation 

approaches to forecasting (some of the most important are those by Dalhart, 1974; 

Withycombe, 1989; Bunn and Vassilopoulos, 1993, 1999; and Dekker et al., 2004). In 

this paper, we begin by reviewing work on group seasonal indices, and find that there 

are many issues still to be resolved. (For a comprehensive review of recent 

developments in the area of inventory forecasting in general the interested reader may 



3

refer to Syntetos et al., 2010. Chen and Boylan, 2008, provide a review of the 

literature on seasonal forecasting in particular.) 

We identify a selection of unresolved issues in seasonal aggregation, and present 

results on grouping and forecasting based on the simplest seasonal models. These 

models, simple as they are, offer insights that may be helpful as research moves on to 

more complex seasonal models.

2. Group Seasonal Indices Methods

Two main approaches to group seasonal indices (GSI) have been proposed in the 

literature: one by Dalhart (1974) and the other by Withycombe (1989).  

Withycombe (1989) assumed that “whatever causes the seasonal fluctuation in 

demand operates the same on all products within the line” (author’s own emphasis). 

Dalhart (1974) made the same assumption that all subaggregate series had “a 

consistent underlying seasonal behaviour”. This assumption led both authors to 

believe that estimating seasonal indices from the group would be better than from the 

individual series.   

Dalhart (1974) proposed a group seasonal estimation method by averaging the 

individual seasonal indices (ISI). Let ],...,,[ 21 iqiii aaaS  , where iha is the individual 

seasonal index for item i at season h , iS is the multiplicative seasonal index 

vector for item i , and q is the length of the seasonal cycle. Then  m

i

iDGSI S
m

S
1

1

where DGSIS is the group seasonal vector of indices estimated by Dalhart’s Group 

Seasonal Index (DGSI) method and m is the number of series in the group. 

Therefore, Dalhart’s method is a simple average of the individual seasonal indices.

Withycombe (1989) proposed a different method to obtain group seasonal indices, 

known as Withycombe’s Group Seasonal Index (WGSI). He totalled all the series in 
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the group and then estimated “combined seasonal indices” from this single time series. 

Therefore, Withycombe’s method is a weighted average of the individual seasonal 

indices.  

Whilst there have been many papers published on seasonal forecasting, there are 

fewer on aggregation approaches to seasonal forecasting. Rose (1977) investigated the 

properties of aggregated independent ARIMA processes, including processes with 

seasonality. Kim and Moosa (2005) applied seasonal ARIMA models to forecasting 

international tourist flows to Australia. They found that indirect forecasting of 

aggregate flows was more accurate than direct forecasting of aggregates. They

obtained similar results using regression-based models and structural time series 

models (Harvey, 1989). 

An alternative approach, based on exponential smoothing, was presented by Dekker et 

al. (2004). They proposed that the Holt-Winters method should be adapted, allowing 

seasonal estimates at the group level while the level and trend estimates remain at the 

individual level. The researchers applied the new method to the forecasting of sales at 

two wholesalers (food and electrochemical products) and found the new method to 

give better performance than the classical Holt-Winters method.  

As summarised above, research in this area has progressed by an examination of 

alternative methods for group seasonal indices, with more complex models being 

addressed as the forecasting field has progressed. However, the fundamental 

properties of weighted (WGSI) and unweighted (DGSI) seasonal indices, and their 

forecasting accuracy relative to Individual Seasonal Indices (ISI), have been 

somewhat neglected. Chen and Boylan (2007) derived rules for the selection of ISI, 

DGSI and WGSI for an individual series, based on minimisation of the Mean Square 

Error. These rules were subsequently compared with other guidelines (Miller and 

Williams, 2003) but no results were presented comparing the rules with universal 

application of seasonal methods.
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3. Research Questions

In the situation outlined in the introduction, an organization may have hundreds or 

thousands of Stock Keeping Units (SKUs), each with a short demand history, perhaps 

covering no more than three complete seasonal cycles. If a seasonal grouping 

approach is to be used, there are some immediate questions. 

Firstly, how should the groups be composed? Both Dalhart (1974) and Withycombe 

(1989) assumed such groups were given, in order to calculate their proposed methods. 

However, both authors identified the importance of forming seasonally homogeneous 

groups. More recent work, including that of the present authors, has maintained this 

assumption, thereby limiting the scope of analysis.

Secondly, should the grouping method be used for all series in the group, or would it 

be better to forecast demand for some SKUs using individual seasonal profiles? This 

question has been addressed theoretically (Chen and Boylan, 2007) but empirical 

evidence is lacking. This paper will address both research questions.

