CHARACTERISATION OF ANTIBIOTIC RESISTANCE MECHANISMS IN GRAM-NEGATIVE BACTERIA FROM TRIPOLI AND BENGHAZI, LIBYA

By

Allaeddin Ali El Salabi

A thesis submitted for the degree of Doctor of Philosophy at Cardiff University

2011

Cardiff University, School of Medicine, Department of Infection, Immunity & Biochemistry
DECLARATION AND STATEMENTS

DECLARATION
This work has not previously been accepted in substance for any degree and is not concurrently submitted in candidate for any degree.
Signed .. (candidate) Date 15/11/2011

STATEMENT 1
This thesis is being submitted in partial fulfilment of the requirements for the degree of PhD
Signed .. (candidate) Date 15/11/2011

STATEMENT 2
This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references
Signed .. (candidate) Date 15/11/2011

STATEMENT 3
I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available outside organisations.
Signed .. (candidate) Date 15/11/2011
Summary

As very little information is known of the antibiotic resistance in Gram-negative bacteria in Libya in addition to the desperate need for insight knowledge of the antibiotic resistance in Libyan hospitals, this study was undertaken to investigate the mechanism of antibiotic resistance in isolates collected from clinical, non-clinical and environmental samples from Tripoli and Benghazi, Libya. Bacterial collection include samples taken from patients admitted to the hospitals in ICUs and other wards, they also include swabs randomly collected from hospitals environment. These swabs were from walls, bedsides, curtains, floors, toilets, workstations, mechanical ventilators, stainless steel containers and instruments used in particular ICUs. This study clearly demonstrates the emergence of MDR Gram-negative bacteria in Tripoli and Benghazi hospitals, these MDR bacteria were clinical and non-clinical revealing the long standing infection control problem in these hospitals. *K. pneumoniae* was found as the most frequently isolated strain being disseminated in hospitals and outside hospitals followed by *E. coli*. *K. pneumoniae* and *E. coli* were detected harbouring *bla_{CTX-M}* group 1 in association with *ISEcp1* the enhancer of the β-lactamase gene movement. More importantly, *bla_{CTX-M-15}* in association with *ISEcp1* were detected carried on conjugative plasmids of different sizes and able to move via Libyan *K. pneumoniae* and *E. coli* to sensitive bacteria via conjugation. Some isolates of *K. pneumoniae* were clonally related and were in some cases found in
different hospital revealing the outbreak of MDR *K. pneumoniae* in Libyan hospitals. *E. coli* strains showed the emergence of more than one clone in one hospital which indicates to the lack of hospital hygiene. Three novel sequence types among *K. pneumoniae* were discovered in this study, one of which *K. pneumoniae* AES817 that assigned ST511 was collected from one of Benghazi streets and was found carrying *bla*_{CTX-M-15} and ISEcp1 on a plasmid of 400kb. Characterisation of *P. aeruginosa* showed the emergence of clonally related strains carrying *bla*_{VIM-2}, one was isolated from a patient admitted to Al-Jalla hospital in Benghazi and the other from a stainless steel container from the same hospital but different ward, this MBL was found on a novel integron in both strains. Interestingly, *bla*_{VIM-2} was found chromosomally mediated proposing that the dissemination of this MBL might be due to mobile genetic elements. Perhaps the most interesting finding of this study is *bla*_{TMB-1} which was detected in environmental strain swabbed from the floor of Tripoli central hospital. This MBL was unusual in terms of the similarity this gene shares with other known MBLs and also to the discovery of this MBL carried by environmental bacteria *A. xylosoxidans*, it is moreover the first MBL discovered in Libya.
Presentations and Publications

Presentations given from this study

4- The tniC-like transposon Tn5090 is commonly found in Klebsiella pneumoniae isolates from Portugal and North Africa. 49th Interscience Conference on Antimicrobial Agents and Chemotherapy, September 12-15, 2009, San Francisco.
Publications and publications in collaborations

5- Allaaeddin El Salabi, Pardha Saradhi Borra, Mark A. Toleman, Ørjan Samuelsen and Timothy R. Walsh. Genetic and biochemical characterization of a novel metallo-β-lactamase, TMB-1, from a *Achromobacter xylosoxidans* strain isolated from Tripoli, Libya (submitted)

6- Allaaeddin El Salabi, Mark A. Toleman, Ahmed Matmati, Chedly Chouchani and Timothy R. Walsh *bla*VIM-2 positive *Pseudomonas aeruginosa* isolated from operating apparatus and patients in Tripoli, Libya (submitted)

7- Allaaeddin El Salabi, Mark A. Toleman, Abdulazizi Zorgani and Timothy R. Walsh. Molecular characterization of antibiotic resistance mechanisms in *K. pneumoniae* isolated from Tripoli and Benghazi hospitals (in progress)

8- Allaaeddin El Salabi, Mark A. Toleman, Asma Alramli and Timothy R. Walsh. Molecular characterization of antibiotic resistance mechanisms in *E. coli* collected from Tripoli and Benghazi hospitals (in progress)
Acknowledgements

My thanks go first and foremost to Allah, who created me to discover how great he is and increase my faith in him.

I would like to thank the following people without whose help the completion of this thesis would not have been possible.

To my supervisor Prof Timothy Rutland Walsh, who taught me how innovation could be achieved and continued to support and encourage the spirit of scientific discovery in me.

To my advisor Dr Mark Alexander Toleman for his valuable advice and support, who taught me the molecular genetics of bacteria.

To Mrs Janis Weeks for her unending help and support, with a smile if nothing else.

To the staff at Reference Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway for their valuable advice and help with the TMB-1 purification.

To Dr Henry Ryley for his help with the PFGE pictures analysis.

To Dr Amanda Tonks for her encouragement and support

To Dr Mandy Wootton and staff at her laboratory for their valuable help with the identification of Libyan isolates

To all staff within section of Medical Microbiology, School of Medicine, University hospital of Wales for their lovely support

To my favourite brother Fakhrieddin El Salabi, who was waiting to share with me the moments of completion my studies and passed away before the completion of my PhD.

To all my family members for their irrepressible support and encouragement with which I could not have even begun this.

To Prof Salha Ben-Gwirif for her encouragement and support and the spirit of Dr Fathi Belied, who taught me the basics of microbiology.

To my friend Ahmed Gawhari and his wife Neven, for their lovely support and help.

To my friend Othman Boaisha for his kind encouragement and support

To staff of Faculty of Public Health, University of Benghazi for their support

To Ranya, my wife for, her support, patience and endurance

Finally to Amina Benour my mother, whom I love, who supported me, prayed for me, looked after me and was very close to me even at a distance, her help and encouragement was unbelievable.
This thesis is dedicated to
the spirit of my father, the
spirit of my brother and
to the new Libya
LIST OF FIGURES

Fig. 1.1 Chemical structure of daptomycin .. 6
Fig. 1.2 Chemical structure of oxazolidinone radezolid 6
Fig. 1.3 Chemical structure of the fluoroquinolone delafloxacin 6
Fig. 1.4 Chemical structure of the aminoglycoside ACHN-490 7
Fig. 1.5 Chemical structure of the tetracycline omadacycline 7
Fig. 1.6 Chemical structure of the Avibactam NXL-104 7
Fig. 1.7 Cell wall envelopes of Gram-positive and Gram-negative
bacteria.. 8
Fig. 1.8 N-formimodoyl-thienamycin ... 15
Fig. 1.9 Inhibition of protein synthesis by aminoglycosides 19
Fig. 1.10 Inhibition of cell wall synthesis by β-lactams 20
Fig. 1.11 Inhibition of DNA synthesis by quinolones 20
Fig. 1.12 Global emergence of MBLs ... 32
Fig. 1.13 The emergence of CTX-M type ESBLs in Europe 33
Fig. 1.14 The occurrence of K. pneumoniae resistant to 3rd generation
cephalosporins in Europe.. 36
Fig. 1.15 The occurrence of P. aeruginosa resistant to carbapenems
in Europe ... 37
Fig. 1.16 Annual rate of antimicrobial resistance among *E. coli* isolates (4394 isolates) tested against selected agents from the MYSTIC program.

Fig. 1.17 Annual rate of antimicrobial resistance among *K. pneumoniae* isolates (2694 isolates) tested against selected agents from the MYSTIC program.

Fig. 1.18 The dissemination of β-lactamases, ESBLs and carbapenemases in Tunisia.

Fig. 1.19 Genomic island of *A. baumannii* AYE.

Fig. 3.1 Multiplex PCR experiment to detected the incidence of CTX-M type ESBLs groups 1, 2, 8, 9 and 26.

Fig. 3.2 PCR experiment to detect the incidence of *bla*_{CTX-M-15} in *K. pneumoniae*.

Fig. 3.3 PCR experiment to detect the incidence of *bla*_{CTX-M} group 1 in association with IS*Ecp1* in *K. pneumoniae*.

Fig. 3.4 PCR experiment to detect disrupted IS*Ecp1* sequence in *K. pneumoniae*.

Fig. 3.5 Diagram showing the genetic environment of *bla*_{CTX-M-15} gene.

Fig. 3.6 Blotting of *K. pneumoniae* isolates (1-47) and probing with *bla*_{TEM}.

Fig. 3.7 Blotting of *K. pneumoniae* isolates (48-80) and probing with...
Fig. 3.8 Blotting of *K. pneumoniae* isolates (1-47) and probing with *bla*$_{TEM}$ 96
Fig. 3.9 Blotting of *K. pneumoniae* isolates (48–80) and probing with *bla*$_{SHV}$ 96
Fig. 3.10 Blotting of *K. pneumoniae* isolates (1-47) and probing with *bla*$_{CTX-M-15}$/ISEcp1 98
Fig. 3.11 Blotting of *K. pneumoniae* isolates (48-80) and probing with *bla*$_{CTX-M-15}$ 98
Fig. 3.12 PFGE of *S1* digests of a subset of *K. pneumoniae* isolates .. 100
Fig. 3.13 Autorad after probing with *bla*$_{CTX-M-15}$/ISEcp1 of blotted PFGE from fig.3.12 101
Fig. 3.14 *K. pneumoniae* typed by RAPD .. 104
Fig. 3.15 PFGE of *XbaI* digests of a subset of *K. pneumoniae* isolates .. 106
Fig. 3.16 PFGE of *XbaI* digests of a subset of *K. pneumoniae* isolates ... 107
Fig. 3.17 Dendrogram of PFGE gel picture from fig. 3.15 ... 108
Fig. 3.18 Dendrogram of PFGE gel picture from fig. 3.16 ... 109
Fig. 3.19 Autorad after probing with *bla*$_{CTX-M-15}$ of blotted PFGE from fig.3.15 114
Fig. 3.20 Autorad after probing with *bla*$_{CTX-M-15}$ of blotted PFGE from fig.3.16 115
Fig. 3.21 Detection of *bla*$_{CTX-M}$ group1/ISEcp1 in GFP *E. coli* ...
Fig. 3.22 Detection of the occurrence of an intact and disrupted copies of ISEcp1 in GFP transconjugants of K. pneumoniae AES isolates

Fig. 3.23 PFGE of S1 digests of K. pneumoniae and GFP E. coli transconjugants

Fig. 3.24 Autorad after probing with $bla_{CTX-M-15}$ of blotted PFGE from fig. 3.23

Fig. 3.25 PFGE of S1 digests of K. pneumoniae and GFP E. coli transconjugants

Fig. 3.26 Autorad after probing with $bla_{CTX-M-15}$/ISEcp1 of blotted PFGE from fig.3.25

Fig. 3.27 Amplification of classical class 1 integron from a subset of K. pneumoniae

Fig. 3.28 Genetic context of class 1 integrons found in K. pneumoniae

Fig. 3.29 Detection of transposons among a subset of K. pneumoniae

Fig. 3.30 Genetic context of Tn402 transposons found in K. pneumoniae

Fig. 3.31 PFGE of S1 digests of a subset of K. pneumoniae

Fig. 3.32 Autorad after probing with $tniC$ of blotted PFGE from fig.3.31
Fig. 3.33 PFGE of S1 digests of a subset of *K. pneumoniae* 129

Fig. 3.34 Autorad after probing with *tniC* of blotted PFGE from
fig.3.33 .. 129

Fig. 3.35 Probing of *K. pneumoniae* isolates (1-47) with *ISCR2* gene 130

Fig. 3.36 Probing of *K. pneumoniae* isolates (48-80) with *ISCR2* gene 131

Fig. 4.1 Multiplex PCR to detect CTX-M groups 1, 2, 8, 9 & 26 in
E. coli isolates.. 144

Fig. 4.2 Multiplex PCR to detect CTX-M groups 1, 2, 8, 9 & 26 in
E. coli isolates.. 145

Fig. 4.3 Detection of *bla*_{CTX-M} group1 and *ISEcp1* in *E. coli* 145

Fig. 4.4 Detection of *bla*_{CTX-M} group1 and *ISEcp1* in *E. coli* 146

Fig. 4.5 Detection of *bla*_{CTX-M} group1 in association with an intact
ISEcp1 in *E. coli*... 146

Fig. 4.6 Detection of *bla*_{CTX-M} group1 in association with an intact
ISEcp1 in *E. coli*... 147

Fig. 4.7 PFGE of S1 digestion of *E. coli* parents and transconjugants 150

Fig. 4.8 Autorad of *E. coli* parents and transconjugants after probing
of PFGE gel from fig. 4.7 with *bla*_{CTX-M-15} 151

Fig. 4.9 PFGE of S1 digestion of *E. coli* parents and transconjugants 152

Fig. 4.10 Autorad of *E. coli* parents and transconjugants after probing
of PFGE gel from fig. 4.9 with *bla*_{CTX-M-15/ISEcp1} 153

Fig. 4.11 PFGE of *XbaI* digestion and separation of a subset of *E. coli*
genomic DNA .. 155

Fig. 4.12 Dendrogram of PFGE gel picture from fig. 4.11 156

Fig. 4.13 PFGE of XbaI digestion and separation of a subset of E. coli genomic DNA ... 157

Fig. 4.14 Dendrogram of PFGE gel picture from fig. 4.13 157

Fig. 4.15 Autorad of PFGE gel of fig. 4.11 after probing with
blaCTX-M-15 .. 159

Fig. 4.16 Autorad of PFGE gel of fig 4.13 after probing with
blaCTX-M-15 .. 160

Fig. 4.17 Genetic context of class 1 integrons found in E. coli 161

Fig. 5.1 Etest of P. aeruginosa ... 172

Fig. 5.2 Detection of Tn402, Tn21 and blaVIM-2 in P. aeruginosa AES81 and AES83 ... 173

Fig. 5.3 PFGE of Spe-1 digestion of 14 E. coli isolates 175

Fig. 5.4 Dendrogram of PFGE gel picture of fig. 5.3 176

Fig. 5.5 PFGE of S1 digestion of a subset of P. aeruginosa isolates 176

Fig. 5.6 Autorad of PFGE gel of fig. 5.5 after probing with blaVIM-2 177

Fig. 5.7 PFGE of Spe1 digestion of a subset of P. aeruginosa isolates 178

Fig. 5.8 Autorad of PFGE gel of fig. 5.7 after probing with blaVIM-2 179

Fig. 5.9 Amplification of class 1 integrons from a subset of

P. aeruginosa .. 181

Fig. 5.10 Genetic contexts of class 1 integrons found in P. aeruginosa 182
Fig. 6.1 Genetic context of class 1 integrons from *A. xylosoxidans* 192
Fig. 6.2 Detection of genetic location of \(\text{bla}_{\text{TMB-1}} \) in *A. xylosoxidans* 194
Fig. 6.3 Dendrogram of comparison of amino acid sequence of the
\[\beta \text{-lactamase TMB-1 and other acquired MBLs} \] 196
Fig. 6.4 Comparison of amino acid sequence of \(\beta \text{-lactamase TMB-1} \)
and other acquired MBLs. ... 197
Fig. 6.5 Secondary structure of TMB-1 compared to that of VIM-2 198
Fig. 7.1 Map of Libya 205
LIST OF TABLES

Table 1.1	History of antibiotic introductions and approval	5
Table 1.2	Main classes of antibiotics and β-lactamase inhibitors	11
Table 1.3	Longitudinal increase in multi-drug resistance in USA	39
Table 2.1	Multiplex PCR primers for CTX-M groups 1, 2, 8, 9 & 26	64
Table 2.2	Oligonucleotide sequences to detect bla\textsubscript{OXA-48} and IS1999	67
Table 2.3	Oligonucleotide sequences used for PCR amplification of housekeeping genes	71
Table 3.1	Dissemination of \textit{K. pneumoniae} in Tripoli and Benghazi	89
Table 3.2	MIC\textsubscript{50} and MIC\textsubscript{90} of \textit{K. pneumoniae}	90
Table 3.3	The incidence of \textit{bla\textsubscript{CTX-M} group1}, \textit{bla\textsubscript{TEM}}, \textit{bla\textsubscript{SHV}} and \textit{ISCR2}	95
Table 4.1	MIC\textsubscript{50} and MIC\textsubscript{90} of \textit{E. coli} isolates	144
Table 4.2	Sensitivity profile \textit{E. coli} parents and transconjugants	148
Table 5.1	List of \textit{P. aeruginosa} used in experiments	171
Table 5.2	Antibiotic sensitivity testing of clinical and non-clinical isolates of \textit{P. aeruginosa}	172
Table 6.1	Steady-state kinetic constants of TMB-1 and GIM-1	200
LIST OF ABBREVIATIONS

ABC ATP binding cassette
AES Allaeddin El Salabi
AIM-1 Australian imipenemase
AmpC ampicillin
ASP Asparagin
attC attachment site
bla β-lactamase
CAI community acquired infections
CIAI complicated intra-abdominal infection
CR common region
CSSSI complicated skin and skin structure infection
CTX-M Cefotaximase
CUTI complicated urinary tract infection
CVL Cervicovaginal Lavage
Cys Cystein
Dhfr dihydrofolate reductase
DIM Dutch imipenemase
EARSS European antimicrobial resistance surveillance system
EDTA Ethylenediaminetetraacetic acid
ESBL extended spectrum beta-lactamase
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GIM-1</td>
<td>Germany imipenemase</td>
</tr>
<tr>
<td>HAI</td>
<td>hospital-acquired infections</td>
</tr>
<tr>
<td>HIS</td>
<td>Histidine</td>
</tr>
<tr>
<td>IAI</td>
<td>intra-abdominal infection</td>
</tr>
<tr>
<td>ICARE</td>
<td>intensive care antimicrobial resistance epidemiology</td>
</tr>
<tr>
<td>ICE</td>
<td>Integration and conjugative element</td>
</tr>
<tr>
<td>ICU</td>
<td>intensive care unit</td>
</tr>
<tr>
<td>IMP</td>
<td>imipenemase</td>
</tr>
<tr>
<td>IntI</td>
<td>integrase gene</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactoside</td>
</tr>
<tr>
<td>IS</td>
<td>insertion sequence</td>
</tr>
<tr>
<td>ISCR</td>
<td>insertion sequence common region</td>
</tr>
<tr>
<td>Kcat</td>
<td>catalytic rate constant</td>
</tr>
<tr>
<td>KHM-1</td>
<td>Kyorin Health MBL</td>
</tr>
<tr>
<td>Km</td>
<td>The Michaelis constant</td>
</tr>
<tr>
<td>KPC</td>
<td>Klebsiella pneumoniae carbapenemase</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MATE</td>
<td>multi-drug and toxic compound extrusion family</td>
</tr>
<tr>
<td>MBL</td>
<td>Metallo-β-lactamase</td>
</tr>
<tr>
<td>MDR</td>
<td>multi-Drug Resistant</td>
</tr>
<tr>
<td>MFS</td>
<td>major facilitator superfamily</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MIC</td>
<td>minimum inhibitory concentration</td>
</tr>
<tr>
<td>MIC<sub>50</sub></td>
<td>Minimum inhibitory concentration that kills 50% of the bacteria</td>
</tr>
<tr>
<td>MIC<sub>90</sub></td>
<td>Minimum inhibitory concentration that kills 90% of the bacteria</td>
</tr>
<tr>
<td>MDR</td>
<td>Multi-drug resistance</td>
</tr>
<tr>
<td>MLST</td>
<td>multilocus Sequence Typing</td>
</tr>
<tr>
<td>MYSTIC</td>
<td>meropenem yearly susceptibility test information collection</td>
</tr>
<tr>
<td>NDM-1</td>
<td>New-Delhi metallo-β-lactamase</td>
</tr>
<tr>
<td>NI</td>
<td>nosocomial infections</td>
</tr>
<tr>
<td>NP</td>
<td>nosocomial pneumoniae</td>
</tr>
<tr>
<td>OM</td>
<td>Outer membrane</td>
</tr>
<tr>
<td>OMP</td>
<td>outer membrane protein</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>OXA</td>
<td>oxacillinases</td>
</tr>
<tr>
<td>PBP</td>
<td>penicillin binding protein</td>
</tr>
<tr>
<td>PFGE</td>
<td>pulsed field gel electrophoresis</td>
</tr>
<tr>
<td>qacΔE1</td>
<td>quaternary ammonium compound</td>
</tr>
<tr>
<td>RAPD</td>
<td>Random amplified polymorphic DNA</td>
</tr>
<tr>
<td>RCS</td>
<td>recombination crossover site</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RND</td>
<td>resistance nodulation division</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SHV</td>
<td>Sulphhydryl variable</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SIM-1</td>
<td>Seoul imipenemase</td>
</tr>
<tr>
<td>SLV</td>
<td>Single locus variant</td>
</tr>
<tr>
<td>SMR</td>
<td>Small multi-drug resistance</td>
</tr>
<tr>
<td>SPM-1</td>
<td>Sao Paolo metallo-β-lactamase</td>
</tr>
<tr>
<td>SSTI</td>
<td>Skin and soft tissue infection</td>
</tr>
<tr>
<td>sull</td>
<td>Sulphonamide resistance gene</td>
</tr>
<tr>
<td>SXT</td>
<td>Trimethoprim sulphamethoxazole</td>
</tr>
<tr>
<td>TEM</td>
<td>Temoneira</td>
</tr>
<tr>
<td>TMB-1</td>
<td>Tripoli metallo-β-lactamase</td>
</tr>
<tr>
<td>tniC</td>
<td>Transposase gene</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>UTI</td>
<td>Urinary tract infection</td>
</tr>
<tr>
<td>VAP</td>
<td>Ventilator associated pneumonia</td>
</tr>
<tr>
<td>VIM</td>
<td>Verona Imipenemase</td>
</tr>
</tbody>
</table>
CONTENTS

Title page i
Declaration ii
Summary iii
Publications v
Acknowledgments vii
Dedication viii
List of figures ix
List of tables xvi
List of abbreviations xvii

Chapter One
General Introduction

1.1 Antibiotics ... 2
1.1.1 Introduction .. 2
1.1.2 History of antibiotics ... 2
1.2 Gram-negative bacteria ... 4
1.3 Examples of antibiotics used in treatment of
infections caused by bacteria ... 10
1.3.1 β-lactams .. 12
1.3.1.1 Cephalosporins .. 12
 1.3.1.1.1 Cefotaxime ... 12
 1.3.1.1.2 Ceftazidime ... 13
 1.3.1.1.3 Ceftriaxone ... 13
 1.3.1.2 Carbapenems ... 13
 1.3.1.2.1 Imipenem ... 14
 1.3.1.2.2 Meropenem .. 15
 1.3.1.2.3 Ertapenem ... 16
 1.3.1.2.4 Doripenem ... 17

1.4 Mode of antibiotic action 17
 1.4.1 Introduction... 17
 1.4.1.1 Inhibition of protein synthesis 18
 1.4.1.2 Inhibition of cell wall synthesis 19
 1.4.1.3 Inhibition of DNA synthesis 19

1.5 Mechanism of antibiotic resistance in Gram-negative bacteria ... 21
 1.5.1 Efflux pump mediated antibiotic resistance 21
 1.5.2 Outer membrane permeability and antibiotic resistance ... 22
 1.5.3 β-lactamases ... 24
 1.5.3.1 Introduction ... 24
 1.5.3.2 Classification of β-lactamases 25
1.5.3.3 Extended spectrum β-lactamases (ESBLs) 25
1.5.3.4 Carbapenemases ... 27
1.5.3.5 Class A carbapenemases 28
1.5.3.6 Class D β-lactamases ... 29
1.5.3.7 Metallo-β-lactamases .. 30

1.6 Global emergence of clinical antibiotic resistant Gram-negative bacteria ... 32
1.6.1 Evolution of antibiotic resistance in Gram-negative bacteria ... 37

1.7 DNA structures that spread antibiotic resistance 44
1.7.1 Plasmids in multi-resistant Gram-negative bacteria 44
1.7.2 Pathogenicity islands (Multi resistance in bacteria) 45
1.7.3 Transposons ... 47
1.7.4 Integrons ... 48
1.7.5 Insertion sequence common regions (ISCRs) 51
1.7.6 Insertion sequences .. 52
1.7.6.1 Integrative and conjugative elements (ICE) 53

1.8 Objectives of study .. 55

Chapter Two

Methods and Materials 57

2.1 Bacterial collection .. 58
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1</td>
<td>Ethical considerations</td>
<td>58</td>
</tr>
<tr>
<td>2.2</td>
<td>Safety considerations</td>
<td>59</td>
</tr>
<tr>
<td>2.3</td>
<td>Bacterial strains used</td>
<td>59</td>
</tr>
<tr>
<td>2.4</td>
<td>Chemicals, reagents and radioactive labels</td>
<td>59</td>
</tr>
<tr>
<td>2.5</td>
<td>Growth Media</td>
<td>60</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Luria Bertani Broth</td>
<td>60</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Luria Bertani Agar</td>
<td>60</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Mueller-Hinton Agar</td>
<td>60</td>
</tr>
<tr>
<td>2.5.4</td>
<td>MacConkey Agar No.3</td>
<td>61</td>
</tr>
<tr>
<td>2.5.5</td>
<td>MacConkey Agar</td>
<td>61</td>
</tr>
<tr>
<td>2.5.6</td>
<td>MacConkey Agar for isolation of ESBL/MBL positive isolates</td>
<td>61</td>
</tr>
<tr>
<td>2.5.7</td>
<td>S.O.C Medium</td>
<td>61</td>
</tr>
<tr>
<td>2.6</td>
<td>Sterilisation of Media</td>
<td>61</td>
</tr>
<tr>
<td>2.7</td>
<td>Isolation of Environmental strains</td>
<td>61</td>
</tr>
<tr>
<td>2.8</td>
<td>Etest experiments</td>
<td>62</td>
</tr>
<tr>
<td>2.9</td>
<td>Antimicrobial susceptibility testing and MIC determination</td>
<td>62</td>
</tr>
<tr>
<td>2.10</td>
<td>Phenotypic and genotypic detection of ESBLs</td>
<td>62</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Amplification of DNA sequences using PCR</td>
<td>62</td>
</tr>
<tr>
<td>2.10.1.1</td>
<td>Amplification of bla_{CTX-M} type ESBLs</td>
<td>62</td>
</tr>
<tr>
<td>2.10.1.2</td>
<td>Detection of bla_{CTX-M} group1 and ISEcp1 genes</td>
<td>65</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2.10.1.3</td>
<td>Amplification of (\text{bla}{\text{TEM}}, \text{bla}{\text{SHV}}, \text{bla}_{\text{AMP}}), class 1 integrons and transposons</td>
<td></td>
</tr>
<tr>
<td>2.10.2</td>
<td>Phenotypic detection of MBLs</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Detection of (\text{bla}_{\text{OXA-48}}) and IS1999</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>Random amplified polymorphic DNA RAPD)</td>
<td></td>
</tr>
<tr>
<td>2.12.1</td>
<td>RAPD DNA extraction by Chelex prep</td>
<td></td>
</tr>
<tr>
<td>2.12.2</td>
<td>Random amplified polymorphic DNA (RAPD-PCR)</td>
<td></td>
</tr>
<tr>
<td>2.12.3</td>
<td>DNA profile analysis by Agilent Bioanalyzer</td>
<td></td>
</tr>
<tr>
<td>2.12.4</td>
<td>GelCompare analysis</td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>Multilocus sequence typing</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>Plasmid identification</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>Transconjugation experiments</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>Southern hybridization</td>
<td></td>
</tr>
<tr>
<td>2.16.1</td>
<td>Characterization of chromosomally and plasmid mediated resistance genes</td>
<td></td>
</tr>
<tr>
<td>2.16.1.1</td>
<td>Preparation of plugs of whole genomic DNA</td>
<td></td>
</tr>
<tr>
<td>2.16.2</td>
<td>Pulsed Field Gel Electrophoresis (PFGE)</td>
<td></td>
</tr>
<tr>
<td>2.16.3</td>
<td>Colony blotting</td>
<td></td>
</tr>
<tr>
<td>2.16.4</td>
<td>In gel hybridization</td>
<td></td>
</tr>
<tr>
<td>2.16.5</td>
<td>Labeling DNA probes</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>2.17</td>
<td>Cloning experiments</td>
<td>80</td>
</tr>
<tr>
<td>2.18</td>
<td>Purification of TMB-1</td>
<td>81</td>
</tr>
<tr>
<td>2.18.1</td>
<td>Expression</td>
<td>81</td>
</tr>
<tr>
<td>2.18.2</td>
<td>Periplasm isolation</td>
<td>82</td>
</tr>
<tr>
<td>2.18.3</td>
<td>Purification of the β-lactamase</td>
<td>82</td>
</tr>
<tr>
<td>2.18.4</td>
<td>Gel-filtration</td>
<td>83</td>
</tr>
<tr>
<td>2.19</td>
<td>Kinetic assay</td>
<td>83</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>85</td>
</tr>
<tr>
<td>3.2</td>
<td>Results</td>
<td>88</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Antimicrobial sensitivity testing</td>
<td>88</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Genotypic detection of ESBLs</td>
<td>89</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>The prevalence of CTX-M groups 1, 2, 8, 9 and 26</td>
<td>89</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>Detection of CTX-M-15 genes and ISEcp1</td>
<td>90</td>
</tr>
<tr>
<td>3.2.2.3</td>
<td>Detection of TEM and SHV</td>
<td>94</td>
</tr>
<tr>
<td>3.2.2.4</td>
<td>CTX-M group1 type ESBLs</td>
<td>97</td>
</tr>
<tr>
<td>3.2.2.5</td>
<td>Detection of blaOXA-48 and IS1999</td>
<td>99</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Characterisation of plasmids carrying blaCTX-M group1 and ISEcp1</td>
<td>99</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Typing of K. pneumoniae by RAPD</td>
<td>102</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Molecular typing of K. pneumoniae</td>
<td>105</td>
</tr>
</tbody>
</table>
3.2.6 Multilocus sequence typing 110
3.2.7 Detection of chromosomally / plasmid mediated

bla\textsubscript{CTX-M} group1 .. 112
3.2.8 Transconjugation experiments 113
3.2.9 Detection of plasmid mediated \textit{bla}\textsubscript{CTX-M} group1 in

parents and transconjugants 117
3.2.10 Detection of the movement of ISEcp1 from parents
to transconjugants 117
3.2.11 Plasmid Typing ... 122
3.2.12 Detection of mobile genetic elements 122
 3.2.12.1 Class 1 integrons 122
 3.2.12.2 Identification of transposons 125
 3.2.12.3 Transposase encoding genes 127
 3.2.12.3.1 PFGE of SI genomic digests and probing with tniC 127
 3.2.12.4 Detection of ISCR elements 130
3.3 Discussion .. 132

Chapter Four

4.1 Introduction ... 139
4.2 Results ... 141
 4.2.1 Characterisation of \textit{E. coli} isolates and

antimicrobial susceptibility testing 141
4.2.2 Detection of TEM, SHV and CTX-M type ESBLs 141

4.2.3 Transconjugation experiments 142

4.2.3.1 Antibiotic resistance profile of E. coli transconjugants ... 143

4.2.4 Plasmid typing of ESBL positive E. coli 148

4.2.5 Detection of plasmid mediated bla_{CTX-M} group1 and ISEcp1 in parents and transconjugants of E. coli ... 149

4.2.6 Typing of E. coli isolates 154

4.2.7 Detection of chromosomally mediated bla_{CTX-M} group1 ... 158

4.2.8 Detection of class 1 integrons and Tn402 transposons.. 161

4.3 Discussion ... 162

Chapter Five

5.1 Introduction .. 168

5.2 Results .. 170

5.2.1 Antibiotic susceptibility testing 170

5.2.2 Detection of MBLs using Etest 170

5.2.3 Detection of MBL encoding genes 170

5.2.4 Transconjugation experiment 173

5.2.5 Typing of P. aeruginosa................................. 174
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.6</td>
<td>Detection of chromosomally and plasmid mediated</td>
<td>174</td>
</tr>
<tr>
<td>5.2.6.1</td>
<td>Characterisation of chromosomal /plasmid mediated</td>
<td>174</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Detection of class 1 integrons and transposons</td>
<td>180</td>
</tr>
<tr>
<td>5.3</td>
<td>Discussion</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Chapter Six</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>188</td>
</tr>
<tr>
<td>6.2</td>
<td>Results</td>
<td>190</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Analysis of samples from Tripoli hospitals</td>
<td>190</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Genetic analysis of carbapenem resistance A. xylosoxidans strains AES301</td>
<td>190</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Cloning and transconjugation experiments</td>
<td>192</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Genomic location of bla<sub>TMB-1</sub></td>
<td>193</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Comparison of TMB-1 with other MBLs</td>
<td>193</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Kinetic properties of TMB-1</td>
<td>199</td>
</tr>
<tr>
<td>6.3</td>
<td>Discussion</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Chapter Seven</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Discussion</td>
<td>205</td>
</tr>
</tbody>
</table>

xxix
Chapter Eight

Appendices 216

Appendix A 217

Table A.1 Antibiotics and chemicals used in experiments ... 217
Table A.2 Oligonucleotides used for PCR experiments 218
Table A.3 Oligonucleotides used for PCR experiments 219
Table A.4 Oligonucleotides used for PCR experiments 220

Appendix B 221

Figure B.1 Multiplex PCR to detect CTX-M- groups 1, 2, 8, 9
and 26 ... 221
Figure B.2 Multiplex PCR to detect CTX-M- groups 1, 2, 8, 9
and 26 ... 221
Figure B.3 Multiplex PCR to detect CTX-M- groups 1, 2, 8, 9
and 26 ... 222
Figure B.4 Multiplex PCR to detect CTX-M- groups 1, 2, 8, 9
and 26 ... 222
Fig. B.5 Multiplex PCR to detect CTX-M- groups 1, 2, 8, 9
and 26 ... 223
Fig. B.6 PFGE of SI digests of K. pneumoniae 224
Fig. B.7 Autorad of after probing of PFGE gel from fig.B.6 225
Fig. B.8 DNA sequence amplified from K. pneumoniae
Fig. B.9
Alignment of DNA from fig. B.8
AES59

Fig. B.10
DNA sequence amplified from *K. pneumoniae*
AES59

Fig. B.11
Alignment of DNA from fig. B.10
AES8

Fig. B.12
DNA sequence amplified from *K. pneumoniae*
AES48

Fig. B.13
Alignment of DNA from fig. B.12
AES48

Fig. B.14
DNA sequence amplified from *K. pneumoniae*
AES48

Fig. B.15
Alignment of DNA from fig. B.14
AES48

Fig. B.16
DNA sequence amplified from *K. pneumoniae*
AES48

Fig. B.17
Alignment of DNA from fig. B.16
AES74

Fig. B.18
DNA sequence amplified from *K. pneumoniae*
AES140

Fig. B.19
Alignment of DNA from fig. B.18
AES140

Fig. B.20
DNA sequence amplified from *K. pneumoniae*
AES140

Fig. B.21
Alignment of DNA from fig. B.20
AES140

Fig. B.22
DNA sequence amplified from *K. pneumoniae*
AES140
<table>
<thead>
<tr>
<th>Fig. B.23</th>
<th>Alignment of DNA from fig. B.22</th>
<th>244</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. B.24</td>
<td>DNA sequence amplified from K. pneumoniae</td>
<td>AES261</td>
</tr>
<tr>
<td>Fig. B.25</td>
<td>Alignment of DNA from fig. B.24</td>
<td>246</td>
</tr>
<tr>
<td>Fig. B.26</td>
<td>DNA sequence amplified from K. pneumoniae</td>
<td>AES817</td>
</tr>
<tr>
<td>Fig. B.27</td>
<td>Alignment of DNA from fig. B.26</td>
<td>248</td>
</tr>
<tr>
<td>Fig. B.28</td>
<td>DNA sequence amplified from K. pneumoniae</td>
<td>AES984</td>
</tr>
<tr>
<td>Fig. B.29</td>
<td>Alignment of DNA from fig. B.28</td>
<td>250</td>
</tr>
<tr>
<td>Fig. B.30</td>
<td>DNA sequence amplified from K. pneumoniae</td>
<td>AES1001</td>
</tr>
<tr>
<td>Fig. B.31</td>
<td>Alignment of DNA from fig. B.30</td>
<td>253</td>
</tr>
<tr>
<td>Fig. B.32</td>
<td>Alignment of RpoB gene from K. pneumoniae</td>
<td>AES817</td>
</tr>
<tr>
<td>Fig. B.33</td>
<td>Alignment of GapA gene from K. pneumoniae</td>
<td>AES817</td>
</tr>
<tr>
<td>Fig. B.34</td>
<td>Alignment of infB gene from K. pneumoniae</td>
<td>AES817</td>
</tr>
<tr>
<td>Fig. B.35</td>
<td>Alignment of Pgi gene from K. pneumoniae</td>
<td>AES817</td>
</tr>
<tr>
<td>Fig. B.36</td>
<td>Alignment of PhoE gene from K. pneumoniae</td>
<td>AES817</td>
</tr>
</tbody>
</table>
Fig. B.37
Alignment of tnoB gene from *K. pneumoniae*
AES817 .. 257

Fig. B.38
Alignment of mdh gene from *K. pneumoniae*
AES817 .. 258

Fig. B.39
Alignment of mdh gene from *K. pneumoniae*
AES809 .. 258

Fig. B.40
Alignment of Pgi gene from *K. pneumoniae*
AES809 .. 259

Fig. B.41
Alignment of GapA gene from *K. pneumoniae*
AES809 .. 259

Fig. B.42
Alignment of PhoE gene from *K. pneumoniae*
AES809 .. 260

Fig. B.43
Alignment of tnoB gene from *K. pneumoniae*
AES809 .. 260

Fig. B.44
Alignment of infB gene from *K. pneumoniae*
AES809 .. 261

Fig. B.45
Alignment of RpoB gene from *K. pneumoniae*
AES809 .. 261

Fig. B.46
Alignment of Pgi gene from *K. pneumoniae*
AES808 .. 262

Fig. B.47
Alignment of tnoB gene from *K. pneumoniae*
Fig. B48
Alignment of PhoE gene from *K. pneumoniae*
AES808 ... 262

Fig. B49
Alignment of infB gene from *K. pneumoniae*
AES808 ... 263

Fig. B50
Alignment of RpoB gene from *K. pneumoniae*
AES808 ... 264

Fig. B51
Alignment of mdh gene from *K. pneumoniae*
AES808 ... 264

Fig. B52
Full sequence of AES81 integron 265

Fig. B53
Full sequence of AES83 integron 266

Fig. B54
Full sequence of AES135 integron 267

Appendix C

Table C.1
List of *E. coli* isolates used in experiments 268

Fig. C.1
DNA sequence from *E. coli* AES226 269

Fig. C.2
Alignment of DNA from fig. C.1 270

Fig. C.3
DNA sequence from *E. coli* AES228 274

Fig. C.4
Alignment of DNA from fig. C.3 274

Fig. C.5
DNA sequence from *E. coli* AES232 277

Fig. C.6
Alignment of DNA from fig. C.5 277

Fig. C.7
DNA sequence from *E. coli* AES228 280

Fig. C.8
Alignment of DNA from fig. C.7 281
Chapter One
General Introduction
1.1 Antibiotics

1.1.1 Introduction
Selman Waksman was one of the most recognized investigators in the field of bacteriology in 1940's, Waksman defined the term "antibiotic" as the substance that has the ability to kill bacteria (Bush, 2010a; Waksman & Woodruff, 1942). The term was singularly used to refer to a molecule that was bacteriostatic or bactericidal; however, today, the definition has changed and expanded - it is applied to natural products and synthetic chemicals that have antibacterial and antifungal activities. (Bush, 2010).

1.1.2 History of antibiotics
Antibiotics were introduced in the 1930's as a result of the discovery of the antibiotic penicillin from the fungus *Penicillium notatum* by Alexander Fleming in 1928 and the prontosil (sulfonamidochrysoidine) discovered by Gerhard Domagk in 1932. Such discoveries had a profound impact on human health and provided rapid and effective treatment of patients suffering from bacterial infections known to have been fatal. (Butler & Cooper, 2011).

β-lactam antibiotics were introduced clinically in 1940s exemplified by the antibiotic penicillin to treat bacterial infections caused by human pathogenic bacteria after approval of Food and Drug Administration (FDA) as before this time of the antibiotic era, infections such as bacteraemia caused by *Streptococcus pneumoniae* were the causative agents of mortality (Coates et al., 2002; Dineen et al., 1976). The introduction of antimicrobial agents helped
to decrease the mortality rates, e.g. the subcutaneous use of sulfanilamide caused reduction of acute meningococcal meningitis from 70-90% to nearly 10% (Powers, 2004). Between the 1930s and 1960s, more than 20 new classes of antibiotics were discovered – mainly natural or semi-synthetic (Table 1.1). As a result of these antibiotics to treat severe and life-threatening infections, the story has become a successful one (Butler & Buss, 2006; Powers, 2004) and has led to an over confidence on the ability of antimicrobials to eradicate all infectious diseases.

After the 1960s, research for new and novel drugs slowed and pharmaceutical industry paid less attention to antimicrobial research (Boucher et al., 2009). This in part can be explained by the difficulty in discovering new antibacterial agents with completely novel mechanisms of action and also the cost of research – particularly clinical trials. (Coates et al., 2002; Powers, 2004).

Since the intensive work on antimicrobial agents in the 20th century, only two new classes of antibiotics; daptomycin (Figure 1.1) and oxazolidinones (Figure 1.2) have recently been utilised to treat Gram-positive infections, whereas, innovation to address Gram-negative bacteria is still struggling and, at best, can only rely on modification of existing drugs e.g. fluoroquinolones (Figure 1.3), aminoglycosides (Figure 1.4), tetracyclines (Figure 1.5) and β-lactams. (Figure 1.6) (Bush & Pucci, 2011).
1.2 Gram-Negative Bacteria

Gram-negative bacteria are micro-organisms that are known to have an outer "cell envelope" or outer membrane (OM), which differs considerably from other bacterial strains in terms of structure and function. This "cell envelope" is composed of three envelope layers; the OM layer, the periplasm and the inner membrane or cytoplasmic membrane (Figure 1.7) (Gupta, 2011).

The structure of the OM has a unique lipid bilayer and its layers of phospholipids are confined to the inner side of the OM (Silhavy et al., 2010). Glycolipids are main components of the OM and they are principally lipopolysacharides (LPS) which are located as an outer leaflet of the Gram-negative OM and play an important role as a functional barrier. LPS comprises the core of polysaccharide, lipid A, and extended polysaccharide chain O antigen. Lipid A is also known as the endotoxin, minute amounts of which can cause fever and septic shock syndrome. (Ryan et al., 2004; Silhavy et al., 2010).

The OM contains proteins which differ to proteins of the cytoplasmic membrane. Those proteins are classified into two groups; lipoproteins and β-barrel proteins. The function of most lipoproteins are not known yet, whereas the β-barrel proteins are known as Outer Membrane Proteins (OMPs) and have different roles according to the kind of OMP, for instance the function of
OmpF and OmpC are known as porins in *E. coli* allows the passive diffusion and facilitated movement of monosaccharides, disaccharides and amino acids.

Table 1.1 History of antibiotic introductions and approval (according to Powers, 2004)

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Year of Discovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfonamides</td>
<td>1935 (launched)</td>
</tr>
<tr>
<td>B-lactams</td>
<td>1941 (launched)</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>1944 (introduced)</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>1947 (launched)</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>1949 (launched)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>1950 (launched)</td>
</tr>
<tr>
<td>Macrolides</td>
<td>1952 (introduced)</td>
</tr>
<tr>
<td>Glycopeptides</td>
<td>1956 (introduced)</td>
</tr>
<tr>
<td>Rifamycins</td>
<td>1957 (introduced)</td>
</tr>
<tr>
<td>Nitromidiazoles</td>
<td>1959 (introduced)</td>
</tr>
<tr>
<td>Quinolones</td>
<td>1962 (introduced)</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>1964 (introduced)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>1967 (launched)</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>1968 (launched)</td>
</tr>
<tr>
<td>Oxazolidinones</td>
<td>2000 (launched)</td>
</tr>
<tr>
<td>Linezolid</td>
<td>2000 (launched)</td>
</tr>
<tr>
<td>Lipopeptides</td>
<td>2003 (launched)</td>
</tr>
</tbody>
</table>
Figure 1.1 Chemical structure of Daptomycin (according to Bush & Pucci, 2011)

Figure 1.2 Chemical structure of the oxazolidinone radezolid (according to Bush & Pucci, 2011)

Figure 1.3 Chemical structure of the fluoroquinolone delafloxacin (according to Bush & Pucci, 2011)
Figure 1.4 Chemical structure of the aminoglycoside ACHN-490 (according to Bush & Pucci, 2011)

Figure 1.5 Chemical structure of the tetracycline omadacycline (according to Bush & Pucci, 2011)

Figure 1.6 Chemical structure of the Avibactam NXL-104 (according to Bush & Pucci, 2011)
Figure 1.7 Cell wall envelopes of Gram-positive and Gram-negative bacteria (LPS: Lipopolysaccharide; LTA: Lipoteichoic acid)
(http://www.cehs.siu.edu/fix/medmicro/genmicr.htm)
acids across the OM (Sihavy et al., 2010; Greenwood, 2007; Ryan et al., 2004). The OMPs in Klebsiella pneumoniae; OMPK35 and OMPK36, act as a channel for antibiotics to pass through these porins to the cytoplasm and losing either has shown to facilitate resistance to cephalosporins (Tsai, et al., 2011).

The periplasm lies between the two membranes (Figure 1.7) and is filled with a fluid called the periplasmic gel and situated between the outer and the inner membranes and considered as the interior part of the cell envelope. The periplasm plays a crucial role as a transporter of sugars and amino acids and because it is densely packed with proteins, it acts to sequester of the harmful RNAse and alkaline phosphatase degradative enzymes. The periplasm is inhabited with periplasm binding proteins and chaperon like molecules, both have different functions. Periplasm binding proteins act as transporter of sugars and amino acids as well as chemotaxis, whereas chaperon like molecules function in envelope biogenesis (Silhavy et al., 2010) such as the movement of synthesised molecules e.g. LPS from the cytoplasm to across the periplasm be assembled on the outer membrane, specific transporters are required; the periplasmic protein LptA, the OM lipoprotein LptE and the β-barrel OM protein LptD. (Ruiz et al., 2009). Chromosomal, plasmid-mediated or inducible β-lactamases present in the periplasm play an important role in protecting the PBPs from β-lactam antibiotics (Sykes & Matthew, 1976).
The cell wall consists of a thin layer of peptidoglycan known as murein 5-10 (nm) linked to the outer membrane via lipoproteins. N-acetylglucosamine and N-acetylmuramic acid molecules represent the main structure of the peptidoglycan layer; moreover, they are cross-linked with penta-peptide side chains (Vollmer et al., 2008). Despite the fact that the peptidoglycan in Gram-negative bacterial cell wall is greatly reduced, it plays a significant role in giving the cell its stability and rigidity and, accordingly, determines cell shape. The reason for this is the composition of glycan chains in the form of N-acetylglucosamine-N-acetylmuramic acid, which is found linked in alternative ways to form murein saculus heteropolymer. The penicillin binding proteins (PBPs) play a major role in the polymerization of the glycan strand that is called transglycosylation. PBPs are the target of β-lactam antibiotics but are protected by β-lactamases in the periplasm (Sauvage et al., 2007).

1.3 Examples of antibiotics used in treatment of infection caused by bacteria

Gram-negative bacteria are a leading cause of life-threatening infections and include nosocomial infections (NI), nosocomial pneumonia (NP), urinary tract infections (UTIs), intra-abdominal infections (IAIs), pediatric bacterial meningitis, septicaemia, neutropenia, community acquired infections (CAIs), and pelvic inflammatory diseases (Lamb et al., 2002; Plosker et al., 1998; Chaudhuri et al., 2011; Baughman, 2009). Since the discovery of antibiotics, many classes of antibiotics have been employed and derivatives of established
antibiotics trialed to overcome increasing resistance. (Table 1.2) (Coates et al., 2002).

Table 1.2 Main classes and examples of antibiotics and β-lactamase inhibitors (according to Coates et al., 2002)

<table>
<thead>
<tr>
<th>Class</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-lactams</td>
<td></td>
</tr>
<tr>
<td>Penicillins</td>
<td>Penicillin G, penicillin V, methicillin, oxacillin, cloxacillin, dicloxacillin, nafcillin, ampicillin, amoxicillin, carbenicillin, ticarcillin, mezlocillin, pipercillin, azlocillin, temocillin</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td></td>
</tr>
<tr>
<td>First generation</td>
<td>Cephalothin, cephradine, cephaloridine, cefazolin</td>
</tr>
<tr>
<td>Second generation</td>
<td>Cefamandole, cefuroxime, cephradine, cefprozol, loracetabef, cefotaxime, cefmetazole</td>
</tr>
<tr>
<td>Third generation</td>
<td>Cefotaxime, ceftriaxone, cefoperazone, cefazidime, cefixime, cefpodoxime, cefditoren</td>
</tr>
<tr>
<td>Fourth generation</td>
<td>Cefpirome, cefepime</td>
</tr>
<tr>
<td>Carbapenems</td>
<td>Imipenem, meropenem</td>
</tr>
<tr>
<td>Monobactams</td>
<td>Aztreonam</td>
</tr>
<tr>
<td>β-lactamase inhibitors</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Streptomycin, neomycin, kanamycin, paromycin, gentamicin, tobramycin, amikacin, netilmicin, spectinomycin, sisomicin, dibekacin, isepamicin</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline, chlortetracycline, demeclocycline, minocycline, oxytetracycline, methacycline, doxycycline</td>
</tr>
<tr>
<td>Rifamycins</td>
<td>Rifampicin (also called rifampin), rifapentine, rifabutin, bezoxazinorifamycin, rifaximin</td>
</tr>
<tr>
<td>Macrolides</td>
<td>Erythromycin, azithromycin, clarithromycin</td>
</tr>
<tr>
<td>Lincosamides</td>
<td>Lincomycin, clindamycin</td>
</tr>
<tr>
<td>Glycopeptides</td>
<td>Vancomycin, teicoplanin</td>
</tr>
<tr>
<td>Streptogramins</td>
<td>Quinupristin, dallopristin</td>
</tr>
<tr>
<td>Sulphonamides</td>
<td>Sulphanilamide, para-aminobenzoic acid, sulfadiazine, sulfisoxazole, sulfamethoxazole, sulfathalidine</td>
</tr>
<tr>
<td>Oxazolidinones</td>
<td>Linezolid</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Nalidixic acid, oxolinic acid, norfloxacin, pefloxacin, enoxacin, ofloxacin/levofloxacin, ciprofloxacin, temafloxacin, lomefloxacin, fleroxacin, grepafloxacin, sparfloxacin, trovafloxacin, clinafloxac, gatifloxacin, moxifloxacin, sitafloxacin</td>
</tr>
<tr>
<td>Others</td>
<td>Metronidazole, polymyxin, trimethoprim</td>
</tr>
</tbody>
</table>
1.3.1 β-lactams

1.3.1.1 Cephalosporins

Cephalosporins are class of antimicrobials used to treat bacterial infections due to Gram-negative and Gram-positive bacteria. Cephalosporins are divided to 1st, 2nd, 3rd, 4th and 5th generations. The 1st generation was first introduced in 1945 as natural product derivatives to disrupt the cell wall by interrupting the synthesis of peptidoglycan causing lysis of bacteria. (Butler & Buss, 2006). Third generation cephalosporins are among the most widely used subclass of antibiotics and include cefotaxime, ceftazidime, and ceftriaxone. This class of antibiotics is administered to treat hospital acquired infections particularly to eradicate infections caused by Enterobacteriaceae e.g. *K. pneumoniae* and *Escherichia coli*.

1.3.1.1.1 Cefotaxime

Cefotaxime has a broad-spectrum of activity and plays an important role in the treatment of Gram-negative bacterial infections in adult and pediatric patients. It is administrated to treat bacterial infections due to skin and soft tissue infections, nosocomial infections, pneumonia, complicated urinary tract infections, meningitis, bone and joint infections and bacteraemia (Adu & Armour, 1995; Plosker *et al*., 1998; Dajani, 1995).
1.3.1.1.2 Ceftazidime

Ceftazidime is an aminothiazolyl syn-methoxyimino cephalosporin, it is a \(\beta \)-lactam antibiotic has broad-spectrum activity against Gram-negative. Ceftazidime is administered to treat bacterial infections e.g. respiratory tract, genitourinary tract, gynecological, bone and joint, septicaemia, intra-abdominal, bacteraemia, meningitis, skin and tissue and ventilator associated pneumoniae infections (VAPs). (Buijk et al., 2002; Lorente et al., 2007).

1.3.1.1.3 Ceftriaxone

Ceftriaxone was introduced in 1980s and used extensively to treat bacterial infections due to its stability against \(\beta \)-lactamases, particularly produced by members of Enterobacteriaceae. It is used to treat broad range of infections; these include meningitis in adults and infants, acute otitis media, CAIs, uncomplicated gonorrhea, pelvic inflammatory disease, acute pyelonephritis and spontaneous bacterial peritonitis. (Lamb, et al., 2002; Jones, et al., 1998; Diekema, et al., 1999).

