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A bstract

The first problem we consider is a variation of the Piatetski-Shapiro Prime 

Number Theorem. Consider a function g(y), growing faster than linearly. 

We ask how often is the integer part of a function g(y) no less than some 

distance j  from a prime number? Using Huxley’s method of exponential 

sums the investigation shows how the rate at which g(y) increases is depen­

dent on the size of j .  The faster g(y) increases, the larger the value of j. 

The second problem investigates primes of arithmetic progressions, a mod <7, 

in short intervals of the form (x, x + x e), where x is sufficiently large in terms 

of q, qv < x  for some 77 >  0. Such a result was proved by Fogels, for some 

6  < 1. We explicitly determine the relationship between 0 and 77 to establish 

admissible values for both.

Lastly we use our version of Fogels’ theorem and a variation of Vaughan’s 

treatment of the ||ap|| problem to investigate the following problem. Given 

a real number a  in the interval ( 0 ,1) how many Farey fractions of the Farey 

sequence of order Q do we have to pass to go from a  to a Farey fraction 

with prime denominator?
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Part I

A Variation on The  

Piatetski-Shapiro Prim e  

N um ber Theorem



Chapter 1

Introduction

Consider a function g(y), growing faster than linearly so that y = o(g(y)). 

How often is the integer part of g(n) prime, when n is an integer? This 

problem was first suggested by Gel’fond for Piatetski-Shapiro’s PhD thesis. 

Piatecki-Shapiro [20] proved that there were infinitely many prime numbers 

of the form [nQ], where 1 < a < 12/11. This result has been improved many 

times since, most recently by Liu and Rivat [17] who increase the range for 

a  to 1 < a < 15/13.

Using his method of exponential sums, Huxley [12], proved the more general 

result suggested by GelTond with certain restrictions to the function g{y). 

The restrictions were that the function must not increase too quickly and 

that certain combinations of its derivatives are non-zero. The result is as 

follows.

Theorem 1.0.1 (Huxley) Let F(x) be a real monotone increasing function, 

six times continuously differentiable on a closed sub-interval I  of [1,2] on 

which the expressions F'{x), F"(x) and 2F"(x) + x F ^ ( x )  are nonzero. Let
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e be positive, and let M  be a large integer, N  be a large real number with

N  max F'(x) < M  < N d~e (1.0.1)

with 9 = 12/11. Then for some constant B  depending on I, F(x), and on 

e, but not M  or N,  there are at least B N /  log N  integers n such that [g(n)\ 

is a prime number p with M  < p < 2M , where x =  g(y) is the function 

inverse to

y = N F {j i ) -
I f  in addition the interval I  is chosen so that none of the expressions

F (3, (x ),F <4)(x)

F<4>(x) F<3>(x) F<4>(z) F<3>(x) F (5)(x) F<4)(x)

3F<3>(x) F"{x)
5

3 F<3>(x) 2F"(x)
5

4F<4>(x) 3F (3>(x)

3 F<3>(x) 2 0 - F " ( x f

F<5>(x) F<4>(x) ,F<3>(x)

4F<4>(x) 3 F ^ { x )  2 F"(x) 

vanishes on the interval I, then the result holds with 6  — 3300/3019 in 

( 1 .0 .1).

As we can see this theorem includes Piatetski-Shapiro’s result and a lot 

more.

One would like to extend the range for 9 so that g(y) is allowed to increase 

more rapidly. This can be done if we allow for primes that are further away 

from the values of g(n). To this end we investigate the following problem: 

How many prime numbers axe there within a distance j  of g(n)?



Chapter 2

Preparation

We want to be able to count the number of primes p so that there exists an 

integer n for which

gin) -  j  < p < g{n) + j  (2 .0 .1)

where j  is a real positive number. We follow Huxley’s method, for which it

is more convenient to work with f ( x ), the inverse to x = g(y), where

f (x )  = N F ^ ) ,  (2.0.2)

for M  < x < 2 M  and

0 < F'(x) < (2.0.3)

for 1 < x < 2. We also require that

l / W(*)| x  (2.0.4)

for M  < x < 2M  and all integers k. We count the prime values of rn in an

interval M  < m < 2M,  for which there exists an integer n with

f { m  -  j )  < n < f ( m  +j ) .  (2.0.5)



We require f (x)  to be monotone and grow slowly enough so that

(2 .0 .6)

from which it follows that there is at most one n satisfying (2.0.5). It is this 

condition that allows us to extend the range for 9 in Theorem 1.0.1.

Let p{t) = [t\ — t + 1/2, then the sum

f ( m  +  j )  -  f ( m  -  j)  +  p(—f ( m  -  j)) -  p ( - f ( m  +  j)) (2.0.7)

is one if some integer n satisfies (2.0.5), and zero if not.

Let I  be a subinterval of 1 < x < 2, chosen so that no combination of 

derivatives occuring in the proof vanishes on I. We sum m  over integers in 

A/7, the set of points of I  multiplied by Af, which we suppose has end points 

Mi and M2 respectively. We count powers of primes using von Mangoldt’s 

weight function A(m), and the prime number theorem in the following form, 

see Davenport [3].

Theorem  2.0.2 (The prime number theorem) For P  > 2 we have

Y , 'A M  =  Y  AM ( / ( m +  i ) - / ( ™ ~ i ) )  +
iGA// mEMI

Y  AM ( p ( - / ( m “ i)) +  /)))• (2.0.8)

Let E' denote the sum over integers m  for which (2.0.5) has a solution. Then

m £ M I

The Taylor series of f (x)  at a is

f{x) = f(a)  +  (x -  a)f'(a) + f"(a) +  ... (2.0.9)
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Let x = m  + j  and a = m — j  to give

(2 i ) 2
f { m  + j ) - f { r n - j )  = 2j / '( m  -  j)  + -  j)  + ...

=  2j / /(m — j)  +  0 {j2 \ f"{m — j)\)

If in (2.0.9) we let a = x — j,  we have

f '{x ~ j) = /'(* ) +  0 (j\f"(x)\),  

which together with (2.0.4) gives

f ( m  + j ) - f ( m - j )  = 2 j f ' {m)  + (2 .0 .10)

so that in light of (2.0.4) we have

( 2 .0 . 11)

for j  M. The first term on the right hand side of (2.0.8) is now

f N
2j  Y . Mr n) f (m)  + o ( J—  Y  A(m))

— X IV1 m & M I 'm (zM  I

— 2j  A(ra)/'(ra) +  o ( ^ ~ r r \ (2 .0 . 12)
m&MI

by the prime number theorem and (2.0.10). Using Riemann-Stieltjes inte­

gration to estimate the main term in (2 .0 .12) we have

r M 2
2j  /  f'{x)dip{x)

J  M i
2j  

2 j 

2j  

+0

I M2 [M2
f'(x)'ip(x) -  2j  / f'(x)il>(x)dx

J Mi J Mi j
r ]M2 r M2 /  i N  \
f (x) ip(x)  -  2j  I f"(x)xdx + o ( -  — J

J Mi J Mi \  log M )
1M 2 rM 2

+ 2j  /  f ( x ) dx
M l J  M l

j N

-m 2

= 2j ( } ( M 2) - f ( M i )) + 0
j N  

log M (2.0.13)
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We would like now to estimate the second term on the right hand side of 

(2 .0 .8 ), but in order to do this we require the following exponential sum 

estimates.
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Chapter 3

Exponential Sum Estim ates

3.1 Exponential Sum Lemmas

The following Lemmas are taken from Huxley [12].