4. Models for the Composition of Seasonal Groups

The composition of seasonal groups has long been recognized as an important 

question but progress in this area has been slow. Bunn and Vassilopoulos (1993) used 

cluster analysis with Euclidean distances to define seasonal groups. The software 

package SPSS/PC+ was used and “the average linkage between-groups method was 

implemented to join clusters and the Euclidean distance to measure nearness” 

(Vassilopoulos, 1994). Although their chosen method resulted in seasonally 

homogeneous and distinct groups, there was no theoretical justification (such as that 

provided later in this paper for another clustering approach: K-means). The average 

linkage method was chosen without consideration or evaluation of any alternative 

clustering methods.
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In order to derive theoretically how seasonally homogeneous groups should be 

defined, we assume the following two simple models for a number of items m :

Additive model: ithihiith SY   (1)

Mixed model: ithihiith SY   (2)

where i is a suffix representing the SKU or the location ( mi ,...,1 )

     suffix t  represents the year and rt ,...,1  (where r is the number of years’ 

data history) 

     suffix h  represents the seasonal period and qh ,...,1 (where q  is the 

length of the seasonal cycle) 

Y  represents demand 

i represents the underlying mean for the i
th

SKU or location and is assumed to 

be constant over time but different for different SKUs or locations

ihS represents a seasonal index at seasonal period h ; it is unchanging from 

year to year 

ith is a random disturbance term for the i
th

SKU / location at the t
th

year and h
th

period; it is assumed to be identically and independently distributed with mean 

zero and constant variance 2

i . It is assumed there is no cross or serial

correlation, but this can be relaxed in future research. Under the assumption of no 

cross correlation, the variance of aggregated demand is 2

A , which equals
m

i

i

1

2 .

As discussed in Section 2, more complex models, such as seasonal ARIMA or 

state-space models (Harvey, 1989) are feasible. Such models are not adopted in this 

paper, as the aim is to understand the properties of seasonal aggregation methods for 

the simplest models. It is intended to build on this base in future work, extending the 

analysis to other models.
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5. Seasonal Grouping for the Additive Model

Chen and Boylan (2007) showed that, for the additive model, the mean squared error 

by using ISI for the i
th

SKU/location and h
th

period ( ihMSE ) is:

qh
r

MSE i
iih 1,...,for 

2
2   (3)

Using a similar argument to Chen and Boylan (2007), the MSE for the i
th

SKU/location, for the h
th

season, based on a seasonal index for the whole number of 

SKUs/locations ( m ) ihMSE is (see Appendix A): 

 

2

1
2

2
2 1)1(1

1 


 


  
m

i

ihih
A

iih S
m

S
qrm

q

qr
MSE

 (4)

where m represents the number of items and 2

A represents the (constant) variance 

of the random disturbance term for the aggregate series (ie aggregated over all items).

Equation (4) shows that if a GSI method is used, the MSE of a particular item 

depends on the noisiness of the series itself, the noisiness of the aggregated series, and 

a distance metric that measures how close the individual item’s seasonality is from the 

average of the group.

The term 21
1 i

qr



  is not affected by how items are grouped, but the other two 

terms are affected. Group composition affects 2

A as it is the sum of all individual

2

i s when all items are independent. If cross correlations are allowed, then 2

A is 

affected by how the correlation matrix is defined. The magnitude of the term

2

1

1 


  
m

i

ihih S
m

S is also affected.
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The term 

2

1

1 


  
m

i

ihih S
m

S or  



 q

h

m

i

ihih S
m

S
1

2

1

1
, when summed over all seasons, is 

a Euclidean distance and can be used as a distance measure to decide how to group 

items. It is equivalent to the distance metric used in K-means clustering (available in 

SPSS), which assigns each point to the cluster whose centre (also called centroid) is 

the nearest. K-means clustering is an iterative process, where items can be reassigned 

to other groups, but the distance metric is of the same form as the above.

Suppose that we wish to partition the m number of items into two seasonally 

homogeneous and mutually exclusive groups with 1m and 2m items ( mmm  21 ). 

Suppose further that there are no cross-correlations between the random disturbance 

terms for different series ( ith and jth are un-correlated for ji  and for all t and

h ). Then the total MSE of all number of series, summed over all seasons ( qh ,...,1 ), 

(based on the partition into groups of 1m and 2m series determining the seasonal 

indices for each series) is given by:

 22

1

2

1 1

2

121 1

2

11

21

2 21 1

)1(

1
1

11

AA

m

i

i

q

h

m

i

m

j

jhih

q

h

m

i

m

j

jhih

mr

q

qr
qS

m
SS

m
SMSE








 


 


          (5)

Since  
 21

1 21 1

m

j

ih

m

j

ih
ih

m

S

m

S
S , equation (5) can be re-written as:

   
 22

1

2

1 1

2

1
2

21 1

2

1
2

1

21

2 21 1

)1(

1
1

11

AA

m

i

i

q

h

m

i

m

j

jhih

q

h

m

i

m

j

jhih

mr

q

qr
qSS

m
SS

m
MSE








 


 


         

which can be shown to be equal to:
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   
 22

1

2

1 1 1

2

2

21 1 1

2

2

1

21

2 21 1

)1(

1
1

11

AA

m

i

i

q

h

m

i

m

j

jhih

q

h

m

i

m

j

jhih

mr

q

qr
qSS

m
SS

m
MSE








        (6)

Equation (4) translates directly to equations (5) and (6) at the group level when we 

assume all items are independent. These theoretical results are exact.  

When cross correlations are present, the theoretical results are approximations.  

Equation (4) cannot be directly translated to equations (5) and (6) at the group level

because the way items are grouped has an impact on  22

21 AA   . Due to the cross 

correlations, they are not the same as 2

A . The effect of the approximations will be 

tested in an empirical analysis and the results are shown in a later section.

The distance metric that Bunn and Vassilopoulos (1993) and Vassilopoulos (1994) 

used was the Average Linkage between groups. Assume there are 1m series in the 

first group and 2m series in the second group. The grouping mechanism using the 

“average linkage between groups” joins groups by minimising

 2
1 1 121

1 21   
q

h

m

i

m

j

jhih SS
mm

. It should be noted that this is not the same as the metric in 

equation (6). The latter is based on differences of indices within groups, whilst the 

former is based on differences between groups.  

Equations (4) to (6) are MSEs based on universal application of the GSI method, 

which entails applying the GSI method to all series in the group. The total MSE for all 

items can be further reduced by applying GSI non-universally (and applying ISI to the 

other series). Our earlier research (Chen and Boylan 2007) shows that even under the 

assumption of seasonal homogeneity within a group, it is not always better to apply 

GSI universally to all series. It is beneficial to apply GSI to noisy series as they 

“borrow strength” from less noisy series. However, for ‘well behaved series’ (those 
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with low noise), using ISI is better than GSI. In this current research, the assumption 

of seasonal homogeneity within groups is relaxed. We would expect further benefits 

of differential treatment of series (ie using ISI for some and GSI for others) when 

there is seasonal heterogeneity. This is examined later in the paper.

Conceptually, there are two possibilities when applying ISI and GSI methods.  

Suppose there are m series, which form a group. The first possibility is that GSI is 

applied to all of the series. The second is that GSI is calculated using all of the series, 

but applied only to some of the series. ISI is applied to the other series because they 

are less noisy. These series contribute to the formation of the seasonal group because 

their seasonal patterns are homogeneous to the group. However, because they are less 

noisy, it would be better to apply ISI to these series so that they do not “borrow 

weakness” from the group.

To bring the applications of ISI and GSI together, we propose the following formula:

  


 


 


   rqrm

q

qr
S

m
SMSE i

ii
A

iii

m

i

ihihiih

2
2

2

2
2

2

1

1
)1(1

1
1  (7)

where 1i if GSI is applied, 0 if ISI is applied.

Partitioning the group into two mutually exclusive groups with 1m and 2m number 

of series, the first part of the right hand side of the equation (7) summed over 

mi ,...,1 can be divided into two parts: one summed over 1,...,1 mi  and the other 

over mmi ,...,11  (which is the same as 2,...,1 mi  because mmm  21 ):

 
  



  




 



 


 


 
m

i

i
ii

m

i

A
i

m

i

ii

m

i

m

i

ihihi

m

i

m

i

ihihi

rqrm

q

qr
S

m
SS

m
SMSE

1

2
2

1
2

2

1

2

1

2

121

2

11

1
)1(

1
1

11 2 21 1




(8) 
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In equation (8), only the first two terms are affected by seasonal grouping; all others 

are not.  

A general formulation of the problem is as follows, which is equivalent to a 

combinatorial optimisation problem:

Let 1ij if item i belongs to group j or 0 if i does not belong to a group, and 

1i if GSI is applied or 0 if ISI is applied. mi ,...,1 ( m is the number of series) 

and nj ,...,1 ( n is the pre-determined number of seasonal groups).









 

 

 

 
 










 

























 





 







































q

h

m

i

i
ii

q

h

m

i

m

i

n

j

ij

m

i

n

j

iijm

i

n

j

iij

m

i

ihinm

i

in

ih

m

i

ihim

i

i

ih

i

r

qr

q

qr

SSSS

MSEMin

1 1

2
2

1 1

2

1 1

1 1

2

1 1

2

2

1

1

2

1

1

1

1

)1(

)1(
1

1

1
...

