Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Water in star-forming regions with the Herschel Space Observatory (WISH). I. Overview of key program and first results

van Dishoeck, E. F., Kristensen, L. E., Benz, A. O., Bergin, E. A., Caselli, P., Cernicharo, J., Herpin, F., Hogerheijde, M. R., Johnstone, D., Liseau, R., Nisini, B., Shipman, R., Tafalla, M., van der Tak, F., Wyrowski, F., Aikawa, Y., Bachiller, R., Baudry, A., Benedettini, M., Bjerkeli, P., Blake, G. A., Bontemps, S., Braine, J., Brinch, C., Bruderer, S., Chavarria, L., Codella, C., Daniel, F., de Graauw, Th., Deul, E., di Giorgio, A. M., Dominik, C., Doty, S. D., Dubernet, M. L., Encrenaz, P., Feuchtgruber, H., Fich, M., Frieswijk, W., Fuente, A., Giannini, T., Goicoechea, J. R., Helmich, F. P., Herczeg, G. J., Jacq, T., Jorgensen, J. K., Karska, A., Kaufman, M. J., Keto, E., Larsson, B., Lefloch, B., Lis, D., Marseille, M., McCoey, C., Melnick, G., Neufeld, D., Olberg, M., Pagani, L., Panic, O., Parise, Berengere, Pearson, J. C., Plume, R., Risacher, C., Salter, D., Santiago-Garcia, J., Saraceno, P., Staeuber, P., van Kempen, T. A., Visser, R., Viti, S., Walmsley, M., Wampfler, S. F. and Yildiz, U. A. 2011. Water in star-forming regions with the Herschel Space Observatory (WISH). I. Overview of key program and first results. Publications of the Astronomical Society of the Pacific 123 (900) , pp. 138-170. 10.1086/658676

Full text not available from this repository.

Abstract

Water In Star-forming regions with Herschel (WISH) is a key program on the Herschel Space Observatory designed to probe the physical and chemical structures of young stellar objects using water and related molecules and to follow the water abundance from collapsing clouds to planet-forming disks. About 80 sources are targeted, covering a wide range of luminosities—from low (< 1 L⊙) to high (>105 L⊙)—and a wide range of evolutionary stages—from cold prestellar cores to warm protostellar envelopes and outflows to disks around young stars. Both the HIFI and PACS instruments are used to observe a variety of lines of H2O, H218O and chemically related species at the source position and in small maps around the protostars and selected outflow positions. In addition, high-frequency lines of CO, 13CO, and C18O are obtained with Herschel and are complemented by ground-based observations of dust continuum, HDO, CO and its isotopologs, and other molecules to ensure a self-consistent data set for analysis. An overview of the scientific motivation and observational strategy of the program is given, together with the modeling approach and analysis tools that have been developed. Initial science results are presented. These include a lack of water in cold gas at abundances that are lower than most predictions, strong water emission from shocks in protostellar environments, the importance of UV radiation in heating the gas along outflow walls across the full range of luminosities, and surprisingly widespread detection of the chemically related hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of the energy budget indicate that H2O is generally not the dominant coolant in the warm dense gas associated with protostars. Very deep limits on the cold gaseous water reservoir in the outer regions of protoplanetary disks are obtained that have profound implications for our understanding of grain growth and mixing in disks.

Item Type: Article
Status: Published
Schools: Physics and Astronomy
Subjects: Q Science > QB Astronomy
Publisher: Astronomical Society of the Pacific
ISSN: 0004-6280
Last Modified: 19 Mar 2016 09:41
URI: https://orca.cardiff.ac.uk/id/eprint/52783

Citation Data

Cited 195 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item