1.3.1.2 Carbapenems

Carbapenems are derived from the antibiotic thienamycin which is a natural product of the Gram-positive bacterium \textit{Streptomyces cattleya}. This class of \(\beta \)-lactams includes meropenem, imipenem, ertapenem, and doripenem. Carbapenems are often used as empirical therapy and to treat bacterial infections caused by Gram-negative bacteria that produce resistant
determinants against extended spectrum cephalosporins. Carbapenems are classified into two groups. Group 1 comprises antibiotics that have limited antibacterial activity against non-fermenters Gram-negative bacteria such as ertapenem. Group 2 includes antibiotics active against non-fermenters and recommended to treat nosocomial infections. (Shah & Isaacs, 2003; Livermore and Woodford, 2000; Birnbaum et al., 1985; Ayalew et al., 2003; Zhanel et al., 2007; Mohr, 2008).

1.3.1.2.1 Imipenem

Imipenem is N-formimodoyl-thienamycin (Figure 1.8) is not used on its own because it is rapidly degraded by dehydropeptidase produced by the human kidney and has an adverse toxic effect on the kidney, therefore imipenem should be co-administrated with cilastatin in the ratio of 1:1 to act as an inhibitor of the dehydropeptidase enzyme and to neutralize the toxic effect of the antibiotic. (Rodloff et al., 2006).

Transpeptidases also known as penicillin binding proteins (PBPs) cross link the peptidoglycan and provide the bacteria with a rigid cell wall are the main targets for imipenem. Imipenem has been shown to inactivate the transpeptidase of PBP-1A, PBP-1B and PBP-2, it moreover, inhibits the D-alanine carboxypeptidase of PBP-4 and PBP-5 in E. coli. (Hashizume et al., 1984). Imipenem is a broad-spectrum antibiotic indicated as initial empirical therapy and in treating serious bacterial infections including NI, ventilator
associated pneumonia (VAP), febrile neutropenia (Torres et al., 2000; Zanetti et al., 2003; West et al., 2003; Raad et al., 2003; Cherif et al., 2004), hospital acquired pneumonia (HAP), healthcare associated pneumonia (HCAP), patients hospitalized suffering from intra-abdominal infections, patients with skin and soft tissue infections and lower respiratory tract infections (Neu, 1983; Shah & Isaacs, 2003).

![Figure 1.8 (N-formimidoyl-thienamycin). (Rodloff et al., 2006).](figure)

1.3.1.2.2 Meropenem

Meropenem is a member of carbapenems marketed to eradicate Gram-negative bacterial infections and was approved by the FDA in 1996 (Zhanel et al., 2007; Baldwin et al., 2008). Meropenem binds effectively to penicillin binding protein (PBP) with high affinity, accordingly inhibiting the growth of the micro-organism. It has high affinity to PBPs 2, 3, and 4 of E. coli and PBPs 1 and 2 of Pseudomonas aeruginosa (Baldwin et al., 2008).
Meropenem is effective in the treatment of several infectious diseases caused by pathogenic bacteria, it is recommended for the treatment of NP, it can also be used as an alternative to other antibiotics such as amikacin (Alvarez Lerma, 2001) or combinations of antibiotics e.g. ceftazidime and tobramycin (Heyland et al., 2008). Meropenem is also very efficacious in treating patients with complicated intra-abdominal infections (CIAI) (Zanetti et al., 1999; Brismar et al., 1995). In one study, 153 patients with septicaemia, meropenem was effective as an empirical therapy, and as effective as ceftazidime with or without amikacin (Baldwin et al., 2008). Meropenem also displays high efficacy in treating adults and paediatric patients suffering from cancer related febrile neutropenia infected with E. coli, Klebsiella spp and P. aeruginosa (Oguz et al., 2006; Kutluk et al., 2004; Feld et al., 2000; Cometta et al., 1996), and patients with bacterial meningitis caused by K. pneumoniae and Haemophilus influenzae (Odio et al., 1999; Schmutzhard et al., 1995). It is also highly active in treating complicated urinary tract infections (CUTI) (Cox et al., 1995); complicated skin and skin structure infections (CSSSIs) (Fabian et al., 2005) and acute pulmonary infections caused by P. aeruginosa in patients with cystic fibrosis (Blumer et al., 2005).

1.3.1.2.3 Ertapenem

Ertapenem has a broad-spectrum activity against Gram-negative bacteria but not non-fermenters as it has limited antibacterial activity and it is recommended for CAIs (Keating & Perry, 2005). Ertapenem is active against
Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases. Ertapenem binds to PBPs, subsequently interferes with bacterial cell wall synthesis and due to occurrence of 1β-methyl substituent, co-administration with cilastatin with ertapenem is not required as ertapenem is stable against renal dehydropeptidase I. (Alhambra et al., 2004).

1.3.1.2.4 Doripenem

Doripenem was approved by FDA in 2007 to be used to treat CIAI and CUTIs (Paterson & Daryl, DePestel, 2009). Its activity resembles that of meropenem (Jones et al., 2005a; Mushtaq et al., 2004). Doripenem forms a stable acyl-enzymes and causing weakness bacterial cell wall and consequently lead to cell wall rupture as a result of osmotic pressure forces (Stratton, 2005). PBP2 and PBP3 in \(P. \) aeruginosa and \(E. \) coli are the prime targets for doripenem (Davies et al., 2008).

Doripenem is very similar to meropenem in the treatment of post-surgical infections (Lucasti et al., 2008); and can be employed to treat CUTIs, pyelonephritis and baseline bacteremia, hospital acquired pneumonia including VAP (Rea-Neto et al., 2008; Chastre, et al., 2008).

1.4 Mechanism of antibiotic action

1.4.1 Introduction

Antibiotics were discovered and introduced as to be used to treat bacterial infections by interrupting the physiological mechanisms inside the bacterial
envelope/cytoplasm that allow normal cellular function. Two main mechanisms of bacterial inhibition are known, bactericidal drugs induce cell death while bacteriostatic drugs act as cell growth inhibitors (Kohanski, et al., 2010). Herein, I will describe the effect of antibiotics on protein synthesis, cell wall and DNA synthesis.

1.4.1.1 Inhibition of protein synthesis

Protein synthesis occurs at the ribosome of bacteria and during phases of synthesis, initiation, elongation and termination, more specifically on the 50S and 30S subunits (Figure 1.9). Inhibitors of protein synthesis differ according to the target site, inhibitors of 50S subunit of Gram-negative bacteria include lincosamide e.g clindamycin and chloramphenicol (Katz & Ashley, 2005). Aminocyclitol family and tetracyclines are among the 30S ribosome inhibitors and include kanamycin, gentamicin and streptomycin. These antibiotics inhibit the bacterial growth by interrupting the access of aminoacyl-tRNAs to the ribosome (Chopra & Roberts, 2001). Protein mistranslation can also occur as a result of the interaction between aminoglycosides and 16S rRNA, such interaction causes alteration in the complex between mRNA and aminoacyl-tRNA at the ribosome and consequently mismatching of tRNA will take place leading to protein mistranslation (Pape et al., 2000).
1.4.1.2 Cell wall synthesis

The bacterial envelope is enclosed by a covalently cross-linkage of peptidoglycan layers, these layers are composed of peptide β-(1-4)-N-acetyl hexosamine. (Bugg & Walsh, 1992). The integrity of the bacterial cell wall is likely to be affected by the degree of peptidoglycan cross-linking (Holtje, 1998). As mentioned previously, β-lactams are the largest group of antibiotics that target the cell wall (Figure 1.10). Glycopeptides also share this target. Carbapenems and cephalosporins are important classes of antibiotics used as a therapy, their mechanism of action is represented in blocking the cross-linking of peptidoglycan units, such blocking is achieved by the inhibition of PBP by means of transpeptidase. (Kohanski et al., 2010).

1.4.1.3 Inhibition of DNA synthesis

Quinolone antibiotics are DNA synthesis inhibitors that act by targeting DNA gyrase that is known as topoisomerase II and topoisomerase IV which is
known as topoIV (Figure 1.11). These antibiotics prevent the rejoining of the DNA strand at the DNA cleavage stage and consequently affect the synthesis of DNA and cause cell death. It has been shown that quinolone antibiotics target topoisomerase II in Gram-negative bacteria e.g. *E. coli* and *Neisseria gonorrhoeae* (Drlica *et al.*, 1978; Kohanski *et al.*, 2010).

Figure 1.10 Inhibition of cell wall synthesis by β-lactams (according to Kohanski *et al.*, 2010)

Figure 1.11 Inhibition of DNA synthesis by quinolones (according to Kohanski *et al.*, 2010)
1.5 Mechanism of antibiotic resistance in Gram-negative bacteria

Several factors have been attributed to the ascending level of bacterial resistance to antimicrobial agents used in clinical settings and have led to the emergence of multi-drug resistant strains.

1.5.1 Efflux pump mediated antibiotic resistance

Efflux is considered one major mechanism by which bacteria can expel antimicrobials outside the cell. Efflux pumps are often chromosomally mediated; however, some plasmid mediated pumps have been reported. Five families of efflux pumps were reported, ATP binding cassette superfamily (ABC), the multi-drug and toxic compound extrusion family (MATE), the major facilitator superfamily (MFS), the small multi-drug resistance family (SMR) and the resistance nodulation division superfamily (RND). (Li & Nikaido, 2004; Li & Nikaido, 2009).

Single or multi-drug resistance in E. coli is in part attributed to the occurrence of efflux transports in addition to other resistance mechanisms. More than 37 efflux pumps were found in the genome of E. coli belonging to different families; seven RND type, seven ABC type, 1 MATE type and 19 MFS. AcrAB is known to work with the outer membrane protein TolC as the combination system shows broad substrate specificity toward β-lactams, chloramphenicol and novobiocin as well as dyes, detergents and organic solvents (Li & Nikaido, 2004). Twelve types of RND type efflux system have
been described as responsible for resistance of *P. aeruginosa* to antimicrobials, detergents, chemicals, molecules, dyes and antiseptics for instance MexAB-OprM, MexCD-OprJ, MexEF-OprN, MexGHI-OprD and MexXY efflux pumps. MexAB-OprM efflux provides a wide range of resistance to antibiotics, β-lactam, tetracycline, trimethoprim, chloramphenicol with intrinsic resistance toward fluoroquinolones (Askoura *et al.*, 2011).

1.5.2 Outer membrane permeability and antibiotic resistance

The outer membrane in Gram-negative bacteria has already been described in (section 1.2). Antibiotics undertake two pathways to penetrate the outer membrane targeting the cytoplasmic membrane; the lipid-mediated pathway and general porin diffusion. Some antibiotics use both ways to enter the cell e.g. tetracycline and quinolones. Hydrophobic antibiotics enter the Gram-negative bacterial outer membrane via the lipid-mediated pathway whereas the hydrophilic antibiotics use porins to reach their target (Delcour, 2009). Gentamicin, kanamycin, erythromycin, rifamycin, fusidic acid and cationic peptides are known as hydrophobic antibiotics able to enter the cell through the outer membrane bilayer (Vaara, 1992; Nikaido, 2003).

Bacteria use the LPS core region as a barrier for hydrophobic antibiotics. Some antibiotics and chemicals play a major role in the sensitivity of bacteria to antimicrobials, e.g. Tris/EDTA and polymyxin B. The target of Polymyxin B is the cytoplasmic membrane; it penetrates the cell and by binding to negatively charged LPS causes destabilisation of the outer membrane, the fatty
acid tail of the antibiotic causes disruption to the membrane integrity leading to the antibacterial action. Resistance of bacteria to polymyxin B is achieved by esterification of the lipid A phosphates by the occurrence of 4 to 6 times of 4-aminoarabinose and more phosphoethanolamine, these compounds lower the negative charge of the LPS leading to more resistance to polymyxin B penetration (Cardoso, 2007; Delcour, 2009).

The term porin refers to β barrel proteins that act as a channel crossing the cell membrane. The classical porins that are known to facilitate the diffusion of molecules are OmpC and OmpC subfamilies; however, some exceptions should be taken into consideration such as PhoE in *E. coli* and OprD of *P. aeruginosa* and others. (http://www.membranetransport.org/). The porin channel provides an entry for β-lactams and fluoroquinolones but Gram-negative bacteria have developed some mechanisms to withstand antibiotics, such as changing porin type or the levels expressed, modification of the target site and synthesis of pore blocking molecules. (Pagés *et al.*, 2008). For example, OmpK35, one of the characteristic porins of *K. pneumoniae* and of the OmpF porin group was replaced with OmpK36 as a result of the exposure to treatment of patients harbouring the *K. pneumoniae* with β-lactam antibiotics (Doménech-Sánchez *et al.*, 2003). In vivo and in vitro evidence show that mutation occurred in OprD of *P. aeruginosa* causing carbapenem resistance in the presence or absence of carbapenemase production (Ochs *et al.*, 2000; Wolter *et al.*, 2004).
1.5.3 β-lactamases

1.5.3.1 Introduction

The term β-lactamase refers to the enzymes produced by micro-organisms that hydrolyses β-lactam molecules and thus singularly or in part enables β-lactam resistance. More than 500 β-lactamase enzymes have been reported to date (www.lahey.org/studies.webt.htm). It is considered the most common β-lactam resistance mechanisms that contribute to widespread resistance among Gram-negative bacteria (Bush & Jacoby, 2010). β-lactamases differ from one another in substrate profiles which depend on the number and types of antibacterial agents they can inactivate. They also differ in terms of their inhibitor profile. Moreover, the amino acid composition of these enzymes is another factor in distinguishing the similarities and the existence of active hydrolytic parts of the enzyme (Ambler, 1980; Bush, 2010 b). In Gram-negative bacteria, the occurrence of β-lactamase mediated resistance is either expressed chromosomally or is plasmid borne. However, the spread of β-lactamases is frequently associated with plasmid encoded ESBLs, specifically the CTX-M family, and serine carbapenemases KPC and the Metallo-β-lactamases (MBLs) VIM, IMP and NDM-1 (Pitout, 2010). Based on substrate specifications, four major groups of β-lactamases have been identified so far; penicillinases, AmpC-type cephalosporinases, ESBLs and carbapenemases. For the purpose of my thesis, I will primarily focus on ESBLs and carbapenemases rather than the less-extended β-lactamases.
1.5.3.2 Classification of β-lactamases

The importance of the antibiotics penicillins and cephalosporins to treat infectious diseases has led to the focus on exploring the characteristics of enzymes produced by bacteria that hydrolyze these antibiotics. Many bacteria are able to exhibit a new approach to withstand antibiotics, more specifically β-lactams. This is frequently noticed by the insertion of new nucleotide sequences in the genetic context of a particular antibiotic resistance gene or by changing of one or more nucleotides in the nucleotide sequence that lead to different amino acid sequences e.g. TEM group of β-lactamases. Consequently, this may result in a different substrate hydrolysis profile that can lead to a higher level of antibiotic resistance. However, a decrease in antibiotic hydrolysis may also be observed. By 2009 more than 500 unique protein sequences for β-lactamases had been reported (Bush & Jacoby, 2010). β-lactamases have been classified in two ways, the first classification is Ambler classification based on the classification of β-lactamases according to their primary structure (Ambler, 1980), while Bush, Jacoby, Medeiros classification is based on functional characteristics of β-lactamases (Bush et al., 1995).

1.5.3.3 Extended spectrum β-lactamases (ESBLs)

ESBLs are a group of enzymes able to hydrolyze and confer resistance to penicillins, cephalosporins, monobactams and oxyimino-cephalosporins that include cefotaxime, ceftazidime, ceftriaxone, cefuroxime and cefepime. These
enzymes do not affect some cephaplysins such as cefoxitin and cefotetan. ESBLs have no or little activity towards carbapenems. They are inhibited by the classical β-lactamase inhibitors; clavulanic acid, sulbactam and tazobactam. The majority of ESBLs have been classified under Ambler class A β-lactamases, these enzymes include blaSHV and blaTEM that have evolved from e.g. blaSHV-1 and blaTEM-1 encoding genes. Such derivation is attributed to one or more point mutations occurring on the β-lactamase active site (Paterson & Bonomo, 2005).

ESBLs are often found carried on large plasmids. In addition, a number of antibiotic resistance genes that confer resistance to antibiotics such as aminoglycosides and trimethoprim/sulphamethoxazole are also found on the same plasmids. ESBLs are considered among the largest group of β-lactamase known to activate antibiotics such as penicillins and cephalosporins rendering carbapenems as the last choice for treating infections, this results in more pressure on carbapenems. (Bush, 2010b). CTX-M enzymes are among the wide spread ESBLs, since their first description in 1989 (Bauernfeind et al., 1990), over 120 CTX-M type ESBLs have been discovered to date (http://www.lahey.org/studies/other.asp#table1). CTX-M ESBLs are grouped into five major clusters; CTX-M-1,2,8,9 and 25 (Barlow et al., 2008 & Bonnet, 2004), CTX-M 1 and CTX-M 9 being the most diverse clusters with 31 and 22 variants identified respectively. CTX-M enzymes comprise a wide range of subgroups for instance; CTX-M group1 1, 2 and 9 are known to
include more members of CTX-M variants than CTX-M 8 and 25 e.g., CTX-M-1,3,10,11,12,32,36 and CTX-M-15, CTX-M group 2 encompasses CTX-M-2,20,31,5,6,56,7 and others, CTX-M-9 includes for instance; CTX-M-9,13,14,17,47,48 and CTX-M-55. CTX-M groups 8 and 25 includes only few variants (Novias et al., 2010 & Harada et al., 2008). The dissemination of CTX-M ESBLs is oftentimes associated with the occurrence of Insertion Sequence Common Regions (ISCRs) which are found to be located upstream of antibiotic resistance genes and can activate their transmission. The occurrence of CTX-M ESBLs in E. coli isolates from nine patients in Norway has been recently assessed. Six of the ESBL genes were \textit{bla}_{CTX-M-15} and one \textit{bla}_{CTX-M-3}. All \textit{bla}_{CTX-M-15} bore resemblance to each other in terms of their sensitivity to antimicrobials used with minimum inhibitory concentrations (MICs), $\geq 256 \, \mu g/ml$ and $\geq 256 \, \mu g/ml$ for cefotaxime and ceftazidime, respectively (Naseer et al., 2007).

1.5.3.4 Carbapenemases

Carbapenems are hydrolysed by carbapenemases produced by Gram-negative bacteria such as members of Enterobacteriaceae and non-fermenters. These enzymes have been classified into three classes according to Ambler classification; class A, B and D. Class A and D are known as serine carbapenemases and Class B are called metallo- β-lactamases (MBLs) (Walsh, 2010).
1.5.3.5 Class A carbapenemases

Class A carbapenemases are also known as group 2f, according to Bush et al., 1995, comprises five phylogenetic groups; NMC, IMI, SME, KPC and GES and are subdivided into chromosomally and plasmid mediated groups. SME, NMC and IMI are chromosomally mediated whereas KPC and GES groups are, in most cases, plasmid mediated. These enzymes possess hydrolytic activity towards most β-lactams including carbapenems, cephalosporins, penicillins, and aztreonam and have been found in Enterobacteriaceae and P. aeruginosa. SME-1, SME-2 and SME-3 were chromosomally mediated in Serratia marcescens whereas IMI-1, IMI-2 and NMC-A are detected on the chromosome of Enterobacter cloacae. GES-2 was found plasmid mediated in P. aeruginosa, GES-4 has been detected on a plasmid in K. pneumoniae isolated from a Japanese patient whereas GES-5 and GES-6 were plasmid mediated in E. coli and K. pneumoniae isolated from Greece (Queenan and Bush, 2007; Walsh, 2010).

KPC enzymes are among the plasmid encoded class A serine carbapenemases, mostly from K. pneumoniae, and are considered the most frequently detected class A enzymes that have a potent threat to antimicrobials used to treat infections. KPC enzymes were first discovered in K. pneumoniae isolated from a patient from North Carolina, USA in 1996. KPC-1 was followed by KPC-2 and, later on KPC3, KPC-4, KPC-5, KPC-6 and KPC-7 as variants of KPC-1 and KPC-2. KPC genes have been reported on plasmid in
Enterobacterial species; *E. coli*, *Salmonella cubana*, *E. cloacae*, *Proteus mirabilis*, and *K. oxytoca*. Self transferable KPC genes have been determined to be transferred to *E. coli*, they have also been detected carried on a 10kb transposon, Tn4401, and associated with the insertion sequences ISKpn6 and ISKpn7 (Nass et al., 2008; Nordmann et al., 2009; Walsh, 2010; Queenan and Bush, 2007).

1.5.3.6 Class D β-lactamases

This class of β-lactamases includes enzymes called oxacillinases, these enzymes hydrolyze cloxacillin, oxacillin, extended spectrum cephalosporins and carbapenems. Oxacillinases such as *bla*OXA-1 and *bla*OXA-10 are among enzymes that show increased hydrolysis of cloxacillin or oxacillin whereas *bla*OXA-11 and *bla*OXA-15 hydrolyse cloxacillin or oxacillin and even oxyimino-β-lactams less efficiently than others. Some β-lactamases can target carbapenems for instance *bla*OXA-23 and *bla*OXA-48 in addition to cloxacillin and oxacillin, these enzymes have been detected plasmid mediated in Enterobacteriaceae (Poirel et al., 2004; Walther-Rasmussen and Hoiby, 2006).

Four clusters of oxacillinases are responsible for carbapenem hydrolysis in Gram-negative bacteria; *bla*OXA-23, *bla*OXA-24, *bla*OXA-58 and *bla*OXA-48 (Walther-Rasmussen & Hoiby, 2006). *bla*OXA-23 cluster comprises two enzymes; *bla*OXA-27 and *bla*OXA-49. The majority of these enzymes are found in *Acinetobacter* and can be chromosomally or plasmid mediated (Poirel & Nordmann, 2006).
1.5.3.7 Metallo-β-lactamases (MBLs)

MBLs are enzymes capable of readily hydrolysing all β-lactam antibiotics with the sole exception of monobactams. In addition they are not inhibited by the classical serine β-lactamase inhibitors (Walsh et al., 2005), (Jones et al., 2005b; Poirel et al., 2010a; Samuelsen et al., 2010; Walsh et al., 2005). At molecular level, MBLs are a disparate group of proteins, they are classified to three classes; B1, B2 and B3 based on sequence identity and other structural features. Classes B1 and B3 possess two zinc ions in their active sites and class B2 possesses only one zinc ion. The widely spread enzymes belong to class B1, these enzymes posses the key zinc coordinating residues of three Histidine and one cysteine such as; IMP, VIM, GIM and SPM-1, class B2 include enzymes that posse asparagine instead of Histidine (Walsh et al., 2005) Most MBL genes are located on mobile genetic elements, the majority of these MBL encoding genes are carried in the form of gene cassettes on class 1 integrons and/or Tn402-type transposons (Marchiaro et al., 2010; Poirel et al., 2010b; Borgianni et al., 2011; Lee et al., 2005; Castanheira et al., 2004; Santos et al., 2010) whereas some of these genes are associated with insertion sequences such as ISCR4 (blaSPM-1), (Salabi et al., 2010; Poirel et al., 2004) and IS26/Tn3 transposon (Yong et al., 2009) which can facilitate their global spread. MBLs have been reported worldwide in non-fermenting Gram-negative bacteria (Osano et al., 1994) and more recently in Enterobacteriaceae (figure 1.12) (Kumarasamy et al., 2010)
The continuous emergence of MBLs and their association with MDR phenotypes in Gram-negative bacteria are considered major threats in the treatment of infectious diseases. To date 9 acquired MBLs have emerged worldwide (Figure 1.12); IMP (Osano et al., 1994), VIM (Lauretti et al., 1999), SPM-1 (Toleman et al., 2002, GIM-1 (Castanheira et al., 2004), SIM-1 (Lee et al., 2005), AIM-1 (Gupta, 2008), KHM-1 (Sekiguchi et al., 2008), NDM-1 (Yong et al., 2009) and DIM-1 (Poirel et al., 2010) genes in addition to the novel TMB-1 that was recently detected in Libya (see chapter 6).

The prevalence of carbapenem resistance strains of *P. aeruginosa* has been reported in China during the period of 2004 to 2005. *P. aeruginosa* strains have been collected from different cities in China including a large teaching hospital in Beijing and data shows that 10 % of all imipenem resistant *P. aeruginosa* carry *bla*\textsubscript{VIM} type MBLs. 12 out of 14 strains of *P. aeruginosa* were positive for class 1 integrons carrying *bla*\textsubscript{VIM-2}. These results reveal that *bla*\textsubscript{VIM-2} type MBL genes disseminated horizontally in China between different cities, due to patients transfer among cities inside the country. (Yu et al., 2006).

Numerous strains of Gram-negative bacteria possess chromosomes that have become a mosaic as a result of the horizontal gene transfer and the vertical inheritance of genes (Waldor, 2010). Four mechanisms by which antibiotic resistance genes can horizontally be mobilised from a chromosome to a
plasmid are integrons, transposons, Integration Conjugative Elements (ICE) (Partridge, 2011) and Insertion Elements (Toleman & Walsh, 2011).

Figure 1.12 Global emergence of MBLs (modified from Walsh, 2010).

1.6 Global emergence of clinical antibiotic resistant Gram-negative bacteria

Gram-negative bacteria, more importantly those belong to Enterobacteriaceae and non-fermenters such as *P. aeruginosa* and *Acinetobacter baumannii*, are among the most causative agents of hospital and community acquired infections. Extended-spectrum cephalosporins, fluoroquinolones and carbapenems are among the main therapeutic choices. The continuous pressure of β-lactam antibiotics in hospitals has exacerbated the selection for consecutive generations of β-lactamases – ESBLs followed by carbapenemases (Chouchani *et al.*, 2011; Coque *et al.*, 2008). The problem
becomes worse when such resistance occurs by horizontal gene transfer or mediated by conjugative plasmids as it is the case generally for ESBLs causing resistance to extended-spectrum cephalosporins. For example, CTX-M-type ESBLs have been detected in Europe with $bla_{CTX-M-15}$, $bla_{CTX-M-3}$ and $bla_{CTX-M-9}$ carried on a variety of different Inc-type plasmids and sizes (Figure 1.13) (Livermore et al., 2007).

![Figure 1.13 The emergence of CTX-M type ESBLs in Europe. (Livermore et al., 2007)](image)

According to the antimicrobial resistance surveillance conducted in Europe between 2006-2009, the recent global emergence of antimicrobial resistance of $K. pneumoniae$, $E. coli$ and $P. aeruginosa$ in Europe showed that there is an
increasing trend in the resistance of these micro-organisms to antimicrobials used. The surveillance showed that *E. coli* isolates collected from European countries exhibited high resistance to aminopenicillin, extended-spectrum cephalosporins and aminoglycosides. European antimicrobial resistance surveillance (EARS-Net) data also shows a continuing increase in fluoroquinolone resistance. High proportion (85-100%) of *E. coli* isolates resistant to extended-spectrum cephalosporins were due to ESBLs indicating the high prevalence of ESBL producing *E. coli* in European hospitals (http://ecdc.europa.eu/en/publications/Publications/1011_SUR_annual_EARS_Net_2009.pdf).

A high proportion of resistance of *K. pneumoniae* to extended-spectrum cephalosporins, fluoroquinolones and aminoglycosides is evident. *K. pneumoniae* isolates from two countries; Greece and Cyprus in the Mediterranean Gulf also show high resistance to carbapenems. Half of the countries involved in the surveillance program reported the incidence of multi-drug resistant (MDR) *K. pneumoniae* to extended-spectrum cephalosporins (Figure 1.14), aminoglycosides and fluoroquinolones whereas northern European countries such as Denmark and Norway reported an increasing trend of resistance to specific classes of antibiotics whilst emergence of resistance in UK showed a consistent reduction (http://ecdc.europa.eu/en/publications/Publications/1011_SUR_annual_EARS_Net_2009.pdf).
With respect to EARS-Net data on *P. aeruginosa* in Europe, data on the resistance trends from the eastern and southern parts of Europe show a higher proportion of antibiotic resistance. Overall, of 8129 *P. aeruginosa* isolates collected from the 28 countries participating in the surveillance, 1541 have shown resistance to carbapenems; imipenem and meropenem (Figure 1.15). (http://ecdc.europa.eu/en/publications/Publications/1011_SUR_annual_EARS_Net_2009.pdf).

Carbapenems were introduced as a first line therapy to treat infections caused by non-fermenters in the 1980s, they have also been used for ESBL-producing Enterobacteriaceae after the increasing trend of resistant enterobacterial species to 3rd generation cephalosporins. Since then acquired carbapenemases started to appear and attracted increasing attention most notably MBLs and to lesser extent other carbapenemases such as class A. Since the discovery of MBLs, 9 of these enzymes with their variants have been reported in Latin America, USA, Europe, Africa, Southern Asia, India and Australia and recently TMB-1 in Libya (see chapter 6). Recently MBLs were found in *K. pneumoniae*, *E. coli* and *E. cloacae* such as *bla*_{NDM-1} that first emerged in India, followed by the UK, and currently has been detected in many countries worldwide (Pfeifer *et al.*, 2011; Chen *et al.*, 2011; Wu *et al.*, 2010; Perry *et al.*, 2011; Solé *et al.*, 2011; Jovcic *et al.*, 2011; Yamamoto *et al.*, 2011).
Figure 1.14 The occurrence of *K. pneumoniae* resistant to 3rd generation cephalosporins in Europe (http://ecdc.europa.eu/en/publications/Publications/1011_SUR_annual_EARS_Net_2009.pdf)
1.6.1 Evolution of antibiotic resistance in Gram-negative bacteria

Antimicrobial resistance surveillance programs are vital and considered a longitudinal means of detecting changes in resistance to antimicrobials in clinically important pathogenic bacteria. These programs include the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) (Turner et al., 1999), SENTRY (http://www.jmilabs.com/surveillance/), Intensive Care Antimicrobial Resistance Epidemiology (ICARE) (Perasso et al., 1999), European Antimicrobial Resistance Surveillance (EARSS)
The monitoring of these programs provides information on the increasing or decreasing level of antibiotic resistance rate worldwide. It moreover offers a guide for empirical treatment regimens. The massive use of antimicrobial agents is the leading cause of the prevalence of antibiotic resistant strains in community and hospital settings.

As an example, a longitudinal study was carried out from 1993 to 2004 aimed to assess the resistance rates of Gram-negative bacilli that cause infections in the intensive care units in the United States (Lockhart et al., 2007). Forty three US states in addition to Columbia were included in this study and 74,394 isolates belong to 11 species of Gram-negative bacteria were collected and tested against 17 antibiotics. The results showed that 22.2 % of all Gram-negative isolates were *P. aeruginosa* followed by 18.8 % *E. coli* and 14.2 % *K. pneumonia*, with additional low percentages of other Gram-negative bacteria. Furthermore, *P. aeruginosa* was the highest among UTIs with 29.9 %. *E. coli* represented the highest among urine isolates with 42.4 %, while it counted as 23.9 % in the blood. Antibiotic susceptibility testing revealed that the highest resistance rate have been recorded for ampicillin-sulbactam, with five-fold increase in the resistance of *P. aeruginosa*, while evaluation of the rate of multi-drug resistance between 1993 and 2004 showed that a longitudinal increase in MDR has been observed (Table 1.3). It has been noticed that there is an association between fluoroquinolone usages as a
therapy and resistance, because the prolonged use of these antibiotics have attributed to the rise of ESBL producing *E. coli* and *P. aeruginosa*. (Lockhart et al., 2007). According to the CDC, MDR is defined as the resistance of bacteria to ≥ 3 classes of antibiotics.

Table 1.3 Longitudinal increase in multi-drug resistance in USA (Lockhart et al., 2007)

<table>
<thead>
<tr>
<th>Organism</th>
<th>1993</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of MDR isolates/total no. of isolates</td>
<td>% of MDR isolates</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>13/769</td>
<td>1.7</td>
</tr>
<tr>
<td>E. coli</td>
<td>0/724</td>
<td>0</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>26/513</td>
<td>5.1</td>
</tr>
<tr>
<td>E. cloacae</td>
<td>13/397</td>
<td>3.3</td>
</tr>
<tr>
<td>Acinetobacter spp.</td>
<td>19/285</td>
<td>6.7</td>
</tr>
<tr>
<td>E. aerogenes</td>
<td>6/213</td>
<td>2.8</td>
</tr>
<tr>
<td>P. mirabilis</td>
<td>1/174</td>
<td>0.6</td>
</tr>
<tr>
<td>C. freundii</td>
<td>5/95</td>
<td>5.3</td>
</tr>
</tbody>
</table>
Another study conducted in Sierallana Hospital in Spain sought factors that may have an additional effect on patients admitted with bacteraemia. Blood samples from 15045 patients were collected to determine the causative agents of bacteraemia in the period from 1997 to 2005. Antibiotic susceptibility tests were performed using the following antimicrobials; ampicilin, amoxicillin/clavulanate, pipracillin/tazobactam, cefotaxime and trimethoprim/sulfamethoxazole. 14.9% of the patients had positive blood cultures, of which, 4.4% of isolates were *E. coli*. It has been reported that the factors that attributed to the occurrence of bacteraemia in this hospital were; MDR *E. coli*, ESBL producing *E. coli*, age of patients, time of treating with antibiotics and the presence of severe sepsis, which collectively had a role in the morbidity due to *E. coli* infections (Peralta *et al.*, 2007).

The activity of meropenem and 11 other antimicrobial agents including third generation cephalosporins has been assessed in the USA for 10 years in the period between 1999-2008 to demonstrate any increase or decrease in the rate of antibiotic resistance. A steady increase in the resistance rate of ciprofloxacin was observed among *E. coli* (Figure 1.16), an increase in the resistance of *K. pneumoniae* strains was detected for meropenem, ceftazidine, piperacillin/tazobactam, tobramycin and ciprofloxacin from 2004 to 2007, however the resistance rate to these drugs slightly decreased in 2008 (Figure 1.17). (Rhomberg and Jones, 2009)
Figure. 1.16 Annual rate of antimicrobial resistance among *E. coli* isolates (4394 strains) tested against selected agents from the MYSTIC Program (1999–2008). (According to Rhomberg and Jones, 2009)

Figure. 1.17 Annual rate of antimicrobial resistance among *K. pneumoniae* isolates (2694 strains) tested against selected agents from the MYSTIC Program (1999–2008). (According to Rhomberg and Jones, 2009)
In Arabia, data on antimicrobial resistance is lacking. However, in Tunisia the appearance of \textit{bla}_{\text{CTX-M}} family occurred in 2005 after the identification of \textit{bla}_{\text{CTX-M-27}} associated with \textit{ISEcp1} in \textit{Salmonella enterica} and continued to appear in 2006, 2009 and 2010. MBLs were only found in three isolates, \textit{blavim-2} in two isolates of \textit{P. aeruginosa} and \textit{blavim-4} produced by \textit{K. pneumoniae} in addition to other ESBL genes. Oxacillinases started to be reported in 2007 when \textit{bla}_{\text{OXA-18}} was detected in \textit{P. aeruginosa} and different OXA enzymes continued to emerge up to the discovery of \textit{bla}_{\text{OXA-48}} the carbapenem hydrolysing enzyme in \textit{K. pneumoniae} in 2010. (Figure 1.18) (Chouchani \textit{et al.}, 2011). The first report of \textit{bla}_{\text{CTX-M-15}} and \textit{bla}_{\text{CTX-M-3}} in \textit{E. coli}, \textit{K. pneumoniae} and \textit{E. cloacae} isolated from two hospitals in Bejaja, Algeria appeared in 2006 (Touati \textit{et al.}, 2006) followed by detection of \textit{bla}_{\text{CTX-M-15}} in \textit{K. pneumoniae} and \textit{E. coli} from hospital environment (Touati \textit{et al.}, 2007) and in \textit{Salmonella enterica} isolated from patients in Algeria (Touati \textit{et al.}, 2008). \textit{blavim-19} was reported as a novel MBL found in Enterobacteriaceae in Algeria (Robin \textit{et al.}, 2010). Mechanism of antibiotic resistance in clinical isolates of \textit{P. aeruginosa} from patients admitted to the University affiliated hospital of Tlemcen in Algeria was due to the production of \textit{bla}_{\text{OXA-10}} and \textit{bla}_{\text{TEM110}} (Drissi \textit{et al.}, 2008). The first description of CTX-M producing Gram-negative bacteria in Egypt was from clinical isolates of \textit{E. coli} in 2006 (Mohamed Al-Agamy \textit{et al.}, 2006) while the first report of \textit{bla}_{\text{TEM}} and \textit{bla}_{\text{SHV}} appeared in 2009 (Ahmed \textit{et al.}, 2009), showing the lack of research on this subject. \textit{blandm-2} was the only MBL detected in \textit{A. baumannii} from Egypt.
(Kaase et al., 2011). Furthermore, work on \textit{bla}$_{\text{OXA}}$ enzymes from Egypt appeared only in 2011 (Ahmed and Shimamoto, 2011). Plasmid mediated \textit{bla}$_{\text{TEM-3}}$ has been detected in \textit{S. typhimurium} isolated from patients admitted to the IbnRochd University hospital of Casablanca (AitMhand et al., 2002), moreover, \textit{bla}$_{\text{TEM}}$ and \textit{bla}$_{\text{SHV}}$ were reported from \textit{E. coli} and \textit{K. pneumoniae} isolated from community acquired urinary tract infections from three Moroccan cities; Casablanca, El Jadida and Settat (Barguigua et al., 2011). Research on ESBLs, oxacillinases and MBLs started to appear in 2011 showing the lack of focus on antibiotic resistance in Gram-negative bacteria (Barguigua et al., 2011; Porton et al., 2011 & Poirel et al., 2011).

Figure 1.18 The occurrence of \textbeta-lactamases, ESBLs and carbapenemases in Tunisia (Chouchani et al., 2011)
1.7 DNA structures that spread antibiotic resistance

1.7.1 Plasmids in multi-resistant Gram-negative bacteria

Plasmids are extra-chromosomal DNA found in the cytoplasm of bacteria as independent genetic moieties capable of autonomously reproducing copies of the same plasmid within the cell in the presence of mechanisms to control plasmid copy number and the stability of plasmid inheritance. Plasmids carry essential genes for establishing and directing replication. Furthermore, they do not normally have any functional contribution that is necessary for the cell or cell growth. Plasmids are circular and sometimes linear double stranded DNA segments that normally replicate without affecting the circular chromosome (Carattoli et al., 2005). Plasmids are known to carry genes code for detoxification, ecological interactions, virulence and antibiotic resistance. Plasmids can confer and mobilize resistance to antimicrobials by acquiring resistance genes via horizontal gene transfer and consequently increase the genetic diversity of bacteria.

Resistance genes in Enterobacteriaceae have different constraints for host ranges depending on the plasmids that carry them. It is supposed that genes carried on IncP, IncA/C and IncQ can move to genera of Enterobacteriaceae in addition to Pseudomonas and even Gram-positive bacteria due to their larger Gram-positive bacteria due to their larger host range. Other plasmids such as IncFII have a limited host range restraining the transferability of antibiotic resistance genes located on these plasmids, for instance *bla*_{CTX-M-15} does not have the ability to move to non-fermenters such
as *Acinetobacter* and *Pseudomonas* and only limited for Enterobacteriaceae (Carattoli, 2009; Smillie *et al*., 2010).

1.7.2 Pathogenicity islands (Multi resistance in bacteria)

The multi-resistance genotype can reflect the occurrence of resistance islands that include a considerable number of resistance markers and are known as genomic islands (Schmidt & Hensel, 2004). Several bacterial species have shown that the multi-drug resistance phenotypes were mainly attributed to the incidence of resistance islands. These isolates include; *Shigella flexneri*, *S. enterica*, *Vibrio cholera* and *Staphylococcus aureus* with genomic islands sized 20 to 60 kb (Dobrindt *et al*., 2004).

One of the first resistance islands to be fully characterised from genomic sequencing was that by Fournier *et al.* that reported an 86kb island from *A. baumannii*. This strain, AYE, included 45 antibiotic resistance genes, 25 of which belong to β-lactams, aminoglycosides, fluoroquinolones, tetracyclines, trimethoprim, chloramphenicol, rifampicin and sulphonamides. Several antibiotic resistance genes were previously reported in *Acinetobacter* spp for instance *bla*_{OXA-10} and *bla*_{VEB-1}, *aac3*, *aadA1/B* and *dhfr1*, were also found in this island whereas some other resistance genes had not been reported in *Acinetobacter* species before such as *aac6*, *tetA*, *cmlA*, *dfRX* and *bla*_{OXA-69}. *aac6* confers resistance to aminoglycosides except gentamicin, *tetA* is a tetracycline resistance gene, *cmlA* encodes the multidrug efflux pump Cmr/MdfA, *dfRX* confers resistance to trimethoprim and *bla*_{OXA-69} is a class D
β-lactamase found to weakly hydrolyse imipenem and meropenem (Figure 1.19). The island also showed the incidence of three class 1 integrons with 14 gene cassettes embedded within these integrons (Fournier et al., 2006).

Transposons and insertion sequences were detected in the island and showed the occurrence of 22 ORFs encoding transposases, 4 transposons, 2 truncated transposons Tn5393 and Tn1721 and two Tn-like transposable elements. The occurrence of this massive number of antibiotic resistance markers, antiseptics and mercury resistance genes in one strain shows how complex the genetic pool can be. (Fournier et al., 2006).

Figure 1.19 Genomic island of A. baumannii AYE according to (Fournier, PE. et al., 2006)
1.7.3 Transposons

Some transposons contribute to the movement of antibiotic resistance genes as part of class 1 integrons. These transposons include the Tn3 family, the Tn5053 family and Tn402-like transposons. These families differ from each other in terms of structure and transposase genes carried by these transposons. The Tn3 family is composed of two subgroups; Tn3-like and Tn21-like transposons, they share the same 38bp Inverted Repeat IR, transposase gene (tnpA), a resolution site (res) and resolvase gene (tnpR). These transposons carry antibiotic resistance genes as part of class 1 integron, moreover, they carry mercury resistance genes and genes specific for transposition functions. Unlike the Tn3 family of transposons, the Tn5053 family and Tn402-like transposons are responsible for carrying and spreading antibiotic resistance genes captured by class 1 integrons. Two major steps have been proposed to elucidate the mechanism by which class 1 integron has become part of the Tn402-like transposons. The first step was by inserting the integron inside the Tn402-like transposons while the other step suggest the formation of the conserved segment (qacEA/suII) followed by the loss of part of tni. (Toleman et al., 2007; Sajjad et al., 2011). Tn402-like differ from the Tn3 family in having three transposase genes; tniA, tniB, tniQ, the resolution site res is located between these genes and the resolvase gene tniR and sometimes called tniC gene. Tn402-like transposons are increasingly reported carrying antibiotic resistance genes in the form of gene cassettes embedded in class 1 integrons. (Partridge, 2011).
Transposons such as Tn5090/Tn402 carrying \(\text{bla}_{\text{VIM-2}} \) was detected in a clinical isolate of Indian \(P. \text{aeruginosa} \). Sequencing of the full transposon, including the integron showed that this structure is very much like the American and Russian \(\text{bla}_{\text{VIM-2}} \) integron structures harbouring \(\text{aacA7, bla}_{\text{VIM-2}}, \text{dhfrB5} \) and \(\text{tniC} \). All three integrons had the same variable region structure and lacked the conserved segment considered a character of class 1 integrons harbour by Tn5090/Tn402 transposons, resulting from excision and acquiring of gene cassettes. (Toleman et al., 2007).

1.7.4 Integrons:

Integrons are genetic elements found in most cases, plasmid mediated and recently some large integrons were detected on the chromosome. Integrons carried on plasmids are responsible for the incorporation of antibiotic resistance genes known as gene cassettes inside the integrons and as a result of this integration they enhance the expression of the gene conferring resistance to antimicrobials. (Walsh, 2006; Mazel, 2006). The first integron was detected in Gram-negative bacteria as a mechanism by which integrons in cooperation with transposons can express multi-resistance phenotype. Integrons are classified in two kinds; mobile integrons and superintegrons. Mobile integrons are always plasmid located and are divided into five classes; class 1 integrons originated from Tn402 and is found inserted in Tn21 (Mazel, 2006). Class 1 integrons are largely associated with acquiring and mobilising antibiotic resistance genes and are counted as the main responsible system for such
occasion in Enterobacteriaceae. The wild-type class 1 Integron is composed of
two sequences; 5 conserved sequence which is also known as (5’CS) and 3
conserved sequence (3’CS) where 5’CS represents the Intgrase gene and 3’CS
comprises quaternary ammonium compound resistance gene (qacAE1) and
sulphonamide resistance gene (sul1), respectively. (Cambray et al., 2010).
This class of mobile integrons is responsible for conferring resistance to some
β-lactams such as aminoglycosides, trimethoprim, rifamycin, erythromycin,
streptothricin, chloramphenicol, fosfomycin, quinolones and antiseptics. The
integrase (IntI) gene is the functional constituent of the integron; it encodes an
enzyme called site-specific tyrosine recombinase and it operates to excise and
integrate gene cassettes on the attachment site (attC). It is called
recombination process (Walsh, 2006). The majority of gene cassettes are
promoter-less and requires Pc promoter embedded on the integrase gene or attI
site. (Cambray et al., 2010).

Class 2 Integrons are found embedded on large transposon called Tn7 and
despite the fact that class 2 integrons encode for non-functional proteins due to
a nonsense mutation in codon 179, they are likely to confer resistance to six
antibiotics, whereas Class 3 integrons are less frequent than class 2 integrons.
Class 4 and 5 are mainly related to trimethoprim resistance in V. cholerae.
Super Integrons are larger than mobile Integrons and they have been described
in V. cholerae and because of their location on the chromosome; alone, they
are not mobile and consequently are not capable of mobilising genes (Mazel, 2006).

Class 1 integrons in particular play an important role in disseminating carbapenemase encoding genes such as MBLs in addition to other antibiotic resistance determinants in Enterobacteriaceae and non-fermenters. The most virulent and crucial factors for high levels of resistance to carbapenems particularly MBLs were identified as carried on class 1 integrons, for instance; \(\text{bla}_{NDM-1}, \text{bla}_{VIM-1}, \text{bla}_{VIM-2}, \text{bla}_{IMP} \) and \(\text{bla}_{DIM-1} \) (Poirel et al., 2010; Yong et al., 2009; Walsh et al., 2005; Zhao et al., 2009). Class 1 integron was also found to have contributed to dissemination of antibiotic resistance genes to unrelated clinical isolates in Brazil where it has been detected carrying \(\text{bla}_{IMP-1} \) and a new aminoglycoside resistance gene, \(\text{aac(6')-3I} \) in \(P. \text{putida} \), different isolates of \(A. \text{baumannii} \) and Acinetobacter sp. (Mendes et al., 2007)

Integrons have also been detected in bacterial strains collected from manured soil with increased prevalence of integrons after slurry application. Class 1 and 2 integrons were determined in Acinetobacter, Aerococcus, Bacillus, Enterococcus, Pseudomonas and Enterobacteriaceae (Byrne-Bailey et al., 2011). Class 1 integrons were also identified in sewage treatment plants occurring at different levels in affluent water, activated sludge and effluent water. It has been shown that 57 isolates out of 189 isolates belonging to \(E. \text{coli} \), Klebsiella, Aeromonas salmonicida, A. veronii and A. media, were identified carrying class 1 integrons (Ma et al., 2011).
1.7.5 Insertion Sequence Common Regions (ISCRs)

Common Regions (CRs) have been discovered since the mid-1990s as being associated antibiotic resistance genes. It has a size of 2154 bp and incorporated an open reading frame, orf513, that was found inserted adjacent to class 1 integron and beside the sulI gene (Toleman et al., 2006a). They comprise orf513 and 33 bp sequence of DNA and they argued that it might play a role in what is called recombination crossover site (RCS). Common regions can promote the expression of some resistance genes in *E. coli*, *K. pneumoniae* and *A. baumannii* and these genes are: *qnrA*, *blaCTX-M-9*, *blaCTX-M-2* and *dfrA10* (Rodriguez-Martinez et al., 2006).

Common Regions or Insertion Sequence Common Region (ISCR) have now become an established mechanism of gene movement. It is proposed that ISCR possess two ends, orfIS and terIS as insertion and termination sites of ISCR, respectively. These insertion sequences have been found as truncated parts at the right side of 3′CS of class 1 Integron and associated with two genes; *qac* and *sul*. Furthermore, this insertion sequence has been found without terIS – providing evidence that a deletion event occurred. Misreading of terIS and passing through many events of transcriptions and translocation resulted in the development of these “complex class 1 Integron”, together with misreading and homologous recombination has resulted in genes *qac* and *sul* added to the end of 3′CS (Toleman et al., 2006a).
Many derivatives of ISCRs have been discovered and associated with the mobilisation of antibiotic resistance genes. These insertion elements were firstly described in In6 and In7 class 1 Integrons. ISCR1 can carry trimethoprim resistance genes such as \textit{dfrA23} and \textit{dfrA18}, also they have been found to be associated with quinolones resistance (Stokes \textit{et al.}, 1989). ISCR1 has been detected upstream of \textit{qnrA} in class 1 Integrons and virtually all isolated genes were identical in spite of their country of origin. ISCR1 plays a major role in the resistance of Gram-negative bacteria to aminoglycosides where it has been detected upstream of \textit{armA} genes. Additionally, ISCR1 is associated with ESBLs that inhibit the activity of the antibiotic cefotaxime and class A \(\beta\)-lactamases such as \textit{bla\textsubscript{VEB-3}}, \textit{bla\textsubscript{PER-3}}, \textit{bla\textsubscript{CMY-1}} and \textit{bla\textsubscript{CMY-9}}. ISCR2 is also widely disseminated and associated with resistance islands such as SXT via orfA. Despite the fact that ISCR2 is not associated with class 1 integrons, it has been found associated with \textit{sul2} gene. ISCR3 seems to be more specific for \textit{Salmonella} genomic island 1 genetic element (SGI 1 element) and erythromycin gene (\textit{erm}). However, it has also been proposed that it is associated with the resistance of \textit{Stenotrophomonas maltophilia} to trimethoprim/sulfamethoxazole. (Toleman \textit{et al.}, 2006b)

1.7.6 Insertion Sequences

Insertion sequences are considered as the simplest bacterial mobile DNA interms of their structure, they comprise more than 19 families, they have different sizes but in general they range between 600 to 3000 bp. They consist
of one or more open reading frame that code for transposase proteins flanked with short sequences of inverted repeats (Wagner et al., 2007) ISEcp1B is another paradigm of insertion sequences that is associated with mobilisation and expression of some antibiotic resistance genes. It is characterised by several features; it can express and mobilise as well as disseminate the cefotaxime resistance gene \(bla_{CTX-M-19} \). Promoter sequences, which are located close to its inverted right repeat (IRR), can also facilitate expression of genes. ISEcp1B has been found associated with \(bla_{CTX-M-19} \) in a strain of \(K. pneumoniae \) resistant to ceftazidime (Poirel et al., 2003). Lartigue and colleagues described the ability of ISEcp1B to mobilise and express the \(\beta \)-lactamase gene, \(bla_{CTX-M} \) from a transposon, which was located on a chromosome of \(Kluyvera \) ascorbata and moved to a plasmid (Lartigue et al., 2006).

1.7.6.1 Integrative and Conjugative Elements (ICE)

Integrative and conjugative elements (ICE) are mobile genetic elements known as self-transmissible and found in Gram-positive and negative bacteria. ICE can be transferred from one strain to another by conjugation and lateral gene transfer. Like plasmids and phages, ICEs compromise of three modules divided according to functions responsible for maintenance, dissemination and regulation. ICEs maintain their virtual inheritance by integrating into a replicon of the host either plasmid or chromosome by means of gene encoding a recombinase called Int that catalyze \(attP \) on the ICE and a target sequence.
attB on the chromosome. ICE, on the circular form, can be integrated into the chromosome by recombination between attP and attB, creating two ICE chromosome junction sequences, attL and attR. ICEs are excised by excisionases called Xis and require the presence of attL and attR to perform excision. Dissemination of single stranded DNA of ICE is carried out by conjugation, genes specific for synthesis of mating machinery to enable the initiation between donor and recipient cell to deliver DNA to the recipient cell. (Wozniak & Waldor, 2010; Burris & Waldor, 2004).
1.8 Objectives of study

Libya is located in North Africa bordered by the Mediterranean Sea from the north, Egypt from the east, Sudan from the southern east, Chad and Niger from the south and Algeria and Tunisia from the west. Libya is considered a very rich country; it has one of the most important resources worldwide, oil. Compared with other Arabic, European and Asian countries, Libya should have been one of the best countries in terms of development, infrastructure, investments and education; however, the last 40 years obfuscation and perfidy have retarded this potential.

Given that there is little information known on antibiotic resistance in Gram-negative bacteria in Libya and North Africa, I took the opportunity to investigate the mechanisms of antibiotic resistance in Gram-negative bacterial isolates collected from clinical, non-clinical and environmental settings in Tripoli and Benghazi, Libya.

The study focuses on the characterisation of antibiotic resistance mechanisms of isolates collected from patients admitted to different wards, in particular Intensive Care Units (ICUs). Moreover this study investigates the spread of MDR bacteria in the hospital environment to understand the occurrence of outbreaks within an individual hospital or among different hospitals. The emergence of MDR bacteria in non-clinical samples was also investigated in this study in order to associate the spread of nosocomial pathogens among
patients, within the hospital and outside the clinical settings. This is the first molecular study conducted on antibiotic resistance on bacterial strains isolated from Libya and will hopefully provide a useful insight on the problem of antibiotic resistance in Libya and in general Arabia.
Chapter Two

Methods and Materials
2.1 **Bacterial collection.**

Isolates used in this study were collected randomly from Tripoli and Benghazi from hospitals and environment outside the hospital during 2008-2009. Collection of the clinical samples included specimens from inpatients; outpatients and the hospital environment. Environmental swabs were collected from Tripoli and Benghazi streets, cafes etc. whereas the hospital environment samples refer to swabs collected from hospital floors, corners, toilets, walls, bedsides, sinks, curtains, trolleys, gauze containers, work tables and medical devices such as; mechanical ventilators, oxygen cylinders, baby incubators, nebulizers, anaesthesia, hypolizer, suction machine, tip of catheter. Bacterial isolates cultured from the swabs were identified by the use of Phoenix (Becton and Dickinson, USA). *E. coli* topo10 kit (Stratagene, Amsterdam, the Netherlands) was used in the cloning experiments. The swabs were transferred to the lab in transferring charcoal media (Technical Service Consultants Ltd, Heywood, UK).

