Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Gold mineralization in the Mazowe area, Harare-Bindura-Shamva greenstone belt, Zimbabwe: II. Genetic relationships deduced from mineralogical, fluid inclusion and stable isotope studies, and the Sm-Nd isotopic composition of scheelites

Oberthur, T., Blenkinsop, Thomas G., Hein, U. F., Hoppner, M., Hohndorf, A. and Weiser, T. W. 2000. Gold mineralization in the Mazowe area, Harare-Bindura-Shamva greenstone belt, Zimbabwe: II. Genetic relationships deduced from mineralogical, fluid inclusion and stable isotope studies, and the Sm-Nd isotopic composition of scheelites. Mineralium Deposita 35 (2-3) , pp. 138-156. 10.1007/s001260050012

Full text not available from this repository.

Abstract

In the Mazowe area some 40 km NW of Harare in Zimbabwe, gold mineralization is hosted in a variety of lithologies of the Archean Harare-Bindura-Shamva greenstone belt, in structures related to the late Archean regional D2/3 event. Conspicuous mineralzogical differences exist between the mines; the mainly granodiorite-hosted workings at Mazowe mine are on pyrite-rich reefs, mines of the Bernheim group have metabasalt host rocks and are characterized by arsenopyrite-rich ores, and Stori's Golden Shaft and Alice mine, both in metabasalts, work sulfide-poor quartz veins. In contrast to the mineralogical diversity, near-identical fluid inventories were found at the different mines. Both H2O-CO2-CH4 fluids of low salinity, and highly saline fluids are present and are regarded to indicate fluid mixing during the formation of the deposits. Notably, these fluid compositions in the Mazowe gold field markedly contrast to ore fluids “typical” of Archean mesothermal gold deposits on other cratons. Stable isotope compositions of quartz from the various deposits (δ18O=10.8 to 13.2‰ SMOW), calcite (δ18O=9.5 to 11.9‰ SMOW and δ13C=−3.2 to −8.0‰ PDB), inclusion water (δD=−28 to −40‰ SMOW) and sulfides (δ34S=1.3 to 3.2‰ CDT) are uniform within the range typical for Archean lode gold deposits worldwide. The fluid and stable isotope compositions support the statement that the mineralization in the Mazowe gold field formed from relatively reduced fluids with a “metamorphic” signature during a single event of gold mineralization. Microthermometric data further indicate that the deposits formed in the PT range of 1.65–2.3 kbar and 250–380 °C. Ages obtained by using the Sm/Nd and Rb/Sr isotope systems on scheelites are 2604 ± 84 Ma for the mineralization at Stori's Golden Shaft mine, and 2.40 ± 0.20 Ga for Mazowe mine. The Archean age at Stori's is regarded as close to the true age of gold mineralization in the area, whereas the Proterozoic age at Mazowe mine probably reflects later resetting.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Earth and Ocean Sciences
Subjects: Q Science > QE Geology
Publisher: Springer Verlag
ISSN: 0026-4598
Last Modified: 04 Jun 2017 05:19
URI: http://orca.cf.ac.uk/id/eprint/50673

Citation Data

Cited 17 times in Google Scholar. View in Google Scholar

Cited 15 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item