1




 (9) 

 

such that:

each group must contain at least one item - nj
m

i

ij ,...,1for 1
1

 (10)

each item must be in a group - mi
n

j

ij ,...,1for 1
1

 (11)

Solving such a non-linear mixed integer optimisation problem is computationally 

challenging and time-consuming, depending on the number of items and number of 

seasonal groups. The complexity of this problem is mainly due to the interaction

between the two sub-problems of 1) group formation and 2) decision to apply ISI or 
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GSI at the level of the individual series. Therefore, we simplify the problem by 

considering the two sub-problems sequentially, ignoring the complex interaction 

between them. Therefore, we propose the following heuristic:

Assign the items into predetermined number of seasonal groups by minimising

  



 q

h

m

i

ihih S
m

S
1

2

1

1
, ensuring that each item belongs to a group.

For each item i

Step 1: assume 1i and calculate MSE using GSI

Step 2: compare MSE using GSI with MSE using ISI

Step 3: if MSE using ISI is less than MSE using GSI, then 0 i

Step 4: repeat steps 2 and 3 until the total MSE is minimum.

This heuristic greatly simplifies the original problem and distinguishes the formation 

of seasonal groups and the application of GSI as two separate issues. The seasonal 

groups are defined by minimising the metric   



 q

h

m

i

ihih S
m

S
1

2

1

1
. Then the 

application of ISI and GSI is compared for each item. This means that some items 

may contribute to the formation of a seasonal group and the calculation of a GSI 

method, but ISI, rather than GSI, is applied to those series. 

Thus, for the additive seasonal model, an approach has been developed that unifies 

the problems of group composition and forecasting method choice. This unification 

has been achieved through the common measure of Mean Square Error.

6. Seasonal Grouping for the Mixed Model

When seasonality is multiplicative, there are two ways of calculating GSI: DGSI and 

WGSI. The MSE for a single item i by using both methods are expressed as follows

(please refer to Appendix B): 
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ljjl

l

m

j

m

jl j

i

m

mii
i

m

i

ihihiih

rm

rmrm
S

m
SDGSIMSE










11
2

...
1

1

1 1
2

2

22
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For the mixed model, a two-stage procedure for the minimisation of MSE is proposed,

based on similar principles to the heuristic for the additive model, i.e. the formation of 
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When DGSI is used to calculate the MSE expression, the distance measure 
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Now, taking into account the potential application of either ISI or DGSI: 
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The results for DGSI are still exact if the assumption of no cross correlation is 

maintained. It is important to note that the form of the Euclidean distance measure is 

identical to that of the additive model. Thus, the K-means clustering approach also 

applies to the application of DGSI (or ISI when appropriate) for the mixed model.
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Moving on to the application of Withycombe’s Group Seasonal Index (WGSI), the 

right-hand side of equation (15) becomes:
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This expression is an approximation because of the last term
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The same heuristics can be applied to decide when to apply ISI and DGSI/WGSI in 

order to minimise MSE. When WGSI is applied, the distance metric for seasonal 

grouping is 
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It should be noted that this distance metric is not the same as for the additive model or 

for the mixed model (DGSI). Thus, the K-Means method should not be applied 

directly. Further research is currently being undertaken on adaptations of clustering 

methods for the mixed model (WGSI).   
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7. Empirical Investigation

7.1. Experimental Structure

In this section we analyse the empirical validity of some of the theoretical results 

presented thus far in the paper, with regards to both the formation of seasonally 

homogeneous groups and the issue of separating between the application of the ISI 

and GSI methods. We do so by means of experimentation with 218 real data series 

from the lighting industry. We should note that the same data set has also been utilised 

by Chen and Boylan (2008). The database contains the following information: i) 

demand history recorded monthly for the period of October 1998 – September 2003 

inclusive (60 monthly observations – 5 years); ii) the actual SKU grouping utilised by 

the company; the company has established 7 product groups based on institutional 

knowledge. The actual groups have been made available to us but not the criteria 

upon which the grouping has taken place.

The 218 items are also grouped by using the K-means and the Average Linkage 

approach (utilising SPSS) to form seasonal groups. (In both cases the number of 

categories is forced to equal 7, i.e. the number of classes originally utilised by the 

company.) The former method is equivalent to the distance measure we derived from 

the additive model, and from using DGSI in the mixed model. The latter method is 

equivalent to the approach used by Bunn and Vassilopoulos (1993), and by 

Vassilopoulos (1994), discussed earlier in this paper.