2.1.1 **Ethical considerations**

The limited amount of information required for each specimen was such that ethical approval was not considered necessary and because there is no ethical board in Libyan hospitals.
2.2 Safety considerations

Regulations and safety were undertaken according to the Ionising Radiation Regulations, 1999.

2.3 Bacterial strains used

The following bacterial strains were used in cloning experiments

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Reference/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH5α-T1<sup>R</sup></td>
<td>F<sup>ϕ</sup>80lacZAΔM15Δ(lacZYA-argF)U19 recA1 endA1 hsdR17(τ<sup>-</sup>, m<sup>+</sup>) phoA supE44 thi-1 gyrA19 relA1 tonA</td>
<td>Invitrogen Ltd</td>
</tr>
<tr>
<td>E. coli J53</td>
<td>-</td>
<td>Nordmann et al., 2008</td>
</tr>
<tr>
<td>E. coli GFP</td>
<td>-</td>
<td>Mata et al., 2011</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>-</td>
<td>Barkay et al., 1993</td>
</tr>
<tr>
<td>PA01</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

2.4 Chemicals, reagents, and Radioactive labels.

Chemicals were purchased from BDH Chemicals Ltd and Sigma. Media constituents were obtained from either Oxoid laboratories or Fisher Scientific
laboratories. Radiolabelled Phosphorus 32P was supplied from PerkinElmer, Boston, MA02118, United State of America (USA), 800-762-4000, Random primer labelling kits were supplied from Agilent Stratagene products, USA. PCR Gel extraction kits and plasmid miniprep purification kits were supplied from QIAGEN GmbH, D-40724 Hilden, Lambda Ladder PFGE Marker was obtained from New England Biolabs.Inc. Digestive enzymes; *XbaI*, *S1* and *SpeI* were purchased from Fermentas Life Sciences company. PCR Master Mix was supplied from Thermo Fisher Scientific ABgene House, Blenheim Road, Epsom, Surrey, UK.

2.5 Growth Media.

2.5.1 Luria Bertani Broth

L.B. broth was made up according to the manufacturer’s instructions (Fisher Scientific Ltd).

2.5.2 Luria Bertani Agar

L.B. Agar was made following the manufacturer’s instructions (Fisher Scientific Ltd).

2.5.3 Mueller-Hinton Agar

MHA was supplied by Oxoid Ltd plate poured ready to use in Etest experiments
2.5.4 MacConkey Agar No.3
MA no.3 was used to distinguish phenotypically between *K. pneumoniae* and *E. coli* in conjugation experiments, the medium was made up according to the manufacturer’s instructions (Oxoid Ltd).

2.5.5 MacConkey Agar
MA was purchased from Oxoid Ltd plate poured ready to use.

2.5.6 MacConkey Agar for isolation of ESBL/MBL positive isolates
MA was made up and supplemented with 10mg/l of ceftazidime to be used as selective media; preparation of media was carried out according to the manufacturer’s instructions (Oxoid Ltd).

2.5.7 S.O.C Medium
This was used as part of the TOPO10 cloning kit purchased from Invitrogen, Life Technologies, Carlsbad, California, USA.

2.6 Sterilisation of Media.
Media was sterilised by autoclaving at 0.75kg cm\(^2\) for 20min at 121°C.

2.7 Isolation of environmental strains
Swabs collected from non-clinical settings and the environment outside the hospitals were cultured on MacConkey agar supplemented with 10mg/l of ceftazidime to select for isolates resistant to third generation cephalosporins.
Pure cultures were obtained by sub-culturing mixed cultures from the primary MA plates on a new selective MA plates supplemented with the same concentration of antibiotic.

2.8 Etest experiments
Etest strips containing imipenem (IP) and EDTA as MBL inhibitor (IPI) were purchased from (BioMérieux, Paris, France). They were used to detect the occurrence of metallo-β-lactamases (MBLs) in carbapenem resistant isolates.

2.9 Antimicrobial Susceptibility Testing and MIC determination
Antibiotic resistance profile tests and minimum inhibitory concentration (MIC) determination for clinical, non-clinical and environmental isolates were performed according to the Clinical Laboratory standards Institute (CLSI) by the use of Phoenix 100 (Becton-Dickinson, Oxford, UK). MIC\textsubscript{50} and MIC\textsubscript{90} were defined as the minimal concentration that inhibited 50% and 90% of bacterial growth (Hsu et al., 2011).

2.10 Phenotypic and Genotypic Detection of ESBLs
2.10.1 Amplification of DNA sequences using the Polymerase Chain Reaction (PCR)

2.10.1.1 Amplification of \textit{bla\textsubscript{CTX-M}} type ESBLs
\textit{K. pneumoniae} and \textit{E. coli} isolates were screened for the occurrence of \textit{bla\textsubscript{CTX-M}} type ESBLs that belongs to the phylogenetic groups, 1, 2, 8, 9 and 26
using multiplex PCR primers (Table 2.1) targeting a unique region in each group. The PCR experiments were performed using a set of specific primers and PCR conditions as described by Woodford and co-workers in 2006, the PCR products were then run on 1% (w/v) agarose gel to study their number and size in accordance to each phylogenetic CTX-M group (Woodford et al., 2006). Some of the PCR products were selected to represent the source of samples from Tripoli and Benghazi, the PCR products were then cut of the gel and purified using PCR purification kit (QIAGEN GmbH, D-40724 Hilden), the purified PCR products were sequenced by an automated sequencer (377, ABI, Perkin-Elmer, CT) using the same amplification primers for each group of CTX-M family.

The reaction conditions used in the Thermal Cycler were as follows:

- 94°C for 5min | 1 cycle
- 94°C for 25s | 1
- 52°C for 40s | 30 cycles
- 72°C for 50s | 1
- 72°C for 6min | 1 cycle
Table 2.1 Multiplex PCR for CTX-M- groups 1,2,8,9 and 26

<table>
<thead>
<tr>
<th>CTX-M group</th>
<th>DNA sequence</th>
<th>Gene size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-M-1 F</td>
<td>5-A A A A T C A C T G C G G C A G T T C-3</td>
<td>415</td>
</tr>
<tr>
<td>CTX-M-1 R</td>
<td>5-A G C T T A T C T A C T C G A C G T T</td>
<td></td>
</tr>
<tr>
<td>Group 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-M-2 F</td>
<td>5-C G A C G C T G C T A C C C T G C T A T T-3</td>
<td>552</td>
</tr>
<tr>
<td>CTX-M-2 R</td>
<td>5-C C A G C G T C A G A T T T T C G A G T T T-3</td>
<td></td>
</tr>
<tr>
<td>Group 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-M-8 F</td>
<td>5-T C G T A C T A A G G C G A T G A T G C C-3</td>
<td>666</td>
</tr>
<tr>
<td>Group 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-M-9 R</td>
<td>5-A T T G G A A A G C G T C A T C A T T C C T T T-3</td>
<td></td>
</tr>
<tr>
<td>Group 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-M-26 F</td>
<td>5-G C A C G A T G A T C G G G G T T C T G G G C C-3</td>
<td>327</td>
</tr>
</tbody>
</table>
2.10.1.2 Detection of \(\text{bla}_{\text{CTX-M}} \) group 1 and \(\text{ISEcp1} \) genes

\(\text{E. coli} \) and \(\text{K. pneumoniae} \) isolates positive for CTX-M group 1 were subjected to PCR experiments to examine the incidence of \(\text{bla}_{\text{CTX-M-15}} \) encoding genes and the insertion sequence \(\text{ISEcp1} \) gene that is located immediately upstream of the \(\beta \)-lactamase gene. Specific primers were designed to read and amplify the \(\text{bla}_{\text{CTX-M}} \) group 1 alone and in association with the \(\text{ISEcp1} \) (see appendix Table A.2), PCR conditions used were as follows; 1 cycle of heating at 94°C for 5min followed by 30 cycles of heating at 94°C for 25s, 52°C for 40s and 72°C for 1min, the reaction ended with 1 cycle of heating at 72°C for 6 min, for amplification of \(\text{bla}_{\text{CTX-M}} \) group 1. The same PCR conditions were used to detect \(\text{bla}_{\text{CTX-M}} \) group 1 in association with \(\text{ISEcp1} \) with extended annealing time to 90s. Positive controls were not used as some PCR products were sequenced. When required, new primers were designed using primer designer version 1.01, scientific and educational software.

2.10.1.3 Amplification of \(\text{bla}_{\text{TEM}} \) and \(\text{bla}_{\text{SHV}}, \text{bla}_{\text{AmpC}}, \text{class 1 integrons} \) and transposons

\(\text{K. pneumoniae} \) and \(\text{E. coli} \) isolates that were confirmed for ESBLs production were further examined for the occurrence of TEM, SHV, \(\text{bla}_{\text{AmpC}}, \) class 1 integrons transposons Tn402 and Tn21 genes by PCR using specific primers (see appendix Table A.2). The same conditions applied for \(\text{bla}_{\text{CTX-M-15}} \)
amplification were used in these experiments. The alleles were cut, purified and sequenced as previously described.

2.10.2 Phenotypic detection of MBLs

Carbapenem susceptibility of the positive isolates to MBLs was performed using Etest strips (AB BioMerieux, La Plane, France) and the results were interpreted in accordance with the manufacturer’s guidelines. PCR was also conducted to study the occurrence of \textit{bla}_{SPM-1}, \textit{bla}_{VIM}, \textit{bla}_{GIM}, \textit{bla}_{NDM-1}, \textit{bla}_{IMP}, \textit{bla}_{SIM-1}, \textit{bla}_{KHM-1}, \textit{bla}_{AIM-1} and \textit{bla}_{DIM-1}. The PCR conditions used to amplify class 1 integron(s) were the same as described in section 2.9.1.1 and for primers used (see appendix Table A.3) with a slight modification where the annealing temperature in these conditions was 53°C and the elongation temperature was 68°C. All the PCR products were run on 1% (w/v) of agarose gel and the gels were then photographed. The resultant PCR products were purified from the agarose gel and sequenced using an automated sequencer (377, AB, Perkin-Elmer, CT).

2.11 Detection of \textit{bla}_{OXA-48} and IS1999

PCR experiments were performed on \textit{K. pneumoniae} isolates to detect the occurrence of \textit{bla}_{OXA-48} and the insertion sequence IS1999 using specific primers targeting the forward and reverse side of both genes (Table 2.2). PCR products were run in 1% of (w/v) agarose gel in TBE buffer, the electrophoresed gels were photographed.
Table 2.2 Oligonucleotide sequences to detect bla_{OXA-48} and IS1999

<table>
<thead>
<tr>
<th>Gene target</th>
<th>Primer name</th>
<th>Sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXA-48 A</td>
<td>bla_{OXA-48}</td>
<td>5' TTG GTG GCA TCG ATT ATC GG '3</td>
<td>Poirel, L. et al., 2004</td>
</tr>
<tr>
<td>OXA-48 B</td>
<td>bla_{OXA-48}</td>
<td>5' GAG CAC TTC TTT TGT GAT GGC '3</td>
<td>Poirel, L. et al., 2004</td>
</tr>
<tr>
<td>IS1999 A</td>
<td>IS1999</td>
<td>5' CAG CAA TTC TTT TCT CGT G '3</td>
<td>Poirel, L. et al., 2004</td>
</tr>
<tr>
<td>IS1999 B</td>
<td>IS1999</td>
<td>5' CAA GCA CAA CAT CAA GCG C '3</td>
<td>Poirel, L. et al., 2004</td>
</tr>
</tbody>
</table>

2.12 Random amplified polymorphic DNA (RAPD) typing

2.12.1 RAPD DNA extraction by Chelex prep

It is a PCR-based technique used to differentiate between bacterial species by using short primers (Table 2.3) to anneal various locations of the bacterial DNA. A 24 h growth of *K. pneumoniae* isolates plated on MacConkey agar were used without selection and bacterial colonies were picked from the plate by inserting a sterile 200 µl plastic pipette tip into the colonies and dipped into 50 µl of an autoclaved solution of 5% Chelex® 100 resin (Biorad, Hertfordshire, UK).
To resuspend the mixture in the tube, it was agitated briefly. DNA extraction was carried out twice by heating the mixture to 89°C for 5 minutes on a heated block; the samples were immediately transferred to a 4°C chilled block. To sediment the chelex resin and cell debris, the samples were centrifuged for 5 minutes at 13,000 g and 2 µl of the clear supernatant was used as a template DNA to run the PCR.

2.12.2 Random amplified polymorphic DNA (RAPD-PCR)

RAPD-PCR fingerprinting was performed on 80 isolates of *K. pneumoniae* (12 isolates per reaction) as described by Mahenthiralingam et al., 1996. RAPD-PCR was conducted using primer 272 (table 2.3) for all reactions. For confirmatory purposes; RAPD-PCR using primer 270 (table 2.3) was carried out on subsets of *K. pneumoniae* isolates. PCR master mix was prepared prior to each experiment (1X PCR buffer, 1X Q-solution, 3 mM MgCl₂, 200 µM dNTPs mixture, 1.6 µM RAPD primer, 1 U of Taq polymerase and 2 µl of Chelex template DNA. PCR was run on a Flexigene Thermal Cycler (Techne Ltd., Newcastle, UK) using the following PCR conditions; 5 minutes of heating at 94°C, 4 cycles at 36°C for 5 minutes, 72°C for 5 minutes and 94°C for 5 minutes, followed by 30 cycles of 94°C for 1 minute, 36°C for 1 minute and 72°C for 2 minutes. The last step was 72°C for 10 minutes.
2.12.3 DNA profile analysis by Agilent Bioanalyzer

1 μl of each PCR product was run for 20 minutes on an Agilent Bioanalyzer 2100 (Agilent Technologies UK Limited, Cheshire, UK) and a DNA 7500 chip contained 13 wells was used; 12 wells filled with samples, 1 μl in each and one filled with the ladder marker. The wells were also loaded with DNA gel matrix and an internal marker according to the manufacturer’s protocol. After each run the results were saved as csv files.

2.12.4 GelCompar analysis

All csv-files were converted to a format compatible to GelCompar, similarities between fingerprints were calculated to the Pearson coefficient and unweighted pair group method with arithmetic means (UPGMA) was used to construct the dendrogram.

2.13 Multilocus sequence typing (MLST)

A subset of *K. pneumoniae* isolates were selected according to the RAPD-PCR fingerprinting results and MLST analysis was carried out as described by Diancourt *et al.*, 2005 and the MLST website (http:/ /www .pasteur .fr /recherché/genopole/PF8/mlst/Kpneumoniae.html) developed by Jolley *et al.*, 2004. Specific primers were used (Table 2.3) to amplify fragments of the following 7 housekeeping genes; β-subunit of RNA polymerase (*rpoB*), glyceraldehyde 3-phosphate dehydrogenase (*gapA*), malate dehydrogenase
(mdh), phosphoglucone isomerase (pgi), phosphorine E (phoE), translation initiation factor 2 (nfB) and periplasmic energy transducer (tonB).

The PCR conditions used for rpoB, mdh, pgi, phoE and nfB were as follows:

- **94°C for 5 min** | 1 cycle
- **94°C for 5 min** | ↓
- **50°C for 30 s** | 30 cycles
- **68°C for 1 min** | ↓
- **68°C for 10 min** | 1 cycle

The same PCR conditions were used for gapA and tnoB apart from the annealing temperature which was 50°C for gapA and 60°C for tnoB. All PCR products were run on 1% (w/v) Agarose gel and the gels were photographed. All PCR products were sequenced using an automated sequencer (377, ABI, Perkin-Elmer, CT) and the same amplification primers apart from inf forward primer which was replaced with (5'-ACT AAG GTT GCC TCC GGC GAA GC-3') and pgi primers were replaced with pgi2F; (5'-CTG CTG GCG CTG ATC GGC AT-3') and pgi 2R (5'-TTA TAG CGG TTA ATC ATC AGG CCG T-3').
Table 2.3. Oligonucleotides used for PCR amplification and DNA sequencing

<table>
<thead>
<tr>
<th>Gene target</th>
<th>Primer name</th>
<th>Primer sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ropB</td>
<td>ropB F</td>
<td>5’-GGCGAAATGGCCWGAGAACCA-3’</td>
<td>Diancourt et al., 2005</td>
</tr>
<tr>
<td>ropB</td>
<td>ropB R</td>
<td>5’-GAGTCTTCGAAGTGTAACC-3’</td>
<td>Diancourt et al., 2005</td>
</tr>
<tr>
<td>gapA</td>
<td>gapA F</td>
<td>5’-TGAAATATGACTCCACTCACGG-3’</td>
<td>Diancourt et al., 2005</td>
</tr>
<tr>
<td>gapA</td>
<td>gapA R</td>
<td>5’-CTTCAGAAGCGCTTTGATGGCTT-3’</td>
<td>Diancourt et al., 2005</td>
</tr>
<tr>
<td>Mdh</td>
<td>Mdh F</td>
<td>5’-CCCAACTCGCTCAGGTTCCAG-3’</td>
<td>Diancourt et al., 2005</td>
</tr>
<tr>
<td>Mdh</td>
<td>Mdh R</td>
<td>5’-CCGTTTTTCCCAGCAGCAGCAG-3’</td>
<td>Diancourt et al., 2005</td>
</tr>
<tr>
<td>Pgi</td>
<td>pgi F</td>
<td>5’-GAGAAAAAAAACTGCTGACTGCTGGC-3’</td>
<td>Diancourt et al., 2005</td>
</tr>
<tr>
<td>Pgi</td>
<td>pgi R</td>
<td>5’-CGCGCCACGCTTTATAGCGTTAT-3’</td>
<td>Diancourt et al., 2005</td>
</tr>
<tr>
<td>phoE</td>
<td>phoE F</td>
<td>5’-ACCTACGCACACCGACTTCTTCCG-3’</td>
<td>Diancourt et al., 2005</td>
</tr>
<tr>
<td>phoE</td>
<td>phoE R</td>
<td>5’-TGATCAGAACCTGGAAGTGGTAGAT-3’</td>
<td>Diancourt et al., 2005</td>
</tr>
<tr>
<td>infB</td>
<td>infB F</td>
<td>5’-CTCGCTGCTGAGATATATTCCG-3’</td>
<td>Diancourt et al., 2005</td>
</tr>
<tr>
<td>infB</td>
<td>infB R</td>
<td>5’-CGCTTTACAGCTAAGGAACTCAG-3’</td>
<td>Diancourt et al., 2005</td>
</tr>
<tr>
<td>tnoB</td>
<td>tnoB F</td>
<td>5’-CTTTTACCTCGGTACATCGGTT-3’</td>
<td>Diancourt et al., 2005</td>
</tr>
<tr>
<td>tnoB</td>
<td>tnoB R</td>
<td>5’-ATTCGCCGGCTGACRGRAGAGAAGG-3’</td>
<td>Diancourt et al., 2005</td>
</tr>
<tr>
<td>Integrase gene</td>
<td>VAF</td>
<td>5’ GCCTGTTCGGTTCGTAAAGCT 3’</td>
<td></td>
</tr>
<tr>
<td>PAPD-PCR Primer</td>
<td>272</td>
<td>5’- AGC GGG CCA A-3’</td>
<td>Mahenthiralingam et al., 1996</td>
</tr>
<tr>
<td>PAPD-PCR Primer</td>
<td>270</td>
<td>5’- TGC GCG CGG G-3’</td>
<td>Mahenthiralingam et al., 1996</td>
</tr>
</tbody>
</table>
2.14 Plasmid identification

Plasmids are circular extra-chromosomal DNA; they are known to play a role in changing the diversity of the bacterial genome by acquiring or losing genes such as antibiotic resistance genes, subsequently contribute to the movement and transfer of resistance mechanisms from bacteria to bacteria by means of horizontal gene transfer (Carattoli, A. et al., 2005). PCR-based replicons typing was performed to identify plasmids contributed to the dissemination of ESBL and MBL genes among Libyan isolates using 5 multiplex and 3 simplex PCR experiments as described by Carattoli, A. et al., 2005. This procedure is used to identify the major plasmids that are known as incompatible plasmids by recognizing FIA, FIB, FIC, HI1, HI2, Iγ, L/M, N, P, W, T, A/C, K, B/O, X, Y, F and FIIA using eighteen pairs of primers designed to be conducted on 8 PCRs. The 5 multiplex PCRs are designed to recognize three plasmids for each reaction (see appendix Table A.4). Positive controls were used to compare size of plasmids. The PCR conditions used to detect all plasmids apart of F simplex were as follows:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>94°C</td>
<td>5 min</td>
</tr>
<tr>
<td>94°C</td>
<td>1 min</td>
</tr>
<tr>
<td>60°C</td>
<td>30s</td>
</tr>
<tr>
<td>72°C</td>
<td>1 min</td>
</tr>
<tr>
<td>72°C</td>
<td>5 min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cycle</td>
</tr>
<tr>
<td>30 cycles</td>
</tr>
</tbody>
</table>

72
Whereas the conditions of F simplex PCR were almost the same with only one difference as the annealing temperature was changed to 52°C.

2.15 Transconjugation experiments

Conjugation experiments were carried using *E. coli* J53 and GFP as recipients. Fresh colonies of parents and recipients were grown separately on LB broth media (Fisher Scientific, USA Products) in 50 ml Falcon tubes and incubated overnight at 37°C for 18 h. Each isolate of parents was mated with *E. coli* J53 or GFP *E. coli* in aliquots of 1:1 in a fresh LB broth media and incubated overnight at 37°C in shaking incubator. Transconjugants were selected by culturing 100 μl of each mating mixture on LB medium (Fisher Scientific, USA Products) supplemented with 200 μl/ml of sodium azide and 10 mg/l of ceftazidime. Parents that were mated with GFP *E. coli*, the selection was performed on L.B agar supplemented with 50mg/l of rifampicin and 10mg/l of ceftazidime. The plates were subsequently incubated overnight at 37°C for 18 h. Pure colonies of *E. coli* from each plate were picked and transferred to a fresh LB broth media supplemented with 200 μl/ml of sodium azide and 10 mg/l of ceftazidime for *E. coli* J53 transconjugants and with 50mg/l of rifampicin and 10mg/l of ceftazidime for GFP *E. coli* transconjugants. The transconjugants were then plated on LB media supplemented with the same concentrations of antibiotics used for parents and incubated overnight at 37°C for 18 h. The transconjugants that were grown on LB media were stored at -80°C for further investigation. PCR experiments were performed on
transconjugants targeting bla_{CTX-M} group 1 encoding genes and ISEcp1 for K. pneumoniae and E. coli using the forward and reverse primers from table (1).

2.16 Southern hybridisation

2.16.1 Characterization of chromosomally and plasmid mediated resistance genes.

2.16.1.1 Preparation of plugs of whole genomic bacteria DNA

Whole genomic DNA of the bacteria was used to prepare plugs to detect chromosomally and plasmid mediated genes. Bacterial cultures were grown overnight at 37°C. One loop of the fresh colonies of each isolate was suspended in 3 ml of normal saline and the optical density 600 (OD$_{600}$) of each isolate was measured and the formula (1.5/measured OD Multiplied by 300) to adjust the volume of cells to the equivalent of 300 µl in accordance to the OD$_{600}$. The suspended cells were then centrifuged at 13 Kg using mini-centrifuge (Minispin centrifuge, Hamburg, Germany) for 30s and the supernatant removed. Cells were then re-suspended in 300 µl of normal saline and transferred to a 50°C block heater. Cells were lysed by adding 2-3 drops of 25 mg/ml of lysozyme and a 2.5 % (w/v) of pre-warmed (50°C) low melting point agarose was quickly pipetted and gently mixed and quickly dispensed into PFGE plugs components and dried at room temperature for 30 min. 5 plugs of each set were then transferred into a 24 well plate and 2 ml of lysis buffer (10 mM Tris-HCl, pH 7.2, 50 mM NaCl, 0.2% sodium deoxycholate, 0.5% N-Lauroylsarcosine) was added and supplemented with 80 µl of 25mg/l
of lysozyme. The plugs were then incubated at 37 °C for 1.5 hrs. The plugs at this stage were washed with 2 mls of 1X TE buffer (10 mM Tris-HCl, 50 mM EDTA pH 8.0; Bio-Rad) at 37°C for 30 mins. The TE was replaced with 2 mls of proteolysis buffer (100 mM EDTA pH 8.0, 0.2% sodium deoxycholate, 1% and N-Lauroylsarcosine; Bio-Rad) 20 μl of 10 mg/l of Proteinase K and incubated at 50°C for 18 hrs. After the proteolysis buffer was removed, the plugs were then washed five times with 1X TE buffer in shaking incubator at 37°C for 30 mins.

One plug of each set was transferred to a new 24 well plate and washed with 0.1 X TE buffer at 37 °C for 30 mins. The plugs were then washed twice with 2X S1 buffer at room temperature for 15 mins each. The 2X S1 buffer was removed and replaced with 1X S1 buffer and washing was performed at room temperature for 15 min. The S1 buffer was then removed and 1 μl of 20U of S1 endonuclease (Promega, USA) was added and the plugs were incubated at 37°C for 45 min. 100 μl of ES buffer (0.5 M EDTA, pH 8; 1% N-Lauroylsarcosine) was added to stop the digestion. PFGE gels were prepared; 0.88% (w/v) agarose in 0.5 X of TBE buffer (45mM Tris-base, 45 mM boric acid, 1 mM EDTA, pH 8.0; Bio-Rad) and 20 μl of ethidium bromide was added to stain the gels. Plugs were loaded into the gels and the gels were run in the PFGE tank (CHEF-DRIII system, Bio-Rad laboratories). Migration of DNA was performed at 9°C with initial switch time of 5 and final switch time of 45 for 20 hrs at 6 volts and 120 ° angle. Lambda Ladder was used as a DNA size marker.
2.16.2 Pulsed Field Gel Electrophoresis (PFGE) Typing

Plugs of the whole genomic DNA of the target bacterium was prepared as for Spe1 digests described by Patzer & Dzierzanowska, 2007. Each plug was washed with 0.01 x of TE buffer shaking at 37°C for 30 min, followed by washing twice with 300 µl of 2x of Xba1 fast digestive buffer (Fermentas, Sheriff Hutton Industrial Park, York, UK) for 15 min at room temperature and once with 300 µl 1x of Xba1 fast digestive buffer for 15 min. The DNA in plugs was then digested with 3.5 µl of Xba1 overnight at 37°C for K. pneumoniae and E. coli. The same steps were performed on plugs made of whole genomic DNA from P. aeruginosa but washed with Spe1 buffer and digested with 1 µl of Spe1 enzyme. Separation of Xba1 and Spe1 digested DNA was performed by using PFGE apparatus (CHEF-DRIII system, Bio-Rad laboratories) and DNA migration was conducted using the following conditions; initial switch time at 5s and final switch time at 45s, 6V/cm and 120° angle for 20h with cooling at 9°C, using TBE buffer (0.5x Tris borate, 0.5mM EDTA), Lambda ladder DNA was used as a marker to size DNA. The interpretation of similarities between bacterial species was performed as described by (Tenover et al., 1995). The resultant PFGE Gels were photographed and dried overnight on a Whatman filter paper (15 cm * 15 cm) blotting paper, the gels were then re-hydrated, denatured using a denaturing buffer (0.5M NaOH, 1.5M NaCl) for 30 min at room temperature, neutralized using a neutralizing solution (0.5M Tris-HCl, pH 7.5, 1.5M NaCl) for 30 min.
at room temperature. The gels were then transferred to a hybridization tube contains pre-hybridization solution at 65°C and probed with a 32P radio-labelled CTX-M-15 template DNA and CTX-M-15/ISEcp1 for *K. pneumoniae* and *E. coli* and the *P. aeruginosa* PFGE gels were probed with a 32P radio-labelled VIM-2 as described by Patzer *et al.*, 2009.

2.16.3 Colony Blotting.

Colony blotting experiments were carried out by using a modification of the procedure of (Ivanov & Gigova, 1989). MacConkey agar plates were spotted with the isolates of interest and incubated overnight at 37°C for 18 h. MacConkey agar plates with bacterial isolates were photographed using digital camera and then overlaid with a circular membrane (Hybond™, Amersham Pharmacia, UK), for at least 2 min, so the bacterial isolates will have been transferred to it. The membranes were then removed by a sterile forceps and placed colony side up on a presoaked 15cm² Whatman blotting paper (Whatman inc. Sigma-Aldrich, Sanford, UK) with 5% of SDS (sodium dodicyl sulphate) for 5 min at room temperature. The membranes were then carefully transferred to a 15cm² Whatman blotting paper to remove any excess moisture, the membranes were then placed colony side up on 15cm² Whatman blotting paper presoaked with denaturing solution (1.5 NaCl, 0.5 M NaOH) for 5 min. The membranes were then carefully removed and dabbed dry on 15cm² Whatman blotting paper and transferred and floated colony side up in
neutralizing solution (157 g. Tris-HCl, 174 g. NaCl in 2L of H2O pH 7.5) for 5 min. The cellular debris was then carefully removed and washed with 6X SSC (6 ml of 20X SSC in 20 mls of demonized water) and dabbed dry. The membranes were then dried at 80°C for at least 3h to fix the DNA to the membrane filters. The membrane filters were then transferred to hybridization tube provided with hybridization solution (6X SSC, 0.1 % (W/V) polyvinylpyrrolidine (PVP), 1 ml of 0.5 % (W/V) SDS, 400 µl of 0.1% (W/V) ficoll, 400 µl of Milk and 300 µl of 150 µg/ml1 denatured spermatozoid DNA). The hybridization tube was then incubated at 65°C prior to probing with gene of interest.

2.16.4 In gel hybridization

The resultant PFGE gels were photographed and dried at 50°C for 18 hrs, the gels were then hybridized as follows; rehydrated in DNA free water for 30 mins at room temperature, the DNA in gel was denatured for 30 mins using denaturing solution (NaCl, 0.5 M NaOH) and neutralized by neutralizing solution (Tris-HCl, NaCl) for 30 mins. The gels were then transferred to hybridization tubes with pre-hybridization solution (6X SSC, 0.1% (W/V) polyvinylpyrrolidine (PVP), 1 ml of 0.5% (W/V) SDS, 400 µl of 0.1% (W/V) ficoll, 400 µl of Milk and 300 µl of 150 µg/ml1 denatured spermatozoid DNA) and incubated at 65°C overnight. The hybridized gels were subsequently probed. Gels were then washed twice, once with 2X SSC (Sodium Citrate), 0.1% (W/V) SDS and once with 0.1 X SSC, 0.1% (W/V)
SDS. The gels were then wrapped in cling film and transferred to a cassette and a Hyperfilm™ (Amersham, GE Healthcare, Life Sciences) was firmly pressed on the gel and frozen at -80°C for 18 hrs. Developer and fixer were used to detect the appearance of any radio labeled spot on the Hyperfilm.

2.16.5 Labelling DNA Probes

To produce high specific activity probes, labeled DNA was generated using random oligonucleotides, and anneal to specific sites on the DNA template. The Klenow will use the primer-template complex as a substrate and synthesize a new DNA by incorporating monophosphates at the free 3’-OH group. Radio-labeling is performed by exchanging the nonradioactive with the radioactive in the reaction mixture. The radio-labeled gene will then serve as a sensitive hybridization probe, it is used in southern and northern blots and in Situ hybridization techniques. The genes of interest (blaCTX-M-15 alone and in association with ISEcp1, blavIM-2, tniC, blatTEM, blashv, lSCR2 and blatTM-1) were amplified by PCR using specific primers targeting the forward and reverse regions of the gene to be used as a template DNA to probe the hybridized membranes. 15 μl of the template DNA was mixed with 8 μl of DNA free water and 10 μl of random 9-mer primers (Agilent Technologies – Stratagene – USA Products) were added in a screw capped Eppendorf tube. The mixture was firstly boiled in a water bath for 5 min and immediately 10 μl of 5X dCTP buffer, 2.5 μl of the radioactive phosphorus 32P and 1 μl of Exo(-) Klenow (Agilent Technologies – Stratagene – USA Products) were added to
the mixture and transferred to a jar made of lead and incubated at 37°C for 15 min to allow the production of the radio-labeled template DNA. The radio-labeled product was then pipetted into a silica gel column (Nick™ columns Sephadex, G-50 DNA Grade, illustra, GE Healthcare, Life Science, UK). The column was then washed with 320 µl of washing buffer (0.1 M Tris-HCl Buffer, PH 7.5) followed with 430 µl of the same washing buffer to an Eppendorf tube to elute the radio-labelled gene purified. The radio-labeled PCR product was then boiled in a water bath for 6 min to denature the double stranded template DNA, the probe was then added to the previously incubated membranes or gels (see sections 2.15.3 and 2.15.4) in the hybridization tube and incubated over night at 65°C.

2.17 Cloning Experiments

Cloning experiments were performed on an *A. xylosoxidans* isolate trying to obtain the full sequence of the new MBL gene. The cloning experiments were carried out by chemical transformation (Blue/White) screening test by using the plasmid vector (pCR®4-TOPO®) and *E. coli* 5DHa supplied by TOPO10 cloning kit supplied by (Invitrogen Ltd, Inchinnan Business Park, 3 Fountain Drive, Paisley, UK). The 3kb PCR products were amplified from the *A. xylosoxidans* and purified before using it in the cloning experiments. TOPO cloning reaction was performed by mixing the 3kb class 1 integron, salt solution (1.2 M NaCl 0.06 M MgCl2) and TOPO vector at room temperature and then kept on ice. To perform transformation, 2µl of the reaction was then transferred into a vial containing chemically-competent *E. coli* and incubated
on ice for 30 minutes. The *E. coli* was heat shocked at 42°C for 30s without shaking and immediately returned to ice and 250 µl of S.O.C broth medium then added and incubated at 37°C for 1h. A total of 50µl of the broth culture was streaked on L.B. Agar (Fisher Scientific, USA products) plates supplemented with 50 mg/l of kanamycin, X-galactose and isopropyl-β-D-thiogalactoside (IPTG) and then incubated at 37°C for 18h. The white colonies were picked up and grown overnight in L.B broth, the TOPO vector was then extracted from the cells by miniprep kit and sequenced using the primers M13 forward and reverse.

2.18 Purification of TMB-1

2.18.1 Expression

TMB-1 was purified directly from the *A. xylosoxidans* isolate grown overnight at 37°C in flasks containing 4x 50ml of Terrific broth (Sigma, St. Louis, MO, USA) supplemented with 50mcg/ml of kanamycin, the cultures were then incubated shaking at 37°C. Each flask was inoculated with 4x 1L of Terrific broth with 50ug/ml of kanamycin and flasks incubated at 37°C and 225 rpm. The production of the protein was induced by IPTG (final concentration 0.1mM) when O.D_{600} is between 0.6-0.7. Cells were centrifuged at 7000 g for 10 min at 4°C. The expression of protein was confirmed using Sodium SDS-Page.
2.18.2 Periplasm isolation

To perform large scale protein preparations of periplasmic cellular extracts, it was necessary to treat cells with lysozyme. The methods used were that of Avison et al., 2011 and Samuelsen et al., 2008. The cell pellets were resuspended in buffer (50mM Tris-HCl, 100uM ZnCl₂, 0.02% NaN₃ pH 7.2). The lysozyme was then added to a concentration of 200μg/ml. The suspension was then incubated rotating at room temperature for 15-20 min. CaCl₂ was then added to a concentration of 10mM, the suspension was then centrifuged at 9000xg or 18000 rpm for 20 min. at 4°C.

2.18.3 Purification of β-lactamase from crude periplasmic cell extract

The crude cell extract was loaded on to 50 ml Q-Sepharose column (Q-Sepharose HP column, Pharmacia, GE Healthcare, UK) that was previously pre-equilibrated with 100 ml of buffer (buffer (50mM Tris-HCl, 100uM ZnCl₂, 0.02% NaN₃ pH 7.2)). The protein was then loaded and eluted using 400 ml NaCl gradient. The eluted fractions were collected and checked for β-lactamase activity using Nitrocefin. Purity of fractions that showed β-lactamase was performed on SDS-PAGE (2-14% NuPAGE Bis-Tris mini gels).
2.18.4 Gel-filtration

Column was pre-equilibrated with two column volume of washing buffer (see section 2.18.2), the protein was loaded through a super loop (flow 1ml/min) and then wash or elute the protein with (100-300) of washing buffer. Fraction were then collected and checked for β-lactamase using Nitrocefin, the active fractions were run on SDS-PAGE and stored at 4°C. TMB-1 was analysed using nitrocefin +/- EDTA and SDS-PAGE. TMB-1 was concentrated to 1.94mg/ml.

2.19 Kinetics assay:

Steady-state kinetics was performed at 25°C in a spectrophotometer (SpectramaxPlus, Molecular Devices) using 96 well plates (BD Falcon UV microplates, BD Biosciences, USA) (Samuelsen et al., 2008). All substrates (ceftazidime, cefoxitin, cefuroxime, piperacillin, ampicillin, imipenem, meropenem and ertapenem) were tested as duplicates using 50mM HEPES pH 7.2, 100μM ZnCl₂, 0.02% NaN₃, and 0.1mg/ml bovine serum albumin (Sigma-Aldrich) as a buffer system. The kinetic data were analysed by non-linear regression (GraphPad Software, San Diego, CA).
Chapter Three

Characterization of Multi-drug resistant *Klebsiella pneumoniae* from

Tripoli & Benghazi, Libya
3.1 Introduction

K. pneumoniae can be isolated from a variety of different sites, locations and environments such as, water and soil, or from hospitalised patients or from animals. Such variation in habitats provides *K. pneumoniae* with the opportunity to spread quickly and as a consequence it can cause infections (Podschun & Ullmann, 1998). Infections due to MDR strains of *K. pneumoniae* have been reported world-wide in neonatal wards, ICUs, paediatric hospitals (Podschun & Ullmann, 1998; Bagattini *et al.*, 2006), UTIs and lower respiratory tract infections (Gori *et al.*, 1996; Podschun & Ullmann, 1998; Cartelle *et al.*, 2004; Valverde *et al.*, 2008; Kiratisin, 2008). It is increasingly reported year on year (Grobner *et al.*, 2009; Lim *et al.*, 2009) and thus represents a major clinical threat particularly for immunocompromised patients (Oteobe *et al.*, 2009).

The frequent use of extended-spectrum cephalosporins, particularly in ICUs is considered a leading factors contributing to epidemic and endemic outbreaks of nosocomial infection as a result of the emergence of MDR Gram-negative pathogens producing ESBLs (Gori *et al.*, 1996; Valverde *et al.*, 2008). ESBLs are the most prevalent enzymes produced by multi-resistant strains of *K. pneumoniae* and are capable of hydrolysing most β-lactams particularly third and fourth generations cephalosporins (Wei *et al.*, 2005).
Nosocomial infections caused by ESBLs producing *K. pneumoniae* have become a major problem in the United States, Europe, Asia (Livermore, 2009), Africa (Gori *et al.*, 1996), Brazil and Spain (Rodriguez-Bano *et al.*, 2010). ESBLs are often carried on plasmids of different sizes and types reflecting the frequency and epidemiology of these enzymes (Gori *et al.*, 1996). CTX-M-type ESBLs are encoded by genes carried on plasmids of different types such as; IncF1, IncFII, IncH12 and IncI which are classified as narrow host-range types of plasmids and known to mobilize *blaCTX-M-15* and ISEcpI. Furthermore, IncN, IncP-1-a, IncL,M as well as Inc A/C are broad host-range plasmids and effective as transmissible elements and play important roles in the dissemination of *blaCTX-M-15* genes (Pitout, 2010; Carattoli, 2009). Such replicons can act as major vehicles for the horizontal transfer of genes responsible for antibiotic resistance that cause CAIs and HAIs (Colinon *et al.*, 2007). CTX-M type extended spectrum-β-lactamases are considered the most prevalent ESBLs among *E. coli* and *K. pneumoniae*. These enzymes have originally been derived from chromosomal β-lactamase from *Kluyvera* spp. (Dedeic-Ljubovic *et al.*, 2010).

blaCTX-M-15 is one of the most important enzymes of the 120 variants of CTX-M type ESBLs found to date (http://www.lahey.org/Studies/other.asp#table1) and was first discovered in India, France and Japan in the 1980s and recently worldwide (Yu *et al.*, 2004; Lartigue *et al.*, 2007; Touati *et al.*, 2006; Abbassi *et al.*, 2008; Gonullu *et al.*, 2008; Walsh, 2006). *blaCTX-M-15* has a broader
substrate profile than many other CTX-Ms due to mutations around the active site (Pitout, 2010). Several reports have mentioned the occurrence of $bla_{CTX-M-15}$ associated with the insertion sequence $ISEcp1$ located upstream of the CTX-M gene in $E. coli$ and $K. pneumoniae$ from Nigeria, Norway, Tunisia, UK and France (Touati et al., 2006; Abbassi et al., 2008; Eckert et al., 2006; Kiratisin et al., 2008; Ben Salma et al., 2011; Younes et al., 2011).

$bla_{CTX-M-15}$ has also been detected in the Mediterranean area, the Middle East and the Arab Gulf region. The CTX-M-15 gene has been found in clinical isolates of $E. coli$ from Cairo, Egypt and associated with the insertion sequence, $ISEcp1$ (Khalaf et al., 2008). $K. pneumoniae$ and $E. coli$ harbouring $bla_{CTX-M-15}$ were found disseminated in neonatal wards and ICUs in Saudi Arabia (Al-agamy et al., 2009), Algeria (Ramadani-Bouguessa et al., 2006) and Kuwait (Dashti et al., 2010). Similarly, $bla_{CTX-M-15}$ was found plasmid mediated in clinical isolates of $E. coli$ collected from Egypt (Mohamed Al-Agamy et al., 2006).

This chapter describes the emergence of MDR $K. pneumoniae$ isolates from clinical settings (patients and hospital environment) and non-hospital environmental isolates. The phenotypic characteristics and the antibiotic resistance profile of 80 $K. pneumoniae$ isolates are determined and discussed.
3.2 Results

3.2.1 Antimicrobial susceptibility testing

K. pneumoniae isolates collected are listed in table 3.1. The MIC$_{50}$, MIC$_{90}$ and MIC ranges of 80 isolates of clinical, hospital environment and non-hospital environment *K. pneumoniae* are presented in table 3.2. These results show that MIC$_{50}$ and MIC$_{90}$ of ceftazidime was higher that of cefotaxime. The highest MIC$_{50}$ and MIC$_{90}$ were observed for piperacillin/tazobactam whereas the lowest was for the carbapenems; imipenem and meropenem. The highest level of resistance (95 %) has been observed against the antibiotics piperacillin and ampicillin. Thirty five out of eighty (43.75 %) of *K. pneumoniae* exhibited resistance against piperacillin/tazobactam. The results also showed that 52/80 (65%) showed resistance to amoxicillin/clavulanic acid combinations and 3 others showed intermediate resistance to amoxicillin/clavulanic acid combinations. Resistance to aminoglycosides varied; 2/80 (2.5 %) showed resistance to amikacin, whereas 49/80 (61 %) were resistant to gentamicin. 33/80 (41 %) were resistant to ciprofloxacin and another one was intermediate. Fifty six out of 80 isolates (70 %) were resistant to cefuroxime whereas 48/80 (60 %) and 49/80 (61 %) displayed resistance to ceftazidime and cefotaxime, respectively; and 46/80 (57.5 %) were indicated by Phoenix as ESBL positive. Of those that are ESBL positive, resistance was observed for amoxicillin/clavulanate and piperacillin/tazobactam with 38/46 (82.6 %) and 29/46 (63%), respectively.
3.2.2 Genotypic detection of $bla_{\text{OXA-48}}$ and ESBLs

3.2.2.1 The prevalence of CTX-M groups 1, 2, 8, 9 and 26

The results of detection of the occurrence of CTX-M groups 1, 2, 8, 9 and 26 are shown in Figure 3.1. This experiment was based on the amplification of part of the targeted gene of each group of CTX-M-type ESBLs. 50/80 (62.5 %) of the $K.\ pneumoniae$ isolates demonstrated the presence of CTX-M group 1. None of the isolates produced any PCR products when specific primers were used for CTX-M groups 2, 8, 9 and 26.

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of isolates</th>
<th>RAPD clusters</th>
<th>MLST</th>
<th>$bla_{\text{CTX-M group 1}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Jamhoriya hospital Benghazi</td>
<td>$n=21$</td>
<td>1, 2, 5</td>
<td>ST147, ST101</td>
<td>16</td>
</tr>
<tr>
<td>Al-Jala hospital of Benghazi</td>
<td>$n=8$</td>
<td>1, 2, 6</td>
<td>ST101</td>
<td>5</td>
</tr>
<tr>
<td>7th of October hospital</td>
<td>$n=8$</td>
<td>2</td>
<td>ST15 ($n=2$)</td>
<td>7</td>
</tr>
<tr>
<td>Kwaifia hospital Benghazi</td>
<td>$n=5$</td>
<td>1, 2, 6</td>
<td>ST29</td>
<td>2</td>
</tr>
<tr>
<td>Benghazi Pediatric hospital</td>
<td>$n=6$</td>
<td>1, 2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Tripoli medical centre</td>
<td>$n=1$</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tripoli Military hospital</td>
<td>$n=2$</td>
<td>1, 2, 4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Tripoli maternity hospital</td>
<td>$n=11$</td>
<td>1, 2</td>
<td>ST70</td>
<td>6</td>
</tr>
<tr>
<td>Burn and plastic surgery centre of Tripoli</td>
<td>$n=12$</td>
<td>1, 2, 4, 6</td>
<td>ST111, ST15</td>
<td>7</td>
</tr>
<tr>
<td>Tripoli pediatric hospital</td>
<td>$n=1$</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Benghazi lake</td>
<td>$n=1$</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Syria area Benghazi</td>
<td>$n=2$</td>
<td>6</td>
<td>ST506, ST486</td>
<td>1</td>
</tr>
<tr>
<td>Keesh area Benghazi</td>
<td>$n=1$</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dollar area Benghazi</td>
<td>$n=1$</td>
<td>2</td>
<td>ST511</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.1 Dissemination of $K.\ pneumoniae$ in Tripoli and Benghazi, RAPD clusters, MLST and $bla_{\text{CTX-M group 1}}$ results
Table 3.2 MIC$_{50}$ and MIC$_{90}$ of *K. pneumoniae*

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>MIC$_{50}$</th>
<th>MIC$_{90}$</th>
<th>Range mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftazidime</td>
<td>16</td>
<td>32</td>
<td>4 - 32</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>8</td>
<td>64</td>
<td>2 - 64</td>
</tr>
<tr>
<td>Imipenem</td>
<td>0.5</td>
<td>1</td>
<td>0.125 - 1</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0.5</td>
<td>1</td>
<td>0.125 – 1</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>16</td>
<td>32</td>
<td>8 – 32</td>
</tr>
<tr>
<td>Piperacillin/Tazobactam</td>
<td>32</td>
<td>128</td>
<td>4 – 128</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>4</td>
<td>8</td>
<td>0.5 – 8</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>16</td>
<td>64</td>
<td>4 – 64</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>8</td>
<td>16</td>
<td>2 – 16</td>
</tr>
</tbody>
</table>

3.2.2.2 Detection of CTX-M-15 genes and ISEcp1

The results of detection of the incidence of *bla*$_{CTX-M-15}$ in a subset of 11 *K. pneumoniae* isolates (AES64, AES178, AES261, AES268, AES273, AES274, AES280, AES970, AES973, AES984 and AES1001) are shown in Figure 3.2. Sequencing of some PCR products showed the occurrence of *bla*$_{CTX-M-15}$ genes in Libyan *K. pneumoniae* (B.18- B31). The results suggest that *bla*$_{CTX-M-15}$ is the gene responsible for the production of ESBL and mediates extended spectrum cephalosporin resistance in some Libyan *K. pneumoniae*. Amplification of *bla*$_{CTX-M-15}$ genes in association with the insertion sequence
ISEcp1 are illustrated in Figure 3.3. In addition Figure 3.4 show the association between \(\text{bla}_{\text{CTX-M-15}} \) group 1 gene with the insertion sequence ISEcp1 and the differences that are noticed due to the presence/absence of an intact copy of the insertion sequence in some of these isolates. The insertion sequence ISEcp1 is the promoter for the movement and expression of the cefotaximase encoding gene and it is more often than not located upstream of the \(\beta \)-lactamase gene (Poirel et al., 2003). PCR products obtained by amplification of \(\text{bla}_{\text{CTX-M-15}} \) genes and ISEcp1 from 11 of \(K. \ pneumoniae \) isolates using two forward primers (ISEcpu1 and ISEcpu2) targeting two different sites on the insertion sequence) and the standard reverse primer (CTX-M-15 R) produced different sized products.

The results suggest the occurrence of a deletion event in ISEcp1 in some of the isolates, and PCR using different primers failed to amplify the insertion sequence and \(\text{bla}_{\text{CTX-M-15}} \) and consequently appeared negative (Figure 3.4). The deletion was confirmed by using the forward primer ISEcpu2 with the reverse primer for the \(\text{bla}_{\text{CTX-M-15}} \) gene. On the same isolates, the results of the amplification of \(\text{bla}_{\text{CTX-M-15}} \) gene and ISEcp1 using ISEcpu1 forward primer with CTX-M-15 reverse primer were able to prove the occurrence of \(\text{bla}_{\text{CTX-M-15}} \) in association with partial copy of ISEcp1 (Figures 3.3 & 3.5).
Figure 3.1 Multiplex PCR experiment to detect the incidence of CTX-M type ESBLs groups 1, 2, 8, 9 and 26. Lane1: Marker. Lane2: *K. pneumoniae* isolate AES7. Lane3: AES8. Lane4: AES48. Lane5: AES53. Lane6: AES59. Lane7: AES64. Lane8: AES66. Lane9: AES67. Lane10: AES68. Lane11: AES73. Lane12: AES74. Lane13: AES85. Lane14: AES103. Lane15: AES104. Lane16: AES135. Lane17: AES136. Lane18: AES140. Lane19: AES141. Lane20: AES145.

Figure 3.2 PCR experiment to detect the incidence of *bla*CTX-M-15 in *K. pneumoniae* isolates. Lane1: Marker. Lane2: AES64. Lane3: AES178. Lane4: AES261. Lane5: AES268. Lane6: AES273. Lane7: AES274. Lane8: AES280. Lane9: AES970. Lane10: AES973. Lane11: AES984. Lane12: AES1001. Lane13: Negative control. Lane14: Marker
Figure 3.3 PCR experiment to detect the incidence of \(\text{bla}_{\text{CTX-M}} \) group1 in association with \(\text{ISEcp1} \) in *K. pneumoniae* isolates. Lane1: AES64. Lane2: AES178. Lane3: AES261. Lane4: AES268. Lane5: AES273. Lane6: AES274. Lane7: AES280. Lane8: AES970. Lane9: AES973. Lane10: AES984. Lane11: AES1001. Lane12: Negative control. Lane13: Marker.

Figure 3.4 PCR experiment to detect disrupted \(\text{ISEcp1} \) sequence in *K. pneumoniae* isolates. Lane1: AES64. Lane2: AES178. Lane3: AES261. Lane4: AES268. Lane5: AES273. Lane6: AES274. Lane7: AES280. Lane8: AES970. Lane9: AES973. Lane10: AES984. Lane11: AES1001. Lane12: Negative control. Lane13: Marker.
Figure 3.5 Diagram showing the genetic environment of \(\text{bla}_{\text{CTX-M-15}} \) encoding gene and the insertion sequence \(\text{ISEcp1} \) located upstream of the cefotaxime resistance gene. Arrows of \(\text{ISEcpu1}(\text{Ho et al., 2005}) & \text{ISEcpu2} (\text{Leflon-Guibout et al., 2004}) \) indicates the target of each primer.

3.2.2.3 Detection of TEM & SHV in \(K. \) pneumoniae isolates

Blotting of 80 \(K. \) pneumoniae isolates with TEM and SHV genes are presented in Figures 3.6A, 3.6B, 3.7A, 3.7B, 3.8A, 3.8B, 3.9A & 3.9B and the results are summarised in Table 3.3. These results showed that 52 (65%) isolates of \(K. \) pneumoniae were positive for \(\text{bla}_{\text{SHV}} \) genes and 27 (33.7%) were positive for \(\text{bla}_{\text{TEM}} \) genes. The occurrence of \(\text{bla}_{\text{CTX-M15}}, \text{bla}_{\text{SHV}} \) and \(\text{bla}_{\text{TEM}} \) genes together was detected in 12 isolates, whereas 16 isolates showed the both presence of \(\text{bla}_{\text{SHV}} \) and \(\text{bla}_{\text{TEM}} \). The results also showed that \(\text{bla}_{\text{SHV}} \) genes were mostly detected in clinical settings (51.25%) compared to those \(K. \) pneumoniae isolates found in the hospital environment (10%). A low percentage of SHV genes were observed in environmental isolates collected outside the hospital. However, the incidence of \(\text{bla}_{\text{TEM}} \) among Libyan \(K. \)
pneumoniae in this study was 26.3% in clinical isolates and 7.5% in the hospital environment.

Table 3.3 The incidence of bla_{CTX-M} group1, Tn402, bla_{TEM} & bla_{SHV} encoding genes and mobile genetic elements ISCR2 in Libyan K. pneumoniae isolates

<table>
<thead>
<tr>
<th></th>
<th>Clinical isolates</th>
<th>Hospital environmental isolates</th>
<th>Environmental isolates</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTX-M group 1</td>
<td>40 (n=80)</td>
<td>10</td>
<td>1</td>
<td>68.75%</td>
</tr>
<tr>
<td>Tn402</td>
<td>19 (n=80)</td>
<td>1</td>
<td>2</td>
<td>27.5%</td>
</tr>
<tr>
<td>SHV</td>
<td>41 (n=80)</td>
<td>8</td>
<td>3</td>
<td>65%</td>
</tr>
<tr>
<td>TEM</td>
<td>21 (n=80)</td>
<td>6</td>
<td>0</td>
<td>33.75%</td>
</tr>
<tr>
<td>ISCR2</td>
<td>13 (n=80)</td>
<td>3</td>
<td>1</td>
<td>21.25%</td>
</tr>
</tbody>
</table>

Figure 3.6 Blotting of K. pneumoniae isolates (1-47) and probing with bla_{TEM}. A. MacConkey Agar plate. B. Blotting and probing with radio-labelled bla_{TEM} of plate A.
Figure 3.7 Blotting of *K. pneumoniae* isolates (48-80) and probing with *bla*_{TEM}. A. MacConkey Agar plate. B. Blotting and probing with radio-labelled *bla*_{TEM} of plate A.