Lem m a 3.1.1 (Vaughan’s identity). Let I, M  and M I be as above. Let 

h(x) be a real valued function supported on M I and u be an integer with 

u +  1 a power of two, and

uz < M. (3.1.1)

I f

S = ^2  A(m)h(m),
m £ M I

then

S  =  So -  Si -  S2 -  S3 ,

where

So = Md) A(m) K dmr)
d< u m  t

S\ = Y  A(m) Y  K,(n)h(mn)
m > u  n> u

13



& = Y , Y , x(s)h(rs)
s< u  r

s z = Y ,  Y . x (sM rs)
u < s< u 2 r

and

d\n
d<u

x (s) = T  T ,  //(d)A(m).
d < u  m < u  

dm = s

Proof. We write So = S  +  S' where S  consists of the terms with dr < u, S' 

the terms with dr > u. Then

5  =  5 Z A(m) D  HI li{d)h(dmr)
m  d<u r

dr< u

= ] T a
Tn n < u  d\n

= YA(m)h(m)
m

by Mobius inversion. Next we split up the sum S', so that S' = S\ +  S[, 

where S\ consists of the terms with m > u, S[ the terms with m  < u. We 

have

Si = Y  ^ d )  Y  A(m) K dmr)
d< u m > u  r> u /d

= J2 A(m) H  ft(nm) H  H  M4*)
m > u  n > u  d<u t

dr= n

= Y ,  A(m) ^  h(nm)ti{n)
m > u  n> u

and

Si =  ]C A(m) X M d) S  A(<*mr).
m < u  d< u r> u /d

We can drop the dr > u condition in S[ since h(dmr) = 0 when dmr < u2 by 

(3.1.1). Now let S' = S2 +  S3, where S2 consists of the terms with dm < u,
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S3 the terms with dm > u. Let dm = s, then we have

S2 = Y Y h(rs) Y  Y  A (m)fi(d)

and

8 < U  T d<u m <u  
dm=s

= Y l J 2 x (s)h(rs)
s< u r

S3 = Y Y h (rs) Y  Y  A (m)p(d)
s>u r d<u m<u

dm —3

= 1 2  5 2 h(rs)Ms)-
U<3< U2 r

which proves the Lemma.

Lem m a 3.1.2 Let g(x) be a real function of bounded variation V  on the 

closed interval [a,/?], and let f (n)  be any sequence, then

^2 g(n)f(n) < (V +  |s(a)|)m ax7>Q £ / ( " )
n = 7

Lem m a 3.1.3 Let f (x)  be a real and twice continuously differentiable func­

tion on (a,/3). I f \f"(x)\ x  A for a < x < (3, then

Y  e( /(" ))  «  ( / ? - “  +  i ) ^ 1/2 +  ^ it2 . (3.1.2)

and

A1/2

where p(t) is the rounding error function p(t) = [t]—t + l / 2 .

(3.1.3)

Lem m a 3.1.4 Let y i , y M  and zi be two sequences of real numbers,

with associated weights w \ , w m - Let H be a positive integer then
M M H

J2 wm{p(zm) -  p(yy)) <  l™m| + E  E
m= 1 m = l h=l

M

m = l

W m (e (h ym ) -  e ( h z m )) 

2irih
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j  H  M

+ 77 51 \wm\e(hym)
n  h = \ m = 1 
Y H  M

+  77 5^ 5Z
n  h=l m=  1

Lem m a 3.1.5 Suppose that the function F(x,y)  is six times differentiable 

for 1 < x < 2 , 0 < y  < I, and for some constants C\ > 1, C2 > 0

| ^ F ( x , y ) |  <  

for 2 < r < 6 , 0 < s < 2 , r  + s < 6 , and

Id[F(x,y)\ > —

for r = 2 ,3, and

d[ 1d2 F(x,y)
di > C2

d[F(x, y)

for r — 3. Suppose also that either case 1 or case 2  holds:

(3.1.4)

(3.1.5)

(3.1.6)

Case 1 . M  T 1/ 2 and (3.1.5) and (3.1.6) hold with r = 4;

Case 2 . M  >  T 1/ 2 and

|3^ui — i'n -fin i| > C3,

|A | >  C„,

/o r some positive constants C3 and C4, where

CO +  4Fn Fm i 3Fn Fm F2r n
A = -Finn Fun Fin

-^11112 F un Fn 2

(3.1.7)

(3.1.8)

(3.1.9)

16



Let Si be the sum

where M  < M\(i) < M2 (i) < 2 M , and y\ ,y2 , ••■,yi lie inO < y  < 1 with

1
U i + l  -  V i  >  J

for i < I. Let e > 0 be arbitrary. Then in both cases, for

Ti/3-e» s s + 7 » a + m  (3.1.10)

we have

£ | S i |5 <  / 16/9M5/2T89/U4 log5T
i = 1

+ / 8/ll</3/nM5/2r l9/66 jog5 j .  (3.1. H)

Also in case 1 with M  <S T 1?2

E  |S<|5 «  IM 5/2 T 5/6 E , /S( l  + (3.1.12)

when

1 T 2/ 3 /  I T \ ~ X 1
~  7-8/33 +  m 2 +  ( /  +  f fp  J ^ 5 ^ ’ (3.1.13)

and in case 2 /or M T 1/ 2

£  |Si|5 <  /M 5/2r 5/6£ 23/8( l  + j ^ ) 1/2log 11/2r  (3.1.14)
1 = 1

when

1 M 2 f r  ^ X - 1 1
2 — J>8/33 'jT'4/3 \  71 J ^  J ’e' (3.1.15)

When the inequalities involving e in (3.1.10), (3.1.13) and (3.1.15) do not 

hold, then the upper bounds hold with the power of log T  replaced by T e. 

The implied constants are constructed from C\,...,C4, from e, and from the 

implied order of magnitude constants in the ranges for M , I  and J .
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Lem m a 3 .1 .6  Let K  be any integer, K \ and K 2 be real numbers with 2 < 

K  < K \ < K 2 < 2K. For any coefficients g(k) we have

Y  9(k) = W~- [  G(s)— — — ds +  0(max \g(k)\log if)
k = K x C  S

where C is the line segment 1/ lo g K  — iK  to 1/ lo g K  +  iK , and

G(s) = E lflW
k = K k *

Lem m a 3.1.7 Let f (x)  be a real function defined for M  < x < N , and let 

w( M) , w( M  +  1), . . . ,w(N) be any coefficients. Let D < (N  — M  +  l)/2  be 

a positive integer. Then
N

E  w{m)e(f(m))
m = M

d '  N ~d

2 ( N - M  + 2 D - l ) (  "  . , , |2
< - f ,j ' (  E  l“ W r

U  m = M

+ ^ Y ( 1 ~ t ^ )  w (q +  d )w ( q ~ d)e U{ q  +  d) - f { q ~ d ) ) \
A  1 \  L /  / ______1 /  I J /d=  1 q= M + d

Lem m a 3.1.8
M2 N2(m)

X

M2  ̂ Z ,

Y  g(m)h(m,n)e(f{m,n))  < ( ^ l # ( m)l
u i= M \ n = N \  (m ) 771

( E E  E  /i(m, n)h(m, n)e(/(m, n\) — /(m , 7̂ 2 ))^
'  r> 1 n o   A 4. 'n  i n 2 m —M i

iV j(m )< n i,n 2 

jV2 (m )> n i ,n 2

Lem m a 3.1.9 (Partial summation) Let h{x) be real and continuously dif­

ferentiable on the interval [M, N ]. Then we have
N

Y  G{n)e(h{n))
n = M

< ( 1  +  27r J  \h'(x)\dx sup
M < x < N  n = x

N

E G (n )

3.2 Long Type I Exponential Sums

If we write

cr(ra)
p { - f { m - j ) )  -  p( - f {m- \ - j ) )  for m £ MI,  

0 otherwise,

18



then long type I exponential sums have the form

12 a (?) 12 /?(r M r 9)> (3.2.16)
q< x r

where P(r) is a monotone weight function which may also depend on q. If 

we let h(m) =  a(m) in Vaughan’s identity, then we see that So and S2 are 

long type I sums:

So = 1 2 v(d) 1 2 ^ rn) 1 2 a (dmr)
d<u rn r

=  E  Md) E CT(de) log e>
d<u  e

where x =  u, a(q) = fi(q) and (3(r) =  logr;