Initial analysis was undertaken for both the additive and mixed models. Results, not 

reported here, showed that the differential strategy of using ISI for some series and 

GSI for others performs very well. However, the results relating to the universal 

application of GSI assuming additive seasonality (WGSI and DGSI are equivalent in 

this case) did not compare favourably with the mixed model. This was the case for all 

three approaches to grouping, namely company grouping, K-means and Average 

Linkage. For this reason, we have adopted a mixed model representation of the data. 
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As discussed in the previous section, further research is needed on clustering methods 

for the WGSI method when the mixed model is assumed. However, the K-means 

method has been found to be appropriate for the DGSI method. Consequently, we 

restrict the analysis of K-means clustering to the DGSI approach.

In practice, the sales of different items may well be correlated. For example, some 

products may be complementary to each other, while others may be substitutions. 

However, we still apply our original mixed model assuming no cross correlation. The 

empirical analysis will allow for an assessment of how good the theoretical 

approximations are when that assumption is violated.

We report universal application of ISI (all 0i ) and DGSI (all 1 i , based on the 

original company’s grouping, the K-means and the Average Linkage methods). In the 

case of the group seasonal indices, such indices are calculated from, and applied in,

each of the resulting groups (depending on the approach to grouping) separately. We 

also report the non-universal applications of ISI and DGSI, i.e. within a group DGSI 

is applied to some items and ISI to the rest based on which method results into a 

lower forecasting MSE across time for each series. We have considered two scenarios 

with regards to forecasting: i) point forecasts - 1, 3, 6 and 9 steps-ahead forecasts; ii) 

cumulative forecasts over a forecast horizon of 3, 6 and 9 periods. 

In more detail, the five years history is divided into two parts: i) within sample that is 

equal to the first four years of data; ii) out-of-sample, that contains the last 12 

observations and is used for performance comparison purposes. In all cases, the 

within sample information is used to calculate the monthly individual seasonal indices 

and the mean demand. Forecasting is then applied in a rolling overlapping fashion 

which results in a dynamic simulation in the sense that we evaluate what would have 

happened if the particular methods had been used in practice by the company under 

concern. For example, consider the case of ISI. At the end of period 48, the mean 
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demand (which is used as the de-seasonalised demand) and the individual seasonal 

indices calculated are used to produce 4 point forecasts (1, 3, 6 and 9 steps ahead) by 

multiplying the mean (de-seasonalised) demand by the relevant seasonal factors. This 

information is also used to produce cumulative forecasts over a horizon of 3, 6 and 9 

periods. At the end of period 49, the very first monthly observation (in period 1) is 

dropped and the 4-years data from November 1998 to October 2002 is used to 

calculate a new mean demand. The forecasting exercise is repeated and we continue 

in such a way until all data is exhausted. Please note that although 12 1-step-ahead 

forecasts are produced the number of the other point forecasts is not the same (there 

are 10 3-step-ahead forecasts, 7 6-step-ahead forecasts and 4 9-step-ahead forecasts). 

Similarly, for the cumulative forecasts over the forecast horizons considered.

To ensure consistency with earlier analysis conducted by Chen and Boylan (2008) 

errors are reported by using the symmetric Mean Absolute Percentage Error (sMAPE) 

measure which is unit free. Absolute errors per period (or over an entire horizon in 

case of cumulative forecasts) are divided by the average of the actual demand in that 

period and the forecast produced for that period (or the average of cumulative demand 

over the horizon and the cumulative forecast for that time horizon) to form symmetric 

absolute percentage errors (sAPEs). These errors are then summarised across time per 

series by taking their arithmetic mean (sMAPE). An arithmetic mean is also used to 

average the sMAPEs per series across all 218 series. The advantages of the sMAPE 

over other relative error measures have recently been discussed in a comprehensive 

paper by Kolassa and Martin (2011). 

In addition, and given that the theoretical results were derived based on the Mean 

Squared Error (MSE), we have decided to employ this error metric as well. Squared 

errors are calculated per period (or horizon) and summarised across time per series by 

their arithmetic average (MSE). This particular measure is known to be heavily scale 

dependent and unduly influenced by the volume of the series. As such, MSEs are 

summarised across series by using a Relative Geometric summarisation (RGMSE).
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That is, the MSEs per series per method are summarised across all series with a 

geometric summarisation (GMSE). The RGMSE then is the ratio of the GMSEs 

related to any two methods. To standardise the presentation of the results all methods 

are compared against the ISI method (to be considered in the denominator). Values 

below 1 indicate performance in favour of the method under concern; values above 1 

indicate a superior performance of the ISI method. Relative geometric summarisations 

have been shown (amongst others by Fildes 1992; Syntetos and Boylan, 2005) to be 

very robust. The theoretical properties and scale independent nature of the RGMSE 

make it a natural measure to be considered for the purposes of our experimentation. It 

allows the linkage of our empirical results to the theoretical analysis whilst a degree 

of ‘fairness’ is ensured for the comparison across series.