Figure 3.8 Blotting of *K. pneumoniae* isolates (1-47) and probing with *bla*_{SHV}. A. MacConkey Agar plate. B. Blotting and probing with radio-labelled *bla*_{SHV} of plate A.
3.2.2.4 CTX-M group 1 type ESBLs
Blotting and probing of 80 *K. pneumoniae* isolates with *bla*_{CTX-M-15} template DNA, labelled with radioactive phosphorus 32P, are summarised in Table 3.3 and illustrated in Figures 3.10A, 3.10B, 3.11A & 3.11B. 51/80 (63.8%) were positive for *bla*_{CTX-M} group 1 and 40 out of those 51 (78.4%) were isolated from blood, urine, pus, sputum, burn ward and sepsis samples collected from patients in different hospitals in Tripoli and Benghazi. The presence of *bla*_{CTX-M} group 1 positive *K. pneumoniae* in the hospital environments was 10/51 (19.6%) and reflects the incidence and prevalence of *bla*_{CTX-M} group 1 in Libyan hospitals. Thus, in total 50/51 *bla*_{CTX-M} group 1 positive *K. pneumoniae* were from patients or the hospital environment and is very high compared to the spread of *bla*_{CTX-M} group 1 genes in the community and...
environment outside the hospitals. Only one isolate of \textit{K. pneumoniae} collected from Benghazi streets was found carrying \textit{bla}_\text{CTX-M} group 1 genes.

Figure 3.10 Blotting and probing of \textit{K. pneumoniae} isolates (1-47) with \textit{bla}_\text{CTX-M-15}. A: MacConkey Agar culture. B: Blotting and probing with radio-labelled \textit{bla}_\text{CTX-M-15} amplicon of plate A.

Figure 3.11 Blotting and probing of \textit{K. pneumoniae} isolates (48-80) with \textit{bla}_\text{CTX-M-15}. A: MacConkey Agar cultures. B: Blotting and probing with radio-labelled \textit{bla}_\text{CTX-M-15} amplicon of plate A.
3.2.2.5 Detection of \textit{bla}\textsubscript{OXA-48} and IS\textsubscript{1999}

PCR experiments on \textit{K. pneumoniae} failed to amplify \textit{bla}\textsubscript{OXA-48} and IS\textsubscript{1999}.

3.2.3 Characterisation of plasmids carrying \textit{bla}\textsubscript{CTX-M} \textit{group 1}/\textit{ISEcp1}

Figure 3.12 shows S1 endonuclease digestion followed by PFGE of genomic DNA separating chromosomal DNA from plasmids in 14/28 selected \textit{K. pneumoniae} isolates (#AES8, AES48, AES135, AES140, AES141, AES216, AES274, AES275, AES279, AES280, AES281, AES506, AES722, AES808b, AES809E). An additional figure showing the same application with the other 14/28 \textit{K. pneumoniae} isolates (AES809, AES817, AES203, AES836, AES939, AES961, AES942, AES188, AES994, AES960, AES970, AES975, AES977 & AES982) is presented in Appendix B.6. The selection criterion was based on prevalence of clinical samples but also included hospital environmental isolates and the single \textit{K. pneumoniae} found in the streets. This experiment was undertaken to examine the incidence of plasmid mediated \textit{bla}\textsubscript{CTX-M} \textit{group 1} and \textit{ISEcp1} genes. Probing of the PFGE gel from Figure 3.12 with radio-labelled \textit{bla}\textsubscript{CTX-M} \textit{group 1}/\textit{ISEcp1} is shown in Figure 3.13. Probing of the PFGE gel from figure B.6 is presented in Appendix B (Figure B.7). These results clearly demonstrated that \textit{bla}\textsubscript{CTX-M} \textit{group 1}/\textit{ISEcp1} has been detected on plasmids in 14 isolates of \textit{K. pneumoniae} on seven different plasmid sizes - 50, 75, 100, 150, 275, 300 and 425kb. Four isolates (AES8, AES135, AES140 & AES141) carry \textit{bla}\textsubscript{CTX-M} \textit{group 1}/\textit{ISEcp1} on plasmids of 300kb, 3 isolates (AES506, AES970 & AES982) carry \textit{bla}\textsubscript{CTX-M}
group1/ISEcp1 on the same size of plasmids (175kb), whereas 3 isolates (AES274, AES280 & AES281) carrying \textit{bla}_{CTX-M} \textit{group1/ISEcp1} on a 75kb plasmid. \textit{bla}_{CTX-M} \textit{group1/ISEcp1} were found on a 100kb plasmid in \textit{K. pneumoniae} isolate AES275 and in the hospital environmental isolate, AES722, on a plasmid of 50kb, and on a plasmid of 275kb in a clinical isolate, AES48, that was cultured from a blood sample. The \textit{K. pneumoniae} isolate, AES817, found in on the Benghazi streets carry \textit{bla}_{CTX-M} \textit{group1/ISEcp1} on a 425kb plasmid.

\textbf{Figure 3.12} PFGE of S1 digests for \textit{K. pneumoniae} AES isolates. Lane1: Marker. Lane2: AES8. Lane3: AES48. Lane4: AES135. Lane5: AES140. Lane6: AES141. Lane7: AES216. Lane8: AES274. Lane9: AES275. Lane10: AES279. Lane11: AES280. Lane12: AES281. Lane13: AES506. Lane14: AES722. Lane15: AES808B.
Figure 3.13 Autorad after probing with $bla_{CTX-M-15}/ISEcp1$ of blotted PFGE from Fig. 3.12. Lane1: Marker. Lane2: AES8. Lane3: AES48. Lane4: AES135. Lane5: AES140. Lane6: AES141. Lane7: AES216. Lane8: AES274. Lane9: AES275. Lane10: AES279. Lane11: AES280. Lane12: AES281. Lane13: AES506. Lane14: AES722. Lane15: AES808B.
3.2.4 Typing of *K. pneumoniae* by RAPD

Typing of 80 *K. pneumoniae* isolates by using RAPD technique are illustrated in Figure 3.14. The *K. pneumoniae* isolates can be divided into 6 clusters according to the Pearson correlation test that was performed using GelCompar software. Members of cluster 2 (n=32) displayed 85% similarity and 34/41 (82.9%) were only collected from patients in Tripoli and Benghazi and included sites such as blood, urine, sputum, pulmonary, CVL, pus samples, maternity hospital and burn and plastic surgery centre of Tripoli. Isolates of this cluster were collected as swabs from the hospital environments and also included the non-hospital environmental isolates. Cluster one included the isolates AES135 and AES140, AES172 and AES178 that appeared clonal when *XbaI* digestion was used (see section 3.2.5). Cluster 1 (n=26) also showed high similarity between members (90%), and 19/26 (73%) of the isolates were collected from blood, urine, sepsis and embilica samples, they were also cultured from maternity ward infections and burn ward infections. Isolates in cluster 2 were found in the hospital environments (bedsides, baby incubators, vacuum of suction machines, suction machine tubes and floor of toilets). One member of cluster 2 was isolated from the largest Benghazi Lake which is considered highly polluted. Members of cluster 4 (n=3) resembles cluster 3 as all members of this cluster were isolates collected from patients. Cluster 3 is composed of 6 members collected from a Tripoli maternity hospital and isolates AES982 and AES985 are clonal. Members of cluster 4 include two isolates (AES225 and AES261) that (by *XbaI* digestion of the
whole DNA) are clonal. Cluster 5 (n=6) includes isolates collected from patients and in addition to the high similarities (95%) between these members, they were also all positive for bla_{CTX-M} group1. Cluster 6 (n=7) was different from the other clusters as members of that cluster share very low similarities (30%).
3.2.5 Molecular typing of *K. pneumoniae*

PFGE of *XbaI* digests of 28 *K. pneumoniae* isolates is shown in Figures 3.15 & 3.16 and the corresponding dendrograms shown in Figures 3.17 & 3.18. These results show that some isolates of *K. pneumoniae* are clonally related (>0.95) despite the different site of collection. Isolates AES135 and AES140 are clonal despite the fact that they were collected from two different hospitals; *K. pneumoniae* isolate AES135 was from a blood sample from a hospital in Benghazi city whereas *K. pneumoniae* isolate AES140 was from a urine sample from a patient in a hospital from a village near Benghazi. Isolates AES172 and AES178 are clonal. Isolate AES172 was from a baby incubator and isolate AES178 was collected from a vacuum suction machine. These two clonal isolates were found in the neonatal ICU in Benghazi Paediatric hospital. The results also show that *K. pneumoniae* isolates; AES273 and AES260 share a high-level of similarities (>0.90) and were collected from blood and umbilical samples, respectively. These two samples were collected from two different patients; however, the patients were admitted to the same hospital but not the same ward revealing the potential spread of the same clone within the hospital. *K. pneumoniae* isolates AES506 and AES1013 also share high similarities (>80%) despite being collected from two different hospitals in Tripoli; AES506 was collected from a suction machine tube in Tripoli Paediatric hospital, while AES1013 was from a patient admitted to Tripoli burn and plastic surgery centre of Tripoli. The other isolates of *K. pneumoniae*
that were examined by PFGE shared low level of similarities (<75%) showing that many strains of *K. pneumoniae* in Libya played a significant role in the spread of infection and antibiotic resistance genes.

Figure 3.15 PFGE of *XbaI* digests of *K. pneumoniae* genomic DNA. Lane1: Marker. Lane2: AES48. Lane3: AES74. Lane4: AES135. Lane5: AES140. Lane6: AES172. Lane7: AES178. Lane8: AES187. Lane9: AES225. Lane10: AES261. Lane11: AES817. Lane12: AES982. Lane13: AES985. Lane14: AES1029. Lane15: AES1053.
Figure 3.16 PFGE of XbaI digests of *K. pneumoniae* genomic DNA. Lane1: Marker. Lane2: AES73. Lane3: AES203. Lane4: AES260. Lane5: AES273. Lane6: AES275. Lane7: AES506. Lane8: AES975. Lane9: AES977. Lane10: AES1004. Lane11: AES1013. Lane12: AES1026. Lane13: AES1028. Lane14: AES961.
Figure 3.17 Dendrogram of PFGE gel showing *XbaI* digested DNA from *K. pneumoniae* isolates. Lane1: Marker. Lane2: AES48. Lane3: AES74. Lane4: AES135. Lane5: AES140. Lane6: AES172. Lane7: AES178. Lane8: AES187. Lane9: AES225. Lane10: AES261. Lane11: AES817. Lane12: AES982. Lane13: AES985. Lane14: AES1029. Lane15: AES1053.
Figure 3.18 Dendrogram of PFGE gel showing XbaI digested DNA from *K. pneumoniae* isolates. Lane1: Marker. Lane2: AES73. Lane3: AES203. Lane4: AES260. Lane5: AES273. Lane6: AES275. Lane7: AES506. Lane8: AES975. Lane9: AES977. Lane10: AES1004. Lane11: AES1013. Lane12: AES1026. Lane13: AES1028. Lane14: AES961.
3.2.6 Multi-locus sequence typing (MLST)

Representative isolates from RAPD-clusters were subjected to MLST. PCR experiments yielded PCR products of all housekeeping genes (see Appendix B). Generally, using RAPD fingerprinting typing method, similar RAPD-types gives similar sequence types and different RAPD-types give rise to different sequence types (STs). Sequencing of housekeeping genes of all 12 representative isolates of *K. pneumoniae* showed the occurrence of 9 sequence types among all isolates tested. The sequence types found were ST15, ST111, ST29, ST147, ST511, ST70, ST101, ST486 and ST509. ST15, ST111, ST29, ST147, ST70 and ST101 were among the clinical isolates whereas ST511, ST486 and ST509 were non-hospital environmental isolates from Benghazi. It is worthy of note that three isolates had ST15; AES59, AES74 and AES1029. AES Isolates 59 and 74 were collected from mechanical ventilators from an ICU ward of the 7th of October hospital in Benghazi, whereas AES1029 was a clinical isolate from a patient admitted to a Burn ward in Alkhadra hospital in Tripoli. These STs were from clusters which shared more than 90% similarities and part of one large cluster which included 17 members. One exception was observed, with ST101 being observed in two unrelated RAPD-clusters sharing less than 60% similarities. The isolates that had ST101 were; AES261 which was a clinical isolate recovered from a blood sample from Al-Jamhoryia hospital in Benghazi and AES isolate 917 which was from a curtain on an ICU ward in Al-Jala hospital in Benghazi. Nevertheless, both isolates
were detected positive for \(\text{bla}_{\text{CTX-M}} \) group 1. The most frequently observed sequence type was ST15, which has earlier been described in \(\text{bla}_{\text{CTX-M-15}} \)-producing \(K. \) pneumoniae (Damjanova et al., 2008). Also, ST15 is a single locus variant (SLV) of ST14, which has been described in \(\text{bla}_{\text{CTX-M}}, \text{bla}_{\text{KPC}} \) and \(\text{bla}_{\text{NDM-1}} \) producing \(K. \) pneumoniae (Hrabak et al., 2009; Oteo et al., 2009; Kitchel et al., 2009; Samuelsen et al., 2011). Two other sequence types, ST147 and ST101 have also been linked to the dissemination of \(\text{bla}_{\text{CTX-M}} \) in previous reports. (Hrabak et al., 2009; Damjanova et al., 2008). ST29 was a clinical isolate from blood and was also positive for \(\text{bla}_{\text{CTX-M-15}} \). This ST has earlier been described in extended-spectrum cephalosporin-resistant isolates, but has not been frequently reported recently (Diancourt et al., 2005). ST70 was a clinical isolate from Tripoli maternity hospital and positive for \(\text{bla}_{\text{CTX-M}} \) group 1, while ST111 was a clinical isolate recovered from a patient in burn and plastic surgery centre of Tripoli, and was also positive for \(\text{bla}_{\text{CTX-M}} \) group 1. ST70 and ST111 have not been associated with dissemination of CTX-M-producing \(K. \) pneumoniae in previous reports, and are not closely related to any of the main epidemic clones. The novel sequence type ST511 (http://www.pasteur.fr/cgi-bin/genopole/PF8/mlstdbnet.pl ?file=klebs_profiles.xml&page=profileinfo&st=511) is an environmental isolate cultured from a swab collected from one of the Benghazi streets. This isolate carries a plasmid mediated \(\text{bla}_{\text{CTX-M-15}} \) and is a double-locus variant of ST35 and ST36 which have both recently been described in CTX-M-producers (Oteo et al., 2009). Two environmental isolates were new sequence types, ST486
(http://www.pasteur.fr/cgibin/genopole/PF8/mlstdbnet.pl?file=klebs_profiles.xml&page=profileinfo&st=486) and ST509 (http://www.pasteur.fr/cgibin/genopole/PF8/mlstdbnepl?file=klebs_profiles.xml&page=profileinfo&st=509). These isolates were also cultured from a swab collected from two different roads in Benghazi.

3.2.7 Detection of chromosomally and plasmid mediated \textit{bla}_{CTX-M} group 1

Probing of PFGE of \textit{XbaI} digests of \textit{K. pneumoniae} (figures 3.15 & 3.16) with radio-labelled \textit{bla}_{CTX-M-15} template DNA is shown in (Figures 3.19 & 3.20). \textit{K. pneumoniae} AES48, AES135 and AES140 possesses four copies of \textit{bla}_{CTX-M} group 1 in different locations including the various plasmids. \textit{K. pneumoniae} AES74, AES172, AES178, AES225, AES1029, AES1053, AES260, AES273, AES275 and AES1026 possess two copies of \textit{bla}_{CTX-M} group 1 genes. Only one copy of \textit{bla}_{CTX-M} group 1 gene was detected in \textit{K. pneumoniae} AES261, AES817, AES982, AES985, AES73, AES506 & AES1004. The incidence of more than one copy of \textit{bla}_{CTX-M} group 1 gene in some isolates of \textit{K. pneumoniae} might raise the question of how can \textit{bla}_{CTX-M} group 1 genes move within the genome of \textit{K. pneumoniae}. Such movement could be facilitated by the active presence of \textit{ISEcp1} which can mobilise \textit{bla}_{CTX-M} group 1. Digestion with \textit{XbaI} does not discriminate plasmid from chromosome and therefore the bands seen in Figures 3.19 & 3.20 can only refer to the number of copies of \textit{bla}_{CTX-M} group 1 and not their genetic location.
3.2.8 Transconjugation Experiments

Transconjugation experiments on 51 K. pneumoniae positive for bla_{CTX-M} group1 showed that successful transfer of resistance occurred in 27/51 (52.9%). PCR analysis on transconjugants confirmed the movement of bla_{CTX-M} group1 and its promoter sequence ISEcp1 from parents of K. pneumoniae to transconjugants (E. coli) (Figures 3.21 & 3.22). Sequencing of these alleles showed the occurrence of bla_{CTX-M} group1 and ISEcp1 in the new generation of transconjugants and further confirmed the movement capability of bla_{CTX-M} group1/ISEcp1 from parents to recipients, indicating the role of conjugative plasmids in transfer. Some transconjugation experiments failed to transfer bla_{CTX-M} group1 assuming the non-conjugative plasmid location of bla_{CTX-M} group1 and/or ISEcp1 or the occurrence of one copy of chromosomal located bla_{CTX-M} group1.
Figure 3.19 Autorad after probing with $bla_{CTX-M-15}$ of blotted PFGE from Fig. 3.15. Lane1: Marker. Lane2: AES48. Lane3: AES74. Lane4: AES135. Lane5: AES140. Lane6: AES172. Lane7: AES178. Lane8: AES2187. Lane9: AES225. Lane10: AES261. Lane11: AES817. Lane12: AES982. Lane13: AES985. Lane14: AES1029. Lane15: AES1053.
Figure 3.20 Autorad after probing with $bla_{CTX-M-15}$ of blotted PFGE from Fig. 3.16. Lane1: Marker. Lane2: AES73. Lane3: AES203. Lane4: AES260. Lane5: AES273. Lane6: AES275. Lane7: AES506. Lane8: AES975. Lane9: AES977. Lane10: AES1004. Lane11: AES1013. Lane12: AES1026. Lane13: AES1028. Lane14: AES961.
Figure 3.21 Detection of \textit{bla}_{\text{CTX-M}}\textit{ group1/ISEcp1} in GFP \textit{E. coli} transconjugants of \textit{K. pneumoniae} AES isolates. Lane1: Marker. Lane2: AES74T. Lane3: AES178T. Lane4: AES261T. Lane5: AES268T. Lane6: AES273T. Lane7: AES274T. Lane8: AES280T. Lane9: AES970T. Lane10: AES975T. Lane11: AES984T. Lane12: AES1001T. Lane13: negative control.

Figure 3.22 Detection of the occurrence of an intact (2-5) and disrupted (7-10) copies of ISEcp1 in GFP \textit{E. coli} transconjugants of \textit{K. pneumoniae} AES isolates. Lane1: Marker. Lane2: AES74T. Lane3: AES172T. Lane4: AES178T. Lane5: AES268. Lane6: Marker. Lane7: AES74T. Lane8: AES172T. Lane9: AES178T. Lane10: AES268T.
3.2.9 Detection of plasmid mediated \(bla_{\text{CTX-M}}\) group1 in parents and transconjugants

PFGE separation of \(S1\) endonuclease digestion of genomic DNA from a subset of 6 parents of \(K.\ pneumoniae\) and their 6 recipients of \(E.\ coli\) are shown in Figure 3.23. The result of the probed PFGE gel with a custom made \(bla_{\text{CTX-M-15}}\) probe is shown in Figure 3.24. Probing of the PFGE gel showed that \(bla_{\text{CTX-M}}\) group1 have successfully transferred to \(E.\ coli\) as the recipient. The results clearly confirm the plasmid location and also demonstrated that the plasmid carrying \(bla_{\text{CTX-M}}\) group1 has moved, more or less, unaltered. Intriguingly, the data from Fig. 3.24 also shows that some of the copies of \(bla_{\text{CTX-M}}\) group1 are chromosomal a phenomenon not well cited in the literature.

3.2.10 Detection of the movement of \(ISEcp1\) from parents to transconjugants

\(S1\) endonuclease digestion and separation of genomic DNA by PFGE of a selection of parents and transconjugants are illustrated in Figure 3.25. The results of probing of the PFGE gel with radio-labelled \(bla_{\text{CTX-M-15}}/ISEcp1\) genes are shown in Figure 3.26. These results show the same size plasmids in parents and transconjugants. The results clearly demonstrate the capability of clinical and non-clinical isolates of Libyan \(K. pneumoniae\) to acquire \(bla_{\text{CTX-M}}\) group1/\(ISEcp1\) and to confer such a resistance mechanism to recipients of \(E.\ coli\). \(bla_{\text{CTX-M}}\) group1/\(ISEcp1\) have been detected on a plasmid of 300kb in isolates AES74, AES135, AES140 and AES141 and their respective recipients. \(bla_{\text{CTX-M}}\) group1/\(ISEcp1\) was also detected on a 100kb plasmid in
AES172, AES172T, AES178 and AES178T. AES48 demonstrates the incidence of 5 copies of *bla*CTX-M group1/*ISEcp1* on plasmids of different sizes - 50, 100, 200, 250 and 300kb.

Figure 3.23 PFGE of S1 digests of *K. pneumoniae* and GFP transconjugants. Lane1: Marker. Lane2: AES74. Lane3: AES74T. Lane4: AES135. Lane5: AES135T. Lane6: AES140. Lane7: AES140T. Lane8: AES2141. Lane9: AES141T. Lane10: AES172. Lane11: AES172T. Lane12: AES178. Lane13: AES178T. Lane14: AES48 (positive control). Lane15: 5738 (positive control).
Figure 3.24 Autorad after probing with $bla_{CTX-M-15}$ of blotted PFGE from Fig. 3.23. Lane1: Marker. Lane2: AES74. Lane3: AES74T. Lane4: AES135. Lane5: AES135T. Lane6: AES140. Lane7: AES140T. Lane8: AES2141. Lane9: AES141T. Lane10: AES172. Lane11: AES172T. Lane12: AES178. Lane13: AES178T. Lane14: AES48 (positive control). Lane15: 5738 (positive control).
Figure 3.25 PFGE of S1 digests of *K. pneumoniae* and GFP transconjugants. Lane1: Marker. Lane2: AES48 (positive control). Lane3: AES1052 (Negative control). Lane4: AES74. Lane5: AES74T. Lane6: AES135. Lane7: AES135T. Lane8: AES2140. Lane9: AES140T. Lane10: AES141. Lane11: AES141T. Lane12: AES172. Lane13: AES172T. Lane14: AES178. Lane15: AES178T.
Figure 3.26 Autorad after probing with $bla_{CTX-M-15}$/ISEcp1 of blotted gel from Fig. 3.25. Lane1: Marker. Lane2: AES48 (positive control). Lane3: AES1052 (Negative control). Lane4: AES74. Lane5: AES74T. Lane6: AES135. Lane7: AES135T. Lane8: AES2140. Lane9: AES140T. Lane10: AES141. Lane11: AES141T. Lane12: AES172. Lane13: AES172T. Lane14: AES178. Lane15: AES178T. (T: transconjugate of respective parent)
3.2.11 Plasmid Typing

PCR reactions failed to produce any *inc*/*rep* PCR products of the *K. pneumoniae* plasmids; nevertheless, *inc*/*rep* PCR products were detected on the positive control reference plasmids. These results suggest that these plasmids are non-typeable. They also suggest that the plasmids responsible for carrying *bla*$_{CTX-M-15}$ and *bla*$_{CTX-M}$ group1 are significantly different from those already characterised by Carattoli *et al.*, 2005 which to date is considered the most recent and applicable system for detecting conjugative plasmids.

3.2.12 Detection of mobile genetic elements

3.2.12.1 Class 1 integrons

The results of PCR reactions yielded PCR products of different sizes and copies in 20/22 (90.90%) randomly selected isolates (Figure 3.27). Isolates AES8, AES85, AES179, AES198, AES271A, AES280, AES135 and AES140 produce a 1kb class 1 integrons whereas isolates AES48, AES59, AES66 and AES74 were positive for a 1.5kb integron. Two copies of class 1 integrons were found in *K. pneumoniae* isolate AES48. Sequencing of these alleles showed 4 different genetic contexts (B.8 - B.17). The differences between these integrons depend on the number and type of gene cassettes embedded in these integrons. *K. pneumoniae* isolates AES179, AES198, AES271, AES280, AES8, AES135 and AES140 share the same class 1 integron genetic context. This integron is composed of an integrase gene and dihydrofolate reductase genes that confers resistance to trimethoprim (*dfr*A30), and resistance to
sulphamethoxazole (\textit{qacEΔsul}1) (Figure 3.28B). Integron of AES135 was submitted to the gene bank and assigned accession numbers; HE613850.1, HE613852.1, HE613851.1 and HE613853.1. Class 1 integrons detected in \textit{K. pneumoniae} isolates AES59, AES66 and AES74 were found sharing the same genetic context; an integrase gene and a dihydrofolate reductase type VII (\textit{dfr}A17) which confer resistance to trimethoprim and an aminoglycoside-3'-adenyltransferase resistance gene (\textit{aad}A5) flanked with the conserved region \textit{qacEΔsul}1 (Figure 3.28C). The occurrence of 3 distinct integrons was identified in \textit{K. pneumoniae} isolates AES48 (Figure 3.28D) and AES85 (Figure 3.28A). AES48 had a class 1 integron composed of an integrase gene, \textit{dfr}A12 and \textit{aad}A2 which is known to confer resistance to streptomycin and spectinomycin, and \textit{qacEΔsul}1. Only one gene cassette, \textit{dfr}A7, was found embedded in the integron of AES85 (Figure 3.28).

\textbf{Figure 3.27} Amplification of the classical class 1 integrons. Lane1: Marker. Lane2: AES8. Lane3: AES25. Lane4: AES48. Lane5: AES59. Lane6: AES64. Lane7: AES66. Lane8: AES74. Lane9: AES85. Lane10: AES170. Lane11: AES172. Lane12: AES178. Lane13: AES179. Lane14: AS198. Lane15: AES271. Lane16: AES275. Lane17: AES280. Lane18: Marker
Figure 3.28 Genetic context of 6 class 1 integrons found in *K. pneumoniae* isolates. A: Class 1 integron from AES85. B: Class 1 integron from isolates; AES198, AES179, AES271, AES280, AES8, AES135 & AES140. C: Class 1 integron from isolates; AES74, AES66 & AES59. D: Class 1 integron from isolate; AES48.
3.2.12.2 Identification of Tn402 transposons

Amplification of tniC gene (a marker for Tn402) was detected in 14/20 (70 %) isolates randomly examined (Figure 3.29). Sequencing of PCR products of 3 isolates of *K. pneumoniae* showed the occurrence of two different types of Tn402 type transposons in three isolates of *K. pneumoniae* - AES135, AES197 and AES258. Isolate AES135 was also positive for the presence of class 1 integron (Figure 3.30). The transposon was found composed of an integrase gene, the trimethoprim resistance gene (*dfrA30*), *qacE*, and tniC (Figure 3.30). These results show the presence of Tn402 transposons in both clinical and non-clinical isolates of *K. pneumoniae* (listed in Table 3.3). As judged by colony blotting only 22/80 (27.5 %) were positive for tniC type transposons, and 16/22 (72.7 %) of these transposon positive isolates were also positive for *blaCTX-M* group1. In spite of the low occurrence of Tn402 compared with class 1 integrons, PCR data indicates that some isolates possess more than one copy of tniC.
Figure 3.29 Detection of Tn402 type transposons among *K. pneumoniae* isolates. Lane1: Marker. Lane2: AES135. Lane3: AES140. Lane4: AES141. Lane5: AES157A. Lane6: AES170. Lane7: AES198. Lane8: AES258.

Figure 3.30 Genetic contexts of two Tn402 type transposons found in *K. pneumoniae* isolates. A: transposon from AES135
3.2.12.3 Transposase Encoding Genes

3.2.12.3.1 PFGE of S1 genomic digests and probing with tniC

PFGE of S1 digest of genomic DNA and separation of plasmid according to size are shown in Figures 3.31 & 3.33. Probing of the PFGE gel with radiolabelled tniC gene is shown in Figures 3.32 & 3.34. Tn402 was detected 13 isolates of K. pneumoniae, 5/13 (38.5 %) carry two copies of the transposon on 6 different sizes of plasmids of approximately 10, 15, 50, 60, 75 and 100 kb. Two isolates, AES135 and AES140, carry the transposon on a plasmid of 250kb and another isolate, AES157A, carries the transposon on a plasmid of 175kb. Isolates AES179, AES198 and AES258 have a Tn402 transposon carried on a plasmid of 200kb. These transposons can act as gene capturing systems and contribute in the dissemination of antibiotic resistance genes by carrying genes responsible for conferring antibiotic resistance as part of class 1 integrons (Sajjad et al., 2011).
Figure 3.31 PFGE of S1 digests of *K. pneumoniae*. Lane1: Marker. Lane2: AES7. Lane3: AES8. Lane4: AES10. Lane5: AES25. Lane6: AES27. Lane7: AES48. Lane8: AES53. Lane9: AES59. Lane10: AES64. Lane11: AES66. Lane12: AES67. Lane13: AES68.

Figure 3.32 Autorad after probing with tniC of blotted gel from Fig. 3.31. Lane1: Marker. Lane2: AES7. Lane3: AES8. Lane4: AES10. Lane5: AES25. Lane6: AES27. Lane7: AES48. Lane8: AES53. Lane9: AES59. Lane10: AES64. Lane11: AES66. Lane12: AES67. Lane13: AES68.
Figure 3.33 PFGE of S1 digests of *K. pneumoniae* genomic DNA. Lane 1: Marker. Lane 2: AES7. Lane 3: AES135. Lane 4: AES140. Lane 5: AES152. Lane 6: AES157. Lane 7: AES172. Lane 8: AES178. Lane 9: AES179. Lane 10: AES198. Lane 11: AES258.

Figure 3.34 Autorad after probing with *iniC* of blotted PFGE gel from Fig. 3.33. Lane 1: Marker. Lane 2: AES7. Lane 3: AES135. Lane 4: AES140. Lane 5: AES152. Lane 6: AES157. Lane 7: AES172. Lane 8: AES2178. Lane 9: AES179. Lane 10: AES198. Lane 11: AES258.
3.2.12.4 Detection of ISCR Elements

Probing of *K. pneumoniae* isolates with ISCR2 genes is presented in (Table 3.3) and (Figures 3.35A, 3.35B, 3.36A & 3.36B). 17 isolates were positive for ISCR2. Of these, 12/17 (70.5 %) were also positive for *bla*_{CTX-M} group1. 5/17 (29.41 %) were also positive for Tn402. 13/17 (76.47 %) *K. pneumoniae* isolates possessing ISCR2 were from patients whereas, 3/17 (17.6 %) were isolates found in the hospital environment. Only one *K. pneumoniae* strain collected from the broader Benghazi environment was positive for *bla*_{CTX-M} group1, ISEcp1 and ISCR2 and also showed successful transconjugation.

![Figure 3.35](image)

Figure 3.35 Probing of blotted *K. pneumoniae* isolates (1-47) with the ISCR2 gene. A: *K. pneumoniae* isolates on MacConkey Agar. B: Autorad of blotting after probing with ISCR2 gene.
Figure 3.36 Probing of blotted *K. pneumoniae* isolates (48-80) with ISCR2 gene. A: *K. pneumoniae* isolates on MacConkey Agar. B: Autorad of northern blotting after probing blotted plate A with ISCR2 gene.
3.3 Discussion

Due to the fact that there is little information on the current rate of infection and the spread of resistant strains of Gram-negative bacteria in Libya, this study was conducted to examine the resistance mechanisms (in some cases, in detail, a randomly selected subset) of *K. pneumoniae* isolates from Tripoli and Benghazi collected from the clinical settings and the environment outside the hospitals.

In addition to the fact that this study represents the first molecular analysis of antibiotic resistance on Gram-negative bacteria from Libya and in particular *K. pneumonia*, it has also major findings. The incidence of *bla*_{CTX-M} group1 type ESBLs and the prevalence of chromosomally and plasmid mediated *bla*_{CTX-M-15}/ISEcp1 and *bla*_{CTX-M} group1 among *K. pneumoniae* isolates are a key factor for their resistance. In addition these isolates are able to confer and express third generation cephalosporin resistance to sensitive *E. coli* via conjugative plasmids. Furthermore, the occurrence of clonally related isolates, in addition to the occurrence of new sequence types among *K. pneumoniae* is a major finding of this study. The involvement of class 1 integrons and Tn402 type transposons as genetic mobile elements in some of these isolates aid spread of antibiotic resistance genes in Libyan hospitals.

The prevalence rate of CTX-M group1 genes in this study is markedly higher than the percentage reported in Algeria, Europe, USA and Canada (Messai *et al*.
Figures 3.10, 3.11, 3.13, 3.19, 3.20, 3.24 and 3.26 clearly demonstrate the incidence of bla_{CTX-M} group1/ISEcp1 in clinical, non-clinical and environmental isolates of $K. pneumoniae$. It shows the dissemination of MDR $K. pneumoniae$ in the clinical settings more in than the environment outside the hospitals. These findings are in accordance with the results of Mamlouk et al., 2006, who reported a high incidence of bla_{CTX-M} group1 in clinical specimens in Tunisia. The increasingly spread of bla_{CTX-M} group1 in Libya is likely due to the high consumption of the antibiotics cefotaxime and ceftazidime in the last ten years to treat infections in Libya. It might also be due to the lack of hygiene in hospital, such as hand hygiene, sterilisation, infection control and lack of surveillance programmes that is desperately lacking in Libya.

SHV and TEM type ESBL genes have also been found prevalent as high percentages among clinical isolates (78.8% and 77.7% respectively). bla_{SHV} and bla_{TEM} were also detected in the non-clinical isolates collected from floors, curtains, hospital equipment, and surfaces of baby incubators. SHV type ESBLs were also detected in environmental strains collected from streets. These findings illustrate the increased level of resistance in clinical isolates of $K. pneumoniae$ and also highlight the depressing reality that this resistance is widespread across Libya and that resistance, in this instance, has got very little to do with the consumption of antibiotics.
bla_{CTX-M} group1 was detected carried on 7 different plasmid sizes in 14 isolates of <i>K. pneumoniae</i>. Ten isolates were clinical samples, 3 were from the hospital environment and one isolate was from Benghazi streets. Overall, the occurrence of plasmid mediated <i>bla_{CTX-M}</i> group1<i>ISEcpI</i> seems to be higher in the clinical settings. <i>bla_{CTX-M}</i> group1<i>ISEcpI</i> was found in 6 different hospitals in Tripoli and Benghazi on different plasmid sizes and locations. <i>bla_{CTX-M}</i> group1<i>ISEcpI</i> was found on a plasmid of 300kb in 4 clinical samples, two of which were clonally related from two different hospitals in Benghazi; Jamhoryia and Kwaifia hospitals. These findings show the incidence of <i>bla_{CTX-M}</i> group1<i>ISEcpI</i> in clonally and non-clonally related isolates of <i>K. pneumoniae</i>. This group of ESBLs was also located on a plasmid of 75kb in 3 clinical isolates of <i>K. pneumoniae</i> (AES274, AES280 and AES281) and on plasmids of 100kb and 275kb in the clinical isolates AES275 and AES48 respectively that were collected from Jamhoryia hospital. Although the same gene, with its promoter sequence was found on a plasmid of 150kb in <i>K. pneumoniae</i> clinical isolates AES982 and AES970 collected from Al-Jala Maternity hospital in Tripoli, they were found on the same plasmid size in the hospital environmental isolate AES506 swabbed from Al-Jala Paediatric hospital in Tripoli. It is worth mentioning that Al-Jala Paediatric hospital is located in Tripoli city centre and next to Al-Jala Maternity hospital. This might explain the occurrence of the <i>bla_{CTX-M}</i> group1 in clinical isolates and the hospital environmental isolates despite being clonally unrelated according to RAPD test.
A plasmid mediated \(\text{bla}_{\text{CTX-M}} \) group1/\(\text{ISEcp1} \) was detected on a large plasmid, sized 425kb in a \(K. \ pneumoniae \) isolated from one of Benghazi streets. A possible explanation for the relatively low frequency of plasmid or chromosomally mediated \(\text{bla}_{\text{CTX-M}} \) group1 in the streets could be because of the effect of the environment conditions outside the clinical settings. The results of this work are in agreement somewhat with the findings of (Lavollay, et al., 2006) in terms of the wide range of the occurrence of \(\text{bla}_{\text{CTX-M-15}} \) on plasmids of different sizes. These results are also consistent with the findings of the spread of plasmid mediated ESBLs that have been reported in \(K. pneumoniae \) strains in Europe and USA (Gori et al., 1996) and Tunisia (Elhani et al., 2010). The work described in this section conflicts somewhat with the findings of Gonullu et al., 2008 who found that most \(\text{bla}_{\text{CTX-M-15}}/\text{ISEcp1} \) were found in most cases located on a plasmid of the same size and type – in this cane IncN. The results of this section are also dissimilar to the work of (Messai et al., 2008) who reported the prevalence of CTX-M genes on plasmids of approximately 77kb and 85kb.

Several important clones, which were recently found associated with spread of \(\text{bla}_{\text{CTX-M}} \) and/or carbapenemases were described in this study. Hence, the study provides further support to the assumption that epidemic international clones are responsible for a substantial part of dissemination of \(\text{bla}_{\text{CTX-M}} \) among \(K. pneumoniae \). Transconjugation and detection of the movement of plasmid
mediated bla\textsubscript{CTX-M} group1 has been detected in \textit{K. pneumoniae} ST15, ST29, ST101 and the new environmental allele ST511. Plasmid mediated bla\textsubscript{CTX-M} group1 has also been detected in \textit{K. pneumoniae} ST147, ST111 and ST70. The spread of bla\textsubscript{CTX-M-15} producing \textit{K. pneumoniae} has moreover been discovered in ST101 and ST147 in Tunisia (Elhani \textit{et al.}, 2010) and in this case Libyan patients might serve as a reservoir of such sequence types of \textit{K. pneumoniae} as Libyans travel frequently to Tunisia in particular for medical purposes, cosmetic surgery and other medical necessities.

Determination of class 1 integrons and transposons by different methods showed the incidence of 5 genetic context forms of class 1 integrons in 12 isolates of \textit{K. pneumoniae}. Some isolates shared the same genetic context while others had a different integron each. Isolate AES85 was found in a CVL sample and was positive for bla\textsubscript{CTX-M} group1/\textit{ISEcp1} and a globally distributed class 1 integron. The integron found in this isolate contained \textit{IntI}, \textit{dfrA7} and \textit{qacE\Delta/sull}. Several authors report the incidence of this integron in a number of clinical isolates - \textit{S. typhi} serotype Typhi from Jordan, Nepal, Senegal, Uganda and South Africa (Al-Sanouri \textit{et al.}, 2008; Tamang \textit{et al.}, 2007; Sow \textit{et al.}, 2007; Krauland \textit{et al.}, 2009). An identical integron was, in addition found in clinical isolates of \textit{E. coli} and \textit{K. pneumoniae} from Sweden (Brolund \textit{et al.}, 2010), in UTI clinical isolate of \textit{E. coli} from Korea (Yu \textit{et al.}, 2004) and in \textit{Shigella flexneri} from Spanish patients who had visited Kenya.
Collectively, the high prevalence and abundance of \(\text{bla}_{\text{CTX-M}}\) group1 and the occurrence of \(\text{bla}_{\text{CTX-M-15}}\) on its own and in association with \(\text{IS}_{\text{Ecp1}}\), \(\text{bla}_{\text{SHV}}\), \(\text{bla}_{\text{TEM}}\), classical class 1 integron alone or embedded in transposon \(\text{Tn402}\), indicate that the epidemiology of \(\text{K. pneumoniae}\) in Libyan hospitals is complex and probably reflects the existence of a longstanding infection control problems in each hospital. The data also indicates that resistance outside the hospital environment and in the community is also an issue.
Chapter Four

Characterisation of antibiotic resistance in *E. coli* isolates from Tripoli & Benghazi, Libya
4.1 Introduction

E. coli is a major cause of infections in humans and plays a significant role in nosocomial and CAIs particularly UTIs and bacteremia among all ages of humans (Oteo *et al.*, 2010a; Rogers *et al.*, 2011; Oteo *et al.*, 2010b). ESBLs emerged in late 1980s causing healthcare associated infections that were now resistant to extended-spectrum β-lactamases and have spread worldwide (Apisarnthanarak *et al.*, 2008; Kiratisin *et al.*, 2008). In particular, plasmids mediated ESBLs. It is a probably the result of the extensive use of β-lactam antibiotics (Goyal *et al.*, 2009) and the selective pressure of these antibiotics which has caused the spread of plasmids from one pathogen isolate to another.

*bla*_{CTX-M} genes encode for CTX-M enzymes, these genes are often plasmid encoded and known as narrow-host range plasmids. CTX-M type enzymes are among the most prevalent ESBLs in Europe, North America, Asia, Latin America and Africa (Gonullu *et al.*, 2008). It has been reported in Tunisia, Algeria, Lebanon and Egypt (Khalaf *et al.*, 2009). This type of ESBLs can be moved from bacteria to bacteria by means of transferable plasmids via conjugation. These enzymes, particularly the early ones that were discovered, preferably hydrolyse cefotaxime more than ceftazidime (Dhanji *et al.*, 2011). *bla*_{CTX-M-15} ESBLs is the most frequently reported hydrolysing enzyme in the UK, Italy, Turkey, Spain, Australia, Kuwait, Lebanon, Algeria and Tunisia (Randall *et al.*, 2011; Cerquetti *et al.*, 2010; Gonullu *et al.*, 2008; Diaz *et al.*, 2010; Ensor *et al.*, 2009; Sidjabat *et al.*, 2010; Abbassi *et al.*, 2008; Mohamed-
Al-Agmy et al., 2006). The outbreak of clonally related strains of *E. coli* has
been reported in association with the incidence of ESBLs (Abbassi et al.,
2008; Woodford et al., 2004). In view of the increasing world wide emergence
of ESBLs and because there is no detailed information on the occurrence of
ESBLs in Libya this study was carried out to study the prevalence of antibiotic
resistance in 39 clinical and non-clinical isolates of *E. coli* collected in 2009
from Tripoli and Benghazi hospitals. This study was also conducted to asses
the incidence of *bla*_{CTX-M} group1 encoding gene along with the mobile genetic
element IS_{Ecp1} that facilitates its movement and expression.

The results of this section describe the incidence of *E. coli* collected from
clinical settings from Tripoli and Benghazi, it also demonstrates the
prevalence of ESBLs among these isolates, particularly of CTX-M group1
type. This section provides an evidence of the occurrence of chromosomally
and plasmid mediated CTX-M-15 and CTX-M-3 in association with the
insertion sequence IS_{Ecp1}.

140
4.2 Results

4.2.1 Characterisation of *E. coli* isolates and antimicrobial susceptibility testing

Thirty nine isolates of *E. coli* were collected in a 4 week period in 2009 from patients admitted to different wards and ICUs from 10 hospitals in Tripoli and Benghazi (Table C.1). Some of the isolates were also from hospital environments such as mechanical ventilators, floors, walls, bedsides and other parts of the hospitals (see Appendix C). The MIC$_{50}$ and MIC$_{90}$ values are shown in table 4.1. Ceftazidime showed higher MIC$_{50}$ and MIC$_{90}$ than that of cefotaxime, low MIC50 and MIC90 was observed for carbapenems whereas high range was shown for piperacillin/tazobactam and ampicillin. In general, high-level of resistance was observed towards 3rd generation cephalosporins. Twenty four out of 39 (61.5 %) were resistant to cefotaxime, 16/39 (41%) resistant to cefuroxime and 17/39 (43.5%) were resistant to ceftazidime. Few of the isolates (7/39) (17.9%) were resistant to ciprofloxacin and 2/39 (5%) and to piperacillin-tazobactam. Those isolates displaying resistance to 3rd generation cephalosporins also showed resistance to aztreonam, trimethoprim sulphamethoxazole - 53.8%, and 35.8% respectively.

4.2.2 Detection of TEM, SHV and CTX-M type ESBL genes

Amplification of *bla*$_{TEM}$ and *bla*$_{SHV}$ has shown the occurrence of *bla*$_{TEM}$ in 7 isolates and *bla*$_{SHV}$ in 8 *E. coli* isolates tested. Amplification of the major CTX-M groups (1, 2, 8, 9 and 26) showed that 23 out of 39 (58.9%) were
positive for CTX-M group 1 and only one *E. coli* isolate gave PCR product for the CTX-M group 9 (Figures 4.1&4.2). The other CTX-M groups were negative. The association of the insertion sequence, ISEcp1, with *bla*$_{CTX-M-15}$ occurred in all cases where CTX-M group 1 was present (Figures 4.3&4.4). Moreover, three isolates; AES226, AES228 & AES232 showed the occurrence of an additional CTX-M group 1 gene. Sequencing these PCR products showed the association of *bla*$_{CTX-M}$ group 1 with ISEcp1 in 22/26 (84.62%). The sequencing results of the three different PCR products obtained at 620bp (isolates; AES226, AES228 & AES232) were positive for CTX-M-3 in association with ISEcp1 in addition to the CTX-M-15/ISEcp1 also carried by these strains. Sequencing results of the single PCR product from the CTX-M group 9 showed the occurrence of CTX-M-19. Interestingly, a deletion event has been detected in the insertion sequence located adjacent to *bla*$_{CTX-M-15}$. This deletion event has been found in some insertion sequences, it shows that the ISEcp1 is occasionally not intact and probably played a role in the movement of *bla*$_{CTX-M}$ group 1 with some *E. coli* isolates (Figure 4.5 & 4.6).

4.2.3 Transconjugation experiments

A subset (n=20) of the CTX-M positive *E. coli* were used to study the plasmids carrying the CTX-M-15 genes. The results of the transconjugation experiments using the GFP *E. coli* as a recipient showed that transconjugation was observed in 19 out of 20 (95%). Antibiotic resistance profile of *E. coli* transconjugants, AES224T, AES226T, AES228T and AES231 showed the
occurrence of virtually the same resistance profile from parents to transconjugants (Table 4.2). Ceftazidime resistant transformants were confirmed by PCR. Transconjugation was also conducted on the *E. coli* isolate positive for CTX-M-19. The plasmid carrying \(\text{bla}_{\text{CTX-M-19}} \) was able to move to the recipient *E. coli* conferring ceftazidime which was further confirmed by PCR.

4.2.3.1 Antibiotic Resistance profile of *E. coli* CTX-M transconjugants

Antibiotic resistance profile of *E. coli* transconjugants; AES224T, AES226T, AES228T, and AES231T are virtually the same as their donor strains. The original GFP *E. coli* strain is fully sensitive a part of rifampicin; subsequently mating *E. coli* with GFP *E. coli* (recipient) indicates the movement of antibiotic resistance mechanism from parents to transconjugants via conjugative plasmids. The resultant GFP *E. coli* were resistant to aminoglycosides, aztreonam, ampicilin, amoxicillin/clavulanate, \(\beta \)-lactam antibiotics such as cephalosporins, and third generation cephalosporins, they were sensitive to carbapenems and monobactams. (Table 4.2).
Table 4.1. MIC\textsubscript{50} and MIC\textsubscript{90} of \textit{E. coli} isolates

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>MIC\textsubscript{50}</th>
<th>MIC\textsubscript{90}</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftazidime</td>
<td>16</td>
<td>32</td>
<td>4 – 32</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>8</td>
<td>64</td>
<td>2 – 64</td>
</tr>
<tr>
<td>Imipenem</td>
<td>0.5</td>
<td>1</td>
<td>0.125 – 1</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0.5</td>
<td>1</td>
<td>0.125 – 1</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>16</td>
<td>16</td>
<td>8 – 16</td>
</tr>
<tr>
<td>Piperacillin/Tazobactam</td>
<td>8</td>
<td>128</td>
<td>4 – 128</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>2</td>
<td>4</td>
<td>0.5 – 8</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>16</td>
<td>64</td>
<td>4 – 64</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>16</td>
<td>16</td>
<td>2 – 16</td>
</tr>
</tbody>
</table>

Figure 4.1 Multiplex PCR to detect CTX-M groups; 1, 2, 8, 9 & 26 in \textit{E. coli}. Lane1: Marker. Lane2: \textit{E. coli} AES11. Lane3: \textit{E. coli} AES35. Lane4: \textit{E. coli} AES58. Lane5: \textit{E. coli} AES120. Lane6: \textit{E. coli} AES128. Lane7: \textit{E. coli} AES195. Lane8: \textit{E. coli} AES202. Lane9: \textit{E. coli} AES212. Lane10: \textit{E. coli} AES224. Lane11: \textit{E. coli} AES226. Lane12: \textit{E. coli} AES227. Lane13: \textit{E. coli} AES228. Lane14: \textit{E. coli} AES230. Lane15: \textit{E. coli} AES231. Lane16: \textit{E. coli} AES232.
Figure 4.2 Multiplex PCR to detect CTX-M groups; 1, 2, 8, 9 & 26 in E. coli. Lane1: Marker. Lane2: E. coli AES237. Lane3: E. coli AES239. Lane4: E. coli AES240. Lane5: E. coli AES243. Lane6: E. coli AES244. Lane7: E. coli AES245. Lane8: E. coli AES246. Lane9: E. coli AES247. Lane10: E. coli AES248. Lane11: E. coli AES262. Lane12: E. coli AES101. Lane13: E. coli AES922. Lane14: E. coli AES932. Lane15: E. coli AES937. Lane16: E. coli AES938. Lane17: E. coli AES941. Lane18: E. coli AES944. Lane19: E. coli AES962. Lane20: E. coli AES964

Figure 4.3 Detection of bla$_{CTX-M}$ group1 and IS67cp1 in E. coli. Lane1: Marker. Lane2: E. coli AES11. Lane3: E. coli AES35. Lane4: E. coli AES120. Lane5: E. coli AES195. Lane6: E. coli AES202. Lane7: E. coli AES224. Lane8: E. coli AES226. Lane9: E. coli AES227. Lane10: E. coli AES228. Lane11: E. coli AES230. Lane12: E. coli AES231. Lane13: E. coli AES232. Lane14: E. coli AES237. Lane15: E. coli AES239. Lane16: E. coli AES240. Lane17: E. coli AES243. Lane18: E. coli AES244. Lane19: E. coli AES245. Lane20: E. coli AES246.
Figure 4.4 Detection of \textit{bla}_{\text{CTX-M}}\text{-}g1 and \textit{ISE}cp1 in \textit{E. coli}. Lane1: Marker. Lane2: \textit{E. coli} AES247. Lane3: \textit{E. coli} AES248. Lane4: \textit{E. coli} AES262. Lane5: \textit{E. coli} AES101. Lane6: \textit{E. coli} AES937. Lane7: \textit{E. coli} AES941. Lane8: \textit{E. coli} AES1006.

Figure 4.5 Detection of \textit{bla}_{\text{CTX-M}}\text{-}g1 in association with an intact copy of \textit{ISE}cp1 in \textit{E. coli}. Lane1: Marker. Lane2: \textit{E. coli} AES11. Lane3: \textit{E. coli} AES35. Lane4: \textit{E. coli} AES120. Lane5: \textit{E. coli} AES195. Lane6: \textit{E. coli} AES202. Lane7: \textit{E. coli} AES224. Lane8: \textit{E. coli} AES226. Lane9: \textit{E. coli} AES227. Lane10: \textit{E. coli} AES228. Lane11: \textit{E. coli} AES230.
Figure 4.6 Detection of *bla*_{CTX-M} group1 in association with *ISEcp1* in *E. coli*. Lane1: Marker. Lane2: *E. coli* AES231. Lane3: *E. coli* AES232. Lane4: *E. coli* AES237. Lane5: *E. coli* AES239. Lane6: *E. coli* AES240. Lane7: *E. coli* AES243. Lane8: *E. coli* AES244. Lane9: *E. coli* AES245. Lane10: *E. coli* AES246. Lane11: *E. coli* AES247. Lane12: *E. coli* AES248. Lane13: *E. coli* AES262. Lane14: *E. coli* AES101A. Lane15: *E. coli* AES937. Lane16: *E. coli* AES941

The results of the amplification of *bla*_{CTX-M} group1 and *ISEcp1* to detect the occurrence of the full sequence of the insertion sequence *ISEcp1* showed that in 12 out of 22 (54.5%) of isolates a deletion event is occurred in the insertion sequence. The results also demonstrated that 10 out 22 (45.4%) had the full sequence of *ISEcp1*. Amplification of *bla*_{CTX-M} group1 and *ISEcp1* genes in the transconjugants GFP showed that 18 out of 20 (90%) showed the occurrence of both genes.
Table 4.2 Sensitivity profile of *E. coli* parents and transconjugants

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>AES224</th>
<th>AES224T</th>
<th>AES226</th>
<th>AES226T</th>
<th>AES228</th>
<th>AES228T</th>
<th>AES231</th>
<th>AES231T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>S</td>
<td>16</td>
<td>S</td>
<td>16</td>
<td>S</td>
<td>16</td>
<td>S</td>
<td>16</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>>8</td>
<td>>8</td>
<td>>8</td>
<td>>8</td>
<td>>8</td>
<td>>8</td>
<td>>8</td>
<td>>8</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>>16</td>
<td>>16</td>
<td>>16</td>
<td>>16</td>
<td>>16</td>
<td>>16</td>
<td>>16</td>
<td>>16</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
<td>>4</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>>16</td>
<td>>8</td>
<td>16</td>
<td>>8</td>
<td>16</td>
<td>>8</td>
<td>16</td>
<td>>8</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>>16</td>
<td>>8</td>
<td>>16</td>
<td>>8</td>
<td>>16</td>
<td>>8</td>
<td>>16</td>
<td>>8</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>>2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>S</td>
<td>>4</td>
<td>>8</td>
<td>>4</td>
<td>>8</td>
<td>>4</td>
<td>>8</td>
<td>>4</td>
</tr>
<tr>
<td>Imipenem</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Meropenem</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Piperacillin/</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Tazobactam</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>-</td>
<td>S</td>
<td>-</td>
<td>S</td>
<td>-</td>
<td>S</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Trimethoprim/</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Sulphamethoxazole</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Amoxicillin/</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>clavulanate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T: Transconjugants

4.2.4 Plasmid typing of ESBL positive *E. coli* isolates

Typing of a subset of *bla*$_{CTX-M}$ group1 positive *E. coli* isolates by PCR to identify the plasmids responsible for the carriage and movement of CTX-M group1 and *ISEcpL* showed that more than one type of plasmids has been detected in some these isolates. AES224 was positive for IncFIA, AES226, and its transconjugant were found positive for IncFII. AES237 and its
transconjugant AES237T were carrying \textit{bla}_{CTX-M} group1 on IncI plasmid. AES243 was detected positive for IncF plasmid.