S2 =  E M ^ E ^ ? ) -
q<u t

where x =  u, a(q) =  X(q) and (3(r) =  1. The Sum Si needs to be dissected 

further in order to obtain a long type I sum. We introduce the new variable 

2 so that 2 +  1 is a power of two, and

u V 2 < z < V M ,  (3.2.17)

and

uz2 > 2M, (3.2.18)

so that w =  2M / z2 lies in the range 2 < w < u. We write Si =  S41+S42+S4, 

where S41 is the terms with m < 2 , S42 the terms with n < z and S'4 the 

terms with m and n > 2. So

s*i =  E  A(m) ^2 K,(n)a(mn)
U<TTl<Z Tl>U

S42 = E  K,(n) ^2 A(m)ff(mn)
u < n < z m > u

S4 =  12 K(n) 12 A(m)a(mn)
n > z  m > z

19



We rewrite S4 to obtain

S4 =  Y v ( d) Y  A(m) Y  <r(dmr).
d< u m > z  r > z /d

Let S5 be the terms in S4 with d >  w, 56 the terms with d < w. Then

Ss = Y  P(d) Y  A(m) Y  v(dmr),
w<d< u m > z r > z /d

^ 6  = Y  v{d) Y  A(m) Y  a (dmr)•
d< w m > z r > z /d

Next we write 56 = S71 + S72, where 571 consists of the terms in S q with 

dm = q < x  and S72 the terms in 56 with dm = q > x and x  +  1 is a power 

of two, which gives

571 = E E  L  p{d)A(m) Y  <7(0r ).
q< x d<w m > z r > z /d

dm=q

572 = E E  E  fi(d)A(m) Y  a (Qr )-
q > x d < w  m > z r > z /d

dm=q

So for x > z, S71 is also a long type I sum with

a (?) =  E  E  p{d)A(m).
d< w  m > z  

dm=q

The inner sum in (3.2.16) is 

ftfo)
Y  P(r ) ( p { - f ( r q  -  J)) ~  p ( - f ( r q  +  j )))  (3.2.19)

r= P i(q )

such that Pi{q) ~  ^2(9) x  Af/q. By (2.0.4) and Lemmas 3.1.2 and 3.1.3 

(the bound (3.1.3)) we have that the sum in (3.2.19) is

f t  (9)

«  max \P(r)\ Y  ( p ( - f ( rQ ~ j)) ~ P(~f(rq +  j)))
r= P i(q )

f  / o 2A ^ \ 1/3 z M 2 \ 1/ 2
«  m ax|/?(r)|(p2(9) ( ^ )  +  ( _ )

( ( M N \ V *  ( M  \



So in all three cases our long type I sums are

<C (^(MNx2 ) 1^ 3 + logx'j max [a(q)/3(r)|

«  ( ( M N x 2 ) l ' 3 + ^ L l ) l ,

where I =  log M.  Contributions from the long type I sums are swallowed 

by the error term in (2.0.13) if

f.
so we require

j3/2N
x  «  ^ = -  (3.2.20)

and

•/M l3

M l3 

N 3!2

which completes the treatment of the long type I sums in our argument.

j  ^  jv3/2’ (3.2.21)

3.3 Short T ype I Exponential Sums

S72 is our only short type I sum. We divide the range q = dm into blocks 

of the form 2 kQ < q < 2k+1Q — 1 , where Q = x + 1. Implicit in this is a 

division of the range for r of the form 2kP < r <  2k+1P  — 1. This gives
K  2k + lQ - l

S72 =  Y , Y .  21  H  Hm)n{d) y  <r(gr-)
r > z /d

m=q

2k+1Q —l

E  E  E  A(m)fj,(d) a (Qr)

k = 0 q=2k Q d< w  m > z  
dm = q

<C K  max
k q=2k Q d<w  rn>z 

dm=q
r > z /d

<  K
2Qk — \

Y .  A(m)/i(d) °(qr)
q=QK d< w  m > z  r > z /d

dm = q

(3.3.22)
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where we have assumed that the maximum occurs at k = k, and PKQK x  M. 

The sum over d and m in (3.3.22) is

S  S  lA(mM d )| <  Y .  A(m ) = loS9,
m\q

where

which gives

d<w rn>z 
dm —q

logq X logQk x  K  +  logQ* x  /,

2 Q k -1  P4

s72 < i2
9=Q* ,f tJ p 46M7 r=P3

(3.3.23)

We now apply Lemma (3.1.4) to the inner sum over r, with

<j(qr) = p(—f(qr -  j)) -  p( - f {qr  +  j)) = p(zr) -  p(yr),

and

Wr =
1 for P3 < r  < P4 . 

0 otherwise.

which gives

«  § + e  e w M h y : ] .h e[hZr))
f  ll ^ ^  t* ZTClfl

1 H 1 H
+ 77 S  X ^ e ( / i y r) +  — £  ^2 wre(hzr)

/ i= l  r  -1-1 / i= l  r

The first term on the right hand side of (3.3.24) contributes

P kQ J 2
H

to S72, which is negligible for

PkQ J 3 _  M l3 
j N  ~  jN

(3.3.24)

(3.3.25)
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In the second term we have

e{—hf(qr + j)) -  e( -hf (qr  -  j))  
2mh

r f ( q r - j )
=  /  e(—ht)dt

J  f(q r + j)
rf(qr+j)

= — e(—ht)dt,
Jf (qr - j )

where

* f ( q r + j ) - f ( q r - j )rJ(qr+j) r.
— /  e(—ht)dt =  — /

d f ( q r - j )  JO

= - e { - h f { q r - j ) )  f  
Jo

e(-h( t  +  f(qr -  j)))dt
f ( q r + j ) - f ( q r - j )

e(—ht)dt.

By (2.0.4) and (2.0.9) we know that there exists a positive constant c such 

that
cjN

f{qr +  j)  -  f(qr -  j) <
M  ’

which gives

/Jo

E
r

c jN /M

wr(e(—hf(qr +  j)) -  e(hf(qr -  j))) 
2ir ih

wre(—h(t + f(qr -  j)));
r

f ( q r + j ) - f ( q r - j ) > t

the condition f(qr +  j )  — f(qr — j)  > t holds on a subinterval of [P3, P4]. So 

the second term in (3.3.24) is

i N  H
<  -7 7 - maxM  [P5,P6)c[p3,p4)

P6
5Z e(~h(f(qr -  j))

r=P*,

We have

y2 wra(qr) ^  V) max ^ 2  e(~h(f(qr -  j))
v  H \ M  H  J ^  [ft,P6]c[P3,P4] r~

We can drop the 1/ P  term since

1
- —  —  

M  H '
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as we will be choosing H  to be no smaller then (3.3.25) will allow. So we 

know our short type I sum is

]T  e(—hf(qr  — j)) (3.3.26)
H2Q «-1 , p  • jy

s 72<£i2 £  +  ^

This first term in the sum over q is

PnQJ2 ^  j N  
H ~  I '

and so it is swallowed by the error term in (2.0.13). We wish now to bound 

the expression on the right hand side of (3.3.26) for P  hN  where h = 

1,2,..., H  which breaks down into two cases. Firstly we suppose that h = 

0(1) so that P  <C N.  This means that the expression on the right hand 

side of (3.3.26) is

_  l2Q jN P  _  l2 Q jN 2 

M M ’

which is absorbed into our error term in (2.0.13) for

M
NP'

(3.3.27)

In estimating the remaining terms from the right hand side of (3.3.26) we 

may assume that h ^ H  and consequently P  -C HN.  We now take the sum

(3.3.28)

over h outside and concentrate on the inner sum 
2Qk - 1  p 6

£  i t  e( - hf(Qr ~ j ) )
q=Q K r= P 5

By Lemma 3.1.9 we have

£  e ( - h f ( q r - j ) )  < ( l  +  2?t |^ { h f ( q r - j ) - h f ( q r ) ) d t j
r= P b

X
Pe

SUP £ e (~ / l / (g r ) )
P5<X<P6 j'—x

< ( i  +  27f |(hqf(qr -  j)  -  hqf(qr)) d t j

Pe
£  e(~hf(qr))

r= P t
(3.3.29)
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Taylor’s theorem tells us that there exists a real number y G (qr — j , qr) 

such that

\hqf(qr -  j)  -  hqf(qr))  | =  hqj\f"(y)\,

so that the sum in (3.3.28) is

2Q « -1  p 6

<  I t ,  (l + hq j \ f”(y)\PK) £  e(~hf(qr))
q-Q K  r=Py

ihP O N  2 Q k ~ 1 Pe

q=Q K r= P iM 2

« ^ E 1 E < -h f (qr ) )
q=Qn r —P j

(3.3.30)

(3.3.31)

by (3.3.25). By (2.0.2) we have

2 Q - - 1  Pa 2 < 3«-l Pa . t n r

E  E eH / W ) =  E  E  e ( - hNF\7T~p
q= Q K r =P5 q= Q K r = P 5 V W / e  -Os

to which we apply Lemma 3.1.5 with PK in place of M, QK in place of I  and 

J, T  x  H N  and F(x, i/) =  F(a:(l +  ?/)), with ?/ in the range 0 < y < 1. The 

results are simpler if condition (3.1.10) in Lemma 3.1.5 does not hold. In 

order to negate this condition we can suppose

max/! (h AT)8/57

Q«
1 1 / 1 9

which would give

Q* >  max(/iAT)8/33 »  (tf W)8/ 33 x (3.3.32)

where we have taken i f  as large as (3.3.25) will allow. Since Q x  x, the 

bounds (3.2.20) and (3.3.32) give

j 3/2iV /M /3\ 8/33
T m I3 ^  ( t )  ’
•̂115^66 ^  ^49^46 (3.3.33)
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We consider case 1 and case 2 of Lemma 3.1.5 which depends on the size of 

PK relative to T.