7.2. Empirical Data and Results

Before we discuss the empirical results and their analysis, it is important to provide an 

indication of the characteristics of the series used for the purposes of our investigation. 

We report four statistics that collectively capture the nature of the series and the 

degree (and nature) of the seasonality present in those series: i) The mean demand per 

series across all 60 monthly observations; ii) the ratio of the maximum over the 

minimum mean annual demand – the average annual demand is calculated for every 

SKU, across all five years of history, and the ratio of the maximum over the minimum 

average annual demand is reported as an indication of the scale differences present in 

the data; iii) the minimum monthly seasonal index per series; iv) the maximum 

monthly seasonal index per series. The distribution of these statistics then across all 

SKUs is presented based on some key quantities: minimum, 25
th

percentile, median, 

the 75
th

percentile and the maximum observation. The descriptive statistics are 

presented in Table 1 to the second decimal place. 

The results indicate a great variation in terms of the underlying volumes of the series 

and the corresponding seasonal profiles. 
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Summary 

across series

Demand Multiplicative Seasonal 

Indices

Mean max/min

scale changes

Min Max

Minimum 192.37 1.07 0.08 1.19

25
th

Percentile
1195.70 1.48 0.45 1.45

Median 3451.68 1.83 0.54 1.64

75
th

Percentile
9940.31 2.46 0.64 1.89

Maximum 563707.98 12.88 0.80 5.06

Table 1: Descriptive statistics for demand and seasonal indices

The number of SKUs included in each of the seven categories as an outcome of the 

three grouping approaches considered in this paper (original company grouping, 

K-means, Average Linkage), is presented in Table 2. In the case of the company’s 

approach the original grouping code and the description of the group are also 

provided. Please note that the Average Linkage approach results essentially in one 

very large group (almost identical to the entire dataset) and six very small groups. 

This is a common feature in its application; this method is known to build one very 

large group and many other much smaller.
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Group

Approaches to seasonal grouping

Company’s approach Mixed Model

Original 

code

Description Number K-means Average 

Linkage

#1 100 Incandescent 66 103 209

#2 102 Compact fluorescent 61 82 3

#3 103
Non-compact 

fluorescent
45 15 2

#4 101
Halogen general 

lighting
27 15 1

#5 106 HQI power stars 12 1 1

#6 107 HPS vialox 5 1 1

#7 105 HQ/HW/SOX/UV 2 1 1

Total 218 218 218

Table 2: Group sizes (and description) in descending order for the three grouping 

approaches

The results for the sMAPE measure are summarised (across all series) in Table 3

below. The numbers presented are percentages (to the second decimal place). Please 

note that, following the theoretical analysis presented in this paper, the selection of the 

ISI or DGSI method in the two non-universal application approaches is based on the 

empirical MSE. This MSE-based selection is always used, regardless of weather the 

accuracy results are presented according to sMAPE or an MSE-related measure.

The first point that emerges from Table 3 is the consistent (and in some cases 

considerable) advantage of the non-universal application of the DGSI method over the 

universal application of it. This is true both for the K-means and the Average Linkage

approach and this is the first empirical evidence to demonstrate a clear benefit of 

non-universal application of Group Seasonal Indices. Further, the results provide 

some additional empirical evidence (to that already available in the literature) that 

grouping outperforms the ISI approach. (The comparison results between ISI and 

DGSI applied to all 218 SKUs may be found in Chen and Boylan, 2008).
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Method

Point forecasts Forecast horizon forecasts

1-step 3-step 6-step 9-step Cum3 Cum6 Cum9

Universal application of ISI 50.43 51.67 54.07 54.66 39.91 36.60 34.66

Universal application of 

DGSI

(company grouping)

49.29 51.21 55.44 56.70 39.25 36.20 34.27

Universal application of 

DGSI

(K-means)

48.98 50.85 54.83 56.19 39.48 36.50 34.57

Universal application of 

DGSI

(Average Linkage)

49.15 51.17 55.72 57.39 39.43 36.54 34.64

ISI & DGSI 

(K-means)
48.51 49.59 51.72 51.84 38.24 35.04 33.40

ISI & DGSI 

(Average Linkage)
48.32 49.54 51.41 51.01 37.93 34.92 33.47

Table 3: Symmetric MAPE (sMAPE) results (%) for the mixed model

The second point is that, with universal application of the DGSI method, there is little 

difference between the forecast accuracy of the K-means and the Average Linkage 

approach (with the differences being overall in favour of K-means). Small differences 

in accuracy are also evident for non-universal application of methods (with the 

differences being overall in favour of Average Linkage).