4.2.5 Detection of plasmid mediated \textit{bla}_{CTX-M} group1 and \textit{ISEcp1} genes in parents and transconjugants of \textit{E. coli}

PFGE of S1 digests of a subset of the whole genomic DNA of parents and transconjugants of \textit{E. coli} are shown in figures (4.7&4.9). Probing of PFGE gels of figures 4.7&4.9 with \textit{bla}_{CTX-M-15} is illustrated in figures (4.8&4.10).

These results demonstrated the incidence of one copy of \textit{bla}_{CTX-M} group1 in parents of \textit{E. coli} isolates; the results of probing provide an evidence of the movement of \textit{bla}_{CTX-M-15} and \textit{bla}_{CTX-M} group1 from parents to transconjugants.

During conjugation, on occasions the plasmid carrying \textit{bla}_{CTX-M-15} changed in size. \textit{bla}_{CTX-M-15} has been detected on a plasmid with a size of 100 kb in three of the parents; AES226, AES228 & AES232 and on 100 kb in \textit{bla}_{CTX-M} group1, AES35, AES227, and AES231; however, during conjugation \textit{bla}_{CTX-M} group1 was detected on two plasmids (100 and 350 kb) in 3 of the transconjugants (AES226T, AES228T & AES232T) and on 100 and 350 kb of the transconjugants AES227T and AES231T and on a plasmid of 300kb in transconjugant AES35T. These data show that \textit{bla}_{CTX-M-15} and \textit{bla}_{CTX-M} group1 genes have moved either from one plasmid to another larger plasmid during conjugation or that during the conjugation process the plasmid has acquired chromosomal DNA or two plasmids (one containing \textit{bla}_{CTX-M} group1 gene) have become co-integrative. \textit{bla}_{CTX-M} group1 was also located on a 125kb
plasmid in the donor AES237 as well as its corresponding transconjugant, in one donor (AES224) and its transconjugants bla_{CTX-M} group1 is present on a 175kb plasmid.

Figure 4.7 PFGE of $S1$ digestion of *E. coli* parents and transconjugants. Lane1: Marker, Lane2: *E. coli* isolate AES35. Lane3: *E. coli* AES35T. Lane4: *E. coli* AES224. Lane5: *E. coli* AES224T. Lane6: *E. coli* AES226. Lane7: *E. coli* AES226T. Lane8: *E. coli* AES227. Lane9: *E. coli* AES227T. Lane10: *E. coli* AES228. Lane11: *E. coli* AES228T. Lane12: *E. coli* AES231. Lane13: *E. coli* AES231T. Lane14: *E. coli* AES237. Lane15: *E. coli* AES237T.
Figure 4.8 Autorad of E.coli parents and transconjugants after probing of PFGE gel from fig.4.7 with blaCTX-M-15.
Lane1: Marker, Lane2: E. coli AES35. Lane3: E. coli AES35T. Lane4: E. coli AES224. Lane5: E. coli AES224T.
Lane6: E. coli AES226. Lane7: E. coli AES226T. Lane8: E. coli AES227. Lane9: E. coli AES227T. Lane10: E. coli AES228. Lane11: E. coli AES228T. Lane12: E. coli AES231. Lane13: E. coli AES231T. Lane14: E. coli AES237. Lane15: E. coli AES237T.
Figure 4.9 PFGE of S1 digestion of *E. coli* parents and transconjugants. Lane1: Marker, Lane2: *E. coli* isolate AES35. Lane3: *E. coli* AES35T. Lane4: *E. coli* AES224. Lane5: *E. coli* AES224T. Lane6: *E. coli* AES226. Lane7: *E. coli* AES226T. Lane8: *E. coli* AES227. Lane9: *E. coli* AES227T. Lane10: *E. coli* AES228. Lane11: *E. coli* AES228T. Lane12: *E. coli* AES231. Lane13: *E. coli* AES231T. Lane14: *E. coli* AES232. Lane15: *E. coli* AES232T.
Figure 4.10 Autorad of *E. coli* parents and transconjugants after probing of the PFGE gel from fig. 4.9 with *bla*_{CTX-M-15}/ISEcp1. Lane 1: Marker, Lane 2: *E. coli* AES35. Lane 3: *E. coli* AES35T. Lane 4: *E. coli* AES224. Lane 5: *E. coli* AES224T. Lane 6: *E. coli* AES226. Lane 7: *E. coli* AES226T. Lane 8: *E. coli* AES227. Lane 9: *E. coli* AES227T. Lane 10: *E. coli* AES228. Lane 11: *E. coli* AES228T. Lane 12: *E. coli* AES231. Lane 13: *E. coli* AES231T. Lane 14: *E. coli* AES232. Lane 15: *E. coli* AES232T.
4.2.6 Typing of *E. coli* isolates

PFGE of *Xba*I digests of *E. coli* isolates; AES35, AES224, AES228, AES231, AES232, AES237, AES240, AES243, AES245, AES246, AES247, AES226, AES227, AES11, AES202, AES230, AES239, AES244, AES248 & AES262 are shown in (Figures 4.11 and 4.13). The dendrogram of the PFGE pictures analysis are illustrated in (Figures 4.12 and 4.14). These results showed the incidence of 3 groups of clones among the 20 *E. coli* isolates examined. One clonal group, isolates AES226, AES227, AES228, AES232 and AES231, were clinical and hospital environmental isolates from an ICU as part of a screen from the ICU of the Paediatric hospital in Benghazi, these isolates were slightly different with computer analysis. AES226 and AES232 were urine samples cultured from two patients admitted to Benghazi paediatric hospital whereas, AES227, AES228 and AES231 were cultured from non-clinical swabs collected from the ICU of the same hospital. *E. coli* isolates; AES243 and AES245 were also clonal and found in urine samples from two different patients suggesting either a dominant Libyan clone or cross-infection. Another two isolates, AES237, AES240, AES246 and AES247 were also clonal despite being dissimilar by dendrogram. Isolates AES237 and AES246 were from urine samples, while isolates AES240 and AES247 were collected from the corridor and floor of the ICU at the same hospital, this clone (AES237/ AES240) shared more than 90% similarity with isolate AES247 that was cultured from the floor of the same ICU. Isolate AES35 was unrelated to the
other strains isolated from environmental swabs of the same ICU at the Al-Jamhoryia hospital, Benghazi.

Figure 4.11 PFGE of *XbaI* digestion and separation of genomic DNA according to size. Lane 1: Marker. Lane 2: *E. coli* AES35. Lane 3: *E. coli* AES224. Lane 4: *E. coli* AES228. Lane 5: *E. coli* AES231. Lane 6: *E. coli* AES232. Lane 7: *E. coli* AES237. Lane 8: *E. coli* AES240. Lane 9: *E. coli* AES243. Lane 10: *E. coli* AES245. Lane 11: *E. coli* AES246. Lane 12: *E. coli* AES247. Lane 13: *E. coli* AES226. Lane 12: *E. coli* AES227
Figure 4.12 Dendrogram of PFGE picture of *E. coli* isolates fig (4.11). Lane 1: Marker. Lane 2: *E. coli* AES35. Lane 3: *E. coli* AES224. Lane 4: *E. coli* AES228. Lane 5: *E. coli* AES231. Lane 6: *E. coli* AES232. Lane 7: *E. coli* AES237. Lane 8: *E. coli* AES240. Lane 9: *E. coli* AES243. Lane 10: *E. coli* AES245. Lane 11: *E. coli* AES246. Lane 12: *E. coli* AES247. Lane 13: *E. coli* AES226. Lane 12: *E. coli* AES227
Figure 4.13 PFGE of XbaI digestion and separation of genomic DNA according to size. Lane 1: Marker. Lane 2: *E. coli* AES11. Lane 3: *E. coli* iAES202. Lane 4: *E. coli* AES230. Lane 5: *E. coli* AES239. Lane 6: *E. coli* AES244. Lane 7: *E. coli* AES248. Lane 8: *E. coli* AES262.

Figure 4.14 Dendrogram of PFGE picture of fig. (4.13). Lane 1: Marker. Lane 2: *E. coli* AES11. Lane 3: *E. coli* iAES202. Lane 4: *E. coli* AES230. Lane 5: *E. coli* AES239. Lane 6: *E. coli* AES244. Lane 7: *E. coli* AES248. Lane 8: *E. coli* AES262.
4.2.7 Detection of chromosomally mediated \(\text{bla}_{\text{CTX-M}} \) group1 encoding gene

Probing of the PFGE gels from Figures 4.11 & 4.13 with the radio-labelled \(\text{bla}_{\text{CTX-M}} \) DNA probe is demonstrated in Figures 4.15 and 4.16. These results show that two copies of the \(\text{bla}_{\text{CTX-M}} \) group1 were detected in isolate 11 but only one copy of \(\text{bla}_{\text{CTX-M}} \) group1 gene was detected in the other 19 isolates. \(\text{bla}_{\text{CTX-M}} \) group1 was found on a 50kb plasmid in 6 isolates (AES35, AES228, AES231, AES232, AES226 and AES227), whereas \(\text{bla}_{\text{CTX-M}} \) group1 was carried on a 100kb in isolates; AES237, AES240, AES246, AES247, AES239 and AES248. Four isolates (AES11, AES224, AES243, AES245 and AES230) carry \(\text{bla}_{\text{CTX-M}} \) group1 on a plasmid of 125kb. The results in Figures 4.11 and 4.13 showed that isolates; AES35, AES224, AES227, AES231 and AES237 were confirmed to express plasmid mediated CTX-M group1 genes at different plasmid sizes; 50, 125, 50, 50 and 100kb, respectively while isolates AES226, AES228 and AES232 showed plasmid mediated CTX-M group1 genes at 50 kb. The results of probing the PFGE gel of \(\text{XbaI} \) digests provide another evidence of the occurrence of the CTX-M group1 genes on plasmids detected in (Figures 4.8 and 4.10).
Figure 4.15 Autorad of PFGE gel of fig (4.11) after probing with CTX-M-15. Lane 1: Marker. Lane 2: *E. coli* AES35. Lane 3: *E. coli* AES224. Lane 4: *E. coli* AES228. Lane 5: *E. coli* AES231. Lane 6: *E. coli* AES232. Lane 7: *E. coli* AES237. Lane 8: *E. coli* AES240. Lane 9: *E. coli* AES243. Lane 10: *E. coli* AES245. Lane 11: *E. coli* AES246. Lane 12: *E. coli* AES247. Lane 13: *E. coli* AES226. Lane 14: *E. coli* AES227
Figure 4.16 Autorad of PFGE gel of fig. (4.13) after probing with CTX-M-15. Lane 1: Marker. Lane 2: E. coli AES11. Lane 3: E. coli iAES202. Lane 4: E. coli AES230. Lane 5: E. coli AES239. Lane 6: E. coli AES244. Lane 7: E. coli AES248. Lane 8: E. coli AES262.
4.2.8 Detection of class 1 integrons & Tn402 type transposons

The results of amplification of class 1 integrons from a subset of 14 isolates of *E. coli* isolates selected according to their resistance to aminoglycosides and trimethoprim, demonstrated that 7 isolates; AES11, AES237, AES240, AES243, AES245, AES246 and AES247 out of 15 yielded PCR products of approx. 2kb. Sequencing of the 2 kb PCR products obtained from isolates; AES11, AES245 and AES247 revealed the presence of a classical class 1 integron. The genetic context of the three integrons were exactly the same containing two gene cassettes; *dfrA17* and *aadA5* flanked with the integrase gene (*IntI1*) and the quaternary ammonium compound gene (*qacAE*), (Figure 4.17). The integron-positive strains were collected from different sources. Isolates AES11 and AES245 were from urine samples from patients admitted to Al-Jamhoriya hospital and Paediatric hospital in Benghazi, whereas isolate AES247 was from an ICU surface in the Benghazi Paediatric hospital. PCR experiments performed on these isolates to detect the occurrence of Tn402 type transposons did not detect the desired amplicons.

![Figure 4.17 Genetic context of class 1 integrons found in Libyan E. coli isolates. IntI1: Integrase gene. dfrA17: Trimethoprim resistance gene. aadA5: Aminoglycoside resistance gene. QacEA/Sull: Quaternary ammonium compound resistance gene and sulphonamides’ resistance gene.](image-url)
4.3 Discussion

This section describes the molecular characterisation of antibiotic resistance in a random collection of *E. coli* from Libyan hospitals. Data from this collection indicate that the spread of *blaCTX-M* group1 along with ISEcp1 is well established in Libyan health institutions. The results moreover demonstrate the occurrence of *blaCTX-M-15, blaCTX-M-3* and *blaCTX-M-19* among the clinical isolates in addition to *blaSHV* and *blaTEM*.

E. coli isolates collected from both Tripoli and Benghazi hospitals in Libya showed that multi-antibiotic resistant isolates were found in Benghazi hospitals, particularly in the Benghazi Paediatric Hospital. Isolates collected from inpatients (urine, blood and pus samples) and hospital environments (mechanical ventilators, baby incubators, surfaces, and bed sites) showed marginally higher rate of resistance to antibiotics, more specifically to third generation cephalosporins. There was no observable difference in the resistance rates of *E. coli* isolates cultured from samples collected from patients and isolates cultured from the hospital environment. MICs of 13 isolates showed marginally higher MIC values toward ceftazidime than cefotaxime, this would argue that there is more than one ESBL has contributed to the resistance mechanism of these isolates. Only 3 isolates displayed higher MICs values against cefotaxime compared with that of ceftazidime, this may be attributed to the occurrence of CTX-M type ESBLs, these findings support the report of (Yu & Cheng, 2004; Abassi *et al.*, 2008).
E. coli isolates screened for the occurrence of ESBLs showed the prevalence of CTX-X-M group 1 and CTX-M group 9 among these isolates. Detailed investigation on this group of CTX-M showed the incidence of \(\textit{bla}_{\text{CTX-M}} \) group1 as the most prevalent ESBL in these isolates. Three isolates demonstrated the occurrence of \(\textit{bla}_{\text{CTX-M-15}} \) and \(\textit{bla}_{\text{CTX-M-3}} \), whereas AES1006 demonstrated the presence of \(\textit{bla}_{\text{CTX-M-19}} \) type ESBLs. \(\textit{bla}_{\text{CTX-M-3}} \) has been detected in three isolates; AES226, AES228 and AES232 in addition to \(\textit{bla}_{\text{CTX-M-15}} \).

The incidence of \(\textit{bla}_{\text{CTX-M}} \) group1 was high (58.9%), this percentage is considered high and may reflect the longstanding antibiotic pressure on cephalosporins in particular 3\(^{rd}\) generation cephalosporins. A possible explanation of the widely scattered \(\textit{bla}_{\text{CTX-M}} \) group1 may be attributed to the horizontal gene transfer and/or due to the role of the insertion sequence \(\text{ISEcp1} \) (Abbassi et al., 2008). This is perhaps not too surprising as several reports showed the global distribution of \(\textit{bla}_{\text{CTX-M-15}} \) in Europe, Asia and Africa (Woodford \textit{et al.}, 2004; Gonullu \textit{et al.}, 2008; Lavollay \textit{et al.}, 2006, Yu & K. Cheng, 2004; Ramdani-Bouguessa, \textit{et al.}, 2006; Abbassi \textit{et al.}, 2008). The findings of this work are in accordance with the records on the dissemination of CTX-M-15 and CTX-M-3 in *E. coli* reported by (Ramdani-Bouguessa, \textit{et al.}, 2006) in Algeria suggesting the enhancement of \(\textit{bla}_{\text{CTX-M-15}} \) movement by \(\text{ISEcp1} \).
ISEcpl gene was determined for bla_{CTX-M-15} positive *E. coli*; however, a deletion event has been observed by PCR in 12 out of 22 positive isolates to ISEcpl. According to the findings of this work, this deletion event does not seem to affect the movement of CTX-M group1 gene from donor cells to recipients, moreover the ISEcpl either intact or with a deletion event moved with the β-lactamase gene by transconjugation experiments. It is likely to responsible for the movement of bla_{CTX-M} group1 within the same strain but to different plasmid size as shown in *E. coli* isolates AES226, AES227, AES228, AES230, AES231 and AES232 (Figures 4.8 and 4.10) The mobility and expression of CTX-M type ESBLs by ISEcpl has been proposed by Poirel *et al.*, 2003; Abbassi *et al.*, 2008.

bla_{CTX-M} group1 and ISEcpl have been detected in donors and transconjugants of *E. coli* on five different plasmid sizes; 100, 175, 300 and 350kb. *E. coli* donors showed the occurrence of bla_{CTX-M} group1 and ISEcpl on one plasmid for each isolate. In *E. coli* isolates; AES35, AES226, AES227, AES228, AES231 and AES232, bla_{CTX-M} group1 and ISEcpl were detected on two different plasmid sizes in recipients whereas they were found in one plasmid location in donors. Interestingly, the data from this study shows the fluidity of bla_{CTX-M} group1 and ISEcpl by mobilising to another plasmid during conjugation. Such events are rarely reported.
Three plasmid types have been detected by PCR in *E. coli* isolates, IncI in AES237, IncFII in AES226 and IncFIA in AES224. Several reports have shown that IncF plasmids (IncFII and IncFIA) are responsible for carrying and facilitating the movement of *blaCTX-M* group1 and *ISEcp1* element. (Gonullu *et al.*, 2008; Villa *et al.*, 2010; Lavollay *et al.*, 2006; Partridge *et al.*, 2011).

Amongst all tested isolates for class 1 integrons, one integron composed of two gene cassettes; *dfrA17* and *aadA5* and has been previously described reported from patient suffered from UTI in Australia. The same integron was also reported in Spain and China among *E. coli* isolates (Vinue *et al.*, 2008; Tang *et al.*, 2011).

Typing of *E. coli* isolates was performed on the basis of the incidence of ESBLs more specifically *blaCTX-M* group1 among these isolates, this typing resulted in the occurrence of 3 clonal groups clone 1 (AES226, AES227, AES228, AES231 and AES232), clone 2 (AES243 and AES245 and clone 3 (AES237, AES240, AES246 and AES247). Members of clone 1 were collected from patients and the hospital environment, members of clone 2 were from urine samples from two different patients admitted to the same hospital whereas members of clone 3 from two different locations; isolate AES237 and AES246 were from a urine samples while isolate AES240 and AES247 were from the hospital environment of the same hospital. These findings would suggest that the inter-dissemination of clonal isolates of *E. coli*
in the same hospital is due to longstanding problem and propose earlier establishment of the gene pool in this hospital. Clonal dissemination of $\text{bla}_{\text{CTX-M}}$ group 1 in *E. coli* has grasped the attention of many investigators to understand the epidemiology of antibiotic resistance in the clinical settings and even outside the hospitals to study the contribution of clonal isolates in the community (Lavollay *et al.*, 2006; Mashana *et al.*, 2011). The findings of this section are in accordance to somewhat with clonally spread of *E. coli* strains harbouring plasmid mediated $\text{bla}_{\text{CTX-M-15}}$ genes reported by (Coque *et al.*, 2008).
Chapter Five

Detection of \(\text{bla}_{\text{VIM-2}} \) in

\(P. \text{aeruginosa} \) from Benghazi
5.1 Introduction

P. aeruginosa is capable of causing internal and external infections to humans and largely linked with CAIs and HAIIs. It contributes by 10 % among all other bacterial infections in hospitals and is considered as the leading cause of cross infections; VAP and wound infections (Enoch *et al.*, 2007). *P. aeruginosa* antimicrobial resistance is continuing to rise and this is likely elucidated by the ability of this micro-organism to live in diverse environments and share genetic information with numerous species of bacteria that results in withstanding the effect of antimicrobials by means of antibiotic hydrolysing enzymes in particular MBLs (Walsh *et al.*, 2005), (Gales, *et al.*, 2003). The acquisition of MBLs by *P. aeruginosa* is of particular concern due to the fact that this enzyme confers resistance to all β-lactams with the sole exception of aztreonam. Furthermore, MBL-producing Gram-negative bacteria are resistant to nearly all antibiotics and have become pan-resistant resulting in the wide spread of treatment failure (Pournaras *et al.*, 2003; Yu *et al.*, 2006).

Section 5 deals with the spread of multi-drug resistant isolates of *P. aeruginosa* collected from hospitalised patients, hospital environment swabs in Tripoli and Benghazi. This work focuses on the spread of mobile genetic elements; class 1 integrons and transposons associated with MBLs in 14 *P. aeruginosa* isolates from Libya. The results show the incidence of multi-drug resistant *P. aeruginosa* from clinical and no-clinical sources.
*bla*_{VIM-2} has been detected in two isolates of *P. aeruginosa* collected from two patients admitted to Al-Jalla hospital in Benghazi. Transconjugation experiments using *E. coli* J53 and *P. aeruginosa* PA01 failed to produce any ceftazidime resistant transformants. *bla*_{VIM-2} has been shown to be chromosomally located in two isolates of *P. aeruginosa*. The investigation did not show the presence of Tn402 that is usually associated with class 1 integrons to facilitate their mobility. The results also showed the incidence of 3 types of class 1 integrons among 7 isolates of *P. aeruginosa*. Novel integron were submitted to the gene bank and assigned the accession numbers; HE583392.2 and HE583391.2.
5.2 Results

P. aeruginosa collected from clinical and non-clinical samples are illustrated in Table 5.1.

5.2.1 Antibiotic susceptibility testing

Antimicrobial sensitivity testing of 14 clinical and non-clinical isolates of *P. aeruginosa* is shown in Table 5.2. These results show high-level resistance to gentamicin, imipenem, aztreonam, cefotaxime, ceftazidime, ciprofloxacin, piperacillin/tazobactam, trimethoprim/sulphamethoxazole, amoxicillin and ampicillin. *P. aeruginosa* isolates AES30, AES81 AES83 and AES93 had MICs above 8 mg/l. Susceptibility of 10 isolates against amikacin and meropenem was recorded for the other isolates.

5.2.2 Detection of MBLs using Etest

All isolates were subjected to Etest (see section 2.7) using imipenem and imipenem plus inhibitor (IP/IPI) to identify the presence of any MBLs. The results showed that *P. aeruginosa* isolates AES81 and AES83 had high levels of resistance to imipenem yet was sensitive to the presence of EDTA (IPI) and thus indicating the presence MICs higher than 16 mg/l proposing the production of a MBL (Figure 5.1).

5.2.3 Detection of MBL encoding genes

PCR experiments were conducted using primers specific for previously reported MBLs. Data showed the occurrence of 700 bp amplicons from *P.
P. aeruginosa isolates AES81 and AES83 (Figure 5.2). The two amplicons resulted from primers designed to amplify *bla*VIM genes. Both sequences displayed 100% homology to *bla*VIM-2 that is disseminated worldwide (Walsh, et al., 2003).

Table 5.1 List of *P. aeruginosa* used in experiments

<table>
<thead>
<tr>
<th>P. aeruginosa</th>
<th>Site of collection</th>
<th>Place of collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES30</td>
<td>Urine</td>
<td>Al Jamhoryia hospital Benghazi</td>
</tr>
<tr>
<td>AES81</td>
<td>Stainless steel container (Chest ward)</td>
<td>Al-Jala hospital Benghazi</td>
</tr>
<tr>
<td>AES83</td>
<td>Tip of catheter (ICU)</td>
<td>Al-Jala hospital Benghazi</td>
</tr>
<tr>
<td>AES89</td>
<td>Floor of toilet (ICU)</td>
<td>Al-Jala hospital Benghazi</td>
</tr>
<tr>
<td>AES91</td>
<td>Suction machine tube (ICU)</td>
<td>Al-Jala hospital Benghazi</td>
</tr>
<tr>
<td>AES93</td>
<td>Suction machine outlet</td>
<td>Al-Jala hospital Benghazi</td>
</tr>
<tr>
<td>AES146</td>
<td>Floor of toilet (ICU)</td>
<td>Al-Jala hospital Benghazi</td>
</tr>
<tr>
<td>AES182</td>
<td>Pus sample</td>
<td>Al-Jala hospital Benghazi</td>
</tr>
<tr>
<td>AES273A</td>
<td>Blood sample</td>
<td>Al Jamhoryia hospital Benghazi</td>
</tr>
<tr>
<td>AES284</td>
<td>Blood sample</td>
<td>Al Jamhoryia hospital Benghazi</td>
</tr>
<tr>
<td>AES287</td>
<td>Urine sample</td>
<td>Al Jamhoryia hospital Benghazi</td>
</tr>
<tr>
<td>AES934</td>
<td>Wound infection</td>
<td>Burn and plastic surgery centre Tripoli</td>
</tr>
<tr>
<td>AES988</td>
<td>Wound infection</td>
<td>Burn and plastic surgery centre Tripoli</td>
</tr>
<tr>
<td>AES998</td>
<td>Wound infection</td>
<td>Burn and plastic surgery centre Tripoli</td>
</tr>
<tr>
<td>AES1010</td>
<td>Wound infection</td>
<td>Burn and plastic surgery centre Tripoli</td>
</tr>
</tbody>
</table>
Table 5.2: Antibiotic sensitivity testing of clinical and non-clinical *P. aeruginosa*

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Sensitive</th>
<th>Resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>10/15</td>
<td>6/15</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>5/15</td>
<td>11/15</td>
</tr>
<tr>
<td>Imipenem</td>
<td>7/15</td>
<td>9/15</td>
</tr>
<tr>
<td>Meropenem</td>
<td>10/15</td>
<td>6/15</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>2/15</td>
<td>14/15</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>6/15</td>
<td>10/15</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>2/15</td>
<td>14/15</td>
</tr>
<tr>
<td>Trimethoprimine sulphamethoxazole</td>
<td>1/15</td>
<td>15/15</td>
</tr>
<tr>
<td>Piperacillin tazobactam</td>
<td>7/15</td>
<td>9/15</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>6/15</td>
<td>10/15</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>0/15</td>
<td>15/15</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>1/15</td>
<td>15/15</td>
</tr>
</tbody>
</table>

Figure 5.1 Etest of *P. aeruginosa* isolates. A. *P. aeruginosa* AES81. B. *P. aeruginosa* AES83
Figure 5.2 Detection of Tn402 type transposon, Tn21 and \(\text{bla}_{\text{VIM-2}} \) in \(P. \) aeruginosa isolates AES81 and AES83. Lane1: Marker. Lane2: Tn402 in isolate AES81. Lane3: negative control. Lane4: Tn402 in isolate AES83. Lane5: negative control. Lane6: Tn21 in isolate AES81. Lane7: negative control. Lane8: \(\text{bla}_{\text{VIM-2}} \) in isolate AES81. Lane9: negative control. Lane10: Tn21 in isolate AES83. Lane11: negative control. Lane12: \(\text{bla}_{\text{VIM-2}} \) in isolate AES83. Lane13: negative control.

5.2.4 Transconjugation experiments

Transconjugation experiments using J53 and PA01 as recipients were performed to detect the possible occurrence of \(\text{bla}_{\text{VIM-2}} \) on a transferable plasmid. The mating experiments did not produce any ceftazidime resistant \(E. \) coli or \(P. \) aeruginosa transconjugants suggesting that \(\text{bla}_{\text{VIM-2}} \) in these clinical isolates of \(P. \) aeruginosa is chromosomally located.
5.2.5 Typing of *P. aeruginosa*

PFGE of Spe-1 digestion of isolates of *P. aeruginosa* is shown in Figure 5.3. Dendrogram of Figure 5.3&5.7; in particular isolates AES30, AES81, AES83, AES89, AES91, AES146, AES182, AES273, AES284 and AES287 are illustrated in Figure 5.4. Typing of *P. aeruginosa* showed that isolates; AES89, AES91, AES93, AES146 and AES182 are clonal despite being collected from two geographically distant places. AES81 was collected from stainless steel container in Chest ward in Al-Jalla hospital in Benghazi whereas AES83 was from a clinical sample from tip of catheter from a patient admitted to the ICU of the same hospital. Isolate AES182 is from a pus sample and isolate 146 is from the floor of an ICU toilet. *P. aeruginosa* isolates AES81 and AES83 are clonal despite the fact that they were from clinical and non-clinical samples.

5.2.6 Detection of chromosomally and plasmid mediated *bla*VIM-2

5.2.6.1 Characterization of chromosomally and plasmid mediated *bla*VIM-2 genes

PFEG of S1 genomic DNA digestion of *Pseudomonas aeruginosa* isolates is illustrated in Figure 5.5. Probed PFGE gel of Figures 5.5&5.7 with a custom made probe of *bla*VIM-2 is shown in Figure 5.6&5.8. These results show that *bla*VIM-2 is chromosomally mediated in both isolates positive for the MBL encoding gene, the results of probing of the PFGE gel of *Spe*1 digestion
demonstrate that three copies of $\text{bla}_{\text{VIM-2}}$ were detected carried by both isolates of $P. \text{aeruginosa}$ revealing the occurrence of more than one copy on class 1 integrons in each isolate. The $\text{bla}_{\text{VIM-2}}$ positive isolates were negative for Tn402 type transposons that might facilitate the mobility of class 1 integrons within the chromosome, intracellular or intercellular but the mechanism of movement of $\text{bla}_{\text{VIM-2}}$ cannot be attributed to insertion sequences.

Figure 5.3 PFGE of Spe-1 digestion of 14 isolates of $P. \text{aeruginosa}$. Lane1: Marker, Lane2: AES81, Lane3: AES83, Lane4: AES89, Lane5: AES91, Lane6: AES93, Lane7: AES146, Lane8: AES182, Lane9: AES273A, Lane10: AES284, Lane11: AES287, Lane12: AES934, Lane13: AES988, Lane14: AES998, Lane15: AES1010.
Figure 5.4 Dendrogram of PFGE picture of fig. 5.3: Lane1: isolate no. 30, Lane2: AES81, Lane3: AES83, Lane4: AES91, Lane5: AES89, Lane6: AES146, Lane7: AES182, Lane8: AES273, Lane9: AES284, Lane10: AES287.

Figure 5.5 PFGE of S1 digestion of 14 isolates of *P. aeruginosa*. Lane1: Marker, Lane2: AES81, Lane3: AES83, Lane4: AES89, Lane5: AES91, Lane6: AES93, Lane7: AES146, Lane8: AES182, Lane9: AES273A, Lane10: AES284, Lane11: AES287, Lane12: AES934, Lane13: AES988, Lane14: AES998, Lane15: AES1010.
Figure 5.6 Autorad of PFGE of fig. 5.5 after probing with radio-labelled *bla*_{VIM-2} encoding gene. Lane1: Marker, Lane2: AES81, Lane3: AES83, Lane4: AES89, Lane5: AES91, Lane6: AES93, Lane7: AES146, Lane8: AES182, Lane9: AES273A, Lane10: AES284, Lane11: AES287, Lane12: AES934, Lane13: AES988, Lane14: AES998, Lane15: AES1010.
Figure 5.7 PFGE of Spe1 digestion of 14 isolates of P. aeruginosa. Lane1: Marker, Lane2: AES81, Lane3: AES83, Lane4: AES89, Lane5: AES91, Lane6: AES93, Lane7: AES146, Lane8: AES182, Lane9: AES273A, Lane10: AES284, Lane11: AES287, Lane12: AES934, Lane13: AES988, Lane14: AES998, Lane15: AES1010.
Figure 5.8 Autorad of PFGE of *Spe*1 digestions from fig. 5.7 after probing with radio-labelled *bla*VIM-2 gene. Lane1: Marker, Lane2: AES81, Lane3: AES83, Lane4: AES89, Lane5: AES91, Lane6: AES93, Lane7: AES146, Lane8: AES182, Lane9: AES273A, Lane10: AES284, Lane11: AES287, Lane12: AES934, Lane13: AES988, Lane14: AES998, Lane15: AES1010.
5.2.7 Detection of class 1 integrons and transposons

Amplification of class 1 integrons and transposons from clinical and non-clinical *P. aeruginosa* isolates; AES30, AES81, AES83, AES89, AES91, AES93, AES146, AES182, AES273, AES284, AES287, AES934, AES988 and AES1010 showed that 7 out of 15 yielded PCR products for class 1 integrons; moreover, the size of the integrons amplified suggest that more than one gene cassette is involved in each of the integrons. Specifically, PCR amplicons integrons from *P. aeruginosa* isolates AES81, AES83, AES89 and AES182 (Table 5.2) revealed products of sizes 3kb, 2.5kb, 1.5kb and 1.5kb respectively (Figure 5.9). The same integron was found in the two clonal *P. aeruginosa* isolates; AES89 and AES182 and composed of the gene cassette sequence: *intI1, aadA6, ORF, qacEΔ/sul1* (Figures 5.10C&D) in spite of the different site of collections of these isolates (Table 5.1). Class 1 integrons from AES81 displayed the gene cassette sequence *intI1, aadB, blavIM-2, dhfrA1 aac6-II, qacEΔ/sul1* (Figure 5.10A). Isolate AES83 possessed the gene cassette sequence *intI1, aadB1761, dfrA1, aac6-II and qacEΔ/sul1* (Figure 5.10B). PCR on AES83 revealed the occurrence of the same genetic context of the integron detected in AES81 in addition to another novel integron (Figure 5.10B).
Figure 5.9 Amplification of class 1 integrons from *P. aeruginosa* isolates. Lane1: Marker. Lane2: AES30. Lane3: AES81. Lane4: AES83. Lane5: AES89. Lane6: AES91. Lane7: AES93. Lane8: AES146. Lane9: AES182. Lane10: AES273A. Lane11: AES284. Lane12: AES287. Lane13: AES934. Lane14: AES988. Lane15: AES998. Lane16: AES1010. Lane17: Marker
5.3 Discussion

This section showed the resistance mechanism of some *P. aeruginosa* isolates randomly collected from Tripoli and Benghazi hospitals, the isolates were from clinical and non-clinical samples. Non-clinical samples were taken as there is very little, if any, infection control in these hospitals and it was of interest to see if isolates from environmental swabs matched those causing infections. The Al-Jalla hospital showed the clonal incidence of multi-drug resistant *P. aeruginosa*, these isolates exhibited the occurrence of different class 1 integrons and in some MBL encoding genes.

The overall mechanism of antibiotic resistance in *P. aeruginosa* utilises many antibiotic resistance determinants (Walsh; 2005; Toleman *et al.*, 2007), efflux pumps (Morero *et al.*, 2011; Cabot *et al.*, 2011) and porin alterations (Muller *et al.*, 2011; Tomas *et al.*, 2010). Specific antibiotic resistance determinants can include MBL encoding genes and serine carbapenemases often linked to mobile genetic elements, the former is exemplified by class 1 integrons sometimes associated with Tn402-like transposons (Tato *et al.*, 2010; Stokes *et al.*, 2006).

blavim-2 has been found as gene cassette carried by class 1 integron in *P. aeruginosa* worldwide, in Poland (Toleman *et al.*, 2003), Germany (Valenza *et al.*, 2010), Spain, (Rojo-Bezares *et al.*, 2011), Venezuela (Guevara, A. *et al.*, 2009), United States of America (Aboufaycal *et al.*, 2007) and Ireland (Walsh
& Rogers, 2008). It is also emerging Saudi Arabia (Guerin et al., 2005), Japan (Yatsuyanagi et al., 2004), India and Russia (Toleman et al., 2007) Eastern Europe (Bosnjak et al., 2011; Jovicic et al., 2011) and herein I report the first detection of \(P. \) aeruginosa positive for \(\text{blav}_{\text{VIM-2}} \) in Libya.

Probing of PFGE gel of \(\text{Spe1} \) digestion with radio-labelled \(\text{blav}_{\text{VIM-2}} \) indicated that the two clonal isolates positive for the MBL gene had the same gene on the same size DNA fragment. Nevertheless, analysis of the PFGE and subsequent dendrogram demonstrated that the strains are not clonal and share less than 85%. the results of this work are consistent with the studies of Lagatolla et al., 2006 who described the incidence of high-level endemicity of clonally related \(P. \) aeruginosa carrying \(\text{blav}_{\text{VIM-2}} \). These finding are dissimilar to the work of Nho et al., 2008 who reported the dissemination of genetically unrelated isolates of \(P. \) aeruginosa carrying \(\text{blav}_{\text{VIM-2}} \) in Korea. The results are also conflicts somewhat with the findings of Aboufaycal et al., 2007 on the emergence of different ribotypes of \(P. \) aeruginosa positive for \(\text{blav}_{\text{VIM-2}} \) genes.

Acquired class 1 integrons are considered major contributors of the multi-resistance phenotype expressed by bacteria due the capability of integrons to capture gene cassettes and accommodate them within the variable region of the integron by means of the integrase gene \((\text{int}) \) and the site specific recombination site \((\text{attI}) \) and consequently an impressive gene array may result from this fluid capturing machine from the gene pool surrounding the bacteria.
(Bennett, 2008). Gene cassettes include genes encoding functions such as aminoglycoside (Lagatolla et al., 2006; Naas et al., 2006) and trimethoprim modification (Hu et al., 2011). It also comprise major members of the class B \(\beta\)-lactamases family (Jeong et al., 2009; Walsh et al., 2005; Castanheira et al., 2004) and some members of class A and D \(\beta\)-lactamases (Juan et al., 2009).

The detailed characterisation of four Libyan isolates of \(P.\ aeruginosa\) indicated the incidence of three different genetic contexts of class 1 integrons. The \(bla_{\text{VIM-2}}\) positive isolates showed the occurrence of the same integron structures composed of MBL encoding gene \(bla_{\text{VIM-2}}\) and two aminoglycoside resistance genes; \(aadB\) and \(aac6-II\) genes. Similar findings were reported from (Lagatolla et al., 2006; Rojo-Bezares et al., 2011). A novel class 1 integron was detected in \(P.\ aeruginosa\) AES83, the integron contained two aminoglycoside resistance genes and one trimethoprim resistance gene. It is composed of the genetic array \(aadB1761\) and \(dfrA1\) and \(aac6-II\). \(P.\ aeruginosa\) isolates AES89 and AES182 showed the incidence of the same integron with exactly the same genetic context; \(aadA6\) and \(ORF\) in the variable region of the integrons. The occurrence of this integron has been documented in \(P.\ aeruginosa\) by several authors, Naas, et al., reported an In51 class 1 integron composed of \(aadA6\) as a novel aminoglycoside adenylyltransferase gene cassettes and an \(ORF\) which was the first description of the structure of this variable region. (Naas et al., 1999). Similar findings were reported by Shahcheraghi et al., who reported the incidence of 4 integrons with different
gene cassettes arrays acquired by 41 clinical isolates of MDR \textit{P. aeruginosa} in Tehran, Iran, one of the isolates contained a class 1 integron with a variable region of \textit{aadA6} and \textit{ORF} (Shahcheraghi et al., 2010). Some reports described the incidence of this integron as part of complex genetic structure found in \textit{P. aeruginosa} (Nemec et al., 2010), other reports showed the occurrence of this integron as part of complex structure (Naas et al., 2006). It seems that \textit{aadA6} and \textit{ORF} containing integron first discovered in 1999 is the common ancestor and is now found in different geographical areas such France, Iran and now Libya.

Multi-resistant isolates \textit{P. aeruginosa} has been found in different parts of Libyan hospitals, it has been found in ICUs, Chest wards, patients or hospital facilities, and even from the floors of some toilettes in the ICUs. Such emergence of the resistant isolates is a worrisome subject and reveals the lack of a proper hygiene and infection control programs currently operating in Libya. \textit{bla\textsubscript{VIM-2}} was identified in one isolate of \textit{P. aeruginosa}, that was collected from stainless steel containers used to keep forceps and other surgical tools in the Chest ward of Aljalla hospital, whereas the other isolate was from a tip of catheter from patient admitted to the ICU of the same hospital in Benghazi.
Chapter Six

Genetic & biochemical characterization of a novel metallo-β-lactamase, TMB-1, from a *Achromobacter xylosoxidans* strain isolated from Tripoli, Libya
6.1 Introduction

The results in this section follow on from the determination of class 1 integrons in *Achromobacter xylosoxidans* (two integrons one at 3kb and one at 2.5kb), one in *Stenotrophomonas maltophilia* (2.5kb) and two isolates of *Citrobacter freundii* each positive for a class integron of 1kb. The isolates were from non-clinical sources from the major hospitals in Tripoli, Libya.

Mobile MBL genes are becoming increasingly frequent and pose a significant challenge to the treatment of Gram-negative infections world-wide such that most MBL-producing organisms are only sensitive to colistin (Cornaglia *et al.*, 2007). These enzymes efficiently hydrolyze all β-lactams, including carbapenems (with the exception of aztreonam), and are located on transferable genetic platforms; namely, either ISCR elements or class 1 integrons. The class 1 integrons are sometimes embedded in Tn21 or Tn402-like transposons (Tato *et al.*, 2010). However, several recently characterised MBL genes have been flanked or associated with ISCR elements namely, *bla*\textsubscript{SPM-1} with ISCR4, *bla*\textsubscript{NDM-1} with ISCR1 and *bla*\textsubscript{AIM-1} with ISCR16 (Kumarasamy *et al.*, 2010; Poirel *et al.*, 2004; Toleman *et al.*, 2006).

Several different MBL-type enzymes have been described, among them NDM-1, IMP and VIM derivatives being the most widespread (Bush, 2010). The *bla*\textsubscript{IMP-like} (Senda *et al.*, 1996) and *bla*\textsubscript{VIM-like} (Cornaglia *et al.*, 2000) genes have been identified in clinically relevant bacteria belonging to the Enterobacteriaceae

188
family, in *Pseudomonas* spp., and in *Acinetobacter* spp. Whilst *blaNDM-1* has mainly been found in Enterobacteriaceae (Bush & Fisher, 2010; Kumarasamy et al., 2010). Several other MBLs have been identified in specific geographical locations, including SIM-1 from *A. baumannii* in Korea (Lee et al., 2005), KHM-1 from *C freundii* in Japan (Sekiguchi et al., 2008), SPM-1 in Brazil (Picao et al., 2009; Toleman et al., 2002), GiM-1 in Germany (Castanheira et al., 2004), and AIM-1 in Australia (Walsh, unpublished data) were all identified in *P. aeruginosa*. As hospitalized patients are subject to infections by Gram-negative bacteria and, in Libya adherence to internationally accepted infection control policies are not optimal, the hospital wards and immediate hospital environment were examined for resistance to extended-spectrum cephalosporins. This study reports these findings and further describes the genetic and biochemical characterization of a novel MBL, TMB-1, from Tripoli, Libya.
6.2 Results

6.2.1 Analysis of samples from Tripoli hospitals

Thirty eight Gram-negative bacteria were able to grow on 10mg/l of ceftazidime (Table D.1 in appendix D). It lists the non-clinical swabs from major hospitals in Tripoli, Libya. All swabs yielded isolates capable of growing on 10mg/l of ceftazidime. The results demonstrate that the environmental isolates collected from the wider Tripoli environment and hospital environment show a high level of resistance to third generation of aminoglycosides and β-lactams. For example, one isolate of *A. xylosoxidans*, AES301, displayed MICs of, 8mg/l, 2mg/l, 4mg/l, 16mg/l, 10mg/l, 32mg/l, and 16mg/l to gentamicin, imipenem, meropenem, cefepime, ceftazidime, cefotaxime, and aztreonam, respectively. Indeed AES301 was sensitive to amikacin and ciprofloxacin (1mg/l) and colistin (0.5mg/l). All isolates grew on media containing ceftazidime and were subsequently screened by the MBL Etest strip to detect the presence of MBL. AES301 gave a positive Etest MBL result and together with the fact it possessed a class 1 integron, was investigated further.

6.2.2 Genetic analysis of carbapenem resistance in *A. xylosoxidans* strain AES301

All isolates were screened for class 1 integrons and mobile genetic elements (Tn21, Tn402, and ISCR elements) and 4 out of 38 isolates were positive for class 1 integrons: one *A. xylosoxidans* (two integrons of one at 3kb and one at
2.5kb), one S. maltophilia (2.5kb) and two isolates of C. freundii each positive for a class integron of 1kb. None of the isolates were positive for Tn21, Tn402, and ISCR elements. Sequencing analysis of the class 1 integron PCR products from A. xylosoxidans AES301, Lasergene package (DNAStar, Madison, WI) was used to study the nucleotide sequences and the deduced amino acids. The nucleotide sequences were subsequently analysed (http://www.ebi.ac.uk/Tools/sss/fasta/nucleotide.html). The two integrons from A. xylosoxidans AES301 revealed two near identical integrons; the first possessing the gene cassettes dhfrA4-aacA4-blaOXA-4, and the second integron-containing the gene cassettes blatMB-1-aacA4-blaOXA-4 (Figure 6.1) (Appendix E). The carbapenem resistance could not be mated to either E. coli DH5a or P. aeruginosa PA01 recipients suggesting the integrons are chromosomally located. This inference was supported by Southern hybridisation data using the blatMB-1gene as a probe which back-blotted to the A. xylosoxidans AES301 chromosome even though it possessed several plasmids.
Figure 6.1 Genetic context of two class 1 integrons found in *A. xylosoxidans* AES301 and the primers used to sequence the structures. A. Class 1 integron consisting of the gene cassettes: *dhfr*A4 gene, *aacA4* gene, *blaOXA-4* and the *qacEΔ/sul1* fusion. B. Class 1 integron consisting of the gene cassettes: *blaTMB-1*, *aacA4*, *blaOXA-4* and *qacEΔ/sul1* genes. The white ellipse represents the hybrid promoter from *IntI1*. The black ellipse represents the 59bp elements at the start of each gene cassette.

6.2.3 Cloning and transconjugation experiments

The results of cloning of the class 1 integron into *E. coli* DH5α produced 3 types of colonies when 50μl of the broth culture was streaked onto L.B. agar plates supplemented with 50 mg/l of Kanamycin, X-galactose and IPTG; white colonies, white colonies with blue spot in the middle and dark blue colonies. Amplification of the class 1 integron from these colonies showed that some white colonies and dark blue colonies produced 2kb and 4kb PCR products which were different from the expected size of class 1 integron used in the cloning experiments. Sequencing of these PCR products did not give
any readable sequences revealing the miss-priming of the oligonucleotides. These results did not produce any cells positive for \(\text{bla}_{\text{TMB-1}} \). The results of transconjugation experiments showed that the GFP \(E. \text{coli} \) was not able to grow on L.B agar supplemented with 50 mg/l of rifampicin and 4 mg/l of cefotaxime revealing that the \(\text{bla}_{\text{TMB-1}} \) failed to transfer to the GFP \(E. \text{coli} \) and thus is probably chromosomally mediated.

6.2.4 Genomic location of \(\text{bla}_{\text{TMB-1}} \)

The results of PFGE separation of \(S1 \) digestion of the whole genomic DNA of \(A. \text{xylosoxidans} \) and selected environmental isolates is shown in figure 6.2A. Probing of the PFGE gel of \(S1 \) digested genomic DNA with radio-labelled \(\text{bla}_{\text{TMB-1}} \) is illustrated in (Figure 6.2B). These results showed that \(\text{bla}_{\text{TMB-1}} \) is located on the chromosome. These results are also in accordance with the cloning and transconjugation experiments that failed to detect any movement of \(\text{bla}_{\text{TMB-1}} \) from parents to recipients predicting the chromosomal location of this \(\text{bla}_{\text{TMB-1}} \). The results also showed an additional TMB-1 positive isolate of \(A. \text{xylosoxidans} \) which was found in the ICU male surgery ward in Tripoli central hospital.

6.2.5 Comparison of TMB-1 with other MBLs

\(\text{bla}_{\text{TMB-1}} \) contains 735 nucleotides encoding a protein of 245 amino acids and possessing all the key motifs of Ambler class B \(\beta \)-lactamase, SDS gel electrophoresis showed an approximate molecular mass of 25 KDa. At amino acid level, TMB-1 was most closely related to DIM-1 (62%) and GIM-1
(51%), and showed only 48%, 31%, and 29% identity to IMP-1, VIM-2, and NDM-1, respectively (Figure 6.3) (Koh et al., 2004; Poirel et al., 2010; Castanheira et al., 2004; Yong et al., 2009; Garcia-Saez et al., 2008). TMB-1 also possesses virtually the same key residues as DIM-1 that make up the zinc binding residues and the secondary residues supporting the active sites including the putative loop used to facilitating binding of β-lactams during hydrolysis (Figure 6.4). The secondary structural comparison of TMB-1 with VIM-2, (Garcia-Saez et al., 2008) shows that TMB-1 possesses the key zinc binding residues for B1 MBLs; His116, His118, and His196 (zinc 1) and Asp120, Cys221, and His263 (zinc 2) (Figure 6.4).

![Figure 6.2](image)

Figure 6.2 Detection of genetic location of \(\text{bla}_{\text{TMB-1}} \) in *A. xylosoxidans*. A. PFGE of S1 digested DNA. Lane1: AES301. Lane2: AES302. Lane3: AES303. Lane4: AES304. Lane5: AES305. Lane6: AES306. Lane7: AES307. Lane8: AES309. Lane9: Marker. B. Autorad after probing with a radio-labelled \(\text{bla}_{\text{TMB-1}} \) of PFGE gel from fig. 6.2A.
The most noticeable difference between TMB-1 and VIM-2 is a gap in the N-terminus of the TMB-1 protein just before the beginning of the first β-sheet (β1, Figure 6.5). This gap in TMB-1 is situated just prior to the “flapping loop” of VIM-2, (Garcia-Saez et al., 2008) further, there are several amino acid differences in this region; namely, (VIM-2 to TMB-1) Q60S, S61R, F62V, D63E, A66G, V67L, and a gap at position 65. This region is also diverse between VIM-2 and VIM-7 where it has been suggested that this contributes to a more flexible “flapping loop” (Borra et al., 2011). Interestingly, DIM-1 possesses the same sequence as TMB-1 in this region with the exception of the gap and the amino acid changes N63E and F65W (DIM-1 to TMB-1) (Poirel et al., 2010). An additional gap in TMB-1 between β7 and β8 compared to VIM-2 is also observed (Garcia-Saez et al., 2008) (Figure. 6.5).
Figure 6.3 Dendrogram of Comparison of amino acid sequence of the β-lactamase TMB-1 and those of other acquired MBLs (DIM-1, GIM-1, IMP-1, KHM-1, NDM-1, VIM-1, SPM-1 and SIM-1) and several naturally occurring MBLs (IND-1 from *Chryseobacterium indologenes*; JOHN-1 from *Flavobacterium johnsoniae*; SLB-1 from *Shewanella livingstonensis*; and SFB-1 from *Shewanella figidimarina*) (Koh et al., 2004; Poirel et al., 2010; Castanaheira et al., 2004; Sekiguchi et al., 2008; Yong et al., 2009; Lee et al., 2005; Toleman et al., 2002; Tato et al., 2010; Naas et al., 2003; Poirel et al., 2005; Lin et al., 2005)
Figure 6.4 Comparison of amino acid sequence of the β-lactamase TMB-1 and those of other acquired MBLs (DIM-1, GIM-1, IMP-1, KMH-1, NDM-1, VIM-1, SPM-1 and SIM-1) and several naturally occurring MBLs (IND-1 from Chryseobacterium indologenens; JOHN-1 from Flavobacterium johnsoniae; SLB-1 from Shewanella livingstonensis; and SFB-1 from Sheewanella fecalis) (Koh et al., 2004; Poirel et al., 2010; Castanheira et al., 2004; Sekiguchi et al., 2008; Yong et al., 2009; Lee et al., 2005; Toleman et al., 2002; Tato et al., 2010; Naas et al., 2003; Poirel et al., 2005; Lin et al., 2005). Shaded amino acids are those conserved with TMB-1. β-lactamase numbering was according to the BBL nomenclature (Galleni et al., 2001).
Figure 6.5 Secondary structure of TMB-1 compared to that of VIM-2 (Garcia-Saez et al., 2008). The β- strands and β-helixes are indicated above the TMB-1 sequence. The conserved residues are indicated in black. The conservative amino acid substitutions are boxed. The figure was obtained with ESPript software (http://esprit.ibcp.fr/ESPript/ESPript/).
6.2.6 Kinetic properties of TMB-1.

The kinetic properties of TMB-1 were compared with that of DIM-1 and GlM-1 (Table 6.1) and were broadly similar with the exception for the rate of turnover of substrates (K_{cat} values) (Table 6.1). The K_m values for TMB-1 were similar to DIM-1 and GlM-1 for the penicillins and cephalosporins but were higher for meropenem indicating that meropenem is not a "natural" substrate for TMB-1. The K_{cat} values for TMB-1 were similar for the pencillins compared to GlM-1 but were significantly less (20 to 500-fold) than both DIM-1 and GlM-1 for cefoxitin, cefuroxime and ceftazidime (Poirel et al., 2010; Castanheira et al., 2004) (Table 6.1). TMB-1 also possessed lower K_{cat} values for the carbapenems (3 to 30-fold) compared to DIM-1 and GlM-1. These data further showed that the efficiency of the enzyme (K_{cat}/K_m) was significantly lower for the cephalosporins and carbapenems (Table 6.2). Such differences in kinetic values is interesting given that TMB-1 and DIM-1 are similar and that their sequence over the "VIM-2 flapping loop" is nearly identical, further suggesting that the reasons for these kinetic differences could lie elsewhere in the TMB-1 structure (Figure 6.5).
Table 6.1 Steady-state kinetic constants of TMB-1, DIM-1 and GIM-1 (Poirel et al., 2010; Castanheira et al., 2004)

<table>
<thead>
<tr>
<th>Compound</th>
<th>TMB-1</th>
<th>DIM-1</th>
<th>GIM-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k_{cat}</td>
<td>K_m</td>
<td>k_{cat} / K_m</td>
</tr>
<tr>
<td></td>
<td>(s$^{-1}$)</td>
<td>(μM)</td>
<td>(s$^{-1}$/μM)</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>3.3</td>
<td>27</td>
<td>0.122</td>
</tr>
<tr>
<td>Piperacillin</td>
<td>3.3</td>
<td>72</td>
<td>0.046</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>0.3</td>
<td>69</td>
<td>0.004</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>0.1</td>
<td>9</td>
<td>0.011</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>0.07</td>
<td>31</td>
<td>0.002</td>
</tr>
<tr>
<td>Ertapenem</td>
<td>0.4</td>
<td>31</td>
<td>0.013</td>
</tr>
<tr>
<td>Imipenem</td>
<td>1.7</td>
<td>200</td>
<td>0.009</td>
</tr>
<tr>
<td>Meropenem</td>
<td>1.4</td>
<td>75</td>
<td>0.019</td>
</tr>
<tr>
<td>Aztreonam</td>
<td><0.01</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

*Poirel et al., 2010

bCastanheira et al., 2004

cNR: Not Reported

dND: Not Detected
6.3 Discussion

Non-clinical isolates collected from the major Tripoli hospitals were able to grow on media containing ceftazidime. MDR Gram-negative bacteria e.g. *A. xylosoxidans*, *P. aeruginosa*, *A. baumannii*, *E. cloacae* and *C. freundii* were detected in the hospital environment inside and around the hospitals. The occurrence of MDR strains in the clinical setting of Tripoli hospitals reveals the lack of hospital hygiene in these hospitals.