Case 1. For P 2 T we have

52 Q * -1  P6

E  E  e(~hf(qr))
q=Qk r=P$

QKp5/2r 5/6+e£,3/8^i +  | ^ y /2

«  QKP ^ T 5/6+eE f /s (3.3.34)

where

1 T2/3
El = ^ 7̂  +  +T 8/33 p 2  -  Q k +  Q KT / p 2

Since P 2 T and QK T8/33 we have

1 T2/3 1
#1  <  7^77  ̂+ - ^ -  +  —T 8 / 3 3  p 2  Q k

I jv/z
+

2 " ’8 / 3 3  p 2  '

Case 2. For P 2 $̂> T  we have 

2 Q « - i  p6 5

E
q=Q « r = P 5

(3.3.35)

^ « - 1  Ps 5 , /  T  \  1 /2

E  E  «(-*/(«»•)) «  Q^K5/2r5/6+‘£23/8(i + ^ )

<  QKP j/2T5/6+e£;23/8 (3.3.36)

where

1 P 2
P 2 =  +  77777T +

1
T8/33 ^  T4/3 + QkPZ/T'

As in the case for we have

1 Pi
E 2 <  ^ 7 7  +2̂ 8/33 2̂ 4/3

So combining the two cases gives

2Q k -1  p 6 5

E  E  e(~hf(qr))  <  QkP%/2T5/6E3/s,
q=QK r=P$

(3.3.37)
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where

and

J

Using Holder’s inequality on (3.3.37) gives

1 T 2/3 P 2
E ^ T m  + ~pT + T ^ ’ (3-3'38>

M l3
P C H N ^ — . (3.3.39)

2Qk — \-V«-1 Pq / — *■ I 6 t>\
£  e(~hf(<lr )) <  [Qt  i z  £  e(-hf(qr))  J

q=QK r=Ps q=Q*i r=P5

and so we have our estimate for our short type I sum

S 72 «  ( Q 5 p 5 /2 T 5/6+ e g 3 /8 j l /5

We require this estimate to be less than the error term in (2.0.13), which 

gives the following condition

Q 5 p 5 /2 T 5/6+ e £ ;3/8 ^  .

We rearrange this inequality to get

T 5/6+eE 3/8  ^  M 5 P ~12

2Qk -1 Pe 5 \  1 / 5

HSQlPH/2l15 H 5l15

which gives us our lower bound on PK

/ i t 2/ 3 P 2 \ 3/ 20 
P* >  T ^ 3+n eH 2E 3' 20 x  T I/3+e;6H 2(j^ 3 3  + -p j-  +  ^ )

by (3.3.38). Substitution of the expressions for H  and T gives

/  M  \  2 /  M 1+e \  49/i65 / M \  2° /13 /  M 1+e \ J/ 3

p,< ^  [ j n )  y ~ i ~ )  +  0 ^ )  ( ~ r ~ )



3.4 Type II E xponential Sums

Type II sums have the form

X! a (5) 5 Z £ (r M rs )- (3.4.41)
u<s<z r> u

As with the short type I sum, we divide the sums into blocks of the form 

2kQ < q < 2k+1Q — 1, where Q is a power of two. Thus the range for r

again is as before with 2kP < r <  2k+1P — 1 where P  is a power of two also.

Let a  and (3 satisfy
2Q—1

S  \a (q)\2 < a 2Q,
q = Q

2P -1

E  W l 2 < ?P-
r= P

In S3 we have a(q) =  A(q) and (3(r) = 1. So in this case we have
2Q -1  2Q -1

M̂OI2 = E  IE E  »(d)A(m)\2
q=Q q= Q m <u d<u

q—dm

2<?-i , . 2

 ̂ E  ( E AM)
q=Q m\q

< l2Q ,

with a = I and (3=1.  In 641 we have a(g) = A(q) and (3(r) =  /-c(r). This 

gives
2Q—1 2Q -1

E  K<?)I2 = E  |A(9)|2
q=Q q=Q

< l2Q,

with a = I, and
2 P — 1 2P-1  2

E  l̂ (r)l2 = E  IE E
r = P  r = P  d<u r

dr=n

2P-1

< E  dM 2 ^ l3p.
r = P
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with (3 = 13/2. In S42 we have ot(q) = K,(q) and (3(r) = A(r), so that a = 13/ 2 

and (3 = 1. The sum S5 can be rewritten to read

■%> = X  XI A(m) X  °(dmq).
w < d <  u m > z  q>z/d

If we remove the condition dq > z from S$ then we can express it in the 

form (3.4.41). In order to do this we use Lemma 3.1.6 on the sum over q. 

Let K\ = (z +  1/2)/d and K 2 = 2Q — 1. Then

\ 1 r  r . ,  \ (2<3 - l ) *  -  ((z + l/2)/d)* . n n£  v(cimQ) = i r ^  G(s)---------------------------------- ds + O(logQ),
q=(z+\/2)/d J C  S

where

Vs

since Q < z. Here C is the line segment

1
5 =  -— -  +  it.

log Q

where t G [—Q, Q\. If we take the summation over q outside the integral we 

have

r ( 2 Q - l ) ‘ - ( s  +  l/2)« rQ \idt\
Jc s ^  J—Q  11 / log Q it\

r l / l o g Q  rQ  d t
<  / log Qdt+  / —

JO J l / \ o g Q  t

<  logQ.

So we have that the block sums for 65 are

2P —1 2Q -1
•C I max £  £  £  Md)A(m) £  ff(9r)

r= P  w<d<u t u > z  q—Q ^
dm =r

+1 max
2P—1 y r  y> fi{d)A{m) 2-  ̂cr{qr)

Z— t fis Z - ~ 1  n s
r= P  w<d<u rn>z q—Q *

dm =r
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+0(1 Y  IM°OI Y  A(m))
'  «».✓'J/'* . m S r  'w < d< u  

2 Q - 1 2 P - 1

m > z  
P < d m < 2 P

Y  Y  0L(q)(3(r)a{qr)
q=Q r= P

where

0(r) = Y  Y
n(d)A(m)

w < d< u m > z  
dm = r

and a(q) = q~s, which gives (3 — I and a = 1. Next we apply Lemma 3.1.4 

as in the case of our short type I sum. We take zm and ym the same as 

before and

a(q) Y?r=pX P{r) for m  G MI,

0 otherwise.
wm =

This gives the following upper bound for the blocks of type II sums

_1_
H

2 Q -1  2 P - 1  -i 2 Q - 1 2 P - 1

Y  Y  <  — Y  Y
q=Q r —P  q=Q r= P

 ̂ yy ^V(^(^2/r) c(/l2r ))
h=  1 r 2irih

1 H
+ 77 Y  Y Wre(hVr)

** h = 1 r

1 H
+ J j Y  Y Wre(hzr)

h = l r
(3.4.42)

The second sum on the right hand side in (3.4.42) is the same as the one 

we met with type I sums, except now the weight is different. We have

I ^  ^r(^(h?/r) c(/lZr))
h = l ' r 2nih

H  r c jN /M   ̂ 2 P —1
Y  Y  P(r)e{—hf(qr — j))
q=Q r —P  

f { q r + j ) - f ( q r - j ) > t  
q r £ M I

H r<
dt. (3.4.43)

The third and fourth terms are
i H  2Q —1 2 P - 1

^  J l Y  Y  lQ(9)l Y  \P(r)\e(~hf(qr + j))
11 h = l q=Q r —P

q r £ M I

+
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i  H  2Q —1 2 P - 1

j i Y  Y  \a (q)\ Y  \P(r)\ei - hf(qr -  j))
n  h = l q=Q r= P

q r £ M I

(3.4.44)

We want to show that (3.4.42) is <C j N / l 3. The first term on the right hand 

side of (3.4.42) is
1 M

<  — a(3PQ <

which is small enough provided

H
apM l3 

j N
(3.4.45)

It remains to estimate (3.4.43) since the sums in (3.4.44) are of the same form 

as (3.4.43). Let J(t) be the subinterval of M I  on which f (q r+ j )—f(qr—j) > 

t. We apply Lemma 3.1.8, so that we may apply the differencing step which 

is given by Lemma (3.1.7).