More importantly, though, both the K-means approach and the Average Linkage 

(universal application) perform very similarly to the Company’s grouping. 

Contrasting institutional knowledge with statistical applications indicates that there is 

little to choose between them. An important insight resulting from this comparison is 

that both statistical approaches may be safely applied in a real world context where no 

prior information is available that may be helpful for forming seasonal groups.
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Finally, some similar findings to those reported in this paper were presented by 

Ouwehand et al. (2005) with regards to the reduced accuracy as the forecast horizon 

increases and the increased accuracy for cumulative forecasts.

Next, we present the results related to the application of the RGMSE (Table 4). 

Results for all methods are presented in comparison with the ISI approach and thus 

the RGMSE for that method is simply 1. As aforementioned, numbers lower than 1,

should be interpreted as an advantage in favour of the method under concern.

Method

Point forecasts Forecast horizon forecasts

1-step 3-step 6-step 9-step Cum3 Cum6 Cum9

Universal application of ISI 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Universal application of 

DGSI

(company grouping)

0.81 0.84 0.90 0.96 0.89 0.93 0.94

Universal application of 

DGSI

(K-means)

0.83 0.86 0.90 0.94 0.93 0.97 0.94

Universal application of 

DGSI

(Average Linkage)

0.81 0.85 0.92 1.00 0.90 0.95 0.99

ISI & DGSI 

(K-means)
0.80 0.80 0.80 0.77 0.83 0.85 0.84

ISI & DGSI 

(Average Linkage)
0.78 0.78 0.78 0.77 0.80 0.83 0.87

Table 4: Relative Geometric Mean Squared Error (RGMSE) results for the mixed 

model

Overall, the results confirm our earlier findings on: i) the superior performance of all 

grouping approaches to that of the ISI approach; ii) the superiority of the 

non-universal application of the DGSI approach, under both the K-means and the 
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Average Linkage method, over a universal application; iii) the similar performance of 

the Average Linkage and K-means under both the universal and non-universal 

experimental scenarios.

One important issue that relates to the non-universal application of DGSI is the 

following: which are the characteristics of the series that determine when GSI or ISI 

perform better? To that end, we conducted a detailed analysis of the series where GSIs 

perform better than ISIs (and vice versa) in order to link the performance of methods to 

the underlying characteristics of the relevant series. For the additive model, Chen and 

Boylan (2007) found that the choice between ISI and the GSI depends on the variance 

of the deseasonalised series. Specifically, GSI is more accurate than ISI if:  

m

Var
Var

AGGREGATE
INDIVIDUAL 2


where m is the number of the series contributing to the formation of the GSI. This is 

true forth for WGSI and DGSI. 

For the mixed model, Chen and Boylan (op. cit.) found that the choice between ISI 

and the WGSI depends on the squared coefficient of variation of the deseasonalised 

series. That is, GSI is more accurate than ISI if:

CVCV AGGREGATEINDIVIDUAL
22 

For the mixed model and DGSI, a more complicated variance-based comparison rule 

was proposed. 

As discussed in Section 5, collectively these results essentially tell us that if the 

individual series is less noisy than the group, ISI should be used. This means that 

those products which are less noisy than the group would only “borrow weakness” 

from including noisier data. On the other hand, noisier series “borrow strength” from 

less noisy series. If the “group” is less noisy than the individual series, then it is better 
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to use grouping methods. In other words, by inclusion of less noisy series in the group, 

noisier series would benefit.

Detailed analysis, not presented here, confirms the above findings. We have 

experimented both with the squared coefficient of variation and the variance of the 

deseasonalised series assessing the percentage of SKUs that behave according to 

theoretical expectations. That is, for every control parameter combination, the number 

of the series for which ISI/GSI is expected to perform better (based on either of the 

theoretical rules) was contrasted to the number of series on which ISI/GSI actually

perform better. Very high percentages of series where theoretical expectations are 

sustained were reported (in many cases as high as 100%).

Before we close this section, we should also mention that the results on the 

cumulative forecasts are most important for the purposes of our analysis due to their 

inventory implications. In a stock control context, forecasts are required over a 

specific time horizon (either the lead time for continuous formulations or the lead 

time + review period for periodic inventory applications). Actual lead times have not 

been made available to us, so the forecast horizon may be interpreted as a lead time (+ 

review period) control parameter that has been assigned three reasonable values that 

collectively capture a wide range of real world scenarios (3, 6 and 9 periods). 

Additionally, a forecast horizon of 1 period has been analysed which can represent a 

unit review period and instantaneous supply.