Investigation into the incidence of antibiotic resistance genes embedded in class 1 integrons was surprising. Two class 1 integrons were detected in *A. xylosoxidans*, the 3kb integron had a novel MBL gene (*bla_TMB-1*) in the first position followed by two antibiotic resistance genes *aacA4* and *blaOXA-4*, whereas the 2kb composed of *dhfrA4*, *aacA4* and *blaOXA-4*. The occurrence of such integrons is unusual in terms of their genetic context and more importantly the discovery of a novel MBL in a non-clinical isolate because of the rarity of environmental MBLs whose genes are shown to be mobile.

The occurrence of *A. xylosoxidans* in the non-clinical settings of Tripoli hospitals may perhaps indicate the dissemination of *bla_TMB-1* in Tripoli and across Libya. The occurrence of *bla_TMB-1* in an environmental strain may raise the question of whether MBLs are originated from environmental bacteria as
the case of origin of $bla_{CTX-M-3}$ form *Kluyvera ascorbata* proposed by (Rodriquez *et al*., 2004).

TMB-1 has all the key motifs of Ambler class B β-lactamases; it shares 62% similarity with DIM-1 (Poirel *et al*., 2010) and 51% with GIM-1 (Castanheira *et al*., 2004). TMB-1 and DIM share the same key residues that facilitate binding of these enzymes to β-lactam antibiotics during hydrolysis. Secondary structure of TMB-1 showed that these enzymes possess all the key zinc binding residues (His116, His118 and His196) required for zinc1 activity and (Asp120 and His263 for zinc 2 activities) as reported for all class B1 MBLs (Osano *et al*., 1994; Lauretti *et al*., 1999; Toleman *et al*., 2002; Castanheira *et al*., 2004; Lee *et al*., 2005; Gupta, 2008; Sekiguchi *et al*., 2008; Yong *et al*., 2009; Poirel *et al*., 2010).

Achromobacter is not a key pathogen although a growing number reports indicate that it is capable of causing UTIs (Tena *et al*., 2008), ocular infections (Reddy *et al*., 2009), contamination of dialysis (Turgutalp *et al*., 2011) and ultrasound equipment (Olshtain-Pops *et al*., 2011) and can cause additional complications in cystic fibrosis patients (Lambiase *et al*., 2011; Ridderberg *et al*., 2011). Interestingly, although AES301 carrying TMB-1 was found from a ward surface swab, the same strain could not be identified from a clinical source although in Libya clinical diagnostic microbiology may not normally scrutinize strains to species level. To date only two cases of MBL genes (both
$\text{bla}_{\text{VIM-2}}$ have been reported from *Achromobacter* spp. – from Greece (Sofianou *et al.*, 2005) and Korea (Shin *et al.*, 2005) and both carried in class 1 integrons. All other MBLs discovered IMP; VIM; SPM-1; GIM-1; SIM-1; AIM; KHM-1; NDM-1 and DIM-1 were detected in clinical isolates from patients suffered from serious infections. (Osano *et al.*, 1994; Lauretti *et al.*, 1999; Toleman *et al.*, 2002; Castanheira *et al.*, 2004; Lee *et al.*, 2005; Gupta, 2008; Sekiguchi *et al.*, 2008; Yong *et al.*, 2009; Poirel *et al.*, 2010).

This is the first MBL reported from Libya and being a new MBL subclass B1 provides further evidence of the structural heterogeneity of this group of β-lactamases.
Chapter Seven

General Discussion
This study investigated the mechanism of antibiotic resistance in randomly collected isolates of Gram-negative bacteria in Tripoli and Benghazi (Figure 7.1). The isolates were from clinical samples recovered from patients admitted to the hospitals and from the hospital environment and for the purpose of my thesis these are regarded as non-clinical samples. These swabs were from floors, walls, bedsides, toilets, workstation tables, mechanical ventilators, oxygen suppliers, stainless steel containers, curtains, baby incubators, trolleys and other instruments used in the hospitals in particular ICUs. The non-hospital environmental isolates were swabs collected from streets in Tripoli and Benghazi; the samples were from floors and dusty areas in the streets.

Figure 7.1 Map of Libya showing the important cities and their locations

The data in my thesis clearly demonstrates the emergence of MDR Gram-negative bacteria in hospital settings that include clinical and non-clinical isolates. In total, 171 isolates were recovered for this study.
Enterobacteriaceae represent the most numerous of the Gram-negative with *K. pneumoniae* as the most frequently isolated bacteria. High prevalence of ESBLs was detected among *K. pneumoniae* and *E. coli*, more importantly *blaCTX-M* group1 were found widely disseminated in association with ISEcp1 being located immediately upstream of most of the ESBL encoding gene.

The highest incidence of *blaCTX-M* group1 was detected among clinical and non-clinical isolates collected from hospitals. *K. pneumoniae* and *E. coli* isolates tested for the occurrence of conjugative plasmids responsible for the movement of *blaCTX-M* group1/ISEcp1. The study showed that these plasmids can move *blaCTX-M-15/ISEcp1* genes from the resistant isolates to sensitive *E. coli*, leading to *E. coli* transconjugants expressing an MDR phenotype. It is worth mentioning that plasmid mediated *blaCTX-M-15* associated with ISEcp1 has been detected in an environmental isolate of *K. pneumoniae* AES817 (ST511) cultured from one of Benghazi streets – this isolate clearly has not been recently exposed to antibiotics. These findings are an alarmingly indication that an outbreak of MDR *K. pneumoniae* and *E. coli* isolates can occur in different hospitals that provide different services to patients; these hospitals are maternity hospitals, pediatric hospitals, surgical hospitals and general hospital in Tripoli and Benghazi.

The occurrence of *K. pneumoniae* and *E. coli* in Libyan hospitals is interesting in terms of the prevalence of clonally and non-clonally related *blaCTX-M-15*
positive isolates (Lee et al., 2011; Webster et al., 2011; Alfaresi et al., 2011; Fam et al., 2011; Al Sweih et al., 2011). The collection of isolates being clinical, non-clinical or environmental was non-representative seeking the occurrence of any resistance mechanism in these isolates. Among all the isolates positive for \(\text{bla} \text{ax-u} \) group 1, 4 pairs of \(K. \text{pneumoniae} \) isolates were found clonally related. One pair represented two isolates that were found in two different hospitals in Benghazi - isolates AES135 and AES140 that were cultured from urine and blood samples, respectively.

The occurrence of several clonally related \(K. \text{pneumoniae} \) and \(E. \text{coli} \) that resulted from the non-representative sample collection reflected the total lack of appropriate infection control programs in Libyan hospitals. Lack of hospital hygiene is another reason that has contributed to the emergence and spread of multi-drug resistant isolates of \(K. \text{pneumoniae} \) and \(E. \text{coli} \) in Libyan hospitals.

The overuse of extended-spectrum cephalosporins to treat infections in Libya may be another significant factor for the appearance of clonally and non-clonally related isolates of \(K. \text{pneumoniae} \) and \(E. \text{coli} \) in Libya. (Ito & Kamimura, 2011; Wang et al., 2011)

The occurrence of \(\text{bla} \text{CTX-M} \) group1/ISEcp1 on different plasmid sizes in \(K. \text{pneumoniae} \) and \(E. \text{coli} \) isolates suggest the movement of these genes by conjugative plasmids (Lavollay, et al., 2006) as shown from data on mating studies in a subset of these isolates. The ability of these isolates to mobilize
and facilitate the spread of antibiotic resistance genes may explain the frequency of blaCTX-M group1/ISEcp1 in non-clonally related species of K. pneumoniae and E. coli (Woodford et al., 2004; Gonullu et al., 2008; Lavollay et al., 2006, Yu & K. Cheng, 2004; Ramdani-Bouguessa, et al., 2006; Abbassi et al., 2008). A possible explanation for the different plasmid location of blaCTX-M group1 is due to the presence of the insertion sequence, ISEcp1 that is known to move and promote the expression of the ESBL gene. Two suggested mechanisms of blaCTX-M group1 acquisition are proposed: the movement of blaCTX-M group1 by conjugative plasmids and the role of the insertion sequence ISEcp1 in mobilizing blaCTX-M group1 within the strains (Abbassi et al., 2008; Poirel et al., 2003; Naseer & Sundsfjord, 2011; Younes et al., 2011; Gonullu et al., 2008; Villa et al., 2010; Partridge et al., 2011).

Data on Libyan E. coli give evidence of the occurrence of both mechanisms in the movement of antibiotic resistance determinants for two reasons. blaCTX-M group1 and ISEcp1 were detected on two different plasmid locations in parent and recipients which suggests the role of ISEcp1 in mobilizing blaCTX-M group1 (Rejiba et al., 2011; Smet et al., 2010) to a different size plasmid in recipient. An alternative suggestion is the creation of a co-integrative plasmid during conjugation. Similar resistance profiles were detected in parents of K. pneumoniae and the E. coli transconjugants (GFP E. coli and E. coli J53) suggesting that many of the antibiotic resistance determinants expressed by
the Libyan isolates of *K. pneumoniae* and *E. coli* are located on conjugative plasmids (Mnif *et al.*, 2010; Cullik *et al.*, 2010; Partridge *et al.*, 2011).

In addition to previously reported *K. pneumoniae* clones known to carry *bla* _CTX-M-15_ e.g. ST15, ST29, ST101 and ST147, this study provided new MLST groups - *K. pneumoniae* ST509 and ST486 and, additionally, a novel environmental allele ST511 was found carrying *bla* _CTX-M-15_ on different plasmid sizes. The results of MLST data provided further evidence of the incidence of *bla* _CTX-M-15_ in different clones of *K. pneumoniae* and also shows novel sequence types are involved in the carriage of *bla* _CTX-M-15_ in Libya (Nielsen *et al.*, 2011; Pitart *et al.*, 2011; Papagiannitsis *et al.*, 2011; Hrabak *et al.*, 2009; Damjanova *et al.*, 2008).

RAPD and MLST techniques used in this study show that they are similar in detecting the strain relatedness between *K. pneumoniae* isolates; however, they still are less discriminatory than PFGE which is based on genomic DNA separation rather than amplification of specific fragments or housekeeping genes. This study supports the application of RAPD technique to correlate the relation of bacterial species to each other but not in determining the detailed clonality within a species. Unsurprisingly, RAPD and MLST when compared with PFGE demonstrated quite different results - some isolates appeared very similar by RAPD but distinctly different with PFGE. Other isolates e.g. *K. pneumoniae* AES74, AES59 and AES1029 that belong to ST15 were
comparable by RAPD and MLST, but by PFGE demonstrated a low-level of similarity. However, RAPD may help in the general assessment to determine the broad similarity among bacterial species and it is rapid and inexpensive. The MLST method is reliable but depends upon sequence stability among housekeeping genes. PFGE can provide very detailed information on the differences between species or subspecies; but it is specialized, temperamental and quite expensive compared to MLST (Hotchkiss et al., 2011).

Class 1 integrons, whether alone or in association with Tn402-type or Tn21 transposons are among the most represented mobile genetic elements responsible for capturing genes in the form of gene cassettes. Among the Libyan isolates tested, 11 different type of class 1 integrons were detected in 21 isolates of Enterobacteriaceae and non-fermenters. Twelve class 1 integrons were detected in K. pneumoniae, 3 in E. coli, 3 in P. aeruginosa and 2 in A. xylosoxidans. Most integrons detected in this study carried trimethoprim and aminoglycoside resistance genes which are typically found as gene cassettes. Six different integrons were found in K. pneumoniae isolates, two of which were embedded on Tn402-type transposons, of these 6 integrons, 5 integrons have been previously reported from different geographical areas. One of these integrons (IntI, dfrA17, aadA5, qacEd) was also found in K. pneumoniae and E. coli isolates examined in this study (Vinue et al., 2008; Tang et al., 2011). Another integron harbouring dfrA12 and aadA2 was detected in K. pneumoniae clinical isolate AES48. This isolate
was identified in this study as ST147 which is known as a world wide ST contributing to the emergence of $blac_{CTX-M-15}$ genes. The genetic context of this integron has been reported in clinical isolates of *E. coli* in Asia and Europe (Yu *et al.*, 2004; Tang *et al.*, 2001; Saenz *et al.*, 2009; Vinue *et al.*, 2008)

These findings show that the same resistance mechanisms are disseminated worldwide, and also show that the Libyan isolates share the same genetic pool with bacterial species worldwide.

Class 1 integrons detected in non-fermenters included in addition to trimethoprim and aminoglycoside resistance genes, antibiotic resistance genes responsible for conferring resistance to broad-spectrum β-lactams. $blav_{IM-2}$ was detected in two clonal isolates of *P. aeruginosa* collected from different places in the same hospital, AES81 was non-clinical sample found in a stainless steel container and AES83 was recovered from a clinical sample cultured from a tip of a catheter. These findings show the potential of *P. aeruginosa* to acquire class 1 integrons in Libya and that it is widespread both in clinical and environmental isolates as have been reported worldwide (Valenza *et al.*, 2010; Rojo-Bezares *et al.*, 2011; Guevara, A. *et al.*, 2009; Van der Bij *et al.*, 2011; Piyakul *et al.*, 2011).

Perhaps the most surprising finding from this study was $blat_{MB-1}$, a novel MBL gene discovered in *A. xylosoxidans* cultured from Tripoli central
hospital. bla_{TMB-1} has been detected as a gene cassette embedded in the first position of class 1 integron followed by an aminoglycoside resistance gene ($aacA4$) and oxacillinases gene (bla_{OXA-4}). The same $A.\ xylosoxidans$ isolate possessed a second near-identical integron composed of $aacA4$, bla_{OXA-4} but with bla_{TMB-1} being replaced by $dhfrA4$ that confers resistance to trimethoprim. $A.\ xylosoxidans$ was detected in the environmental settings and hospital environments suggesting that bla_{TMB-1} is likely disseminated in the Tripoli clinical setting and thus this work requires more studies and surveillance to detect any further occurrence of bla_{TMB-1} and other MBL genes.

The occurrence of bla_{TMB-1} in the environment is worrisome as it has the potential to colonise/infect patients and like other MBL genes; bla_{VIM}, bla_{IMP}, bla_{NDM-1}, bla_{GIM}, bla_{SPM-1}, bla_{SIM-1}, bla_{AIM-1}, bla_{KHM-1} and bla_{DIM-1} (Osano et al., 1994; Lauretti et al., 1999; Toleman et al., 2002; Castanheira et al., 2004; Lee et al., 2005; Gupta, 2008; Sekiguchi et al., 2008; Yong et al., 2009; Poirel et al., 2010) has first appeared in non-fermenters.

The Km values for TMB-1 are similar to DIM-1 and GIM-1 for penicillins and cephalosporins but are larger for meropenem indicating that meropenem is not a “natural” substrate for TMB-1. Rather like many other MBLs, the origin of TMB-1 will never be known. Any MBL should be regarded important even if the kinetics are less impressive than previously reported MBLs, particularly those encoded by mobile genes via ISCRs, transposons, ICEs or integrons carried on plasmids. For example, bla_{NDM-1} has appeared in $K.\ pneumoniae$,

212
E. coli and other Enterobacteriaceae in the clinical setting as well as the environment outside the hospitals and carried on a variety of different plasmids with the immediate environment surrounding *bla*_{NDM-1} highly variable (Walsh *et al.*, 2011; Poirel *et al.*, 2011). It is the same scenario for the dissemination of MBL encoding genes in environmental strains that share very large genetic pool with numerous strains of bacteria possibly leading to the emergence of MBLs in clinical strains originating from the environment.

The findings of this study show the presence of several antibiotic resistance mechanisms among Enterobacteriaceae and non-fermenters in Libya as shown by the incidence of clonally and non-clonally related *K. pneumoniae* and *E. coli* carrying *bla*_{CTX-M-15/ISEcpI}, the dissemination of class 1 integrons that carry MBL genes and other β-lactamase genes as well as aminoglycoside and trimethoprim resistance genes. This study, moreover, tried to associate the emergence of ESBLs and other resistance mechanisms with clonality to further our understanding on how the transmission of antimicrobial resistance in Libyan hospitals occurs. The study also determined the MBLs, VIM-2 and TMB-1, as responsible for high-level β-lactam resistance in non-fermenters, *P. aeruginosa* and *A. xylosoxidans* shown in the clinical and non-clinical settings and health care facilities in Tripoli and Benghazi.

It is worth mentioning that acute care facilities are among the most common sites for the development of antimicrobial resistance. The intensive uses of
antimicrobial agents as well as suboptimal infection control policies are major factors affecting the emergence and transmission of antibiotic resistance bacteria in Libyan hospitals. Antibiotic resistance genes can be used as a genetic marker for bacterial outbreaks and help in the early detection of outbreaks bacterial infections and thus might effectively reduce the cost of managing outbreaks, decrease morbidity and mortality by eliminating the nosocomial pathogens and consequently enhance the application of infection control programs. In contrast Libya has few of these capabilities even before the civil war and the data produced in this thesis are the first studies of this kind to be undertaken. Prior to my research, there were no reports of resistance genes, mobile elements. Libyan hospitals lack a systematic approach to patient management – for example, hospitals in Benghazi can get ampicillin/sulbactum but hospitals in Tripoli could not. Microbiology laboratories were also desperately inadequate with no standardization of media or susceptibility testing. Infection control programs were also absent with no instructions to clinical staff on decreasing infections and, hand-washes and disposal towels are completely absent.

Thus, it is hoped that the data from this thesis together with a new political beginning for Libya can help build an awareness of resistance and how the monitoring of resistance genes and mobile genetic elements can aid and enhance patient outcome. The potential to improve the laboratory and clinical infra-structure in Libya is enormous and, with an awareness of operating
systems in laboratories in other countries, together with a desire to be more transparent in implementing them, patient outcome will hopefully be dramatically improved.

I trust and hope the data from my thesis is merely the beginning.
Chapter Seven
General Discussion
This study investigated the mechanism of antibiotic resistance in randomly collected isolates of Gram-negative bacteria in Tripoli and Benghazi (Figure 7.1). The isolates were from clinical samples recovered from patients admitted to the hospitals and from the hospital environment and for the purpose of my thesis these are regarded as non-clinical samples. These swabs were from floors, walls, bedsides, toilets, workstation tables, mechanical ventilators, oxygen suppliers, stainless steel containers, curtains, baby incubators, trolleys and other instruments used in the hospitals in particular ICUs. The non-hospital environmental isolates were swabs collected from streets in Tripoli and Benghazi; the samples were from floors and dusty areas in the streets.

![Figure 7.1 Map of Libya showing the important cities and their locations](http://www.google.co.uk/imgres?q=libyan+map&hl=en&gbv=2&tbm=isch)

The data in my thesis clearly demonstrates the emergence of MDR Gram-negative bacteria in hospital settings that include clinical and non-clinical isolates. In total, 171 isolates were recovered for this study.
Enterobacteriaceae represent the most numerous of the Gram-negative with *K. pneumoniae* as the most frequently isolated bacteria. High prevalence of ESBLs was detected among *K. pneumoniae* and *E. coli*, more importantly *bla*\textsubscript{CTX-M} group 1 were found widely disseminated in association with ISEcp1 being located immediately upstream of most of the ESBL encoding gene.

The highest incidence of *bla*\textsubscript{CTX-M} group 1 was detected among clinical and non-clinical isolates collected from hospitals. *K. pneumoniae* and *E. coli* isolates tested for the occurrence of conjugative plasmids responsible for the movement of *bla*\textsubscript{CTX-M} group 1/ISEcp1. The study showed that these plasmids can move *bla*\textsubscript{CTX-M-15}/ISEcp1 genes from the resistant isolates to sensitive *E. coli*, leading to *E. coli* transconjugants expressing an MDR phenotype. It is worth mentioning that plasmid mediated *bla*\textsubscript{CTX-M-15} associated with ISEcp1 has been detected in an environmental isolate of *K. pneumoniae* AES817 (ST511) cultured from one of Benghazi streets – this isolate clearly has not been recently exposed to antibiotics. These findings are an alarmingly indication that an outbreak of MDR *K. pneumoniae* and *E. coli* isolates can occur in different hospitals that provide different services to patients; these hospitals are maternity hospitals, pediatric hospitals, surgical hospitals and general hospital in Tripoli and Benghazi.

The occurrence of *K. pneumoniae* and *E. coli* in Libyan hospitals is interesting in terms of the prevalence of clonally and non-clonally related *bla*\textsubscript{CTX-M-15}
positive isolates (Lee et al., 2011; Webster et al., 2011; Alfaresi et al., 2011; Fam et al., 2011; Al Sweih et al., 2011). The collection of isolates being clinical, non-clinical or environmental was non-representative seeking the occurrence of any resistance mechanism in these isolates. Among all the isolates positive for \(\text{bla}_{\text{CTX-M}} \) group 1, 4 pairs of \(K. \text{pneumoniae} \) isolates were found clonally related. One pair represented two isolates that were found in two different hospitals in Benghazi - isolates AES135 and AES140 that were cultured from urine and blood samples, respectively.

The occurrence of several clonally related \(K. \text{pneumoniae} \) and \(E. \text{coli} \) that resulted from the non-representative sample collection reflected the total lack of appropriate infection control programs in Libyan hospitals. Lack of hospital hygiene is another reason that has contributed to the emergence and spread of multi-drug resistant isolates of \(K. \text{pneumoniae} \) and \(E. \text{coli} \) in Libyan hospitals. The overuse of extended-spectrum cephalosporins to treat infections in Libya may be another significant factor for the appearance of clonally and non-clonally related isolates of \(K. \text{pneumoniae} \) and \(E. \text{coli} \) in Libya. (Ito & Kamimura, 2011; Wang et al., 2011)

The occurrence of \(\text{bla}_{\text{CTX-M}} \) group 1/\(\text{ISEcp1} \) on different plasmid sizes in \(K. \text{pneumoniae} \) and \(E. \text{coli} \) isolates suggest the movement of these genes by conjugative plasmids (Lavollay, et al., 2006) as shown from data on mating studies in a subset of these isolates. The ability of these isolates to mobilize
and facilitate the spread of antibiotic resistance genes may explain the frequency of \(\text{bla}_{\text{CTX-M}} \) group1/\(\text{ISEcp1} \) in non-clonally related species of \(K. \) \textit{pneumoniae} and \(E. \) \textit{coli} (Woodford \textit{et al.}, 2004; Gonullu \textit{et al.}, 2008; Lavollay \textit{et al.}, 2006, Yu \& K. Cheng, 2004; Ramdani-Bouguessa, \textit{et al.}, 2006; Abbassi \textit{et al.}, 2008). A possible explanation for the different plasmid location of \(\text{bla}_{\text{CTX-M}} \) group1 is due to the presence of the insertion sequence, \(\text{ISEcp1} \) that is known to move and promote the expression of the ESBL gene. Two suggested mechanisms of \(\text{bla}_{\text{CTX-M}} \) group1 acquisition are proposed: the movement of \(\text{bla}_{\text{CTX-M}} \) group1 by conjugative plasmids and the role of the insertion sequence \(\text{ISEcp1} \) in mobilizing \(\text{bla}_{\text{CTX-M}} \) group1 within the strains (Abbassi \textit{et al.}, 2008; Poirel \textit{et al.}, 2003; Naseer \& Sundsfjord, 2011; Younes \textit{et al.}, 2011; Gonullu \textit{et al.}, 2008; Villa \textit{et al.}, 2010; Partridge \textit{et al.}, 2011).

Data on Libyan \(E. \) \textit{coli} give evidence of the occurrence of both mechanisms in the movement of antibiotic resistance determinants for two reasons. \(\text{bla}_{\text{CTX-M}} \) group1 and \(\text{ISEcp1} \) were detected on two different plasmid locations in parent and recipients which suggests the role of \(\text{ISEcp1} \) in mobilizing \(\text{bla}_{\text{CTX-M}} \) group1 (Rejiba \textit{et al.}, 2011; Smet \textit{et al.}, 2010) to a different size plasmid in recipient. An alternative suggestion is the creation of a co-integrative plasmid during conjugation. Similar resistance profiles were detected in parents of \(K. \) \textit{pneumoniae} and the \(E. \) \textit{coli} transconjugants (GFP \(E. \) \textit{coli} and \(E. \) \textit{coli} J53) suggesting that many of the antibiotic resistance determinants expressed by
the Libyan isolates of *K. pneumoniae* and *E. coli* are located on conjugative plasmids (Mnif *et al.*, 2010; Cullik *et al.*, 2010; Partridge *et al.*, 2011).

In addition to previously reported *K. pneumoniae* clones known to carry *bla*_{CTX-M-15} e.g. ST15, ST29, ST101 and ST147, this study provided new MLST groups - *K. pneumoniae* ST509 and ST486 and, additionally, a novel environmental allele ST511 was found carrying *bla*_{CTX-M-15} on different plasmid sizes. The results of MLST data provided further evidence of the incidence of *bla*_{CTX-M-15} in different clones of *K. pneumoniae* and also shows novel sequence types are involved in the carriage of *bla*_{CTX-M-15} in Libya (Nielsen *et al.*, 2011; Pitart *et al.*, 2011; Papagiannitsis *et al.*, 2011; Hrabak *et al.*, 2009; Damjanova *et al.*, 2008).

RAPD and MLST techniques used in this study show that they are similar in detecting the strain relatedness between *K. pneumoniae* isolates; however, they still are less discriminatory than PFGE which is based on genomic DNA separation rather than amplification of specific fragments or housekeeping genes. This study supports the application of RAPD technique to correlate the relation of bacterial species to each other but not in determining the detailed clonality within a species. Unsurprisingly, RAPD and MLST when compared with PFGE demonstrated quite different results - some isolates appeared very similar by RAPD but distinctly different with PFGE. Other isolates e.g. *K. pneumoniae* AES74, AES59 and AES1029 that belong to ST15 were
comparable by RAPD and MLST, but by PFGE demonstrated a low-level of similarity. However, RAPD may help in the general assessment to determine the broad similarity among bacterial species and it is rapid and inexpensive. The MLST method is reliable but depends upon sequence stability among housekeeping genes. PFGE can provide very detailed information on the differences between species or subspecies; but it is specialized, temperamental and quite expensive compared to MLST (Hotchkiss et al., 2011).

Class 1 integrons, whether alone or in association with Tn402-type or Tn21 transposons are among the most represented mobile genetic elements responsible for capturing genes in the form of gene cassettes. Among the Libyan isolates tested, 11 different type of class 1 integrons were detected in 21 isolates of Enterobacteriaceae and non-fermenters. Twelve class 1 integrons were detected in K. pneumoniae, 3 in E. coli, 3 in P. aeruginosa and 2 in A. xylosoxidans. Most integrons detected in this study carried trimethoprim and aminoglycoside resistance genes which are typically found as gene cassettes. Six different integrons were found in K. pneumoniae isolates, two of which were embedded on Tn402-type transposons, of these 6 integrons, 5 integrons have been previously reported from different geographical areas. One of these integrons (IntI, dfra17, aadA5, qacEA) was also found in K. pneumoniae and E. coli isolates examined in this study (Vinue et al., 2008; Tang et al., 2011). Another integron harbouring dfra12 and aadA2 was detected in K. pneumoniae clinical isolate AES48. This isolate
was identified in this study as ST147 which is known as a world wide ST contributing to the emergence of \(\text{bla}_{\text{CTX-M-15}} \) genes. The genetic context of this integron has been reported in clinical isolates of \(\text{E. coli} \) in Asia and Europe (Yu et al., 2004; Tang et al., 2001; Saenz et al., 2009; Vinue et al., 2008)

These findings show that the same resistance mechanisms are disseminated worldwide, and also show that the Libyan isolates share the same genetic pool with bacterial species worldwide.

Class 1 integrons detected in non-fermenters included in addition to trimethoprim and aminoglycoside resistance genes, antibiotic resistance genes responsible for conferring resistance to broad-spectrum \(\beta \)-lactams. \(\text{bla}_{\text{VIM-2}} \) was detected in two clonal isolates of \(\text{P. aeruginosa} \) collected from different places in the same hospital, AES81 was non-clinical sample found in a stainless steel container and AES83 was recovered from a clinical sample cultured from a tip of a catheter. These findings show the potential of \(\text{P. aeruginosa} \) to acquire class 1 integrons in Libya and that it is widespread both in clinical and environmental isolates as have been reported worldwide (Valenza et al., 2010; Rojo-Bezares et al., 2011; Guevara, A. et al., 2009; Van der Bij et al., 2011; Piyakul et al., 2011).

Perhaps the most surprising finding from this study was \(\text{bla}_{\text{TMB-1}} \), a novel MBL gene discovered in \(\text{A. xylosoxidans} \) cultured from Tripoli central
hospital. \textit{bla}_{TMB-1} has been detected as a gene cassette embedded in the first position of class 1 integron followed by an aminoglycoside resistance gene (\textit{aacA4}) and oxacillinases gene (\textit{bla}_{OXA-4}). The same \textit{A. xylosoxidans} isolate possessed a second near-identical integron composed of \textit{aacA4}, \textit{bla}_{OXA-4} but with \textit{bla}_{TMB-1} being replaced by \textit{dhfrA4} that confers resistance to trimethoprim. \textit{A. xylosoxidans} was detected in the environmental settings and hospital environments suggesting that \textit{bla}_{TMB-1} is likely disseminated in the Tripoli clinical setting and thus this work requires more studies and surveillance to detect any further occurrence of \textit{bla}_{TMB-1} and other MBL genes.

The occurrence of \textit{bla}_{TMB-1} in the environment is worrisome as it has the potential to colonise/infect patients and like other MBL genes; \textit{bla}_{VIM}, \textit{bla}_{IMP}, \textit{bla}_{NDM-1}, \textit{bla}_{GIM}, \textit{bla}_{SPM-1}, \textit{bla}_{SIM-1}, \textit{bla}_{AIM-1}, \textit{bla}_{KHM-1} and \textit{bla}_{DIM-1} (Osano \textit{et al.}, 1994; Lauretti \textit{et al.}, 1999; Toleman \textit{et al.}, 2002; Castanheira \textit{et al.}, 2004; Lee \textit{et al.}, 2005; Gupta, 2008; Sekiguchi \textit{et al.}, 2008; Yong \textit{et al.}, 2009; Poirel \textit{et al.}, 2010) has first appeared in non-fermenters.

The \textit{Km} values for TMB-1 are similar to DIM-1 and GIM-1 for penicillins and cephalosporins but are larger for meropenem indicating that meropenem is not a “natural” substrate for TMB-1. Rather like many other MBLs, the origin of TMB-1 will never be known. Any MBL should be regarded important even if the kinetics are less impressive than previously reported MBLs, particularly those encoded by mobile genes via ISCRs, transposons, ICEs or integrons carried on plasmids. For example, \textit{bla}_{NDM-1} has appeared in \textit{K. pneumoniae},
E. coli and other Enterobacteriaceae in the clinical setting as well as the environment outside the hospitals and carried on a variety of different plasmids with the immediate environment surrounding blaNDM-1 highly variable (Walsh et al., 2011; Poirel et al., 2011). It is the same scenario for the dissemination of MBL encoding genes in environmental strains that share very large genetic pool with numerous strains of bacteria possibly leading to the emergence of MBLs in clinical strains originating from the environment.

The findings of this study show the presence of several antibiotic resistance mechanisms among Enterobacteriaceae and non-fermenters in Libya as shown by the incidence of clonally and non-clonally related K. pneumoniae and E. coli carrying blaCTX-M-15/ISEcp1, the dissemination of class 1 integrons that carry MBL genes and other β-lactamase genes as well as aminoglycoside and trimethoprim resistance genes. This study, moreover, tried to associate the emergence of ESBLs and other resistance mechanisms with clonality to further our understanding on how the transmission of antimicrobial resistance in Libyan hospitals occurs. The study also determined the MBLs, VIM-2 and TMB-1, as responsible for high-level β-lactam resistance in non-fermenters, P. aeruginosa and A. xylosoxidans shown in the clinical and non-clinical settings and health care facilities in Tripoli and Benghazi.

It is worth mentioning that acute care facilities are among the most common sites for the development of antimicrobial resistance. The intensive uses of
antimicrobial agents as well as suboptimal infection control policies are major factors affecting the emergence and transmission of antibiotic resistance bacteria in Libyan hospitals. Antibiotic resistance genes can be used as a genetic marker for bacterial outbreaks and help in the early detection of outbreaks bacterial infections and thus might effectively reduce the cost of managing outbreaks, decrease morbidity and mortality by eliminating the nosocomial pathogens and consequently enhance the application of infection control programs. In contrast Libya has few of these capabilities even before the civil war and the data produced in this thesis are the first studies of this kind to be undertaken. Prior to my research, there were no reports of resistance genes, mobile elements. Libyan hospitals lack a systematic approach to patient management – for example, hospitals in Benghazi can get ampicillin/sulbactum but hospitals in Tripoli could not. Microbiology laboratories were also desperately inadequate with no standardization of media or susceptibility testing. Infection control programs were also absent with no instructions to clinical staff on decreasing infections and, hand-washes and disposal towels are completely absent.

Thus, it is hoped that the data from this thesis together with a new political beginning for Libya can help build an awareness of resistance and how the monitoring of resistance genes and mobile genetic elements can aid and enhance patient outcome. The potential to improve the laboratory and clinical infra-structure in Libya is enormous and, with an awareness of operating
systems in laboratories in other countries, together with a desire to be more transparent in implementing them, patient outcome will hopefully be dramatically improved.

I trust and hope the data from my thesis is merely the beginning.
Chapter Eight

Appendices
Appendix A

Table A.1 Antibiotics and chemicals used in selection of antibiotic resistant strains experiments

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftazidime</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Meropenem</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Ertapenem</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Imipenem</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Cefuroxone</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Piperacillin</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Sodium azide</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>SIGMA-ALDRICH</td>
</tr>
</tbody>
</table>
Appendix A

Table A.2 Oligonucleotides used for PCR amplification and DNA sequencing

<table>
<thead>
<tr>
<th>Gene target</th>
<th>Primer name</th>
<th>Primer sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>blaCTX-M15</td>
<td>CTX-M-15 F</td>
<td>5’GTTCACGCTGATGGCGACGGC’3</td>
<td>This study</td>
</tr>
<tr>
<td>blaCTX-M15</td>
<td>CTX-M-15 R</td>
<td>5’GACGCTAATACATCGCGACGGC’3</td>
<td>This study</td>
</tr>
<tr>
<td>Beginning of ISEcp1</td>
<td>ISEcpu2</td>
<td>5’ AATACTACTCGTTCTCTGA’3</td>
<td>Leflon-Guibout et al., 2004</td>
</tr>
<tr>
<td>The end of ISEcp1</td>
<td>ISEcpu1</td>
<td>5’AAAAATGATTGAAAGGTGGT’3</td>
<td>Ho et al., 2005</td>
</tr>
<tr>
<td>Integrase gene</td>
<td>VAF</td>
<td>5’GCCTGTTCGTTATGTAAGCT’3</td>
<td>Levesque et al., 1994</td>
</tr>
<tr>
<td>Transposase</td>
<td>nIC</td>
<td>5’CGATGCTCTGCGAAGAATC’3</td>
<td>Levesque, C. et al., 1994</td>
</tr>
<tr>
<td>Quaternary</td>
<td>QacR</td>
<td>5’CGGATGTTGCGATTACTTC’3</td>
<td>Mammeri, H. et al., 2003</td>
</tr>
<tr>
<td>Ammonium Compound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transposon</td>
<td>nIC</td>
<td>5’CGATGCTCTGCGAAGAATC’3</td>
<td>Levesque, C. et al., 1994</td>
</tr>
<tr>
<td>blaTEM</td>
<td>TEM F</td>
<td>5’TCCGCTCATGAGACACAATTAC’3</td>
<td>Kiratisin et al., 2008</td>
</tr>
<tr>
<td>blaTEM</td>
<td>TEM R</td>
<td>5’TGTGCTATGAGACACAATTAC’3</td>
<td>Kiratisin et al., 2008</td>
</tr>
<tr>
<td>blaSHV</td>
<td>SHV F</td>
<td>5’TGGTATGCTGTTATATTTCGCC’3</td>
<td>Kiratisin et al., 2008</td>
</tr>
<tr>
<td>blaSHV</td>
<td>SHV R</td>
<td>5’GGTACCGTCCGAGCTG’3</td>
<td>Kiratisin et al., 2008</td>
</tr>
<tr>
<td>ISCR1</td>
<td>ISCR1 F</td>
<td>5’GGT TGC AAC GAC TCA AGCG’3</td>
<td>Lee, K. et al., 2005</td>
</tr>
<tr>
<td>ISCR1</td>
<td>ISCR1 R</td>
<td>5’CAC TCG TTT ACC GCT CAA GC’3</td>
<td>Lee, K. et al., 2005</td>
</tr>
<tr>
<td>blaampC MOX</td>
<td>MOX F</td>
<td>5’GCT GCT CAA GGA GCA CAG GAT’3</td>
<td>Brolund et al., 2010</td>
</tr>
<tr>
<td>blaampC MOX</td>
<td>MOX R</td>
<td>5’CAC ATT GAC ATA GGT GTG GTG C’3</td>
<td>Brolund et al., 2010</td>
</tr>
<tr>
<td>blaampC CITM</td>
<td>CITM F</td>
<td>5’TGG CCA GAA CTG ACA GGC AAA’3</td>
<td>Brolund et al., 2010</td>
</tr>
<tr>
<td>blaampC CITM</td>
<td>CITM R</td>
<td>5’TTC TCT CTG AAG GCT TGT GCC’3</td>
<td>Brolund et al., 2010</td>
</tr>
<tr>
<td>blaampC DHAM</td>
<td>DHAM F</td>
<td>5’AAC TTT CAC AGG TGT GCT GGGT’3</td>
<td>Brolund et al., 2010</td>
</tr>
<tr>
<td>blaampC DHAM</td>
<td>DHAM R</td>
<td>5’CCG TAC GCA TAC TGG GTC TTG C’3</td>
<td>Brolund et al., 2010</td>
</tr>
<tr>
<td>blaampC ACCM</td>
<td>ACCM F</td>
<td>5’AAC AGC CTC AGC AGC CGG TTA’3</td>
<td>Brolund et al., 2010</td>
</tr>
<tr>
<td>blaampC ACCM</td>
<td>ACCM R</td>
<td>5’TTTC GCG GCA ATC ATC CCT AGC’3</td>
<td>Brolund et al., 2010</td>
</tr>
<tr>
<td>blaampC EBCM</td>
<td>EBCM F</td>
<td>5’TGG TCA AAG CCG ATG TTG CGG’3</td>
<td>Brolund et al., 2010</td>
</tr>
<tr>
<td>blaampC EBCM</td>
<td>EBCM R</td>
<td>5’CTT CCA CTC CGT CCA GTG TGT’3</td>
<td>Brolund et al., 2010</td>
</tr>
<tr>
<td>blaampC FOXM</td>
<td>FOXM F</td>
<td>5’AAC ATG GGG TAT CAG GGA GAT G’3</td>
<td>Brolund et al., 2010</td>
</tr>
<tr>
<td>blaampC FOXM</td>
<td>FOXM R</td>
<td>5’CAA AGC GCG TAA CCG GAT TGG’3</td>
<td>Brolund et al., 2010</td>
</tr>
</tbody>
</table>
Table A.3. Oligonucleotides used for PCR amplification and DNA sequencing

<table>
<thead>
<tr>
<th>Gene target</th>
<th>Primer name</th>
<th>Primer sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMB-1</td>
<td>Trip-1F61</td>
<td>5’GCC AAC GAA GAA ATA CCC GC’3</td>
<td>This study</td>
</tr>
<tr>
<td>TMB-1</td>
<td>Trip2-10</td>
<td>5’TGG GCT AGG TTA CAC TGG TG’3</td>
<td>This study</td>
</tr>
<tr>
<td>TMB-1</td>
<td>Trip617R</td>
<td>5’TTC TAG CGG ATT GTG GCC AC’3</td>
<td>This study</td>
</tr>
<tr>
<td>TMB-1</td>
<td>Trip2</td>
<td>5’CAA GGA GCT CAT TCA AAGG’3</td>
<td>This study</td>
</tr>
<tr>
<td>TMB-1</td>
<td>Trip1</td>
<td>5’GGA GCA GGC AAG GAG CT’3</td>
<td>This study</td>
</tr>
<tr>
<td>TMB-1</td>
<td>Trip4</td>
<td>5’AAG GGT TAA CAA GTG GCA GC’3</td>
<td>This study</td>
</tr>
<tr>
<td>TMB-1</td>
<td>Trip75</td>
<td>5’ACC CGG ATT GGA AGT TGA GG’3</td>
<td>This study</td>
</tr>
<tr>
<td>TMB-1</td>
<td>Trip1 F</td>
<td>5’TGA TCA GTG GCC ACA ATC CG’3</td>
<td>This study</td>
</tr>
<tr>
<td>TMB-1</td>
<td>Trip1 F</td>
<td>5’CGG ATT GTG GCC ACT GAT CA’3</td>
<td>This study</td>
</tr>
<tr>
<td>TMB-1</td>
<td>Trip3</td>
<td>5’GCC CAT ACT AAT GAT AAC’3</td>
<td>This study</td>
</tr>
<tr>
<td>dhfrA</td>
<td>dhfrA 1FR</td>
<td>5’CCC GAT AAC TCC ATT CTT CG’3</td>
<td>This study</td>
</tr>
<tr>
<td>dhfrA</td>
<td>dhfrA 1F</td>
<td>5’CGA AGA ATG GAG TTA TCG GG’3</td>
<td>This study</td>
</tr>
<tr>
<td>dhfrA</td>
<td>dhfrA 1R</td>
<td>5’GTT AGA GGC GAA GTG TTG GG’3</td>
<td>This study</td>
</tr>
<tr>
<td>dhfrA</td>
<td>dhfrA 1FF</td>
<td>5’CCC AAG ACT TCG CCT CTA AC’3</td>
<td>This study</td>
</tr>
<tr>
<td>aac6II</td>
<td>aac6II R</td>
<td>5’GCC GTC GGC TGG AAT GAG TT’3</td>
<td>This study</td>
</tr>
<tr>
<td>aac6II</td>
<td>aac6II F</td>
<td>5’GAA TCC GTT GCT GCC ACT TG’3</td>
<td>This study</td>
</tr>
<tr>
<td>Oxa-4</td>
<td>Oxa-4 FR</td>
<td>5’CAC TTA TGG CAT TTG ATG CG’3</td>
<td>This study</td>
</tr>
<tr>
<td>Oxa-4</td>
<td>Oxa-4 F</td>
<td>5’GCC ATC AAA TGC CAT AAG TG’3</td>
<td>This study</td>
</tr>
<tr>
<td>SPM-1D F</td>
<td>blaSPM-1</td>
<td>5’CCT ACA ATC TAA CAG GGA CC’3</td>
<td>Zavascki et al., 2005</td>
</tr>
<tr>
<td>SDPM-1D R</td>
<td>blaSPM-1</td>
<td>5’TGG CCG TGT CCA GGT ATA AC’3</td>
<td>Zavascki et al., 2005</td>
</tr>
<tr>
<td>IMP-2 F</td>
<td>blaIMP-2</td>
<td>5’GCC AGT CGC CCT AAA ACA AA’3</td>
<td>Wu et al., 2007</td>
</tr>
<tr>
<td>IMP2 R</td>
<td>blaIMP-2</td>
<td>5’TAT TTA CTT GGC TGT GAT GG’3</td>
<td>Wu et al., 2007</td>
</tr>
<tr>
<td>IMP-1 R</td>
<td>blaIMP-1</td>
<td>5’TGA GTT GCT TGG TTT TGA TG’3</td>
<td>Queenan & Bush, 2007</td>
</tr>
<tr>
<td>IMP-1 F</td>
<td>blaIMP-1</td>
<td>5’TGA GCA AGT TAT CTTG TAT TC’3</td>
<td>Queenan & Bush, 2007</td>
</tr>
<tr>
<td>VIM- F</td>
<td>blaVIM</td>
<td>5’GTC TGT TAG TGG ACC GC’3</td>
<td>Cezario et al., 2009</td>
</tr>
<tr>
<td>VIM- R</td>
<td>blaVIM</td>
<td>5’GGA TCC GTT GCT GCC ACT TG’3</td>
<td>Cezario et al., 2009</td>
</tr>
<tr>
<td>GIM- F</td>
<td>blaGIM-1</td>
<td>5’AGA ACC TGG ACC GAA CGC AG’3</td>
<td>Queenan & Bush, 2007</td>
</tr>
<tr>
<td>GIM- R</td>
<td>blaGIM-1</td>
<td>5’ACTCATGACTCCTACGCCAGG’3</td>
<td>Queenan & Bush, 2007</td>
</tr>
<tr>
<td>NDM F</td>
<td>blaNDM-1</td>
<td>5’GAA GCT GAG CAC CGC ATTA G’3</td>
<td>Sidjabat et al., 2010</td>
</tr>
<tr>
<td>NDM R</td>
<td>blaNDM-1</td>
<td>5’TGC GGG CCG TAT GAG TGA TT’3</td>
<td>Sidjabat et al., 2010</td>
</tr>
<tr>
<td>DIM-1 F</td>
<td>blaDIM-1</td>
<td>5’GCT TCG TTT CCG TTG CTA AC’3</td>
<td>Poirel et al., 2011</td>
</tr>
<tr>
<td>DIM-1 R</td>
<td>blaDIM-1</td>
<td>5’GCT TCG GCT GGA TTT ATT TG’3</td>
<td>Poirel et al., 2011</td>
</tr>
<tr>
<td>SIM-1 F</td>
<td>blaSIM-1</td>
<td>5’TAC AAG GGT TCC GCC ATC G’3</td>
<td>Poirel et al., 2011</td>
</tr>
<tr>
<td>SIM-1 R</td>
<td>blaSIM-1</td>
<td>5’TAA TGG CCT GTT CCC ATG TG’3</td>
<td>Poirel et al., 2011</td>
</tr>
<tr>
<td>KHM-1 F</td>
<td>blaKHM-1</td>
<td>5’GCT TCG TCG TGG CCTT GCA CTG’3</td>
<td>Sekiguchi et al., 2008</td>
</tr>
<tr>
<td>KHM-1 R</td>
<td>blaKHM-1</td>
<td>5’TGA GTT CTT TGG GAT GTT AAA’3</td>
<td>Sekiguchi et al., 2008</td>
</tr>
<tr>
<td>AIM-1 F</td>
<td>blaAIM-1</td>
<td>5’CTG AAG GTG TAC GGA AAC AC’3</td>
<td>Poirel et al., 2011</td>
</tr>
<tr>
<td>AIM-1 R</td>
<td>blaAIM-1</td>
<td>5’GTT CGG CCA CCT GCA ATT G’3</td>
<td>Poirel et al., 2011</td>
</tr>
<tr>
<td>Plasmid</td>
<td>DNA sequence</td>
<td>Target site</td>
<td>Gene size (bp)</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Multiplex 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI1 FW</td>
<td>5'-ggg gcc atg tac ttc cgt tta 3</td>
<td>parA-parB</td>
<td>471</td>
</tr>
<tr>
<td>HI1 RV</td>
<td>5'-ggt gtt cgc tca tca cgg ggc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI2 FW</td>
<td>5'-tttc tcc gga gcc tca tta cac 3</td>
<td>Iterons</td>
<td>644</td>
</tr>
<tr>
<td>HI2 RV</td>
<td>5'-gct tcg cag ctc cgg ggc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II FW</td>
<td>5'-cga aag cgc gac ggc</td>
<td>RNA1</td>
<td>139</td>
</tr>
<tr>
<td>II RV</td>
<td>5'-tcg tgg tgc cag aag ttc gt 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplex 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X FW</td>
<td>5'-aac ctt aga gcc tat tta gtt tgc tga 3</td>
<td>ori Y</td>
<td>376</td>
</tr>
<tr>
<td>X RV</td>
<td>5'-gta gaa tca att ttt atc tca gtt ttt agg 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L/M FW</td>
<td>5'-ggc tga aaa cta tca cga tca tct tct gaa g 3</td>
<td>repA,B,C</td>
<td>785</td>
</tr>
<tr>
<td>L/M RV</td>
<td>5'-ctg cag ggg cag ttc tgg cct tta gag g 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N FW</td>
<td>5'-gcc tca cga gat tca cag gca ag 3</td>
<td>repA</td>
<td>559</td>
</tr>
<tr>
<td>N RV</td>
<td>5'-gct tca act cgt cca aga ttc 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplex 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIA FW</td>
<td>5'-ccc tgc ctc gct tct aga gaa ggtg 3</td>
<td>Iterons</td>
<td>462</td>
</tr>
<tr>
<td>FIA RV</td>
<td>5'-gta ttt ctc ctc ctc cgc cag 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIB FW</td>
<td>5'-ggc gtt cgt gca cca cag tca tta gtt 3</td>
<td>repA</td>
<td>702</td>
</tr>
<tr>
<td>FIB RV</td>
<td>5'-cgc tgc cca gtt ctc cag gga atc 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W FW</td>
<td>5'-ctc gaa aac aac aaa gcc cccg 3</td>
<td>repA</td>
<td>242</td>
</tr>
<tr>
<td>W RV</td>
<td>5'-gct gcc ccc cca ctg ccc cct cct aag 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplex 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y FW</td>
<td>5'-aat ctc aac aac act gtt cag cctg 3</td>
<td>Iterons</td>
<td>534</td>
</tr>
<tr>
<td>Y RV</td>
<td>5'-ggc aag cag tca gac tca cga aga ttc 3</td>
<td>repA</td>
<td>765</td>
</tr>
<tr>
<td>P FW</td>
<td>5'-cta tgg ccc tcc aaa cgc gcc aga aa 3</td>
<td>Iterons</td>
<td>534</td>
</tr>
<tr>
<td>P RV</td>
<td>5'-tcg gcc gcc agg ggc ggc 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIC FW</td>
<td>5'-gtg aac cgg cag aga aag 3</td>
<td>repA2</td>
<td>262</td>
</tr>
<tr>
<td>FIC RV</td>
<td>5'-tcc tcc cgc cct cca aac tag at 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplex 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/C FW</td>
<td>5'-gcg aac caa aga cca cct gct gta 3</td>
<td>repA</td>
<td>465</td>
</tr>
<tr>
<td>A/C RV</td>
<td>5'-acg cca aac ctc cta tga tgc ctc 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T FW</td>
<td>5'-ttg gcc tgt tgg tgc cta aac cat 3</td>
<td>repA</td>
<td>750</td>
</tr>
<tr>
<td>T RV</td>
<td>5'-gct tga tta cta cga gtc tgg gac 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FII FW</td>
<td>5'-tgct tga cag ctc ctg ctt gca 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FII RV</td>
<td>5'-tga cgt tgc ccc ccc cct cct cct 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simplex 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frep FW</td>
<td>5'-tga tgt tta aag gaa ttt ttg 3</td>
<td>RNA1/repA</td>
<td>270</td>
</tr>
<tr>
<td>Frep RV</td>
<td>5'-gcc tgc cgg aag gcc aga aaac 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simplex 2 and 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K/B FW</td>
<td>5'-gcg gcc cgg aag gcc aga aaac 3</td>
<td>RNA1</td>
<td>160</td>
</tr>
<tr>
<td>K/B RV</td>
<td>5'-ctc tca aac ctc cgc cca aa 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B/O RV</td>
<td>5'-tgct ttc cgc cag cca gtt cga 3</td>
<td>RNA1</td>
<td>159</td>
</tr>
</tbody>
</table>
Appendix B

Figures of multiplex PCR to detect the occurrence of CTX-M type ESBLs in *K. pneumoniae* (Figures B.1-B.5 in the next three pages)

Figure B.1 Multiplex PCR experiment to detect the incidence of CTX-M type ESBLs groups 1,2,8,9 and 26 in *K. pneumoniae* isolates. Lane1: Marker. Lane2: AES152. Lane3: AES170. Lane4: AES172. Lane5: AES178. Lane6: AES117. Lane7: AES197. Lane8: AES187. Lane9: AES188. Lane10: AES194. Lane11: AES 203. Lane12: AES216. Lane13: AES225. Lane14: AES236. Lane15: AES258. Lane16: AES260. Lane17: AES261. Lane18: AES265. Lane19: AES268. Lane20: AES270.

Figure B.2 Multiplex PCR experiment to detect the incidence of CTX-M type ESBLs groups 1,2,8,9 and 26 in *K. pneumoniae* isolates. Lane1: Marker. Lane2: AES271. Lane3: AE273. Lane4: AES274. Lane5: AES275. Lane6: AES279. Lane7: AES280. Lane8: AES917. Lane9: AES942. Lane10: H2O. Lane11: Marker.
Figure B.3 Multiplex PCR experiment to detect the incidence of CTX-M type ESBLs groups 1,2,8,9 and 26 in K. pneumoniae isolates. Lane1: Marker. Lane2: AES506. Lane3: AES722. Lane4: AES808. Lane5: AES809. Lane6: AES817. Lane7: AES836. Lane8: AES936. Lane9: AES939. Lane10: AES943. Lane11: AES960. Lane12: AES961. Lane13: AES970. Lane14: AES973. Lane15: AES975. Lane16: AES977.