2Q—1 2 P -1

Y  a (q) Y  P(r )e( - hf(<ir -  j))  <
q=Q r = P

q r £ M I

( 2£ V ) | 2) ( 2£  I 1 :  a { t )e { -h j{qr - j ) ) ~
V r+ P  '  V — D — ^r = P  q=Q  

q r £ j ( t )

(3.4.46)

the first factor on the right hand side is < (32P  and

2Q—1

Y  a ^ M ~ h f { q r ~ j ) )
q=Q  

q r £ j  (t)

2 2Q —1

<  I3 Y  oc(t)e(-hf(qr))
q = Q

q r£ J (t)

(3.4.47)

to which we apply Lemma 3.1.7 to get

2Q —1

Y  a (t)e{ - hf(qr))
q=Q

q r £ j ( t )

< Q + 2 D - 1 /
D

2Q —d —l

D - 1

Y ,  W ? ) f  +  2 S E  1 -
q = Q d=  1

£
D

Y  <*{q +  d)a(q -  d)
q= Q + d

q r ± d r £ j ( t )

xe(h f(qr  +  dr) — hf(qr — dr))^j. (3.4.48)
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The first term on the right hand side of (3.4.48) is

Q +  2D — 1 _ 2

which contributes

a 2P2P 2Q2 a2/32M 2 
<D D

to the right hand side of (3.4.46), and

a/3M N j H  _  a 2p2Ml3 
sfD M  <  y[D

to the right hand side of (3.4.43), provided D < Q .  Hence the contribution

is small enough for

( ^ ) 2"4/34p- (3-4-49) 

Now we wish to estimate the second term on the right hand side of (3.4.48). 

By Taylor’s Theorem we know that there exists 6  G (0,1) such that

h(f(qr  +  dr) — f (qr  — dr)) = 2drhf\qr  +  Odr),

from which we obtain the following

{h(f(Qr +  dr) ~ f(Qr ~ dr))^J =  2dh(2{q +  0d)f”(qr +  Odr)

+r(q +  0d)2f ^ \ q r  +  dOr) 
dhQN _ d h  N  

X M 2 X Q P 2

for 2F"(u) + uF^3\u )  > 0. If we take the summation over r in (3.4.46) into 

the sum in (3.4.48) Lemma 3.1.3 gives

2P_1 Z h d N \ 1/2 / Q P 2\ 1/2
Y. e ( hf ( qr  + d r ) - h f ( q r - d r ) )  «  U p )  P  + (-j^jf)
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by (3.4.49) and (3.4.45). So the right hand side of (3.4.48) becomes 

Q 2 r a ( D H N \ V *
D a Q D { — )  ^ a Q [ - i r )  ’

which contributes

2„2 t, ^ ( D H N \  V2 
a 0 P Q { - Q - )

to the right hand side of (3.4.46), and so we have that the right hand side 

of (3.4.43) is

H N j
M  \

D H N \ V  2

H N j  a 2fPM 2 / D H N P \ 1 /2  

~  M  V P  \  M  )
H N j  a/3M ( D H N P \  V4 

X M V F  V M  )  '

We require this to be <C N j / l 3, which is the case for

P  »  o f / P P ^ z D H 5 M

(3.4.51)
N 6j

by (3.4.49) and (3.4.45). We also need Q ~3 > D so we require

«»@ W )4i12

We are now ready to prove the theorem.
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Chapter 4

P roof o f the Theorem

In order to state the Theorem, we say that a function F(x) is a good function 

if it is a real monotone increasing function, six times differentiable on a 

closed sub-interval I  of [1,2] on which the expressions F'{x), F"{x) and 

2 F"(x) +  xF<3>(x),

F i3\ x ) , F w (x)

F<4>(x) F<3>(x)

3 F<3>(x) F"{x)

F<4>(x) F<3>(x)

3F<3>(x) 2F"{x)

3 F<3>(x)2 0 - F “(x) 2

F<5>(x) F (4>(x) F <3>(x)

4F<4>(x) 3 F<3>(x) 2F"(x)

F*5>(x) F<4>(x)

4F<4)(x) 3F<3>(x)

are nonzero.

Theorem  4.0.1 Lei M  be a large integer and N  be a large real number. 

Let x = g(y) be a monotone increasing function, whose inverse function can 

be written as

y = g- l
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where F(x) is a good function. Let j  > 1 be a real number and let

_  1qS-7 =  logM
^ log N  ’ a  log N

Then for any e > 0, and

0 \  -|- c ^  ol 5  ̂ 9 2 — e,

where 9\ and 92 are computed in terms of 77 by

2 2 rj + 18
01 = 17

9o =
for 0  < rj < 147716 _  1 8 9 5 ,

fo r  M R  <  „  <  1 1 5 8  
1 8 9 5  —  "  ^  1 0 7 0

i/iere zs a constant B  depending on F(x ) and e but not M  or N, such that 

the inequality

g ( n ) - j  < £ < 2 (71)+.?

has at least

B j N  
log N

solutions in integers n and primes p in the interval M I .

The lower bound condition involving 6 \ looks inappropriate, but it enables 

us to keep the parameters within a range where we can apply the same com­

binatoric analytic lemmas, avoiding splitting cases according to the size of 

the parameters; we have considered what seems to be the most interesting 

range. For this reason the result is weaker as j  tends to one than the result 

Theorem 1.0.1, where the dominant range is one adjacent to the range that 

we consider. Our range enables us to reach higher exponents a. It is of in­

terest to note that for 02 < 9 Theorem 4.0.1 follows directly from Theorem
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1.0.1, however 6 2  from Theorem 4.0.1 exceeds 0 — 3300/3019 from Theorem

1.0.1 for 77 > 211/9057 =  0.0233...

Proof. For our type II sums we have P  x  M /z, so we need to choose z 

so that
M  M 6+e 
T  ^  N 6j 7 '

by (3.4.51), this gives

N 6f
z x  77i r -  (4.°.1)M 5+e

For our type I sums we have P  x  z3/M , which is consistent with (??) and 

so by (3.3.40) and (4.0.1) we need

z3 /  M  \ 2 / M 1+e\ 49/165
M  ^  \ J n )  V j  )

from which it follows that

, M 3 0 1 9 + e  v 1 / 3 8 4 4

3 »  (-AT330O-) • (4.0.2)

Our choice of P  implies the following size of Q

so condition (3.3.27) implies

/M 16+e\ J/ 21 
3 »  ( l w )  ■ (4 '0-3)

By (3.3.39) and (4.0.1) we have

/  M 1 7 + e \ 1/ 22
J <

/ M 1 ' ^  V

Vlvli" J

which, together with 4.0.2 and (4.0.3), gives

/ / M 3019+e\V 3844 / M 16+e\ J/21\  /M 17+€\ 1/22
max

jv33°° ) ’ <  V iv18 ) ' (4'0'4)

36



The upper bound on j  in (4.0.4) is a stronger condition than that in (2.0.11). 

If we now let j  x  N v for some 77 > 0 we obtain

yV-(22r?+ 1 8 )/17+ c ^  <  m i n ^ ( 3 8 4 4 r 7+ 3 3 0 0 )/3 0 1 9 -£ ^ (2 lT ,+ 1 7 )/1 6 -£ ^

which gives the appropriate values of 9\ and 02.

So far we have proved the following

m £ M I

by (2.0.13). We also have that

53 'A(m) = 53 'logp +  O
m £ M I  p £ M I r >  2 

pr < 2 m

where

53; 13 1osp  ^
P r > 2  

p r < 2 m

log 2 M

< log 2 M  53 1<
p < V 2 M

<C a/ m .

So we have

Y  'logp =  2 j(/(M 2) - / ( M i ) )  +
p £ M I

(4.0.5)

The left hand side of (4.0.5) is

< log(2M) Y  ' L
p £ M I

Hence

i j j ; ( / < « . ) - / W B  + o f j ^ L )£  ' i >
p £ M l
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and
2 j

log 2 M  

which proves the result.

j N  
log M ’
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Part II

Prim es in Short Segm ents of 

A rithm etic Progressions w ith  a 

Large M odulus
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Chapter 5

An E xplicit Zero-Density  

Theorem

Given an arithmetic progression I mod q, Dirichlet proved that the prime 

numbers are uniformly distributed among the (p(q) residue classes for which 

(l,q) = 1. The next natural question to ask would be how far do you have 

to go into the arithmetic progression to find the first prime? Let

p(q, I) = min{p : p = I mod q}

then on the Riemann-Hypothesis for Dirichlet L-functions we have

p(q,l) <  ((f)(q) log q)2.

