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SUMMARY

The most common class of methods for solving quadratic optimisation problems
is the class of gradient algorithms, the most famous of which being the Steepest De-
scent algorithm. The development of a particular gradient algorithm, the Barzilai-
Borwein algorithm, has sparked a lot of research in the area in recent years and many
algorithms now exist which have faster rates of convergence than that possessed by
the Steepest Descent algorithm. The technology to effectively analyse and compare
the asymptotic rates of convergence of gradient algorithms is, however, limited and
so it is somewhat unclear from literature as to which algorithms possess the faster
rates of convergence.

In this thesis methodology is developed to enable better analysis of the asymp-
totic rates of convergence of gradient algorithms applied to quadratic optimisation
problems. This methodology stems from a link with the theory of optimal exper-
imental design. It is established that gradient algorithms can be related to algo-
rithms for constructing optimal experimental designs for linear regression models.
Furthermore, the asymptotic rates of convergence of these gradient algorithms can
be expressed through the asymptotic behaviour of multiplicative algorithms for con-
structing optimal experimental designs.

The described connection to optimal experimental design has also been used
to influence the creation of several new gradient algorithms which would not have
otherwise been intuitively thought of. The asymptotic rates of convergence of these
algorithms are studied extensively and insight is given as to how some gradient
algorithms are able to converge faster than others. It is demonstrated that the worst
rates are obtained when the corresponding multiplicative procedure for updating
the designs converges to the optimal design. Simulations reveal that the asymptotic
rates of convergence of some of these new algorithms compare favourably with those

of existing gradient-type algorithms such as the Barzilai-Borwein algorithm.
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Chapter 1

Introduction

1.1 Convex Optimisation

Finding the extreme points of a function cannot always be achieved via the classical
approach of calculus. In some situations calculating the partial derivatives of a func-
tion is an arduous task and it is often necessary to resort to numerical optimisation
methods to find approximate solutions to the extreme points. Differing numerical
methods exist, however the goal in each method invariably involves determining
extrema, be they minima or maxima, of the objective function. It is potentially
the case that a given objective function could possess more than one extreme point
and so the crux of the problem usually lies in establishing whether a found local
extremum is also the overall, or global extremum. Methods which are successful in
accomplishing this are termed global optimisation methods whereas methods which
concentrate on identifying local extrema are named local optimisation methods. Lo-
cal optimisation methods are usually used as part of the inner workings of a global
optimisation technique.

First two important definitions are given.

Definition 1.1.1. z* is a local minimum of a function f, given on X such that

f: X — R, if for some € > 0, f(z*) < f(x) for all z where ||z — z*|| < €.
The global minimum is then defined as follows:
Definition 1.1.2. z* is a global minimum of a function f if, f(z*) < f(z) Vz € X.

1
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Figure 1.1: Graph showing a typical function f(z) with more than one minimum.

Figure 1.1 illustrates a local and global minimum of an objective function. Note
that the definition of a local and global maximum can be achieved by reversing the
inequalities in the above definitions.

Global optimisation is inevitably a much harder problem than local optimisation
as, if the function being optimised has more than one turning point, it is possible that
the progress of an algorithm might be halted at the discovery of a local minimum
and thus the global minimum may not be found. One solution to the problem is to
calculate all local minima in turn, (perhaps by selecting different starting points from
which to run a local optimisation algorithm) and then, by process of comparison,
determine which amongst them is the global minimum. This procedure can be very
time-costly and an alternative is desirable. Other approaches exist such as stochastic
techniques e.g. simulated annealing where a step in a direction away from a local
solution is accepted with some probability. This avoids the certainty of the algorithm
terminating prematurely at a local solution. There is, however, a group of functions
with a specific property for which this problem is not an issue, namely convex (and

concave) functions.



1.1.1 Convexity and Concavity
A definition of a convex function is as follows.

Definition 1.1.3. A function f(z) is said to be convex over a convex set S if, for

any two points z;,z2 € Sand forall o, 0 < a <1,
flaza + (1 - a)z1) < af(z2) + (1 —a)f(z1) - (1.1)

The definition of a concave function can be obtained simply by reversing the

inequality (1.1) i.e. a function is concave if
flazs + (1 — a@)z1) > af(zz) + (1 — @) f(x1) , Va, 0 <a<1. (1.2)

If the inequalities in (1.1) and (1.2) are replaced with strict inequalities then the
function f(x) is said to be a strictly convex function, or a strictly concave function,
respectively. For the proofs of several theorems on the subject of convexity see, for
example, [69].

Figure 1.2 shows examples of convex and concave functions of one variable. Here
the property translates to the curve lying below (conversely above for concavity) the

chord joining any two points (z;, f(z;)) and (x2, f(z2)). The advantage of knowing

f(-l')n f(-l‘)‘;

Figure 1.2: Example of (a) a convex function and (b) a concave function.

that the objective function is strictly convex is that, for a function of this kind,
there exists at most one minimum, thus any local minimum found is also the global

minimum. Similarly with concave functions, any maximum found will be the only



maximum of the function and thus the global maximum. There are many real-life
problems where the objective function is known to be convex and for these problems

local optimisation techniques can be applied.

1.1.2 Quadratic Optimisation

Consider the task of finding the minimum point z* of a quadratic objective function
of the form
1
flz) = QITAZ ~zTb+c (1.3)
where A is a positive definite symmetric d X d matrix with eigenvalues

O<m=AM< <...< yq=M<x

and b is a d x 1 vector. Since A is positive definite it follows that the function
f is strictly convex. Algorithms developed for optimising quadratic functions of
this form can thus take advantage of the desirable property of convexity; any local
extremum found will also be the global extremum. Quadratic optimisation has
been studied extensively. One reason why it has proven so popular is due to the
ability to adapt algorithms of this kind to solve systems of linear equations. This
application is introduced in Section 1.4. Another reason is that many non-quadratic
functions can be approximated well by functions of the form (1.3) in the region
of their minimum point; so in many cases it is sufficient to simply minimise the
quadratic approximation of the function. In this thesis only the problem of quadratic
optimisation is considered.