Figure B.4 Multiplex PCR experiment to detect the incidence of CTX-M type ESBLs groups 1,2,8,9 and 26 in K. pneumoniae isolates. Lane1: Marker. Lane2: AES982. Lane3: AES983. Lane4: AES984. Lane5: AES985. Lane6: AES987. Lane7: AES994. Lane8: AES1001. Lane9: AES1004. Lane10: AES1004(1). Lane11: AES1013. Lane12: AES1025. Lane13: AES1026. Lane14: AES1028. Lane15: AES1029. Lane16: AES1036. Lane17: AES1052. Lane18: AES1053. Lane19. Lane19: Marker.
Figure B.5 Multiplex PCR experiment to detect the incidence of CTX-M type ESBLs groups 1, 2, 8, 9 and 26 in *K. pneumoniae* isolates. Lane1: Marker. Lane2: Positive control AES140). Lane3: Negative control (H2O). Lane4: Marker.
PFGE of S1 digestion of some isolates of *K. pneumoniae* and probing with *blaCTX-M-15* (Figures B.6 and B.7, next two pages)

Figure B.6 PFGE of S1 digests for *K. pneumoniae* AES isolates. Lane1: Marker. Lane2: AES809. Lane3: AES817. Lane4: AES203. Lane5: AES836. Lane6: AES939. Lane7: AES961. Lane8: AES942. Lane9: AES188. Lane10: AES994. Lane11: AES960. Lane12: AES970. Lane13: AES975. Lane14: AES977. Lane15: AES982.
Figure B.7 Autorad after probing with $bla_{CTX-M-15}/ISEcp1$ of blotted PFGE from fig B6. Lane1: Marker. Lane2: AES809. Lane3: AES817. Lane4: AES203. Lane5: AES836. Lane6: AES939. Lane7: AES961. Lane8: AES942. Lane9: AES188. Lane10: AES994. Lane11: AES960. Lane12: AES970. Lane13: AES975. Lane14: AES977. Lane15: AES982.
DNA sequences from class 1 integrons of some of *K. pneumoniae*
Figure legend is above the figure.

Figure B.8 DNA sequence of *K. pneumoniae* AES59 amplified by VAF primer.

```
AACCTTGACCGAACGCAGCGGTGGTAACGGCGCAGTGGCGGTTTTCATGGCTTGTTATGACTGTTTTTTTGTACAGTCTATGCCTCGGGCATCCA
AGCAGCAAGCGCGTTCAGCGCGTGGTCTGGATGTTTATGGAGCAGCAACGATGTTAGCGCAGCAGGGCAGTCGCCCTAAAACAAAGTTAGCCATTAAGGGAGTTAAATTGA
AAATATCATTGATTTCTGCAGTGTCAGAAAATGGCGTAATCGGTAGTGGTCCTGATATCCC
GTGGTCAGTAAAAGGTGAGCAACTACTCTTTAAAGCGCTCACATATAATCAATGGCTCCTTGTCG
GAAGAAAAACATTGACTCTATGGGTGTTCCTTCAATCAGCAATATGCAGTAGTGTCAAAGAACGGAATTTCAAGCTCAAATGAAA
```

Figure B.9 Alignment of DNA from figure B.8 with DNA from gene bank
Matched with DfrA17

```
>>EM_PRO: FJ895301 FJ895301.1 Shigella flexneri plasmid unknown clone 05100 class 1 integron DNA integrase intI1 (intI1), dihydrofolate reductase DfrA17 (dfrA17), and aminoglycoside-3'-adenylyltransferase (aadA5) genes, complete cds. (2813 nt)
initn: 2110 initl: 2110 opt: 2110 Z-score: 2178.0 bits: 414.8 E(142439246): 7.8e-112 banded Smith-Waterman score: 2110; 100.0% identity (100.0% similar) in 422 nt overlap (1-422:1063-1484)

10 20 30
EMBOSS AACCTTGACCGAACGCAGCGGTGGTAACGG
........................................
EM_PRO GTAGCGGTATGCGCTACGGAACCTTGTACCCAGCAAACCTTGCAGCAGCGGTGGTAACGG
1040 1050 1060 1070 1080 1090

40 50 60 70 80 90
EMBOSS CGCAGTGCGGTTTTTATATGCGTTTTATGACTTTTTTTCTACAGTCTAGCCTCGG
GC ...........................................................
::
EM_PRO

```
<table>
<thead>
<tr>
<th>Sequence 1</th>
<th>Sequence 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGCAGTGCGGTTTTTCACTGGCTTGTATTAGCTTTTTTGTAAGTCTATGGCCTCGG</td>
<td>1100 1110 1120 1130 1140 1150</td>
</tr>
<tr>
<td>ATCCAGCAGCAAGCGGCTTACGCCCTAGGGTGCTGTCTCAGGGGTAAGGAGAAATTGG</td>
<td>100 110 120 130 140 150</td>
</tr>
<tr>
<td>EMBOSS</td>
<td>EM_PRO</td>
</tr>
<tr>
<td>TGTTACGCAGCAGCGGCGTACGCCCTAGGGTGCTGTCTCC</td>
<td>1160 1170 1180 1190 1200 1210</td>
</tr>
<tr>
<td>EMBOSS</td>
<td>EM_PRO</td>
</tr>
<tr>
<td>AATATCATTTGTGATTTCTGACGCAAAAATGGCGTAATCGGAAATGGCCTTGGTCTGATATC</td>
<td>220 230 240 250 260 270</td>
</tr>
<tr>
<td>EMBOSS</td>
<td>EM_PRO</td>
</tr>
<tr>
<td>GTGGTTCAGTAAAAAGGGTGAGCAACTACTCTTTAAAGCGCTCACATATAATCAATGGCTC</td>
<td>320 330</td>
</tr>
<tr>
<td>EMBOSS</td>
<td>EM_PRO</td>
</tr>
<tr>
<td>TGTCGGAAGAAAAACATTTGACTCTATGGGTGTTCTTCCAAATCGCAAATATGCAGTAGT</td>
<td>420 430 440 450</td>
</tr>
<tr>
<td>EMBOSS</td>
<td>EM_PRO</td>
</tr>
<tr>
<td>GTCAAGAAGCAGATTTTCAAGCTCAAATGAAA</td>
<td>520 530 540 550</td>
</tr>
</tbody>
</table>
Kluvera georgiana conjugative IncFII plasmid pTC10 (partial) harboring a class 1 integron (dfrA17 and aadA5 gene cassettes), Tn3-bla(TEM-1b)-IS26 and Tn21 (partial)

Cross-references and related information in:
- Nucleotide Sequences
- Protein Families
- Ontologies
- Protein Sequences

EMBOSS AACCTTGACCGAACGCAGCGGTGGTAACGG
EM_PRO GTAGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCGGTGGTAACGG

EMBOSS CGCAGTGGCGGTTTTCATGGCTTGTTATGACTGTTTTTTTGTACAGTCTATGCC TCGGC
EM_PRO GTAGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCGGTGGTAACGG

EMBOSS ATCCAAGAACCGGAATTTCGTCGATGCTGAATGCTAAGACGTAATCTCAATCAATAGAA
EM_PRO TGCTTTGAAAGAGCTATCAAAAGTTACAGATCATGTATGCTCTGGCGGGGTCAAAT

EMBOSS AACCTTGACCGAACGCAGCGGTGGTAACGG
EM_PRO GTAGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCGGTGGTAACGG

EMBOSS CGCAGTGGCGGTTTTCATGGCTTGTTATGACTGTTTTTTTGTACAGTCTATGCC TCGGC
EM_PRO GTAGCGTATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCGGTGGTAACGG

EMBOSS ATCCAAGAACCGGAATTTCGTCGATGCTGAATGCTAAGACGTAATCTCAATCAATAGAA
EM_PRO TGCTTTGAAAGAGCTATCAAAAGTTACAGATCATGTATGCTCTGGCGGGGTCAAAT
... ...

EM_PRO
ATCCAAGCAAGCGCCGTTACCGCGTGTGGGTATGGTATGGCTGAGCGA
CAAGC
6700 6710 6720 6730 6740 6750

160 170 180 190 200 210
EMBOSS
TGTTACCGCAGGCGAGTCGCCCTAACAATGGGAGTTAGCCATTAAGGGAGTTAA
ATTGAA

EM_PRO
TGTTACCGCAGGCGAGTCGCCCTAACAATGGGAGTTAGCCATTAAGGGAGTTAA
ATTGAA
6760 6770 6780 6790 6800 6810

220 230 240 250 260 270
EMBOSS
AAATATCATTGATTTCTGCAGTGTCAGAAAATGGCGTAATCGGTAGTGGTCCTGA
TATCCC

EM_PRO
AAATATCATTGATTTCTGCAGTGTCAGAAAATGGCGTAATCGGTAGTGGTCCTGA
TATCCC
6820 6830 6840 6850 6860 6870

280 290 300 310 320 330
EMBOSS
GTCGGCAGTACGAAAATGGGAGTGCAACTACTCTCTTCCTTAAGCCGTCACATGATATCGGCTCCTGATCCCT

EM_PRO
GTCGGCAGTACGAAAATGGGAGTGCAACTACTCTCTTCCTTAAGCCGTCACATGATATCGGCTCCTGATCCCT
6880 6890 6900 6910 6920 6930

340 350 360 370 380 390
EMBOSS
TGTCGGAAACTTATATGTTTCAACATGCTAGTACAGCTTGCATGGGTGTTTCCCTCCAAATCGCAAATATGC
AGTAGT

EM_PRO
TGTCGGAAACTTATATGTTTCAACATGCTAGTACAGCTTGCATGGGTGTTTCCCTCCAAATCGCAAATATGC
AGTAGT
6940 6950 6960 6970 6980 6990

400 410 420
EMBOSS
GTCAAAAGAAGGGAAATTTCAAGCTCAAATGAAA

EM_PRO
GTCAAAAGAAGGGAAATTTCAAGCTCAAATGAAA
7000 7010 7020 7030 7040 7050

EM_PRO
TGCTTTGAAAGAGCTATCAAAAGTTACAGATCATGTATATGTCTGCTGCGGGG

229
Figure B. 10 DNA sequence of *K. pneumoniae* AES59 1.5 kb amplified by QacR primer

```
AGCCNGCCTTTTCGATATATCCTCCCAATTTGTGTAGGGCTTTATTATG
CACGCTTTAAAAATAATAAAAGACAGACTTGACCTGATAGTTTTGGCTTGAGCAATT
ATGTG
CTTAGTGCAATCTAACGCATAGTTTAGCGGCGGGCGCAGCCCCGTCCGCTTGAACGC
CGAGT
TAGGCATAGATGCCCTCAGCGGAGGCGATGCACATTTCGCACATGCAGGTCTCA
CGAA
GATTCTCTCTATCGTTGCTTTGGCATAATCGGAACGAGCAGCGGCCGTCTTCTCGACGC
GCAT
TGCTAGGTCTCGCTCTCGCTACCGAGTGACGCGCGCTGCTTGCAATAGAGGG
GGCCG
ATGCTCGGCAGGAAACGCTGGAGTACGCGGCGGTGCTGCTGGAGGAACGCTC
GATGAG
ACCCAGGAAAGCGCTGTACAAATGCGAGCAAGAAGCAAGACGACGTCCGCTC
GTCACC
CTCCAAATCCGACTCTGCTATCCACTGGCAATAGTGTCGAAACACGCCTTGGA
AAATG
CTCCTCGGCNCCGCCGCTCGAAAAAC
```

Figure B.11 Alignment of DNA sequence from figure B.10 with DNA from gene bank.

Matched with aadA5
Query 60
TAATAAAAGCAGACTTGACCTGATAGTTTGGCTGTGAGCAATTATGTGCTTAGTGCATCT
119

Query 120
AACGCATAGTTGAGCGGCGGGCGCAGCCCGTCCCGCTTTGAACGCCGAGTTAGGCATCAGAT
179

Query 180
GCCCTCGGCGCGGGTCGATGCACTTTTCGCACATGCCGCTCAACGCAAGATTCTCTCAAT
239

Query 240
CGTTGCTTTGGCATATCGAACGAACGCGGCCGTCTCTCTCGACGCGCATTGCTAGGTGTC
299

Query 300
GTCTCGCTTACCCAGGTACGCCGCGCGTGCCTTGCAGATGAGGGGCCGATGCTCGGCAGG
359

Query 360
CAAACGCTCCGATACCCATGCGGCAGCAACGTCCTTAGGAGCAATGAGACCAGTTGAAGC
419

Query 420
GCTGTACCAAATGCGAGCAAGAGCAAGAACGACGTTCCGCTCGTCACCCTTCCAATCCGA
479

Query 1670
TAATAAAAGCAGACTTGACCTGATAGTTTGGCTGTGAGCAATTATGTGCTTAGTGCATCT
1611

Query 1610
AACGCATAGTTGAGCGGCGGGCGCAGCCCGTCCCGCTTTGAACGCCGAGTTAGGCATCAGAT
1551

Query 1550
GCCCTCGGCGCGGGTCGATGCACTTTTCGCACATGCCGCTCAACGCAAGATTCTCTCAAT
1491

Query 1490
CGTTGCTTTGGCATATCGAACGAACGCGGCCGTCTCTCTCGACGCGCATTGCTAGGTGTC
1431

Query 1370
CAAACGCTCCGATACCCATGCGGCAGCAACGTCCTTAGGAGCAATGAGACCAGTTGAAGC
1311
Figure B.12 DNA sequence from *K. pneumoniae* AES135 (1kb) amplified VAF and QacR primer

```
Sbjct 1310
GCTGTACAAATGCGAGCAAGAGCAAGAACGACGTTCCGCTCGTCACCCTTCCAATCCGA
1251
Query  480
CTCTGCATTCCACTGGGCAATAGTGTCGAAAAGCGCCTTGGANAATAATGCTCCTTCGGCNC
539
          |||||||||||||||||||||||||||||||||||||||||||||
Sbjct 1250
CTCTGCATTCCACTGGGCAATAGTGTCGAAAAGCGCCTTGGAGAAATGCTCCTTCGGCAC
1191
Query  540
CGGCTCGAAAAAC 552
          ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| | |}
```

Figure B.13 Alignment of DNA sequence from fig. B12 with DNA from gene bank
Matched with dfrA30

```
>`gb|JN121384.1| Acinetobacter baumannii strain RUH875
antibiotic resistance island
AbaR21, partial sequence
Length=1789
Score = 534 bits (289), Expect = 2e-148
Identities = 351/386 (91%), Gaps = 5/386 (1%)
Strand=Plus/Minus
```
Figure B.14 DNA sequence from *K. pneumoniae* AES48 amplified by QacR primer
(1.5 kb)

G GCCNGCCTTTCCNGATATATCTCTCCCNATTTTGTTAGGGCTTATTAT
GCACGCTTTAAAAATAATAAAAAGCAGACTTGGGACCTGATAGTTTTGGCTTGAGCAAT
TATGT
GCTTAGTGCTCCTAAGGCGGAGTTAAGC CGCCGCGGTAGCGCCCGTGGCTTGAG
ACGAAT
TTGGTAGACATCATTATACCACTGACTGGTATGATCAGCTGCTTTCACAAGACGAA
TAATT
CTTCACCAGTATCTGCGCGTGAGGCAAGTAGCTCTCTTTTTGTCCCAGATAAGCT
TGCT
TAGCTTCAAGTAAGACGGCTGATACCTGGGAGGAGTCCTTTATTGCCCCAGTC
GGCAC
CGACATCCTTCGCGGGCTTGTGGCCGNTATTGCGCTGTACAAATGCGGGGACAA
CTGAA
GCAACTACATTTCGCCTACTGCGCGGGCCACGTGCGGTGCTGATCATTCCATAGCTTCAA
GGTCT
CCCTCANCGCGCTCNAATANATCTCTGTTTCAGGAAANCAGGTCGAAAGATCTCCCGN
TGCGC
GACCTACCNAG

Figure B.15 Alignment of DNA sequence from fig. B.14 with DNA from
gene bank.
Matched with aadA2

```
>dbj|AP012208.1| D Escherichia coli plasmid pNDM-1_Dok01
DNA, complete sequence,
strain: NDM-1 Dok01
Length=195560

  Score = 950 bits (514),  Expect = 0.0
  Identities = 527/538 (98%),  Gaps = 1/538 (0 %)
Strand=Plus/Minus

Query  1 GCCNGCCTTTC-
NGATATATCTCCCNATTTTGTTAGGGCTTATTATGACGCTTTAAAAT  59

Sbjct 115050
GCCAGCCTTTTCAAGGATATATCTCCCAATTTTTGCTGTAGGGCTTTATATGACGCTTTAAAAT
114991

Query  60 AATAAAAGCAGACTTGGACCTGATAGTTTTGGCTGAGCAATTATGCTTAGTGCATCTA
119

Sbjct 114990
AATAAAAGCAGACTTGGACCTGATAGTTTTGGCTGAGCAATTATGCTTAGTGCATCTA
114931

Query  120 AGCGGGAGTTAAGCCCGCGCCTAGCGCGGTCCGTGAAGCAGAATTGTAGACATCAT
179
```
>gb|HQ730120.1| Escherichia coli strain WM31a01

insertion sequence IS26, resolvase
(tnpR) gene, and transposon Tn1721, complete sequence;
TnpM gene, complete cds; and class 1 integron, partial sequence
Length=4988

Score = 950 bits (514), Expect = 0.0
Identities = 527/538 (98%), Gaps = 1/538 (0%)
Strand=Plus/Minus

Query 1 GCCNGCCTTTTC-
 NGATATATCTCCCNATTGTTGGAAGGCTTTATTATGACGCTTTAAAAAT 59
 ||||||||||||||||||||||||
Sbjct 4710 GCCAGCCTTTTCATGATATATGCTCAAATTGAGTTATGTGCTTTAGGCATCTA

Query 1 GCCNGCCTTTTC-
 NGATATATCTCCCNATTGTTGGAAGGCTTTATTATGACGCTTTAAAAAT 59
 ||||||||||||||||||||||||
Sbjct 4710 GCCAGCCTTTTCATGATATATGCTCAAATTGAGTTATGTGCTTTAGGCATCTA

Query 60 AATAAAAGCAGACTTGACCTGATAGTTTGGCTGTGAGCAATTATGTGCTTTAGGCATCTA
 AATAAAAGCAGACTTGACCTGATAGTTTGGCTGTGAGCAATTATGTGCTTTAGGCATCTA 119
 ||||||||||||||||||||||||
Sbjct 4650 AATAAAAGCAGACTTGACCTGATAGTTTGGCTGTGAGCAATTATGTGCTTTAGGCATCTA

Query 120 ACGCCCGAGTTTAAGCCGCGGCTGAGCGCGGCTGCTGAAACGAATTATGTTAGACATCAT
 ACGCCCGAGTTTAAGCCGCGGCTGAGCGCGGCTGCTGAAACGAATTATGTTAGACATCAT 179
 |||||||||||||||||||||||||
Sbjct 4590 ACGCCCGAGTTTAAGCCGCGGCTGAGCGCGGCTGCTGAAACGAATTATGTTAGACATCAT

Query 180 TTACCAACTGACCTTGATCTCGCCTTTCCACAAAGCGACAAAATCTCTCCAAAGTGATCT
 TTACCAACTGACCTTGATCTCGCCTTTCCACAAAGCGACAAAATCTCTCCAAAGTGATCT 239
 |||||||||||||||||||||||||||
Sbjct 4530 TTACCAACTGACCTTGATCTCGCCTTTCCACAAAGCGACAAAATCTCTCCAAAGTGATCT

Query 240 GCCCGTGAGGGCAGAGCGCAGATCTTTGCTTAGGCTTCCAGGATAAGCTTGTTAGCTTCGAGATAG
 GCCCGTGAGGGCAGAGCGCAGATCTTTGCTTAGGCTTCCAGGATAAGCTTGTTAGCTTCGAGATAG 299
 |||||||||||||||||||||||||||
Sbjct 4470 GCCCGTGAGGGCAGAGCGCAGATCTTTGCTTAGGCTTCCAGGATAAGCTTGTTAGCTTCGAGATAG

Query 300 ACGGGTGTATCTGGCGAGGTGTAGGCTTTTTATGGCCGAGTCGCAGCGATCCTTCCG
 ACGGGTGTATCTGGCGAGGTGTAGGCTTTTTATGGCCGAGTCGCAGCGATCCTTCCG 359
 |||||||||||||||||||||||||||
Sbjct 4410 ACGGGTGTATCTGGCGAGGTGTAGGCTTTTTATGGCCGAGTCGCAGCGATCCTTCCG

236
Figure B.16 DNA sequence from *K. pneumoniae* AES48 amplified by VAF primer (1.5 kb)

NNNNNNNNNNNNNNACCTGNNNNNNNCTTGACCGAACCAGCAGCGGTGGAACG
GGCGAG
TGGGCAGTTTCATGGCTTGTTTTGATGGCTGTGTTTTTGTACAGTCATATGCCCTCG
CCA
AGCACAGGCGCAGGCATGGCGGATTTGATGTTTGGATGACAGCAGCAAAGG
TGTTA
CGCAGCAGGCCAGCTGCGCCTAAACAAAGAAAGTGAAGGCAATGAACTCGGAACGT
AGCAT
TTATCTCGTGTGCGATGAGGCCAACTCGGGATTTGGCAATTGCTATATCCATAGC
CCCTG
GAAAATTCCGGGTCACAGAAAGATTGTTTCTGCAGACCTCAGAGGGGAAGAGCT
GTCAT
GGGCAGAAGACCTTTTGTCTATCGCAACGCTCTACCGGAACCGACGACACATGT
GTAAT
CCTCACGCAAGCTAANTACCCGCGACTGGNTGCGTAGGTTTCAACGCTGTCG
CAGCG
TATCGCTTGGCATCCGAACTCGGNAATGAANTCTNCGTTCNGGGGNNNGAGCNGAG
NNANA
NACTCTGGGACACTCCT

Figure B.17 Alignment of DNA sequence from fig. B.16 with DNA sequences from gene bank. Matched with dfrA12 dihydrofolate reductase

>>EM_PRO:DQ390454; DQ390454 Escherichia coli strain 517- (63946 nt)
rev-comp initn: 2562 initl: 2562 opt: 2562 Z-score: 2828.1 bits: 540.0
banded Smith-Waterman score: 2562; 97.5% identity (97.5% similar) in 528 nt overlap (556-29:25146-25673)

<table>
<thead>
<tr>
<th>Seque-</th>
<th>550</th>
<th>540</th>
<th>530</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM_PRO</td>
<td>TACCTCAGATAAGAAACAGGCCGTCGAGGCTAAGAGCCAGATGCAGATGGCAAGGCAACGGCTCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25120</td>
<td>25130</td>
<td>25140</td>
</tr>
<tr>
<td></td>
<td>25150</td>
<td>25160</td>
<td>25170</td>
</tr>
<tr>
<td></td>
<td>520</td>
<td>510</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>490</td>
<td>480</td>
<td>470</td>
</tr>
<tr>
<td>EM_PRO</td>
<td>NCCCNNGACGNNAGANTTCATTCCGAGTGGCAACCGATACCCGCTTACCAATGGTG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25240</td>
<td>25250</td>
<td>25260</td>
</tr>
<tr>
<td></td>
<td>25270</td>
<td>25280</td>
<td>25290</td>
</tr>
<tr>
<td></td>
<td>460</td>
<td>450</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>430</td>
<td>420</td>
<td>410</td>
</tr>
<tr>
<td>EM_PRO</td>
<td>TGAAAACAATTACGCAAGGCTGAGTGGATGCAGTATGGAATCCCAAATGGTG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25360</td>
<td>25370</td>
<td>25380</td>
</tr>
<tr>
<td></td>
<td>25390</td>
<td>25400</td>
<td>25410</td>
</tr>
<tr>
<td></td>
<td>340</td>
<td>330</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>300</td>
<td>290</td>
</tr>
<tr>
<td>EM_PRO</td>
<td>TCCCTCAGTGAGTTCGCCAAATCTTTCTTGCTACCCGGAATTGCCAGATATTAGG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25480</td>
<td>25490</td>
<td>25500</td>
</tr>
<tr>
<td></td>
<td>25510</td>
<td>25520</td>
<td>25530</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>210</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>180</td>
<td>170</td>
</tr>
<tr>
<td>EM_PRO</td>
<td>CGAGTTCCGTAATGCTGACACCACTTGCCGATGACCTGATTTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25540</td>
<td>25550</td>
<td>25560</td>
</tr>
<tr>
<td></td>
<td>25570</td>
<td>25580</td>
<td>25590</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>150</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>120</td>
<td>110</td>
</tr>
<tr>
<td>EM_PRO</td>
<td>CTCCATAACATCAGCAGGCACGCTGGCCGGCAGCAACTGCTGCTCAATGGAGGAGAGG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25600</td>
<td>25610</td>
<td>25620</td>
</tr>
<tr>
<td></td>
<td>25630</td>
<td>25640</td>
<td>25650</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>EM_PRO</td>
<td>ATAGACTGGTACAAACACAGCTGTCATTACAGCAGGAGGAGG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seque-</td>
<td>CCGCTCGGTTCCGTCAGAAGNNNNNNNCCAGTGNNNNNNNNNNNNNNN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EM_PRO CCGCTGCGTCCGGTCAAGGTTGTGACCAGTGAGCGCATACGCTACTTGCATTAC
25660 25670 25680 25690 25700 25710
>> EM_PRO:EU780013; EU780013 Klebsiella pneumoniae strain (37606 nt)
initn: 2562 initl: 2562 opt: 2562 Z-score: 2831.4 bits: 539.8 E():
8.1e-151
banded Smith-Waterman score: 2562; 97.5% identity (97.5% similar) in 528
nt overlap (29-556:8343-8870)
10 20 30 40 50
Sequen NNNNNNNNCNTGNNNNCACTGNNNNNCTTGACGCAAGCCGCGTCGAC
EM_PRO GCGTATGCGCTACGGCAACTGCGTCCAGAACCTTGACGGAACGCGGTGGTAACGGCGC
8320 8330 8340 8350 8360 8370
60 70 80 90 100 110
Sequen AGTGCAGGGTTTTTCATGGCTTGTTATGACTGTTTTTTTGTACAGTCTATGCCTCGGGC
EM_PRO AGTGGCGGTTTTTTCATGGCTTGTTATGACTGTTTTTTTGTACAGTCTATGCCTCGGGCATC
8380 8390 8400 8410 8420 8430
120 130 140 150 160 170
Sequen CAAGCAGCGCAAGCTGGGATTCGAGCGGTCGATGTTTGATGTTATGGAGCAGCAACGATGT
EM_PRO CAAGCAGCGCAAGCTGGGATTCGAGCGGTCGATGTTTGATGTTATGGAGCAGCAACGATGT
8500 8510 8520 8530 8540 8550
240 250 260 270 280 290
Sequen ATTTATCTCGTTGCGAGGATGGAGCCAATCGGGTTATTGGCAATGGTCCTAATATCCCC
EM_PRO ATTTATCTCGTTGCGAGGATGGAGCCAATCGGGTTATTGGCAATGGTCCTAATATCCCC
8560 8570 8580 8590 8600 8610
300 310 320 330 340 350
Sequen TGGAAAATTCCGGGTGAGCAGAAGATTTTTCGCAGACTCACTGAGGGAAAAGTCGTTGTC
EM_PRO TGGAAAATTCCGGGTGAGCAGAAGATTTTTCGCAGACTCACTGAGGGAAAAGTCGTTGTC
8620 8630 8640 8650 8660 8670
360 370 380 390 400 410
Sequen ATGGGGGCAAGCCTTCTGGACTGTCACTGGCAAGCGCTTCTACCGCAAGCGCTTCTACCGCA
EM_PRO ATGGGGGCAAGCCTTCTGGACTGTCACTGGCAAGCGCTTCTACCGCAAGCGCTTCTACCGCA
8680 8690 8700 8710 8720 8730
420 430 440 450 460 470
Sequen ATCTCAGCCCAAGCTAANTACCGCGGCACCTGGCTGCTGAGTTGTTTCAAACGCTGGCAC
EM_PRO ATCTCAGCCCAAGCTAANTACCGCGGCACCTGGCTGCTGAGTTGTTTCAAACGCTGGCAC
8740 8750 8760 8770 8780 8790
480 490 500 510 520 530
Sequen GCTATCGCTTTTGCCATCCGAACCTCGGNAATGAAAATTCTGTGCNNNGGNNNGGAGCGAGAGNA
EM_PRO GCTATCGCTTTTGCCATCCGAACCTCGGNAATGAAAATTCTGTGCNNNGGNNNGGAGCGAGAGNA
8960 8970 8980 8990 9000 9010

239
Figure B.18 DNA sequence from *K. pneumoniae* AES74 amplified by CTX-M-15 F primer

NNNNNNNNNNNNNTGCCGCTGTATGCGCAACCGCGGAGCTACGCAAAACCTTGCCGAATATTGAAGCTTTGGGATGATTAAACACACGAGATAATATTGCGAAAGAGGAAGCAGACTGGGTGTCGACAGTGAAGCTTTGGCTAGTGCAGCAGCACCAGTAAGGTGATGCGCCGCGGACGGCCGACGGGTGTTTCTATCTGAGGTACATCAAACCTTC

Figure B.19 Alignment of DNA sequence from fig. B.18 with DNA sequence from gene bank

>>EM_PRO:EU935739; EU935739 Escherichia coli strain A pl (117536 nt)
initn: 3785 initl: 3785 Z-score: 3796.6 bits: 720.5 E(): 6.3e-205 banded Smith-Waterman score: 3785; 100.0% identity (100.0% similar) in 757 nt overlap (1-757:63040-63796)
Figure B.20 DNA sequence from *K. pneumoniae* AES140 amplified by CTX-M-15 F primer

NNNNNNNNNNNNNTGCGCCTGTATGCGACACCGGGACGTACAGCAAAAAC
AAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGGATTGATACACAGCAG
ATAATT
CGCCGCCTGCTGTAAGAAAGCTGAACCGGACACGTTGCGGATTTTTTAACCATGGGATTCCTTATTCTGGAAGA

Figure B.21 Alignment of *bla*_{CTX-M-15} gene from fig. B.20 with DNA sequences from gene bank

<table>
<thead>
<tr>
<th>Sequent</th>
<th>EM_PRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>GACCAGAATCAGCGGCAGCATCTTTTGG</td>
<td></td>
</tr>
<tr>
<td>CCAGATCACCGCGATATCGTTGGTGCCATAGCCACCGCTGCCGGTTTTATCCCCCAC</td>
<td></td>
</tr>
<tr>
<td>AACCCAGGGAAGCAGGCAGTCCAGCCTGAATGCTCGCTGCACCGGTGGTATTGCCTTTCAT</td>
<td></td>
</tr>
<tr>
<td>CCATGTCACCAGCTGCGCCCGTTGGCTGTCGCCCAATGCTTTACCCAGCGTCAGATTCCG</td>
<td></td>
</tr>
</tbody>
</table>

>>EM_PRO:EU9365739; EU9365739 Escherichia coli strain A pl (117536 nt)
| initiate: 3790 initial: 3790 optimal: 3790 Z-score: 3815.4 bits: 724.0 E(): 5.6e-206
| banded Smith-Waterman score: 3790; 100.0% identity (100.0% similar) in 758 nt overlap (1-758:63040-63797)
Figure B.22 DNA sequence of ISEcp1 from *K. pneumoniae* AES140

NNN
<table>
<thead>
<tr>
<th>Sequence</th>
<th>EM_PRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGGTGCTCTGTGGATAACTTGCAGTTTATTAAGTATCATTGCAGCAAAGATGAAATCA</td>
<td>TGGTGCTCTGTGGATAACTTGCAGTTTATTAAGTATCATTGCAGCAAAGATGAAATCA</td>
</tr>
<tr>
<td>7290</td>
<td>7300</td>
</tr>
<tr>
<td>7310</td>
<td>7320</td>
</tr>
<tr>
<td>7330</td>
<td>7340</td>
</tr>
<tr>
<td>620</td>
<td>610</td>
</tr>
<tr>
<td>600</td>
<td>590</td>
</tr>
<tr>
<td>580</td>
<td>570</td>
</tr>
<tr>
<td>560</td>
<td>550</td>
</tr>
<tr>
<td>540</td>
<td>530</td>
</tr>
<tr>
<td>520</td>
<td>510</td>
</tr>
<tr>
<td>500</td>
<td>490</td>
</tr>
<tr>
<td>480</td>
<td>470</td>
</tr>
<tr>
<td>460</td>
<td>450</td>
</tr>
<tr>
<td>440</td>
<td>430</td>
</tr>
<tr>
<td>420</td>
<td>410</td>
</tr>
<tr>
<td>400</td>
<td>390</td>
</tr>
<tr>
<td>320</td>
<td>310</td>
</tr>
<tr>
<td>300</td>
<td>290</td>
</tr>
<tr>
<td>280</td>
<td>270</td>
</tr>
<tr>
<td>260</td>
<td>250</td>
</tr>
<tr>
<td>240</td>
<td>230</td>
</tr>
<tr>
<td>220</td>
<td>210</td>
</tr>
<tr>
<td>200</td>
<td>190</td>
</tr>
<tr>
<td>180</td>
<td>170</td>
</tr>
<tr>
<td>160</td>
<td>150</td>
</tr>
<tr>
<td>140</td>
<td>130</td>
</tr>
<tr>
<td>120</td>
<td>110</td>
</tr>
<tr>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>GGGAGCAGNGTCACNGCNGAGCTAG</td>
<td></td>
</tr>
</tbody>
</table>
Figure B.24 DNA sequence from *K. pneumoniae* AES261 amplified by CTX-M-15 primer

```
GGGAGTGCGCGGCGCGCTAGCTCAGCCAGTGACATCGTCCCATTGA
CGTGCTTTTCCGCA
ATCGGATTATAGTAAACAAGGTCAGATTTTGTGATCTCAACTCGCTG
ATTTAACAGATTG
GTTTCGTTTTCCTTTTCTTCAGCACCGCAGCGCGCCGCGCCCATCACTTT
ACTGGGTGCTGCAC
ATCGCACAAGCGTCTACAGCAGACAGATAAAGTTATTTGCGAATTATATCTG
CTGTTTTAAATCAAT
GCCACACCCAGTCTGCTCCCAGCTGCACATCCTTAATTCGGCAAGTT
TTTCTGTACGTCC
GCCGTTTGCCGCTACAGCGCACACTTCCTAACAAACAGCGTGACGG
TTGCCGTCGCCATTC
AGCGTGAACTGGCGAGCTGATTTTA
```

Figure B.25 Alignment of DNA sequence from fig. B.24 with DNA from gene bank

Matched with *bla*_{CTX-M-15}

emb|FR828676.1 Escherichia coli plasmid pCTX913 tnpA gene, *bla*_{CTX-M-15} gene and delta tnpA gene (partial), isolate 913
Length=2656

Score = 678 bits (367), Expect = 0.0
Identities = 377/381 (99%), Gaps = 4/381 (1%)
Strand=Plus/Minus

Query 7 GCGCGG-GCGGCT-
AGCTCGCAGGGATGACATCCTCGCTCGCTGCTTCTCCGAATCG 64

```

Sbjct 1512
GCGCGGCGGCGCTAAGCTCAGGACATCCTCGCTCGCTGCTTCTCCGAATCG
1253
```

Query 65
GATTATAGTTAAACAAGGTCAGATTTTGTGATCTCAACTCGCTGATTTAACAGATTTGTT
124

```

Sbjct 1252
GATTATAGTTAAACAAGGTCAGATTTTGTGATCTCAACTCGCTGATTTAACAGATTTGTT
1193
```

Query 125
CGCTTTTCACCTTTTCTCACGACCCCGGCGGCGGCGGCGATCCTTTTACTGGTGCACATCG
184
Figure B.26 DNA sequence from *K. pneumoniae* AES817 amplified by CTX-M-15 primers

```
TGTTCTGTAGCGCGGCGCTAGCTCAGCCAGTGACATCGTCCCAT
TGACGTGCTTTTCC
GCAAATCGGATTATAGTTAACAAGGTCAGATTTTTTGATCTCAACTC
GCTGATTITAACAGA
TTCCGATTCGCTTTTCACTTTTCTCAGCACCACCGCGCCCGCCGCATCAC
TTAATGCTGCTGCG
CACATCGCAAAGCGCTACAGCAGCAGGATATTTGTGAATTATGCTGTG
CTTATATCGTAATTAGCTGTTAATCAATGCCA
CAACATCGCAGATCAGCAGTAAAGTATTTGCGAATTATCTGCTGTG
TTAATCAATGCCA
CAACATCGCAGATCAGCAGTAAAGTATTTGCGAATTATCTGCTGTG
TTAATCAATGCCA
CACATCGCAGATCAGCAGTAAAGTATTTGCGAATTATCTGCTGTG
TTAATCAATGCCA
CACATCGCAGATCAGCAGTAAAGTATTTGCGAATTATCTGCTGTG
TTAATCAATGCCA
```

Figure B.26 DNA sequence from *K. pneumoniae* AES817 amplified by CTX-M-15 primers.
Figure B.27 Alignment of DNA sequence from fig. B.26 with DNA from gene bank
Matched with \(\text{bla}_{\text{CTX-M-15}} \)

gb|JF918433.1| | Escherichia coli insertion sequence ISEcp1, partial sequence; and insertion sequence IS26 cefotaximase (blaCTX-M-15) gene, partial cds
Length=848

Score = 680 bits (368), Expect = 0.0
Identities = 384/391 (98%), Gaps = 3/391 (1%)
Strand=Plus/Minus

| Query | 1 | TGTTCTGTAGCGCGG-CGGCT-AGCTCAGCCGTACGTCCCCGCT ATGGCCTTT | 58 |
| Sbjct | 500 | TGTAAGTACGGCCGCGCTATAGCCCAAGGCAGATCGTTT | 441 |

| Query | 59 | CCGCAATCGGATTATAGTTAAACAAGGCTAGATTTTTTCTGCTTACTCAACTGCTGA | 118 |
| Sbjct | 380 | CCGCAATCGGATTATAGTTAAACAAGGCTAGATTTTTTCTGCTTACTCAACTGCTGA | 381 |

| Query | 119 | GATTCGGTTCGGCTTTTACCTTTTCAGCAGGCGGCGGCGGCGGCGGCACCACACTTATACGGTGAC | 178 |
| Sbjct | 380 | GATTCGGTTCGGCTTTTACCTTTTCAGCAGGCGGCGGCGGCGGCGGCACCACACTTATACGGTGAC | 321 |

| Query | 179 | TGACATGCAAAAGCGCTCTCGCTAGTGAGTAAAGTTTTGCAATTATCTGCTGTGA | 238 |
| Sbjct | 320 | TGACATGCAAAAGCGCTCTCGCTAGTGAGTAAAGTTTTGCAATTATCTGCTGTGA | 261 |

| Query | 239 | TCATCGGCAACCGAGTCTGCTCCCGACTGCCGCTCTTAATTCCGCAAGTTTTTGGCTGA | 298 |
| Sbjct | 260 | TCATCGGCAACCGAGTCTGCTCCCGACTGCCGCTCTTAATTCCGCAAGTTTTTGGCTGA | 201 |
Figure B.28 DNA sequence from *K. pneumoniae* AES984 amplified by CTX-M-15 primers

TGGAAAGTAAATACCTTGAAAGCGTGTTGATGCTGAAACTATATATCAAG
AAGCAACAAATACGAC
ATGGCCGTTGGTCACTCTTGTCAATAGTCTATTTTGGGCGAATGAAG
CGTGTTTCAAATG
ATGATGCTTTTCATATAACCTATTTTGTGTTCAAGTTTGATTCTTG
GACTCTTCAGAAA
TACACACACCAAATAAAGACCTTTCGTTGAAGATGATGATTCTTTTG
CAGCAACAAATAATC
AAAAACCGCAAGATATGTAATCATGAAATTTGTCGAAAAACTATCCGT
ACAAGGGAGGTAT
GAAAAATGTCTGGTATAAATAAGAATATCATCAATAAAAATGAGGTGT
TGCTCTGTTGATAAA
CTTGCCGAGTACTTACCTATCTTCTGCTGCAAACCATGAAATCCTATT
GATTTAAATAAAA
ATGATTGAAGGGCGTGTGAAATAATGTTCAATATGTTGAGGAGAGC
AGTCTAAATTCCTTG
TGAATAGTGATTTTTGGAAGCTAATAAAAAACACACGTGGAATTGA
GGGACTTATTCATGT
TGTTGATATTTCTGATCTTCAAGAAATAGAATCCCATGTTAAAA
AATCCTGCGCCAG
TTTACAGCTGTGAGGCGAGCAGCAACCCCTACGCTGTTGTGAGAGGAGT
TGCCGTCTGTAGC
CAAAAGGCGCAAGGTACAGCAAAAAAATCGCGATTAGAGCAGCCAG
TCGAGGAGGAGACGCT
GGTGTGCGATGTGATTACCGCGGACGATGATTGATCCGAATAACTATAT
CTGCTGTAGAGCGC
CTTTGCAGTGTGCAGACGACAGTACAGTACGATGAGGCGCGGCGCGAGC
CTGAAAGAAATGAA
AAAAAACCGATCTGTAAAACTCCGCGAGTGGAGACACCCAAAATCCG
ACCTTGAGTTAAG
CTCCCCATCGTGAAAATGGCGCCTGGTGACATGTTTTGCGTGAGCTAC
GCTGTCGCCTATT
ACACGTCCGCGGGGGTTTTTTTTTATTTA
Figure B.29 Alignment of DNA sequence from fig. B.28 with DNA from gene bank
Matched with \(\text{bla}_{\text{CTX-M-15}} \)

Klebsiella pneumoniae strain C1865 TEM-1 beta-lactamase
(blaTEM-1) gene, partial cds; TnpR (tnpR) gene, complete cds; insertion sequence ISEcp1, complete sequence; CTX-M-15 extended-spectrum beta-lactamase (blaCTX-M-15) and hypothetical protein genes, complete cds; insertion sequence IS26, complete sequence;
fluoroquinolone acetylating aminoglycoside-(6')-N-acetyltransferase
(aac(6')-Ib-cr) gene, complete cds; and OXA-1 beta-lactamase (blaOXA-1) gene, partial cds
Length=8378

Score = 1408 bits (762), Expect = 0.0
Identities = 850/890 (96%), Gaps = 15/890 (2%)
Strand=Plus/Plus

Query 17
AAAGCGTGGT-ATGCTG-
AAAATATATACAAAGCCAAATACGACATGGCGGTGGGTC

Subject 2486
AAAGCGTGGTATTGCTGAATAATATACAAAGCCAAATACGACATGGCGGTGGGTC

Query 75
TCTCCTGCTAAAGTCTTTGGCCGAATGAAGCCGGGTGGTTTCAATGATGATGCTTTTCATA

Subject 2546
TCTCCTGCTAAAGTCTTTGGCCGAATGAAGCCGGGTGGTTTCAATGATGATGCTTTTCATA

Query 135
TAACCTATTTTTTGTTCAGTTTTGATTCCTTGCAGCAAAAATAATCAAAACCGCAAGATA

Subject 2606
TAACCTATTTTTTGTTCAGTTTTGATTCCTTGCAGCAAAAATAATCAAAACCGCAAGATA

Query 195
AAAGACCTTTTCTGTTTGAAGATGTATTTTCTTTGCAGCATAAAATAATCAGAAGCAGAAGA

Subject 2666
AAAGACCTTTTCTGTTTGAAGATGTATTTTCTTTGCAGCATAAAATAATCAGAAGCAGAAGA

Query 255
TGTAATCATGAAATTTGTTCGGAATCTGTCAGTAATAGGAGATGTATGATGGTCTGTT

250
Query 673
GTACAGCAAAAACTTGGCCGATTTAGAGCGGAGCGGACTGGGTGTGGCATGT
732

Sbjct 3141
GTACAGCAAAAACTTGGCCGATTTAGAGCGGAGCGGACTGGGTGTGGCAT-T
3199

Query 733
GATTAACACGCGGATGATTCCGCAAATACTATATCTGTGATGAGCGCATTGATGTG
792

Sbjct 3200
GATTAACACGCGGATGATTCCGCAAATACTTTATCTGTGATGAGCGCATTGATGTG
3259

Query 793 CAGCACCAGTACAGTGATGGCCGCGGCCGCGATGCTGAAAAGAAAT
TGAAAACAAACCGA 851

Sbjct 3260 CAGCACCAGTACAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAGA
AAAGTGGAAGCGGAACCGA 3318

Query 852 -TCTGTATCAATCCGCGAGTTGACACCCAAAAATCTGACCTTGTAACTAT
898

Sbjct 3319 ATCTGTATCAATCCGCGAGTTGACACCCAAAAATCTGACCTTGTAACTAT
3368

Figure B.30 DNA sequence from *K. pneumoniae* AES1001 amplified by
CTX-M-15 primers
TAAAATGGTTATGTGTGAGAGCAGTGCTCAAATTCTTTCGTAAGATTAGTA
TTTTTGAGGAAAT
AAAAAACACACGTTGGAATTGAGGACTATTTCATGTGGTGGTTGATT
CGTATCTTCCGAA
TAAAGGAATACCCATGGTTAAAAATCACTGCGCGATGCACGCTTGAT
GGCGACGGCAACCG
TACGGCCTGGTTAGGAAAGTGTGGCGCTGTATGCGAACCACGGCGGA
CGTACAGGAAAAAC
TTGCGCGATTAGAAGCCGAGTGCGGAGGCAAGACTGGGTGTTGGCAT
TGATAACACGAGC
ATAAACGCAAATACTTTTATCGTGATGAGCGCATTGATGTG
CAGCACGTCAGAAAG
TGATGCGCGCGCCGCGGTGCTGAAGAAAATGGAAAGCGGCAACCG
ATCTGTTAAATCCGCGAGTTGATGACCGCTTACGCGATTTGATAT
GGAAAGCGCAAGCT
ATGCGGAGATCAAATATCTGACCTTGTAACTATAATCCGATTGCG
GGAAAGCAGCGTCA
ATGGGACGATGTCAGTGCTGGCTGCGCTGAGCGGCGCGGCCTACAGTA
CAGCGATAACGTTG

252
Figure B.31 Alignment of DNA sequence from fig. B.30 with DNA from gene bank

Matched with \textit{bla}_{CTX-M-15}

\begin{verbatim}
Acinetobacter baumannii strain H1 hydroxyisourate hydrolase gene, complete cds; disrupted pyrimidine utilization transporter gene, partial sequence; insertion sequence \textit{ISEcp1} transposase (tnpA) gene, complete cds; CTX-M15 (blaCTX-M-15) gene, complete cds; disrupted orf477 gene, partial sequence; transposon Tn3 tnpA gene, partial sequence; and hypothetical protein gene, complete cds

Length=5224

Score = 981 bits (531), Expect = 0.0
Identities = 543/548 (99%), Gaps = 3/548 (1%)
Strand=Plus/Plus

Query 9 ATGTGTGAG-AGCAGTCTAAATCTCTCTGTAATAGTATTTTGAAGCTAATAAAAAAC 67
 ||||||| |||||
 Sbjct 2615
 ATGTGTGAGAAAAGCTAAATCTCTCTGTAATAGTATTTTGAAGCTAATAAAAAAC
 2674

Query 68 ACACGTGGAAATATTAGGACTATTCATGTGTGTTATTTCTGTATCTTCCAGAATAAGGAA 127
 ||||||| |||||
 Sbjct 2675
 ACACGTGGAAATATTAGGACTATTCATGTGTGTTATTTCTGTATCTTCCAGAATAAGGAA
 2734

Query 128 TCCCATGGTTAAAAAATCACTGCAGCTGACGGTCGATGCGACGGCAACCGTACGCT
 187
 ||||||| |||||
 Sbjct 2735
 TCCCATGGTTAAAAAATCACTGCAGCTGACGGTCGATGCGACGGCAACCGTACGCT
 2794
\end{verbatim}
Query 188
GTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGA
247

Sbjct 2795
GTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGA
2854

Query 248
ATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTC
307

Sbjct 2855
ATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTC
2914

Query 308
GCAAATACTTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGC
367

Sbjct 2915
GCAAATACTTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGC
2974

Query 368
CGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGA
427

Sbjct 2975
CGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGA
3034

Query 428
GATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGAC
487

Sbjct 3035
GATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGAC
3094

Query 488
GATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCTGGTTA
547

Sbjct 3095
GATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGC-GATGA
3153

Query 548
AATAAGCT 555

Sbjct 3154 A-TAAGCT 3160

254
Figure B.32 Alignment of RpoB from *K. pneumoniae* AES817 sequence type as ST 511 with gene bank

Figure B.33 Alignment of GapA from *K. pneumoniae* AES817 sequence type as ST 511 with gene bank
Figure B.34 Alignment of infB from *K. pneumoniae* AES817 sequence type as ST 511 with gene bank

Figure B.35 Alignment of Pgi from *K. pneumoniae* AES817 sequence type as ST 511 with gene bank
Figure B.36 Alignment of PhoE from K. pneumoniae AES817 sequence type as ST 511 with gene bank

Figure B.37 Alignment of tnoB from K. pneumoniae AES817 sequence type as ST 511 with gene bank
Figure B.38 Alignment of MDH from *K. pneumoniae* AES817 sequence type as ST 511 with gene bank

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDH</td>
<td>MDH</td>
<td>Consensus</td>
<td>MDH</td>
<td>MDH</td>
<td>Consensus</td>
<td>MDH</td>
<td>MDH</td>
<td>Consensus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>121</td>
<td>400</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MDH</td>
<td></td>
<td></td>
<td>Consensus</td>
<td></td>
<td></td>
<td>MDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B.39 Alignment of *mdh* from *K. pneumoniae* AES809 sequence type as ST 486 with gene bank

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDH</td>
<td>MDH</td>
<td>Consensus</td>
<td>MDH</td>
<td>MDH</td>
<td>Consensus</td>
<td>MDH</td>
<td>MDH</td>
<td>Consensus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>131</td>
<td>400</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MDH</td>
<td></td>
<td></td>
<td>Consensus</td>
<td></td>
<td></td>
<td>MDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure B.40 Alignment of Pgi from *K. pneumoniae* AES809 sequence type as ST 486 with gene bank

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa1</td>
<td>121</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
</tr>
<tr>
<td>Pgi</td>
<td>131</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
</tr>
<tr>
<td>Pgi</td>
<td>261</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>300</td>
<td>310</td>
<td>320</td>
<td>330</td>
<td>340</td>
<td>350</td>
<td>360</td>
<td>370</td>
<td>380</td>
</tr>
<tr>
<td>Pgi</td>
<td>391</td>
<td>400</td>
<td>410</td>
<td>420</td>
<td>430</td>
<td>440</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure B.41 Alignment of GapA from *K. pneumoniae* AES809 sequence type as ST 486 with gene bank

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>GapA</td>
<td>121</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
</tr>
<tr>
<td>GapA</td>
<td>131</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
</tr>
<tr>
<td>GapA</td>
<td>261</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>300</td>
<td>310</td>
<td>320</td>
<td>330</td>
<td>340</td>
<td>350</td>
<td>360</td>
<td>370</td>
<td>380</td>
</tr>
<tr>
<td>GapA</td>
<td>391</td>
<td>400</td>
<td>410</td>
<td>420</td>
<td>430</td>
<td>440</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

259
Figure B.42 Alignment of PhoE from *K. pneumoniae* AES809 sequence type as ST 486 with gene bank

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>131</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
<td>260</td>
</tr>
</tbody>
</table>

Figure B.43 Alignment of tnoB from *K. pneumoniae* AES809 sequence type as ST 486 with gene bank

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Left809El</td>
<td>Consensus</td>
<td>Left</td>
<td>Left809El</td>
<td>Consensus</td>
<td>Left</td>
<td>Left809El</td>
<td>Consensus</td>
<td>Left</td>
<td>Left809El</td>
<td>Consensus</td>
<td>Left</td>
<td>Left809El</td>
</tr>
<tr>
<td>131</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
<td>260</td>
</tr>
<tr>
<td>Left</td>
<td>Left809El</td>
<td>Consensus</td>
<td>Left</td>
<td>Left809El</td>
<td>Consensus</td>
<td>Left</td>
<td>Left809El</td>
<td>Consensus</td>
<td>Left</td>
<td>Left809El</td>
<td>Consensus</td>
<td>Left</td>
<td>Left809El</td>
</tr>
<tr>
<td>251</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>600</td>
<td>650</td>
<td>700</td>
<td>750</td>
<td>800</td>
<td>850</td>
<td>900</td>
</tr>
<tr>
<td>Left</td>
<td>Left809El</td>
<td>Consensus</td>
<td>Left</td>
<td>Left809El</td>
<td>Consensus</td>
<td>Left</td>
<td>Left809El</td>
<td>Consensus</td>
<td>Left</td>
<td>Left809El</td>
<td>Consensus</td>
<td>Left</td>
<td>Left809El</td>
</tr>
</tbody>
</table>
Figure B.44 Alignment of *infB* from *K. pneumoniae* AES809 sequence type as ST 486 with gene bank

![Alignment Diagram](image)

Figure B.45 Alignment of *RpoB* from *K. pneumoniae* AES809 sequence type as ST 486 with gene bank

![Alignment Diagram](image)
Figure B.46 Alignment of Pgi from *K. pneumoniae* AES808 sequence type as ST 509 with gene bank

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pgi</td>
<td></td>
</tr>
<tr>
<td>Pgi</td>
<td></td>
</tr>
<tr>
<td>Pgi</td>
<td></td>
</tr>
<tr>
<td>Pgi</td>
<td></td>
</tr>
</tbody>
</table>

Figure B.47 Alignment of tnoB from *K. pneumoniae* AES808 sequence type as ST 509 with gene bank