However it is conjectured that

p(q,l) «<?1+e.

In 1944 Yu. V. Linnik proved the following theorem.

Theorem  5.0.2 There exists absolute constants c > 1 and L > 2 such that

p(qj )  < cqL.
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Linnik’s original proof of his theorem was effective but complicated enough 

to dissuade him from calculating admissable values for c and L. Many 

authors since have proved the theorem with explicit values for L, most 

recently Heath-Brown [10] has proved Theorem 5.0.2 with L = 5.5.

All proofs of Linnik’s Theorem rely on three main principles, based on the 

zeros of Dirichlet L-functions. These are the zero-free region, originally due 

to Landau, the log-free zero density estimate and the Deuring-Heilbronn 

Phenomenon, both due to Linnik. We will consider the zero free region and 

the Deurring-Heilbronn Phenomenon in the next section but for now we 

concentrate on the main ingredient of Linnik’s Theorem, the log-free zero 

density estimate.

For 1/2 < a  < 1 and T  > 1 we denote by N ( a , T, x) the number of zeros of 

L(s, x) counted with multiplicity in the rectangle

R (a , T) = {5 =  g +  it : a < a < 1, |t| < T}

Then Linnik’s log-free zero density Theorem is as follows

Theorem  5.0.3 There are positive constants c\ and C2 (effectively com­

putable) such that for any 1/2 < a < 1 and T  > 1

E  N { a ,T , x ) < c ( q T f ^ - a\
X mod q

In order to prove Linnik’s Theorem 5.0.2 one only needs prove Theorem

5.0.3 for small rectangles, and so all explicit versions of this result are given 

with T  < q€. We require an explicit version with T  > q not found in 

the literature. Fogels [4] proved the result with T  > q but not explicitly, 

presumably due to the fact that the method of proof is a mixture of Linnik’s 

original method and Turan’s method and so is quite complicated. We use
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the method of Jutila to prove Fogels’ version of Linnik’s Theorem explicitly. 

Thus the aim of the current section is to calculate constants C\ and c<i such 

that

for T  > q.

We will need the following Lemmas.

5.1 Lemmas

In the Lemmas that follow I have given proofs if the implied order of mag­

nitude constants are needed, if they are not the proofs are omitted.

Let s = cr + it be a complex number, D =  q(\t\ +e), and e is a small positive 

constant which depends on D in the following way

(5.0.1)
X mod q

lim e =  0.

The true value of each e may change in what follows.

5.2 The Gam m a Function

If we define the factorial of an integer n by the function

T (n +  1) =  n!

then the function n\ can be extended into the real and complex numbers 

which gives Euler’s integral form
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for 9ft(s) > 0. The connection between the Gamma function and the zeta 

functions having long since been established, we present a few lemmas on 

the Gamma function required to deduce results about Dirichlet L functions.

Lem m a 5.2.1 As with the factorial function for the integers, the Gamma 

function has the following property

T (s +  1) =  sT(s)

for all complex s.

Lem m a 5.2.2 For 0 < a < 2, we have

r (S) -  -s

Proof. For a > 0 we have

r oo
|r(s)| = /  e-H’- 'd t

JO
r 1 roo

= /  e~Ha~ldt +  / e~Ha~ldt
Jo J1

r l  ° °  (  1 roo
= /  Y ,> -T T - ts- l+kdt+ e~Ha~l

Jo frk «! Ji
dt

k=0  
oo f i \fc roo

J dt

so that

r - i
S

° °  1 /•oo

° °  1 /-OO

fc=0 
2

^  e H— , e

(5.2.2)

and the lemma follows.
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Lemma 5.2.3 For — 1 < a < 1 and |£| > 1 we have

\/27re_23/6|t|CT_1/2exp ^ -  ^ |t |^  < \T(s)\ < V2ne11/16\t\a~1/2 exp ^

and for 1/2 < a < 2 and |t| < 1 we have

| r (s ) |  < \/27r53/4exp ( |  -  1 + 2)  < 182

Proof. We begin the proof with Stirling’s series, see [22].

w  x 1, v (  1 \ , r°°[u] — u + 1/2
log r(*) = -  l0g(2ir) +  (* -  5) log z - z  + l u + z du.

Let

ru
a{u) = / [x] — x + 1/2dx,

Jo

then a(u) is bounded and a{u) = a(u + 1) for integers u. We have

L
00 [it] -  u +  1/2

u +  z
du

a(u) 100 r°°
v 1 +u +  z.

=  1/I Jo

roo

Jo (u{u + z):
;du

<

(u +  z)2 
1 r°° du 
8 Jo (u + a

du\

For a > \t\ (5.2.3) is

1 r°° du
< - (  “ 8 Jo

and for \t\ > a (5.2.3) is

1 r°° dv1
8 J - c

(u +  o f

7T

(u + a)2 +  t2'

8a ~ \z\'

(5.2.3)

7r
< X .

- o o V 2 + t2 8|t| 8\z\/y/2 \z\

We have obtained the following equation, where the implied order of mag­

nitude constant can be taken as 1.

5ft(logr(2:)) = -  i  -I- it'j ^ lo g \ /a 2 +  t2 + lO'j -  a -I- i log2n +
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For t > 1 we have

/i 7Tu =  arctan
2 ©

= ![ _  ( -  +  A
2 U  |t|3

where, by the Maclaurin series expansion for arctan rr, |0i| < 1/3. For 

K  - 1  we have

9 = arctan
(7\ 7r
7 / 2

<7 (f)l TT

We now wish to estimate the logarithmic term in (5.2.4) as follows.

=  |t| cr2/ i 2 +  1

=  w ( 1 + w ) ’

where |</>2| < 1. By the Maclaurin series for \ogx we have

*))
02

log V a 2 +  t2 = log ( \t\(1 +  t2

= log \t\ +  log ( l  +  -jf)

09= log |*| +  -£2 ,

from which we obtain the relevant upper and lower bounds for r(z)

|r(2)| < V^r|t|,r“I/2e-’r/2|‘l exp ((<r -  1) i  ^  + 1) 
< v ^ e 11''6|< r-1/2e -’r/2W,

and

|r (z) |  > >/27r|*r 1/2e 7r/2|<l exp ^  -  - 0  -  -  -  2 -  1  ̂

> V ^ e - 23/6^ - 1̂ ^ 2̂
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which proves the first part of the lemma. Now suppose that 1/2 < a < 2 

and \t\ < 1, from our treatment of the previous case we have

»(logr(z)) < ^cr — log \ /a2 + t2 — t arctan — a + -  log + -

3 . /— 7T 1 1 .
< -  log v 5  +  — -  -  +  -log2?r +  2.

Taking exponentials gives

| r (z) |  < \/27r53/4 exp ^  i  +  2^ < 182.

5.3 Dirichlet L-Functions

In order to prove Linnik’s log-free zero density theorem we need to prove 

certain Lemmas on Dirichlet L-functions.

Lem m a 5.3.1 For x  a nontrivial character modulo q, €\ > 0, e2 > 0 and 

e2 > c.\ we have
f

(e + ei) log D if a > 1 1

where

l o g  D  ’

(e +  €2)D 1_ct logD z/1 +  6 > a > 

log((e +  e2)/(e +  ei))
log D

Proof. We treat the two ranges separately, so firstly suppose that

a > 1 ---------- ,
log-D

then we estimate the L-function by cutting off the series representation of 

L(s, x) at D and bounding the tail of the series. We have



(5.3.4)
d< D

by the integral test. The tail of the series is estimated in the following way

E
d = D + 1

x(d)
ds

roo I

 ̂ lsl ln E X(n)
J  D  I n . —

<

<

D < n < x
oo 1

dx
x

W + a ) q J o ^ dx
(\t\ + o)q

aDa
< - D l~a < -  

a a
< e +  e (5.3.5)

for any e > 0, and D large enough. After putting (5.3.4) and (5.3.5) together 

we find that

|£(s, x)l < e +  e +  e(l +  logD) < (e +  ei) logD

for

a > 1
log£>

Now we turn our attention to the second part of the range for cr. Suppose

(5.3.6)log D

Then we have the following

X(d)

1 1 
< a  < 1 -

£
d< D ds

log D

< E —— dad< D  u

rD< 1 +  J  x °dx

< D 1~'r \ogD,

and for the tail of the series we have
ooy -  X(d) 

d= D + 1 d s -  l s lqL
00 dx

d X <7+1

< {\t\+a)q C  x - ^ d x
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So when (5.3.6) holds we have

|L (s,X) |< 2 D 1- <’ logD.