8. Conclusions, Implications and Further Research

This paper addressed two important research questions: how to form seasonally 

homogeneous groups and how to apply the ISI and GSI methods to improve 

forecasting accuracy at the item level. We have developed theoretical expressions to 

address these two issues and minimise MSE. 
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derived theoretically 

can be used as distance measures to define seasonal grouping. Previous researchers 

have recognised the grouping mechanism as a very important research issue but no 

other attempts have been so far to resolve this. The expressions we developed are 

theory-informed and are of a Euclidean form. The distance metrics are equivalent to 

the metric used in K-means clustering. 

The clustering method employed by Bunn and Vassilopoulos (1993) is hierarchical in 

nature; it lacks any theoretical justification, although it provided satisfactory results in 

their empirical experiment. The same is true for the empirical investigation 

undertaken in our work. Although K-means was found to offer, overall, similar results 

to those of the Average Linkage approach, the theoretical basis associated with the 

former opens up opportunities for further developments in this area. Unifying the two 

problems of group composition and forecasting method choice, using the Mean 

Square Error measure, is an approach that may be extended to other forecasting 

models discussed in Section 2. The method may also be improved for the current 

models, by identifying better heuristic methods or by identifying the circumstances 

under which optimisation is feasible.   

Our theoretical results are exact when assuming no cross correlation. When that 

assumption is relaxed, the theoretical findings can be used as an approximation.  

This was checked with the empirical analysis of 218 items, which were grouped into 7 

product families. Firstly, our results showed that the groupings of both K-means and 

Average Linkage were competitive with the company’s grouping, when seasonal 

methods were applied universally. Hence, there is some evidence that they may be 

safely applied in a real-world context where there is no prior information available for 

the formation of seasonal groups. Secondly, our results indicated that non-universal 
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applications of ISI and GSI can improve forecasting accuracy compared to universal 

applications. This is the first paper to present empirical evidence to assess the effect 

on forecasting accuracy of switching from universal to non-universal application of 

seasonal index methods.

As part of our next steps of research, further simulations are to be conducted on the

two clustering methods in order to understand more fully how various factors, 

including model parameters, affect forecasting performance. Experimentation with 

other datasets is also viewed as very important in order to expand the empirical 

knowledge base in the area of seasonal forecasting by grouping mechanisms. The 

effects of cross-correlations in the performance of GSI need to be further considered 

either by developing further the analytical work described in this paper to take this 

assumption into account or by further assessing the empirical robustness of our results 

in the presence of cross-correlations in real data. Moreover, the application of a 

heuristic procedure instead of the full optimisation model, when selecting between 

GSI and ISI, is to be assessed in more detail. This will involve the consideration of the 

trade-off between computational intensity of the optimisation solution and the effects 

on forecasting performance. Finally, the approach outlined in this paper will be 

extended to other seasonal models and forecasting methods.
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Appendix A: The Additive Model

The additive model is specified as:
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Therefore, the forecast of item i, in the h
th

season in year r+1 is:
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The MSE of the forecast is as follows:

2

1 1 11 1

11 1

)1(

2

1 1 11 11 1

)1(

11

11

111

























 






   

 

    

m

i

r

t

q

h

ith

m

i

A
r

t

ith

m

i

ih
A

r

t

q

h

ithihriihi

m

i

r

t

q

h

ith

m

i

r

t

ith

r

t

q

h

ithhrii

mqrmmr

S
mmqr

S

E

Y
mqr

Y
mr

Y
qr

YEMSEGSI





)1(1
1

1

1

2...22

2
1

2

2
2

2

1

2

2

2

22
2

2

1

22

1

1 1

22
2

2
1

22

2

2

2

2

2

2

22
2

2

1

qrm

q

qr
S

m
S

qrmrmqr
S

m
S

qrm

r

rmq

qrqr

mqr

r

qrmrmqr
S

m
S

A
i

m

i
ihih

AAi
i

m

i
ihih

m

j

m

jl
ljjlm

ij
jiiji

ij
jiiji

AAi
i

m

i
ihih












 


 




 





  







 







 




 






 




ii MSEISIMSEGSI  if and only if:

11

)1(1
1

1

2

2
2

2

1

2
2

2

2
2

2

1





 


 




 


 





mqr

q
S

m
S

rqrm

q

qr
S

m
S

A
i

m

i
ihih

i
i

A
i

m

i
ihih





Appendix B: The Mixed Model

The mixed model is specified as:

ithihiith SY  

In order to derive the rules for the mixed model, it is assumed that:
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where: i̂ is the estimate of i , A̂ is the estimate of A , 1̂ is the estimate of

the smallest mean value, and ip is the ratio between i and 1 ( 1iip  ).

The MSE using ISI is the same as in the additive model.
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