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>tnoB</td>
<td></td>
</tr>
<tr>
<td>tnoB</td>
<td></td>
</tr>
<tr>
<td>tnoB</td>
<td></td>
</tr>
<tr>
<td>tnoB</td>
<td></td>
</tr>
</tbody>
</table>
Figure B.48 Alignment of PhoE from *K. pneumoniae* AES808 sequence type as ST 509 with gene bank

Figure B.49 Alignment of infB from *K. pneumoniae* AES808 sequence type as ST 509 with gene bank
Figure B.50 Alignment of RpoB from \textit{K. pneumoniae} AES808 sequence type as ST 509 with gene bank

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>RpoB</td>
<td></td>
</tr>
<tr>
<td>Aces808</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>121</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>RpoB</td>
<td></td>
</tr>
<tr>
<td>Aces808</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>251</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>RpoB</td>
<td></td>
</tr>
<tr>
<td>Aces808</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>281</th>
<th>290</th>
</tr>
</thead>
<tbody>
<tr>
<td>RpoB</td>
<td></td>
</tr>
<tr>
<td>Aces808</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td></td>
</tr>
</tbody>
</table>

Figure B.51 Alignment of \textit{mdh} from \textit{K. pneumoniae} AES808 sequence type as ST 509 with gene bank

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdh</td>
<td></td>
</tr>
<tr>
<td>mhdAces808</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>121</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdh</td>
<td></td>
</tr>
<tr>
<td>mhdAces808</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>251</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdh</td>
<td></td>
</tr>
<tr>
<td>mhdAces808</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>281</th>
<th>290</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdh</td>
<td></td>
</tr>
<tr>
<td>mhdAces808</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td></td>
</tr>
</tbody>
</table>
Figure B.52 Full sequence of AES81 integron

cttgaccgaacgcagcggtggtaacggcgcagtggcggttttcatggctttatgtatgtttttttggtacagtctatgcctcgggcatccaagcagcaagcgcgttacgccgtgggtcgatgtttgatgttatggagcagcaacgagtgttacgcagcagggcagtcgccctaaaacaaagttaggccgcatggacaacgcaggtcacattgatacacaaaattctagctgcggcagatgagcgaatctgccgctctggatcggtgggggctgggcgatcgatgcacggctagggcgtgtaacacgcaagcacgatgatattgatctgacgtttcccggcgagaaggagttggactatggattcttagcggagatcggggatgagttacttgactgcgaacctgcttggtgggcagacgaagcgtatgaaatcgcggaggctccgcagggctcgtgcccagaggcggctgagggcgtcatcgccgggcggccagtccgttgtaacagctgggaggcgatcatctgggattacttttactatgcgatgaagtaccaccagtggactggcctacaaagcacatagagtcctacaggctcgcatgcacctcactcggggcggaaaaggttgaggtcttgcgtgccgtttcaggtcgcgatatgcggcctaacaattcgtccaagccgacgccggttccgcggcgcggcttaactcaggtgttatgccgcactcacccccatggagttttgatgttcaaacttttgagtaagttattggtctatttgaccgcgtctatcatggctattgcgagtccgctcgctttttccgtagattctagcggtgatccgacagtcagcgaaattccggtcggggaggtccggctttaccagaattgccgatggtttggtcgcatatcgcaacgcagtcgtttgatggcgcatctacccgtcccaatggtctcattgtccgtgatggtgatgagttgcttttgattgatacagcgtggggtgcgaaaaacacagcggcacttctcgcggagaagagaagcaaattggacttcctgtaacgcgtgcagtctccacgcactttcatgacgaccgcgtcggcggcgttgatgtccttcgggcggctggggtggcaagctacgcatcaccgtcgacacgccggctagccgaggtagaggggaacggagattcccacgcactctctagaaggactctcatcgagcggggacgcagtgcgcttcggtccagtagaactcttctatcctggtgctgcgcattcgaccgaacttagttgtgtacgtcccgtctgcgagtgtgctctatggtggttgtgctgattatgagttgtcacgcacgtctgcggggaacgtggccgatgccgatatgctgaatggcccacctccattgagcggattcaacaacactacccggaagcacagttcgtcattccggggcacggcctgccgggcggtctagacttgctcaagcacacaacagaaatgttgtaaaagcgcacacaaatcgctcagtcgttagtttacatctgacaatgagaacgtattgatctttccatcaattaaaga
Figure B.53 Full sequence of AES83 integron

gaaccttgacgcagccagcgccaggtggtgtaacgccgcatgcttttcattgcttgattagctgcttttgtt...
Figure B.54 Full sequence of AES135 integron

cgtagctgtaatgcgaagtacgtatgcgcgctcagcgaacttgtgccagaacc
ttgaccgagcgacgacctggtagtacgacggccacagtgcgcggtttctcatggcttg
tttagctgtt

Appendix C

Table C.1 List of *E. coli* isolates collected from Tripoli and Benghazi

<table>
<thead>
<tr>
<th>E. coli strain</th>
<th>Site of collection</th>
<th>Place of collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES11</td>
<td>Urine</td>
<td>Al-Jamhoryia hospital</td>
</tr>
<tr>
<td>AES35</td>
<td>Floor of toilet (ICU)</td>
<td>Al-Jamhoryia hospital</td>
</tr>
<tr>
<td>AES58</td>
<td>Blood</td>
<td>Al-Jamhoryia hospital</td>
</tr>
<tr>
<td>AES120</td>
<td>Wall of ICU</td>
<td>Al-Jamhoryia hospital</td>
</tr>
<tr>
<td>AES128</td>
<td>Urine</td>
<td>Al-Jamhoryia hospital</td>
</tr>
<tr>
<td>AES195</td>
<td>Urine</td>
<td>Al-Jamhoryia hospital</td>
</tr>
<tr>
<td>AES202</td>
<td>Urine</td>
<td>Al-Jamhoryia hospital</td>
</tr>
<tr>
<td>AES212</td>
<td>Swab from incubator</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES224</td>
<td>Floor of ICU</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES226</td>
<td>Urine</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES227</td>
<td>Wall of ICU</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES228</td>
<td>Floor of ICU</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES230</td>
<td>Bed side in ICU</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES231</td>
<td>Corner in ICU</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES232</td>
<td>Urine</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES237</td>
<td>Urine</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES239</td>
<td>Wall of ICU</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES240</td>
<td>Corridor of ICU</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES243</td>
<td>Urine</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES244</td>
<td>Urine</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES245</td>
<td>Urine</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES246</td>
<td>Urine</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES247</td>
<td>Floor of ICU</td>
<td>Benghazi Paediatric hospital</td>
</tr>
<tr>
<td>AES248</td>
<td>Blood</td>
<td>7th of October hospital</td>
</tr>
<tr>
<td>AES262</td>
<td>Pus</td>
<td>7th of October hospital</td>
</tr>
<tr>
<td>AES101</td>
<td>Floor of ICU</td>
<td>Al-Jamhoryia hospital</td>
</tr>
<tr>
<td>AES922</td>
<td>Urine</td>
<td>Al-Jalla hospital Tripoli</td>
</tr>
<tr>
<td>AES932</td>
<td>Urine</td>
<td>Maternity hospital Tripoli</td>
</tr>
<tr>
<td>AES937</td>
<td>Blood</td>
<td>Burn and plastic surgery Tripoli</td>
</tr>
<tr>
<td>AES938</td>
<td>Floor of ICU</td>
<td>Al-Jalla hospital Tripoli</td>
</tr>
<tr>
<td>AES941</td>
<td>Wall of ICU</td>
<td>Al-Jalla hospital Tripoli</td>
</tr>
<tr>
<td>AES944</td>
<td>Floor of toilet</td>
<td>Burn and plastic surgery Tripoli</td>
</tr>
<tr>
<td>AES962</td>
<td>Urine</td>
<td>Burn and plastic surgery Tripoli</td>
</tr>
<tr>
<td>AES964</td>
<td>Urine</td>
<td>Burn and plastic surgery Tripoli</td>
</tr>
<tr>
<td>AES966</td>
<td>Floor of ICU</td>
<td>Maternity hospital Tripoli</td>
</tr>
<tr>
<td>AES971</td>
<td>Bedside</td>
<td>Maternity hospital Tripoli</td>
</tr>
<tr>
<td>AES979</td>
<td>Urine</td>
<td>Maternity hospital Tripoli</td>
</tr>
<tr>
<td>AES1006</td>
<td>Blood</td>
<td>Burn and plastic surgery Tripoli</td>
</tr>
<tr>
<td>AES1037</td>
<td>Urine</td>
<td>Burn and plastic surgery Tripoli</td>
</tr>
</tbody>
</table>
Figure C.1 DNA sequence of \(\text{bla}_{\text{CTX-M-15}} \) amplified from \(E. \text{coli} \) isolate AES226

NNNNNNNNNNNNNNNNNNNNNNANGATCNGCGCGCAGAT
CTTTTGGCCNGATCAC
CGCGATATCGTTGTTGGTGCCATAGCCACCGCTGCAGCGGTTTTATCC
CCCAAAACCAGGAG
AGCAGGCGAGTCCAGCTGAATGCTGCTGCACCCGCTTGGTATTGCTC
TTCATCCATGTCAC
CAGCTGCGCCGCCGGAGAGTGATCGTATACGCAGGATCGCCCCGAAT
GGCGGGTGTTAAAGT
CGCCATTTGCCAGGAGGTTAGTGATCATACGCAGGATCGCCCAGGAAT
GGCGGGTGTTAAAGT
CGGATCAGTTAACAGGCTAGATTTTTTGATCTCAACTCGCTGAT
TTAACAGATTCCG
TTCCGCTTTCACTTTTCTTCAGACCCGCCGCCGCCCAATCACCCTACCTTAC
TGGTGCTGCACAT
CGCAAAGCCGCTCATCAGCAGATAAAAGTATTTGCCGAAATTATCTGCT
GTGTTAAATCAATGC
CACACCCAGTCTGCCCTCCGACTGCCGCTCTAAATTGCGCAAGTTTTT
GCTGTAGCTGCCG
CGTTTGCGCATAACAGCGGCACACTTCTTCAAACAGCGTACGCGG
GCCGTCGCCCATCNG
CGTGAACCTGCGCATGTTTTTTTAAACCATGCGATTTCTACTG
GAAGATACNAAT
AACACANNATGAAATANNNNNNNNNNNNNNNANNNGNTTTTTTNT
TNNNTTCCANNNNCN
NNNNNNNNCAAGNANNTNNNNNNNGNNNCN
Figure C.2 Alignment of DNA sequence from figure C.1 with DNA sequences from gene bank

```plaintext
> gb|HQ214945.1| Enterobacter aerogenes strain K-307 plasmid insertion sequence
ISEcp1 TnpA ISEcp1 (tnpA) gene, complete cds; and beta-lactamase CTX-M-15 (blaCTX-M-15) and hypothetical protein genes, complete cds
Length=2943
Score = 1496 bits (810), Expect = 0.0
Identities = 821/830 (99%), Gaps = 1/830 (0%)
Strand=Plus/Minus

Query 27
GAATCNCGGCGCAGATCTTTTGGCCNGATCACCCGCGATATCGTTGGTGTTGCGCCATAG 86

Sbjct 2468
GAATCG CGGCGCAGATCTTTTGGCCAGATCACCCGCGATATCGTTGGTGTTGCGCCATAG 2409

Query 87
CACCGCTGCCGTTTTTATCCCCCACACCAAGGAAGCAGGCAGTCCAGCCTGATGCTCG 146

Sbjct 2408
CACCGCTGCCGTTTTTATCCCCCACACCAAGGAAGCAGGCAGTCCAGCCTGATGCTCG 2349

Query 147
CTGCACCAGGTGTATTTGGCCATCACCAGCTGCGGGCTGCGTTGCTGCGCCCA 206

Sbjct 2348
CTGCACCAGGTGTATTTGGCCATCACCAGCTGCGGGCTGCGTTGCTGCGCCCA 2289

Query 207
ATGCCTTTACCAGGTCAGATTCGCAATTTGGCCATTGCCCCAGGGTGAAGTGGGTAT 266

Sbjct 2288
ATGCCTTTACCAGGTCAGATTCGCAATTTGGCCATTGCCCCAGGGTGAAGTGGGTAT 2229

Query 267
CACCGCGATCGCCCGGAATGGCGGTGTATACGTCGCTGACGGTCGAACGCAC 326

Sbjct 2228
CACCGCGATCGCCCGGAATGGCGGTGTATACGTCGCTGACGGTCGAACGCAC 2169

Query 327
TTTGCTCTCCACGCTGCGGCGGAGCGGTGACGCTATCAGGCACAGCAACGTGAGCAA 386

Sbjct 2168
TTTGCTCTCCACGCTGCGGCGGAGCGGTGACGCTATCAGGCACAGCAACGTGAGCAA 2109

Query 387
TCAGCTTTATTATCGCCACGTTATCGCTGTACTGTAGCGCGGCCGCGCTTGAAGCAGCCA 446

Sbjct 2108
TCAGCTTTATTATCGCCACGTTATCGCTGTACTGTAGCGCGGCCGCGCTTGAAGCAGCCA 2049
```
> gb|HQ214044.1 | Enterobacter cloacae strain K-221 plasmid

InCF::FIB insertion
sequence ISEcpl TnpA ISEcpl (tpnA) gene, complete cds; and
beta-lactamase CTX-M-15 (blaCTX-M-15) and hypothetical protein
genes, complete cds
Length=2943

Score = 1496 bits (810), Expect = 0.0
Identities = 821/830 (99%), Gaps = 1/830 (0%)
Strand=Plus/Minus

Query 27
GAATCGGCGCCGACATCTTTCGGCCNGATCACCAGCAGATATCGTGGTGGTGCCATAGC 86

Sbjct 2468
GAATCGGCGCCGACATCTTTCGGCCNGATCACCAGCAGATATCGTGGTGGTGCCATAGC 2409
Query 87
CACCGCTGCCGGTTTTATCCCCCACAACCCAGGAAGCAGGCAGTCCAGCCTGAATGCTCG

Sbjct 2408
CACCGCTGCCGGTTTTATCCCCCACAACCCAGGAAGCAGGCAGTCCAGCCTGAATGCTCG

Query 147
CTGCACCGGTGGTATTGCCTTTCATCCATGTCACCAGCTGCGCCCGTTGGCTGTCGCCCA

Sbjct 2348
CTGCACCGGTGGTATTGCCTTTCATCCATGTCACCAGCTGCGCCCGTTGGCTGTCGCCCA

Query 207
ATGCTTTACCAAGCTAGATCTCGCATACGGAAGGTGAAATGGGTAT

Sbjct 2288
ATGCTTTACCAAGCTAGATCTCGCATACGGAAGGTGAAATGGGTAT

Query 267
CACGGGATCGCCCGGAATGGCGGTGTTTAACGTCGGCTCGGTACGGTCGAGACGGAACG

Sbjct 2228
CACGGGATCGCCCGGAATGGCGGTGTTTAACGTCGGCTCGGTACGGTCGAGACGGAACG

Query 327
TTTCGTCTCCCAGCTGTCGGGCGAACGCGGTGACGCTAGCCGGGCCGCCAACGTGAGCAA

Sbjct 2168
TTTCGTCTCCCAGCTGTCGGGCGAACGCGGTGACGCTAGCCGGGCCGCCAACGTGAGCAA

Query 387
TCAGCTTATTATCATGCCAGCTTATACGTCTGTGACTGCGCGCGCGCGTAAGCTCAGCCA

Sbjct 2108
TCAGCTTATTATCATGCCAGCTTATACGTCTGTGACTGCGCGCGCGCGTAAGCTCAGCCA

Query 447
GTTTCACTCTCCATCCAGCTGTCGGGCGAACGCGGTGACGCTAGCCGGGCCGCCAACGTGAGCAA

Sbjct 2048
GTTTCACTCTCCATCCAGCTGTCGGGCGAACGCGGTGACGCTAGCCGGGCCGCCAACGTGAGCAA

Query 507
TTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTCACTTTTCTTCAACCG

Sbjct 1988
TTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTCACTTTTCTTCAACCG

Query 567
CGGCCGCGGCCATCACTTTTACTGCTGATTTAACAGATTCGGTTCGCTTTTCACTTTTCTCACGCAGCG

Sbjct 1928
CGGCCGCGGCCATCACTTTTACTGCTGATTTAACAGATTCGGTTCGCTTTTCACTTTTCTCACGCAGCG

Query 627
GTTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTTCACTTTTCTTCAACCG

Sbjct 1869
GTTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTTCACTTTTCTTCAACCG

Query 686
GTTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTTCACTTTTCTTCAACCG

Sbjct 1928
GTTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTTCACTTTTCTTCAACCG

Query 267
ATGCTTTACCAAGCTAGATCTCGCATACGGAAGGTGAAATGGGTAT

Sbjct 2288
ATGCTTTACCAAGCTAGATCTCGCATACGGAAGGTGAAATGGGTAT

Query 327
TTTCGTCTCCCAGCTGTCGGGCGAACGCGGTGACGCTAGCCGGGCCGCCAACGTGAGCAA

Sbjct 2168
TTTCGTCTCCCAGCTGTCGGGCGAACGCGGTGACGCTAGCCGGGCCGCCAACGTGAGCAA

Query 387
TCAGCTTATTATCATGCCAGCTTATACGTCTGTGACTGCGCGCGCGCGTAAGCTCAGCCA

Sbjct 2108
TCAGCTTATTATCATGCCAGCTTATACGTCTGTGACTGCGCGCGCGCGTAAGCTCAGCCA

Query 447
GTTTCACTCTCCATCCAGCTGTCGGGCGAACGCGGTGACGCTAGCCGGGCCGCCAACGTGAGCAA

Sbjct 2048
GTTTCACTCTCCATCCAGCTGTCGGGCGAACGCGGTGACGCTAGCCGGGCCGCCAACGTGAGCAA

Query 507
TTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTTCACTTTTCTTCAACCG

Sbjct 1988
TTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTTCACTTTTCTTCAACCG

Query 567
CGGCCGCGGCCATCACTTTTACTGCTGATTTAACAGATTCGGTTCGCTTTTCACTTTTCTTCAACCG

Sbjct 1928
CGGCCGCGGCCATCACTTTTACTGCTGATTTAACAGATTCGGTTCGCTTTTCACTTTTCTTCAACCG

Query 627
GTTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTTCACTTTTCTTCAACCG

Sbjct 1869
GTTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTTCACTTTTCTTCAACCG

Query 686
GTTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTTCACTTTTCTTCAACCG

Sbjct 1928
GTTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTTCACTTTTCTTCAACCG
Figure C.3 DNA sequence of bla\textsubscript{CTX-M-15} amplified from E. coli isolate AES228

GCGGCGCAGCATCTTTTGGCCNGATCAC
CGCGATATCGTTGGTGGCCCAAGCTGCTGCTGCCCGCTGCCGGTTTTA
TCCCCCACAACCCAGGA
AGCAGGCAGTCCAGCTGAATGCTCGCTGCACCGGTGGTATTG
CCTTTCATCCAGTCAC
CAGCTGCAGCGTGCTTGACAGCGAAACGTCTTCGGTCTGCTGCAGTGCT
GATTTCGCGCCGAGCCACAGTACAGCTTATTCACAGCTTACCGCC
AGTTATCGCTGTACTG
TAGCGCCGCGCTAAGCTCAGCCAGTGACATCGTCCCATTG
GCTTTTCCCGCAAT
CCGATTATAGTTAACAGGTCAGATTTTTTGATCTCAAACTCGCT
GATTAAACAGATTCCG
TTCGCTTTTCATTTTTCTCAGGAACCGCGCCGCCGCCATCATTT
TACCTGGGTGCTGACAT
CGGAAAGCCGCATCAGCACAGATAAAGATATTTTCGGAATTATCT
GCTGTGTAATCAATGAC
CACACCCAGTCTGCCCCTCCGCCAGTCAGCTGCTCTACCTGGCAAGT
TTTGGCTGATAGCTCCGC
CGTTTACGCGCATACAGCGCCACACTTCTAACAACAGCGTGACG
GTTGCCGTCGCCCATCNG
CGTGAACGTGGCGCAGTGATTTTTTTAACATGGGATTCCCTATT
CTGGAAGATACAAAT
AACNACANNATGAAATANNCCCNANNNNCCNNGGNGNTTTTT

Figure C.4 Alignment of DNA sequence from figure C.3 with DNA sequences from gene bank

gb|JN788267.1| Acinetobacter baumannii strain H1 hydroxyisourate hydrolase gene,
complete cds; disrupted pyrimidine utilization transporter
gene, partial sequence; insertion sequence ISEcp1 transposase
tnpA gene, complete cds; CTX-M15 (blaCTX-M15) gene,
complete cds; disrupted orf477 gene, partial sequence;
transposon
Tn3 tnpA gene, partial sequence; and hypothetical protein
gene, complete cds
Length=5224

Score = 1489 bits (806), Expect = 0.0
Identities = 816/824 (99%), Gaps = 1/824 (0%)
Strand=Plus/Minus
Subject 3156
TATTCACTGCCACGTTATCGCTGTAATGATAGCGCCGCCTAAAGCTAGCGCTAGTTT
3097

Query 421
TCGTCCCATTGACGTGCTTTTCCGCAATCGGATTATAGTTAAACAAGGTCTAGATT
480

Subject 3096
TCGTCCCATTGACGTGCTTTTCCGCAATCGGATTATAGTTAAACAAGGTCTAGATT
3037

Query 481
TCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTCACTTTTCTTCAGACGCCGC
540

Subject 3036
TCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTCACTTTTCTTCAGACGCCG
2977

Query 541
CGGCCATCACTTTACTGGTGCTGCACATCGCAAAGCGCTCATCAGCACGATAAAGTTAAT
600

Subject 2976
CGGCCATCACTTTACTGGTGCTGCACATCGCAAAGCGCTCATCAGCACGATAAAGTTAAT
2917

Query 601
GCCAATTATCTGCTTGTTAATCAATGCCACACCCAGTCTGCTCCCGACTGCCGCTCTA
660

Subject 2916
GCCAATTATCTGCTTGTTAATCAATGCCACACCCAGTCTGCTCCCGACTGCCGCTCTA
2857

Query 661
ATTCGGGACAGTTTTTGTGCTAGCTCCGCCGTTTGCGCATACAGCGGCACTTCCCTAAC
720

Subject 2856
ATTCGGGACAGTTTTTGTGCTAGCTCCGCCGTTTGCGCATACAGCGGCACTTCCCTAAC
2797

Query 721
ACAGCGTGACGTTTGCGCTCGCATCNGCGTGAACTGGCGCAGTAGTTTTTACCATG
780

Subject 2796
ACAGCGTGACGTTTGCGCTCGCATCNGCGTGAACTGGCGCAGTAGTTTTTACCATG
2738

Query 781
GGATTCCTTATTCTGGAAGATAACNAATACNAACANNATGAAATA
824

Subject 2737
GGATTCCTTATTCTGGAAGATAACNAATACNAACANNATGAAATA
2694
Figure C.5 DNA sequence of $\text{bla}_{\text{CTX-M-15}}$ amplified from *E. coli* isolate AES232

```
CGCGATATCGTTGGTGCCATAGCCACCCTGCGCGTTTTATCC
CCACAAACCCAGGA
AGCAGGGCAGTCCAGCTGAATGCTCGTCGACCCGGTGGTATTTGCCT
TTCATCCCATGTCAC
CAGCTGCGCTGGCTGGCTGCCCAATGCTTTTACCCAGCGTCAGA
TTCCGCAANAGTTTG
CGCCATTGGCCAGGTGAAGTGATGCACGCGGATCGCCCAGGAAT
GGGCTGTTGAAGCT
CGGCTCGGTACGGTCAGACGGAACGTTTCTGTCATCGCCAGCTGCAG
GGGAAAGCGGTGAC
GCCATTATAGTTAAACAAGGGCAGATTTTTTATCTCAACTCGTGAT
TTAACACATGAATCG
TTGCCTTCTACTTTTCTTCAGCCACCGCGCCGCCGATCTCCACTTAC
TGGTGCTGCACAT
CCGCCAAGGCGTCTACGACAGGAATAAGTATTTGCCAATTAATCTGCT
TGGTTATACTAAAGC
CACACCCAGTCTGCTCCCGACTGGCCTGCTCTAAATCGGCAAGTTTTT
GCTGTACGTCCGC
CGTTTGCGCATAACGCGCAGCTCTCCATAAACAACAGCGTGGCGTT
GCGGTGCGCCATCNG
CGTGAACCGGCAGTGGATTAAAAATAACCATGGGATTCCTATTCTG
GAAGATACNAAAT
AACNAACNATGAATANNCCCNANNNNNCCNNNGNGNTTTTNNNN
NNN
```

Figure C.6 Alignment of DNA sequence from figure C.5 with DNA sequences from gene bank

```
embl|FR828676.1| Escherichia coli plasmid pCTX913 tnpA gene,
blaCTX-M-15 gene
and delta tnpA gene (partial), isolate 913
Length=2656

Score = 1441 bits (780), Expect = 0.0
Identities = 789/796 (99%), Gaps = 1/796 (0%)
Strand=Plus/Minus

Query 1
CGCGATATCGTTGGTGCCATAGCCACCCTGCGCGTTTTATCC
60
```
Sbjct 1674
CGCGATATCGTTGGTGCCATAGCCACCGCTGCCGGTTTTATCCCCCACAACCCAGGA
1615

Query 61
AGCAGGCAGTCCAGCCTGAATGCTGCTGACCGGTGGTATTGCCTTTCATCCATGTCAC
120

Sbjct 1614
AGCAGGCAGTCCAGCCTGAATGCTGCTGACCGGTGGTATTGCCTTTCATCCATGTCAC
1555

Query 121
CAGCTGCGCCCGTTGGCTGTCGCCCAATGCTTTACCCAGCGTCAGATTCCGCANAGTTTG
180

Sbjct 1554
CAGCTGCGCCCGTTGGCTGTCGCCCAATGCTTTACCCAGCGTCAGATTCCGCANAGTTTG
1495

Query 181
CGCCATTGCCCGAGGTGAAGTGGTATCACGCGGATCGCCCGGAATGGCGGTGTTTAACGT
240

Sbjct 1494
CGCCATTGCCCGAGGTGAAGTGGTATCACGCGGATCGCCCGGAATGGCGGTGTTTAACGT
1435

Query 241
CGGCTCGGTACGGTCGAGACGGAACGTTTCGTCTCCCAGCTGTCGGGCGAACGCGGTGAC
300

Sbjct 1434
CGGCTCGGTACGGTCGAGACGGAACGTTTCGTCTCCCAGCTGTCGGGCGAACGCGGTGAC
1375

Query 301
GCTAGCCGGGCCGCCAACGTGAGCAATCAGCTTATTCATCGCCACGTTATCGCTGTACTG
360

Sbjct 1374
GCTAGCCGGGCCGCCAACGTGAGCAATCAGCTTATTCATCGCCACGTTATCGCTGTACTG
1315

Query 361
TAGCCGGCCGCTAAGCTCAGCCAGTGACATCGTCCCATTGACGTGCTTTTCCGCAAT
420

Sbjct 1314
TAGCCGGCCGCTAAGCTCAGCCAGTGACATCGTCCCATTGACGTGCTTTTCCGCAAT
1255

Query 421
CGGATTATAAATTAACAGGTCAGATTTTTTGATCTCAACTCGCTGATTTAACAGATTCG
480

278
Figure C.7 DNA sequence of blactx-M-3 amplified from E. coli isolate AES228 amplified by CTX-M-F

NNNNNNNNNCCNNGTTGGAGGTGTCGCCTGTATGCGC
AAACGCGGACGTAC
AGCAGGAGTTGAGCAGTCCGAGGCGAGGCTGCTGAGGCAGACTGG
GTGTCAGGATCAGTA
ACACAGCAGATAATTCGAAATACAGTCTGCTGATGAGCGCT
TAGCAGTGTGACGA
CCAGTAAAGTGATGCGCCCGCGCCTGCTGAGGAAGAAATGAAA
GCAGAACGGATATCTTG
TTAAATCAGCGATTTGAGATCAAATATCTGACCTTTGTTAATATAA
TCGGATTCGGAAA
AGCACGTCAATGGGACGTCTCAGTGTACGTGAGCTTAGCCGCGGCCG
GCAGTGCTACTACGGG
ATAACGTGGCGATGACATAGCCTGAGGCTACGTGGGGGCGGGCCGCG
TAGCGTCAGCATAGCC
TCGGCCGACAGCTGGGAGACGAAACGTCTCCGCTCGAACCCTACCGA
GCCGACGATCATC
CCGCAATTCCGGGGGCTCCGCGTGAACACCNCTCACCTCGGCAGAT
GCGACANACTCTG
GGAATACGTGCGTGGAAGGNNNNGGGGCACNNCNACNGGC
NNCTGCTGANN
Figure C.8 Alignment of DNA sequence from figure C.7 with DNA sequence from gene bank

> gb|HQ214052.1] Enterobacter cloacae strain S-440 plasmid
IncF::FIB insertion
sequence ISEcp1, partial sequence; and beta-lactamase CTX-M-3
(blaCTX-M-3) and hypothetical protein genes, complete cds
Length=1498

Score = 1088 bits (589), Expect = 0.0
Identities = 600/611 (98%), Gaps = 0/611 (0%)
Strand=Plus/Minus

Query 17
AGCTCNGCCNCGAATCGACGTGCTTTTCCGCAATCGGATTATAGTTAAC 76

Sbjct 613
AGCTCAGCGCCACTCCATCGGCTTTTCCGCAATCGGATTATAGTTAAC 554

Query 77
AGGTCAAGATTTTTTGTACCTAACGTGCTGATTAAACAGATTCCGCCGTTTACTCACTTTTC 136

Sbjct 553
AGGTCAAGATTTTTTGTACCTAACGTGCTGATTAAACAGATTCCGCCGTTTACTCACTTTTC 494

Query 137
TTCAGCAGCCGCCGCCGCCCATGTTTACGCTGCTGCACATCGCAAAAGCCTCATCA 196

Sbjct 493
TTCAGCAGCCGCCGCCGCCCATGTTTACGCTGCTGCACATCGCAAAAGCCTCATCA 434

Query 197
GCACGATAAAAGTATTTGCGAATTATGCGCTGTGTTAATCAATGCCACACCCAGCTGCT 256

Sbjct 373
GCACGATAAAAGTATTTGCGAATTATGCGCTGTGTTAATCAATGCCACACCCAGCTGCT 314

Query 317
GGCACACTTCTAACAACACGTTGACGTGCTGGCGCTTTGGCGATACAGG 316

Sbjct 313
GGCACACTTCTAACAACACGTTGACGTGCTGGCGCTTTGGCGATACAGG 376

Query 377
GATTTTTAAACCATGGGATTCCTTATTCTGGAAGAGACGAAATAACAACAACATGATAG 436

Sbjct 253
GATTTTTAAACCATGGGATTCCTTATTCTGGAAGAGACGAAATAACAACAACATGATAG 194

Query 437
TCATAATTACCTGAACGCGGGAACACCGCGTCCGATTATGCTCTCCGAAAACAAAT 496
Figure C.9 DNA sequence of blaCTX-M-3 amplified from E. coli isolate AES226 amplified by CTX-M-F

CGTGATCCTCCTTTGACGTGCTTTTCTCGCAAT
CGGATTATAGTTAACAAGGGTGACAGATTTTTTGATCTCAACTCGCTGAT
TTAACAGATTCGG
TTCTGCTTACCTTTTCTCAGCACCACCGGCGCCGCCATTCACCTTAC
CGCAAAGCCGCTCATCACGACGATAAAGTATTTGCGAATTATTTCGCT
GTTTTATCAATGC
CACCCAGTCTGCTCTCCCGACTGCGCTCTAAATTCGCAAGTTTT
GGCTGCTGCCATCAG
CGTTGCAGCTACGCGCGACACACTTCTAACAACAGCGTGACGGTT
GCCGTCGCCCATCAG
CGTGAACTGGCGCAGTGATTCTTTTTTAAACATGGGATTCTTATCTCG
GAAGACGAAAATA
ACAAACAAACATTGATTGTGACATTACCTTGAGGAGGAGNCAANN
NCNTCNAATNCTAG
CTTCAGAAAGGCCAAACAGAGGTTCNCACANAAANGAAANNAATAT
NNACNNTGNNNNTTN
ANNNNNTTNTAATCTACTATTTCGCGAGAATTATTTAGACTCTTGC
TCACACTTTGTAAC
ATTATTACACACCTTTCCNNNNNNNNNNNNNNNNNNGNNGNNNG
NNNNCCNANNNNNN
CXXNNNNNNNCCNNTTGTNNTCTNTTNCGCANNNGNNTGACNCA
CTCNCCNNTAANNNNNNNNANNNNNCNCNCNTTTCNTTNTNNNNNNGN
GNNCGNNN
Figure C.10 Alignment of DNA sequence from figure C.9 with DNA sequence from gene bank

Escherichia coli strain S-741 plasmid IncL/M insertion sequence ISEcp1, partial sequence; beta-lactamase CTX-M-3 (blaCTX-M-3) and hypothetical protein genes, complete cds; and MucA (mucA) gene, partial cds

Length=2028

Score = 907 bits (491), Expect = 0.0
Identities = 552/597 (92%), Gaps = 7/597 (1%)
Strand=Plus/Minus

Query 3
```
GTGACATCGTCCNTTGACGTGCTTTTCCGCAATCGGATTATAGTTAACAAGGTCAGATT
```

Sbjct 603
```
GTGACATCGTCCATTTGACGTGCTTTTCCGCAATCGGATTATAGTTAACAAGGTCAGATT
```

Query 63
```
TTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTCACTTTTCTCAGCACC
```

Sbjct 543
```
TTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTCACTTTTCTCAGCACC
```

Query 123
```
CGGCCGCGGCCCATCACTTTACTGGTGCTGACATCGCAACTCGCAAAGCGCTCATCAGCAGATAAA
```

Sbjct 483
```
CGGCCGCGGCCCATCACTTTACTGGTGCTGACATCGCAACTCGCAAAGCGCTCATCAGCAGATAAA
```

Query 183
```
GTATTTGCGAATTATCTGCTGTGTTAATCAATGCCACACCCAGTCTGCCTCCCGACTGCC
```

Sbjct 423
```
GTATTTGCGAATTATCTGCTGTGTTAATCAATGCCACACCCAGTCTGCCTCCCGACTGCC
```

Query 243
```
GCTCTAATTCGGCAAGTTTTTGCTGTACGTCCGCCGTTTGCGCATACAGCGGCACACTTC
```

Sbjct 302
```
GCTCTAATTCGGCAAGTTTTTGCTGTACGTCCGCCGTTTGCGCATACAGCGGCACACTTC
```
Sbjct 363
GCTCTAATTCGGCAAGTTTTTGCTGTACGTCCGCCGTTTGCGCATACAGCGGCACACTTC
304

Query 303
CTAAACACAGGTACGGTGGTGGGCATCGACGTGAACGTGCGCGTCTAGTGTGGGTACTT
244

Sbjct 363
CTAAACACAGGTACGGTGGTGGGCATCGACGTGAACGTGCGCGTCTAGTGTGGGTACTT
303

Query 303
CTAAACACAGGTACGGTGGTGGGCATCGACGTGAACGTGCGCGTCTAGTGTGGGTACTT
244

Sbjct 363
CTAAACACAGGTACGGTGGTGGGCATCGACGTGAACGTGCGCGTCTAGTGTGGGTACTT
303

Query 303
CTAAACACAGGTACGGTGGTGGGCATCGACGTGAACGTGCGCGTCTAGTGTGGGTACTT
244

Sbjct 363
CTAAACACAGGTACGGTGGTGGGCATCGACGTGAACGTGCGCGTCTAGTGTGGGTACTT
Figure C.11 DNA sequence of \textit{bla}\textsubscript{CTX-M-3} amplified from \textit{E. coli} isolate AES232 amplified by CTX-M-F

NNNNNNNNNGCGCNANCTNGGCGTGCNTCGCTGCCCTTTTGGAC
GTGTCTACCCGCAAT
CGGATTATAGTTAAACAGCGCTATTTTTGATCTCAACTCGCTGAT
TTAACAGATTCGG
TTCGCTTCATTCTCTACAGCAGCGGCGGCGGCAGGTTCGCTCATACAGCAGCGGCGGCGGCACACTTCTCATAACACAGCGTGACGGTT
GCCGTCGACATCAG
CGTAACGTGGCGCAGTGTATTTTTAACCATTGGATGATCTTATTCTTG
AAGANACGAAATA
ACAAACACATGAATAGTCNATATTTTAACNTGANGNNGGGGNNNNNN
NCNNCNATTNATG
CTTCCNAAAGGAAATTANANNNNTNNNCNGAAANGNNNNNNNANN
NNACNNGNNNGNNTTA
NNNNNTTTTTNAAAATCACTATTTTCAGGAAGAGTTATAGACTGCTTC
TCACACATTGNAAC
NNNNNTTTNNNAACCCTTTNNNNNNNNNTTNNNNNNNNNNNGGGA
NCNGNGNCNNAANN
NNNNCCNNGNNNTCNNTCCNNTNNNTGCTTTTCNGCAACNGA
TTATANTNNNNNGG
NCNNANTTNNTGANCNNTCNCNNNNNNNNNNNAATTNNGNNTCN
NNNTCTTTTTNNNTCNCNNNNNNNNNNNNAATTNNGNNTCNCNNNN
NNNNNNNNNNNNNCCNNTNCTTTNNNGNNNCTNNNCATNCAANN
NNCCTNCTNNNNCAT
NANNNNNNNNNANTNTNCNGCNGNNNTTAANNANGNNNNNNNNNG
NNNCNANGNNNNNNNA
ANTNNNGCANNNTTTTNNNNNNNNNNNGNNNNNN

Figure C.12 Alignment of DNA sequence from figure C.11 with DNA sequence from gene bank

\texttt{gb|GQ292713.1|} \textit{Klebsiella pneumoniae} strain S-334 plasmid IncL/M insertion sequence
IS26 transposase \textit{tnpA} IS26 (\textit{tnpA}) gene, complete \textit{cds};
insertion sequence \textit{ISEcp1}, complete sequence; \textit{beta-lactamase}
CTX-M-3 (\textit{blaCTX-M-3}) gene, complete \textit{cds}; \textit{MucA} (\textit{mucA}) gene,
partial \textit{cds}; and unknown gene
Length=3260

Score = 747 bits (404), Expect = 0.0
Identities = 407/410 (99%), Gaps = 0/410 (0%)
Strand=Plus/Minus

Query 1
GACGTGCTTTTCCGCAATCGGATTATAGTTAACAAGGTCAGATTTTTTGATCTCAACTCG
60

Sbjct 1803
GACGTGCTTTTCCGCAATCGGATTATAGTTAACAAGGTCAGATTTTTTGATCTCAACTCG
1744

Query 61
CTGATTTAACAGATTCGGTTCGCTTTCACTTTTCTTCAGCACCGCGGCCGCGGCCATCAC
120

Sbjct 1743
CTGATTTAACAGATTCGGTTCGCTTTCACTTTTCTTCAGCACCGCGGCCGCGGCCATCAC
1684

Query 121
TTTACTGTTGCTGCACATCGCAAAGCGCTCATCAGCACGATAAAGTATTCTTGCAATTATC
180

Sbjct 1683
TTTACTGTTGCTGCACATCGCAAAGCGCTCATCAGCACGATAAAGTATTCTTGCAATTATC
1624

Query 181
TGCTGTGTATTAATCAATGCCACACCCAGTCTGCCTCCCGACTGCCGCTCTAATTCGGCAAG
240

Sbjct 1623
TGCTGTGTATTAATCAATGCCACACCCAGTCTGCCTCCCGACTGCCGCTCTAATTCGGCAAG
1564

Query 241
TTTTTGCTGTACGTCCGCCGTTTGCGCATACAGCGGCACACTTCCTAACAACAGCGTGAC
300

Sbjct 1563
TTTTTGCTGTACGTCCGCCGTTTGCGCATACAGCGGCACACTTCCTAACAACAGCGTGAC
1504

Query 301
GGTTGGCCGTCCGCATCACGTGAACCTGGCGCAAGT GTATT TTTTAAAAACCATGGGATTTCTAT
360

Sbjct 1503
GGTTGGCCGTCCGCATCACGTGAACCTGGCGCAAGTGTATT TTTTAAAAACCATGGGATTTCTAT
1444

Query 361
TCTGGAAGANACGAAATAACAACAACATGAATAGTCAATATTTTACCTGA
410

Sbjct 1443
TCTGGAAGANACGAAATAACAACAACATGAATAGTCAATATTTTACCTGA
1394
Appendix D

TABLE D.1 Ceftazidime resistant Gram-negative bacteria isolated from Hospital environmental swabs.

<table>
<thead>
<tr>
<th>Swab</th>
<th>Bacterial isolate</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>Achromobacter sp</td>
<td>Tripoli central hospital</td>
</tr>
<tr>
<td>302</td>
<td>Pseudomonas putida</td>
<td>Gergarish</td>
</tr>
<tr>
<td>303</td>
<td>Aeromonas caviae</td>
<td>1st of September</td>
</tr>
<tr>
<td>304</td>
<td>Achromobacter sp.</td>
<td>Andalus</td>
</tr>
<tr>
<td>305</td>
<td>Acinetobacter baumannii</td>
<td>Gergarish</td>
</tr>
<tr>
<td>306</td>
<td>Stenotrophomonas maltophilia</td>
<td>Omar Mokhtar</td>
</tr>
<tr>
<td>307</td>
<td>Pseudomonas pseudoalcaligenes</td>
<td>Omar Mokhtar</td>
</tr>
<tr>
<td>308</td>
<td>Stenotrophomonas maltophilia</td>
<td>Seraj</td>
</tr>
<tr>
<td>309</td>
<td>Achromobacter sp.</td>
<td>Seraj area</td>
</tr>
<tr>
<td>310</td>
<td>Achromobacter sp</td>
<td>Siahia</td>
</tr>
<tr>
<td>311</td>
<td>Pantoea agglomerans</td>
<td>Seraj</td>
</tr>
<tr>
<td>312</td>
<td>Pseudomonas aeruginosa</td>
<td>Siahia</td>
</tr>
<tr>
<td>313</td>
<td>Achromobacter sp</td>
<td>Omar Mokhtar</td>
</tr>
<tr>
<td>314</td>
<td>Tatumella ptyseos</td>
<td>Siahia</td>
</tr>
<tr>
<td>315</td>
<td>Pseudomonas putida</td>
<td>Seraj</td>
</tr>
<tr>
<td>316</td>
<td>Pseudomonas putida</td>
<td>Omar Mokhtar</td>
</tr>
<tr>
<td>317</td>
<td>Achromobacter sp</td>
<td>Omar Mokhtar</td>
</tr>
<tr>
<td>318</td>
<td>Burkholderia cepacia/Ralstonia pickettii</td>
<td>Seraj</td>
</tr>
<tr>
<td>319</td>
<td>Achromobacter sp</td>
<td>Seraj</td>
</tr>
<tr>
<td>320</td>
<td>Pseudomonas putida</td>
<td>Gergarish</td>
</tr>
<tr>
<td>321</td>
<td>Pseudomonas putida</td>
<td>Seraj</td>
</tr>
<tr>
<td>322</td>
<td>Stenotrophomonas maltophilia</td>
<td>Seraj</td>
</tr>
<tr>
<td>323</td>
<td>Tatumella ptyseos</td>
<td>Gergarish</td>
</tr>
<tr>
<td>324</td>
<td>Achromobacter sp</td>
<td>Seraj</td>
</tr>
<tr>
<td>325</td>
<td>Enterobacter cloacae</td>
<td>Omar Mokhtar</td>
</tr>
<tr>
<td>326</td>
<td>Citrobacter freundii</td>
<td>Seraj</td>
</tr>
<tr>
<td>327</td>
<td>Tatumella ptyseos</td>
<td>Seraj</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----------------------</td>
</tr>
<tr>
<td>328</td>
<td>Pantoea agglomerans</td>
<td>Jamahiyria</td>
</tr>
<tr>
<td>329</td>
<td>Achromobacter sp</td>
<td>Jamahiyria</td>
</tr>
<tr>
<td>330</td>
<td>Achromobacter sp</td>
<td>Jamahiyria</td>
</tr>
<tr>
<td>331</td>
<td>Ochrobactrum anthropi</td>
<td>Jamahiyria</td>
</tr>
<tr>
<td>332</td>
<td>P. aeruginosa</td>
<td>Serah</td>
</tr>
<tr>
<td>333</td>
<td>Achromobacter sp</td>
<td>Seraj</td>
</tr>
<tr>
<td>334</td>
<td>Achromobacter sp</td>
<td>Seraj</td>
</tr>
<tr>
<td>335</td>
<td>Acinetobacter baumannii</td>
<td>Gergarish</td>
</tr>
<tr>
<td>336</td>
<td>Leclercia adecarboxyalata</td>
<td>Seraj</td>
</tr>
<tr>
<td>337</td>
<td>Stenotrophomonas maltophilia</td>
<td>Akhadra</td>
</tr>
<tr>
<td>338</td>
<td>Enterobacter cloacae</td>
<td>Alkhadra</td>
</tr>
</tbody>
</table>
Figure D.1 Hydrolysis of antibiotic meropenem by TMB-1

<table>
<thead>
<tr>
<th></th>
<th>Vo #1</th>
<th>Vo</th>
<th>Vo #3 [E]: 100nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMAX</td>
<td>6.102</td>
<td>26.42</td>
<td></td>
</tr>
<tr>
<td>KM</td>
<td>355.2</td>
<td>75.11</td>
<td></td>
</tr>
</tbody>
</table>
Figure D.2 Hydrolysis of antibiotic Ertapenem by TMB-1

<table>
<thead>
<tr>
<th>VMAX</th>
<th>15.47</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM</td>
<td>31.06</td>
</tr>
</tbody>
</table>

Ertapenem

- Vo #1 [E]: 100nM
Figure D.3 Hydrolysis of antibiotic ceftazidime by TMB-1

<table>
<thead>
<tr>
<th></th>
<th>Vo #1 [E]: 1 µM</th>
<th>Vo #3 [E]: 100nM</th>
<th>Vo #3 [E]: 1 µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMAX</td>
<td>1.927</td>
<td>2.632</td>
<td>2.577</td>
</tr>
<tr>
<td>KM</td>
<td>18.89</td>
<td>187.6</td>
<td>91.81</td>
</tr>
</tbody>
</table>

Ceftazidime

- ■ Vo #1 [E]: 1 µM
- ▲ Vo #3 [E]: 100nM
- ○ Vo #3 [E]: 1 µM

291
Figure D.4 Hydrolysis of antibiotic ampicillin by TMB-1

<table>
<thead>
<tr>
<th></th>
<th>Vo #1 [E]: 100nM</th>
<th>Vo #2 [E]: 100nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMAX</td>
<td>4.490</td>
<td>5.822</td>
</tr>
<tr>
<td>KM</td>
<td>11.82</td>
<td>27.37</td>
</tr>
</tbody>
</table>

Ampicillin

![Graph showing hydrolysis of ampicillin](image)

- ■ Vo #1 [E]: 100nM
- ▼ Vo #2 [E]: 100nM
Figure D.5 Hydrolysis of antibiotic imipenem by TMB-1

<table>
<thead>
<tr>
<th></th>
<th>Vo #1 [E]: 10nM</th>
<th>Vo #2 [E]: 10nM</th>
<th>Vo #3 [E]: 100nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMAX</td>
<td>21.07</td>
<td>11.60</td>
<td>35.30</td>
</tr>
<tr>
<td>KM</td>
<td>1909</td>
<td>614.0</td>
<td>200.8</td>
</tr>
</tbody>
</table>

![Imipenem](chart)

- ■ Vo #1 [E]: 10nM
- ▲ Vo #2 [E]: 10nM
- ○ Vo #3 [E]: 100nM
Figure D.6 Hydrolysis of antibiotic cefoxitin by TMB-1

\[
\begin{align*}
\text{VMAX} & : 4.037 \\
\text{KM} & : 69.02
\end{align*}
\]

Cefoxitin

- Vo #1 [E]: 100nM
Figure D.7 Hydrolysis of antibiotic cefuroxime by TMB-1

<table>
<thead>
<tr>
<th>Vo #1 [E]: 1 μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMAX</td>
</tr>
<tr>
<td>KM</td>
</tr>
</tbody>
</table>

Cefuroxime

- Vo #1 [E]: 1 μM

295
Figure D.8 Hydrolysis of antibiotic piperacillin by TMB-1

<table>
<thead>
<tr>
<th>Vo #1 [E]: 100nM</th>
<th>VMAX 6.831</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM</td>
<td>72.13</td>
</tr>
</tbody>
</table>

Piperacillin

Vo

[S] μM

0 100 200 300 400 500 600

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
Figure D.9 full class 1 integron (3kb) A/flTMB-b aac6II and

Achromobacterxylosoxidans AES301

blaoxx

-4

from

T AG AGG A AT AAT GG AAT GCG ACC ATTTTT ATTTTT AAT A ATTTTT AT
CAGTCATTTCGCTTTTGCCAACGAAGAAATACCCGGATTGGAAGTT
GAGG AA ATT GAC A ACGGCGTTTTTTT GC AC AAGT CAT AC AGCCGGG
T GG A AGGCTGGGGCCT GGT A AGTT CAA ACGG ACTT GTT GT CAT CAG
CGGCGG AA A AGC ATT C ATT ATT G AC ACT CC AT GGT C GG A AT C AG AT
AC AG AAAAGCTT GT AGATT GG AT ACGAT CAAAAAAGT AT GAGCT G
GCGGG AAGC ATTTCT AC AC ATT C AC ACG A AG AC A AG ACT GCCGGT
AT A AAAT GGCTAAACGGC AAAT CC ATT ACT AC AT AT GCCT CAGCGC
T G ACT AAT GA A ATT C TA A A A AG AG AGGGT AAGG AGC AGGC A AGG A
GCTC ATT CAAAGGT AAT G AATTTTCGCT GAT GGACGGTTTTCT AG A
AGTCTATT ATCCCGG AGGCGGCC AT ACT ATT GATAACTT AGT GGT A
T GG AT C C CT AGTT C A AAA AT ATT GT AT GGC GGCT GTTT CAT ACGT A
GCTT GGAATCC AGT GGGCT AGGTT AC ACT GGT GAAGCTAA AATT GA
TC AGT GGCC AC AATCCGCT AGAAAT AC AATTTCGAAGTATCCT GAA
GCT AAG ATT GT GGT GCCTGGT CAT GGAAA AATT GGCGATTT CG AGT
TGTTAAAACATACCAAGgTCcTTGCAGAAAaGGCCTCTAACAAGGCC
AATCACGGCGACCGCTGACGCGGCGCGTGTcgTTAGGCAGCACA
Gagcgaccatttcatgtccgcgagcaccccccccataactcttcgcctcatgaccgagcgcgacctgccgatg
ctccatgattggctcaaccggccgcacatcgttgagtggtggggtggtgacgaagagcgaccgactcttgatga
agtgctggaacactacctgcccagagcgatggcggaagagtccgtaacaccgtacatcgcaatgctgggcga
ggaaccgatcggctatgctcagtcgtacgtcgcgctcggaagcggtgatggctggtgggaagatgaaactgat
ccaggagtgcgaggaatagaccagtctctggctgacccgacacagttgaacaaaggcctaggaacaaggctt
gtccgcgctctcgttgaactactgttctcggaccccaccgtgacgaagattcagaccgacccgactccgaacaa
ccatcgagccatacgctgctatgagaaggcaggattcgtgcgggagaagatcatcaccacgcctgacgggcc
ggcggtttacatggttcaaacacgacaagccttcgagagaaagcgcggtgttgcctaacaactcattcaagccg
acgccgcttcgcggcgcggcttaattcaggtgttagccaagccgttaaaattaagccctttaccaaaccaataca
aaccaatacttgttatgaaaaacacaatacatatcaacttcgctatttttttaataattgcaaatattatctacagcagc
gccagtgcatcaacagatatctctactgttgcatctccattatttgaaggaactgaaggttgtt
TTTT ACTTT ACGAT GT AT CC AC A A ACGCT GAAATT GCTC A ATTC A AT
AAAGC AAAGT GT GC AACGC AAAtggcaccagattcaactttcaagatcgcattatcactT
AT GGC ATTT GAT GCGG AAAT AAT AG AT CAG AAAACc AT ATT C A A AT
GGGAtAAAACCCCCAAAGGAATGGAGATCTGGAACAGCAATCATA
CACC A AAG ACGT GG AT GC AATTTT CT GTT GTTT GGGTTTCGC A AG A
AAT AAC C CA A A A A ATT GG ATT AAAT A A A AT CRAG AATT AT CTC AA
AG ATTTT GATT AT GG A AAT CA AG ACTT CTCTGG AG At AA AG A A AG A
AAC A ACGG ATT A AC AG AAGC AT GGCTCG AAAGT AGCTT AAAA ATT
TCACC AG A AGA AC A AATT CAATTCCT GCGT AAA ATT ATT AAT C AC A
AT CTCCC AGTT A AAA ACT CAGCC AT AG AA AAC ACC AT AG AG A AC A
T GT AT CT AC AAGATCTGGAGAATAGT AC A AAACTGT AT GGGA A AA
CT GGT GC AGG ATTC AC AGC AAAT AG AACCTT AC AA AACGG AT GGT
TT G A AGGGTTT ATT AT A AGC A A AT C AGG AC AT AAAT AT GTTTTT GT

297


GTCCGCACCTACAGGAAAATTTGGGTCGAAATTTAACATCAAGCATA
AAAGCCCAAGAAAAATGCGATCACCATTCTAAACACACTAAATTAT
AAAAAAAACTAATGGCAAATCAGCCCAACCCCTTCATTCAATCAAGTCGGG
ACGCGCAAAAGCAAGCTTTTGGCTCCCTCCCTCGCTGGCGCTCGGCACGC
CTTTATTTCAACGTTAGATGCACTAAGCACAATAATTGCTCACAGC
CAAACTATCAGGTCAGTCTGTTCATTTATTTTTAAGCGTGCATAA
TAAGCCCTCACAAATTGGGAGATATATCA
Chapter Nine

Bibliography

Muller, C., P. Plesiat, and K. Jeannot. 2011. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides,

324

