Figure 3.1: The graph showing the Physiological Cross-sectional Area of different flexor muscles.

Figure 3.2: The graph showing the relationship between the Physiological Cross-sectional Area and mean mass of different flexor muscles.
Figure 3.3: The graph showing the relationship between the Tendon Cross-sectional Area and mean mass of different flexor muscles.

Figure 3.4: The graph showing the relationship between the mean fibre length and Physiological Cross-sectional Area of different flexor muscles.
Figure 3.5: The graph shows the relationship between Physiological Cross-sectional Area and mean density.

Relation between Physiological Cross-sectional Area (PCSA) and mean density:

\[P = 0.46 \]
\[R^2 = 0.28 \]

Figure 3.6: The graph showing the relationship between the mean mass and mean fibre length.

Relation between mean mass and mean fibre length:

\[P = 0.38 \]
\[R^2 = 0.37 \]
Figure 3.7: The graph showing the relationship between the mean fibre length and mean density.

![Relation between mean fibre length and mean density](image)

Relation between mean fibre length and mean density

- $P = 0.38$
- $R^2 = 0.37$

- Mean fibre length
- Mean density

Figure 3.8: The graph shows the relationship between PCSA and angle of pennation of different flexor muscles.

![Relation between PCSA and mean angle of pennation](image)

Relation between PCSA and mean angle of pennation

- $P = 0.65$
- $R^2 = 0.02$

- Angle of pennation
- PCSA
Figure 3.9: The graph shows the relationship the area of FDP (index) and FPL at the carpal tunnel.

Figure 3.10: The graph shows the mean cross-sectional area of the median nerve before, at and after the carpal tunnel.
Figure 3.11: The graph showing the relationship between the Tendon Cross-sectional Area and Physiological Cross-sectional Area of different flexor muscles.

Figure 3.12: The graph showing the relationship between the mean tendon lengths and Physiological Cross-sectional Area of different flexor muscles.
Figure 3.24: The graph shows the angle of flexion of the thumb (at the IPJ and MCP) and DIP of the dependent fingers at different stages for volunteer 1.