However for a > 1 — 1/ log D we have

(e +  ei) log D < (e +  e2)Dl~a log D

for
_ ^  log((e +  ci)/(e +  c2))
" - 1 ------------- \ ^ D ---------- ’

and since e\ < e2 the condition becomes o < 1 +  8 for some 8 > 0, and so 

|£(s,x)l < (e +  e2)D1“<,logD (5.3.7)

for

< <7 < 1 + 8,
log D

which establishes the Lemma.

Lem m a 5.3.2 For 0 < o < 1/2 we have

|£ (s,x)l <  V^DlogD.

Proof. We begin the proof with the functional equation for L(s,x), where 

X is a proper character and 1/2 < a < 1, see [11]. Taking moduli, we get

. - 1 /2 r(=(s + a))
| L ( l - s , X) |=  ( ! ) |L(s,x)|, (5.3.8)

r ( l ( !  - s  +  a))

where a = 0 if x(—1) — 1 and a =  1 if x(—1) — — 1- We suppose that 

1/2 < o < 1 and then we bound the function L(1 — s,x) whose complex 

argument has real part in the desired interval. First we suppose that |t| > 2
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then S (l/2 (s  +  a)) > 1 and £y(l/2(l — s -f a)) > 1, by Lemma (5.2.3) we 

have

m ( s  +  a)) . . . .  * cr—i/2
r ( i ( l - s  +  a))

< e17/ 3

«  1*1

t 
2

£7-1/2

By Lemma 5.3.1 we have

i £ ( i - * . » i  «  ( # i r i/2iL(5,X)i

<£ (q\t\f~1̂ 2 D1-" \og D 

•C VZUog-D. (5.3.9)

For |£| < 2 we use the following standard result on the Gamma function 

which holds for a E {0 , 1}

r(|(s + a)) 21'
r(J(l-s + a)) r(s)sin  ( ^ ( 1 - s  +  a )). (5.3.10)

Thus (5.3.10) and Lemma 5.2.2 gives

r ( i ( s  +  a)) 2i - / 1
r ( i ( l - s  + a)) "  v S

+  e +

. 7T< 5sinh( —(1 — s + a))

< | exp ( f ( 1 _ 's + a ))

< §«*(?)•
from which it follows that (5.3.9) holds for all t and all proper characters 

modg. The result can be extended to all non-proper characters since if ip is 

a character mod /  which is induced by x  mod q then we have

\L(s,ip)\ = nO-2?)p\f

no
p\f

p

x(p)
p S

|£(s,x)l

\J q(\t\ + e) log d
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<  y +  e) los ^

<C y/~D\ogD.

The lemma follows.

Lem m a 5.3.3 (Jensen’s formula). Let C be the circle \z\ = R. Assume

H p ) = o

Lem m a 5.3.4 The number of zeros of L(s, x) in the box 0 < (3 < 1, t — 

1 /2  < 7  < t +  1 /2  is

Proof. By the functional equation for Dirichlet L-functions we know that the 

number of zeros in the box B = {fi+i'y : 0 < (3 < 1, t —1/2 < 7  < t + 1/2} is 

less than twice the number of zeros in the box B' — {(3 +  27 : l / 2 < / ? < l ,  

t — 1/2 < 7  < t + 1/2}. Consider a circle with center 2 +  it and radius 

7/4, our box containing at least half of the zeros is contained within this 

circle, so it will suffice to count the number of zeros in our circle. Now let 

f(s)  =  L ( q  +  s ,  x) in Jensen’s formula with a  =  2 -{-it and s =  7et0/4 , which 

gives

f(z )  is regular and nonzero on C , and that C' is the open disc of radius R, 

then

< 2(1 +  €3)
-  log(7/2\/l0)

log-D < 20 log .D.

pSC 
L ( P , X )= 0

The log weights of the zeros in the sum are all positive and so



For p G B 1 we have

\ P - a \  <  — ,

which gives

r2ff L(s + a,x)  /■Z7T
y  i < --------------- f=r /  log
4 s .  "  2tt log(7/2\/l0) •'0

£(P>x)=0
1 r2n<

rzir
/  log Jo

L{a,x)

2L(s +  a, x)

dQ

d6,
27r log(7/2\/l0)

since |L(2+ii, x)| > 1/2, see Prachar [21]. The term s+o; is on the boundary 

of our circle and so 1/4 < +  a) < 15/4 and so

5  1 -  Iog(7/2V10) o.2s ^ 3 .ra0 ^  X)l)
£(p,x)=0

< iQg?~772 ^7l 0 ) log^2 max(cV^  log p ,  (e +  e) log £>,

(e +  e)£>3/4log D))

~  log (7 /2 /IO )10g(2(e + e P 1 0 g P ) 

by Lemma 5.3.1 and 5.3.2 for some constant c > 0 and D large enough. 

Hence

y  i <  — 1 + 6 , _  log d
k i '  ~  log(7/2>/IO)

L(p,x)=0

for some e > 0 , and therefore

_  2 (1 +  e)
L  1 -  lOg(7/2vl0) °g ’

£(p>x)=0 

which proves the lemma.
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Lem m a 5.3.5 Let s = 1 + 5 + ir, where 5 G (0,1) and r  G R then we have 

the following inequality

L ' { s , x )  v -  1
L{s,x) p s - p  

\s-p\<l

12(1 +  e3)L  ------  — 7ir r r - 7̂ rlog(g(|T | + 2  + e))
l°g(7/2\/l0)

for e > 0 .

Proof. We begin with the identity

L' ( s , x ) - C ( x ) +  £  1
L(s,x) p s - p

L(P,X)=0

where x is a proper character and C(x) is some constant depending on x  

which we do not need to know anything about, since we want to work with 

the following difference

L \ s , x) _  + i t , x) =  y- / _ 1 _______ 1 \
L(s,x)  L(2 +  i t ,x)  p \ s - p  2 - h i t - p )

L(P,X)=0

£  7  7- (5.3.11)
P ( s  -  p ) ( 2  +  i t - p )

L(p,x)=0

Let s = 1 +  8 + zt, where J G (0,1) and we suppose that r  > 0, where the 

proof for r  < 0 follows by symmetry. The contribution from zeros p with 

\s ~ p\ <: 1 on the left hand side of (5.3.11) dominate the sum, so we can 

estimate the contribution from zeros with |s — p\ > 1 and put them into an 

error term. Firstly we estimate the contribution from zeros of L(s, x) where 

s =  0, —2, —4,... or s = —1, —3, —5,... depending on whether x is odd or 

even. Let

2 —  a
E(p) = (s -  p){2 + it -  p)'

Then

\E(p)\ < (1 +  S +  n )(2  +  n) 
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(n +  l)2'

So the real zeros on the negative real axis contribute 

< V — —  =  V  — = —
~  h o  (" +  ! ) 2 h i  " 2 6 ’

Now we want to estimate the contribution from complex zeros. Firstly 

consider the zeros p =  j3 +  i'y in the region R = {p = /3 + iy : 0 < (3 < 

1, t  — 1 < 7  < r  -|-1, \p — (1  + 8 +  ir)\ > 1 } ,  in which there are less than

2(1 +  c3)
log(7/2VT0)

(l°g(<?(lTl +  e)) +  log(?(|T| +  1 +  e)))

< —4(1 log(^(|r| +  1 +  e))
~ log(7/2VlO) Wl 1 "

zeros by Lemma 5.3.4. For p £ R  we have

|£Vol| =  I2 - ( !  +  *)! < 1 .  ,
\(s -  p){2 + ir -  p)\ |2 +  i r  — p\

since |(14- £ +  ir) — p\ > 1. So the contribution from zeros in R  to the right 

hand side of (5.3.11) is

- lo g i7 /2 ^ 0 ) 1Og(<?(T+1 +  e))-

We now want to estimate the contribution of zeros p = f3+i7  where 7  > r+1. 