Most numerical methods developed for solving optimisation problems, quadratic

optimisation being no exception, take an iterative form.

1.1.3 Iterative Methods

Starting from either an initial guess or a random vector z(®, an iterative method
will produce a sequence of approximations, in the form of vectors (¥, k = 1,2, ...
that are expected to move increasingly closer to the exact solution. The procedure
is only said to converge if limy .o ||z* — z(®|| = 0. The iterations are ceased when

some predefined stopping criterion is reached.



The majority of iterative algorithms can be written in the following general form
kD) = g ) _ k) 5k) (1.4)

where 6() is the direction from z(*) along which the next point is selected. For fixed
6% ¥ is the step length. Different optimisation algorithms vary in their choice
of a® and 6.

It must be noted at this point that iterative methods work just as well for
the minimisation or maximisation of more general non-linear objective functions;
however it is often much harder to calculate the step length for objective functions
of higher degree. It is straightforward to obtain results for maximisation of quadratic

functions by adapting those results described for minimisation.

Direct Search Methods

Direct Search Methods is the name given to those methods which rely entirely on
the value of the objective function f(x) at iteration k and information gained from
previous iterations. These methods do not require the explicit evaluation of any
partial derivatives of f(x).

When dealing with functions of one variable a number of simple search methods
can be employed. Techniques belonging to this category include the method of
Bisection, Fibonacci search and Golden Section search. These methods all involve
determining an increasingly smaller interval in which the minimum lies. The process
ceases when the interval which contains the minimum point is sufficiently narrow or
a pre-specified number of function evaluations are made.

For multi-variate functions, several direct search methods also exist. A gener-
alisation of the Fibonacci search for one variable functions can be applied. In this
method a series of nested uni-variate Fibonacci searches is carried out in order to
reduce the problem to one which is readily solvable.

Another technique, this one not of the form (1.4), applied to multi-variate func-
tions is the Simplex method. A simplex is a d-dimensional polytope made up of
d + 1 vertices; if d = 2 then it is an equilateral triangle, if d = 3 it takes the form of

a regular tetrahedron and so on. The objective function is evaluated at each of the



d + 1 vertices. For minimisation, the vertex where the objective function is found to
have the highest value is then reflected in the centroid of the remaining d vertices.
The objective function is then evaluated at this new vertex and the process contin-
ues by reflecting whichever vertex is now evaluated to be the one with the largest
function value. Modifications exist to prevent oscillations and to aid the method
in cases where convergence is slow, such as when descent down a narrow valley is
required.

An extension of the Simplex method gives rise to the method of Nelder and
Mead. Here the basic step of reflection of the largest vertex is accompanied by
either an expansion (if this improves upon the vertex obtained by simply reflecting)
or contraction (if the point obtained by reflecting is worse than the original vertex).

Other direct search methods developed include Hooke and Jeeves’, Rosenbrock’s
and Davies, Swann and Campey’s method. For a description of the main existing

direct methods see [10, 11].

Gradient Methods

In contrast to direct search methods, gradient methods utilise the partial derivatives
of the objective function, coupled with information obtained from earlier iterations,
to select the direction along which the next point in the iterative process is to be
chosen.

For a general smooth function f(z) in R? gradient algorithms can be written as
k1) — (k) _ a® 7 f(z®) | (1.5)

where T
vi@®) = o) = (3L, 21)

and a'®) is the step length.
It is generally concluded that if information regarding the first derivatives of
the objective function is readily obtainable and not too costly to compute then this
information should be used. Methods which also make use of the second derivatives

usually converge faster but these are not necessarily the most efficient algorithms as

the cost associated with computing the matrix of second derivatives and inverting it



can outweigh the advantage gained through this extra knowledge. Also, algorithms
of this kind are very sensitive to computational inaccuracies.

Amongst the gradient algorithms are the Newton-Raphson method, the Davidon-
Fletcher-Powell method, see [30], the Fletcher-Reeves method, see [31] and the
Polak-Ribiére method (a modification of the Fletcher-Reeves method), see [52]. The
two most important algorithms, to which the next two sections are dedicated are

the methods of steepest descent and conjugate gradients.

1.2 Steepest Descent

The steepest descent algorithm is the most famous of all the gradient algorithms.
Nowadays it is it generally regarded as having a poor convergence rate; however it
is popular on account of its easy application and stability as an algorithm. Many
algorithms have been created by adapting the steepest descent algorithm in some
way, with a view to improving upon the rate of convergence. For this reason the
method of steepest descent is widely regarded as the gold standard against which
all other algorithms of this type are compared.

The method of steepest descent, also known as the gradient descent method,
dates back as far as Cauchy, see [12] where it was first suggested as a method for
solving systems of linear equations, see Section 1.4.

For a general convex function the steepest descent algorithm takes the following
form:

2®H) — 20 _ oG f(z®) |

where

(k

alk) = argngn f(@® — agf(z*)) . (1.6)

The step length o!¥) is chosen so that, at iteration (k + 1), the function takes on the
minimum possible value along the anti-gradient —7f(z(®)). In other words, the point
z*+1) is determined by travelling from the previous point z*) down the direction
of the negative gradient until the minimum point along this line is located. The
direction — 7 f(z®) is chosen because the initial rate of decrease of the objective

function from z*) is greatest in this direction, hence the name ‘steepest descent’.
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