We split the sum on the right hand side of (5.3.11) into blocks of the form 

r  +  n < 7  < r  + (n -f 1), where n =  1,2,.... In each block we have

1 - 5
\E(p)\ < 

<

<

|(1 +  6 +  ir  — p){2 + ir -  p)\
1

\/(l + 5 -  (3)2 +  (r -  7 ) 2 \ / ( 2  -  / ? ) 2 +  (r -  7 )' 
1

^ (1  +  (5 -  /?)2 +  (r -  (r +  (n + l ) ) ) 2

 1_______________

y j { 2 -  p)2 +  (r -  (r +  (n + l ) ) ) 2
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<

<

+  <5 -  /J)2 +  (n +  1 )^ (2  -  /3 )2 +  (n +  l)2
1

(n 4 -1)2’

and the number of zeros in each block is

- lo g ! J / 2 ^ 0 ) 1Og(9(|T| +  (n +  1) +  e))'

Hence the contribution to the right hand side of (5.3.11) from zeros with 

7  > r  +  1 gives

2(1 + 1 3) ^  log(g(|r| + (n +  1) +  e))
“  log(7/2\/i0) (n +  l )2

£  R5 ^ 4 ) ( i ' » 8 W W + 2 + ' »

+ J . ^ ( S 3 1 2 )

where

log(q(r +  x +  1 +  e)) 1 ,
Ji  T O P  = 2 l08(,(T +  2 +  e))

r°° log(g(r +  x +  1 +  e)) 1

(x +  1)
rO O  1

(x +  l)(x +  1 +  r + e)
1

f c+ J    —TT7 —7—---- :---zdx

=  2 l o g (9 (r  +  2 +  e ))  +
00 /  1 1 axr  + eJ \ \ x  - \-1 x +  l +  r  + e,

1 i / /  ̂ w 1 f T+e dx= « log(g(r + 2 +  e)) +  ——  /z r  + e J i x + 1

< ^ log(9 (r +  2 +  e)) +  l0g^  + ^  z r  +  e

< (^  +  e)log(g(r +  2 +  e)).

Thus the right hand side of (5.3.12) is

( i  log(?(r +  2 +  e)) +  ( i  +  e) log(g(r + 2 + e)))< 2(1 +  e) ( \
~ log(7/2\/l0)

< -------■“—t=~ l°s(7('r 4" 2 +  e)).
“  log(7/2\/l0) BWV "
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We now estimate the contribution from the zeros p — (3 +  27 where r  — 1 > 

7  > 0. As before we split the sum into blocks r  — (n + 1) < 7  < r  — n where 

n = 1, 2 , r  — 1, then on each block we have

and so these zeros contribute

< 2(1 +  e3) y i  log(q(r -  n +  e))
“  log(7/2\/l0) n2

2(1  +  63) - i f /  1 , w V '

< ~ ~7==r log(g(r — 1 + e))
"  log(7/2\/l0) V V

to the right hand side of (5.3.11). It remains to estimate the contribution

from zeros below the real axis. So for each block — (n + 1) < 7  < —n, where

we have

\E{p)\ < 1(n +  r )2 

and

- log2((7/2VIO) 1 0 g (g (n + 1  +  e)) 

zeros in each block, they contribute

< 2(1 +  e) ~  log(g(n +  1 +  e))
log(7/2>/l0) ^ 0  (n +  r )2 

2(1 +  e) / log(g(e +  l)) r°° log(q(x +  1 +  e)) \
~~ log(7/2\/l0) V r 2 7o (x +  r )2 /

where

/Vo
00 log(g(x +  1 + e)) < |'-log(g(x  +  1 +  e))

(x +  r )2 [ x +  r
1/Vo

0 0

+
0

-dx
(x +  r)(x  +  1 + e)

(x +  max(r, 1 + e))2
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< log(g(l +  e)) f°° _ _ 1_ _
r  Jo (x 4- 1 4- e)2

dx

< l°g(g(l +  e)) | 1
e + 1

We have

L'(s,x)  Z/(2 + zr,x)
L(s,x) L(2 + zr,x) p-  E  ( — ------------ -„ \ s  — p 2 + iiIT  — p

L(P,X)=0
|s-p|<l

10(1 4~ e)
log(7/2>/IO)

for s = 1 4- 5 4- i t , and

log(q(r 4- 2 4- e))

L'( 2 4- zr)

n = l 722 —L(2 4- zr)

since |L(s, x)| > 1/2. Also since |2 4- zr — p\ > 1 we have

1 . 2(1 +  63)
E <
„ 2 + i r - p  -  log(7/2\/l0)

•£'(p,x)=o
b-p|<i

log(g(r +  1 4- e))

by Lemma 5.3.4. So equation (5.3.13) becomes

L'(s,x) _  v - 
L(s,x) p

< -jtL- ( log(g(r 4- 2 4- e))
“  log(7/2\/l0 ) 1 "

£(p>x)=o
I«-P|<1

<

(5.3.13)

thus proving the lemma. The next Lemma uses an argument ascribed to 

Linnik.

Lem m a 5.3.6 For 6 G (0,1/2), there are

48£(1 4- e3)
< 4  +

log(7/2v/l0) 

zeros o/L(s,x) in the region |1 4- it — p\ <6.

log(g(|*| 4-2 +  e))
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Proof. By Lemma 5.3.5 we have for s = 1 4- 5 4- it and x proper

K f g )  * *( ? 4 )
L ( P , X )= 0

~ i o ^ y g ) los(g(T + 2 + e))- (5'3 '14)

We consider a subset |1 4 - it — p\ < 8 of set of zeros in the summation in 

(5.3.14). Thus we have

(  E  4 M  Em
p s P' p

L ( P , X )= 0 L( p,x) =0

and so zeros p in our new circle have

14- 8 -  &{p)
( 4 )  -  * ( 4 4 ) 2p j  V |s - p |2/  (|1 4- it -  p\ 4- 8)2

> 6 > 1
“  (2S)2 ~ 46’

Substituting this into equation (5.3.14) we have

k / £ '(s.X )\  J_
X \ L ( s , X) J  ~  4S 4

L ( P , X )= 0 

|l+*t-p|<l

l°g(7/2\/l0)
As for the left hand side of (5.3.15) we have

x(n)A(n)

12(1+ f3) log(9(|t| +  2 +  e)). (5.3.15)

A(n) ^  1

n >  2

which gives the following result

<  V  — —  <-  ^  n l+5 ~ 8 ’

?  l s 4  +  S 7 5 S k* w l‘ l +  2 + '» -
L(p,x)=0

\ l+i t—p\<6

which holds for all characters x mod q.
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Lemma 5.3.7 (Huxley) For 1/2 < a < 1, A some large positive constant

and T  > 1 we have

£  N(a,  T, X) «  (qT)12™1̂  \ogA qT.
X m od q

Lemm a 5.3.8 For 1/2 < a < 1 — v, v > 0 and e > 0 we have 

£  N ( a , T , x )  < (g7’)(12̂ 5+<)<1- “).
X mod q

Proof. This Lemma tells us that we only need to prove Linnik’s log-free 

zero density theorem for an arbitrarily short range, 1 — v < a < 1. We can 

replace the log power in Lemma 5.3.7 until a begins to get too close to 1. 

Suppose the implied order of magnitude constant in Lemma 5.3.7 is c$ > 0, 

then

c3(qT)12/5{1~a) logA qT < (gT )(12/5+u)(1_a)

for

log c3 +  .A log log qT
ex < 1 -----------------------------v log qT

thus proving the Lemma.

We now give an explicit zero-free region for L-functions which is originally 

due to Landau, see [13].

Lem m a 5.3.9 L(s,x) has at most one zero, the exceptional zero, in the 

region

o > 1 -     Itl < T.10 log qT

The exceptional zero, if it exists, is real and simple and it is for a real, 

non-principal character.
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By Lemma 5.3.9 and Lemma 5.3.8 we only need to prove the theorem for

1 — < a < 1 —
10 log D

The next lemma is taken from Davenport [3]

Lemm a 5.3.10 Suppose L((3 + i~f, x) =  0 f or anV character x  mod q. Then

there exists an effectively computable constant A > 0 such that

a 1 A
1/21 2 q ' log q

Lem m a 5.3.11 Given a nontrivial zero (3 +  27 of L(s, x) then the number

of zeros f t  +  27' such that \ j  — 7 '! < A and a < (3' < 1 is

< 478 +  D l~a

where A =  1/logD .

Proof. Put the box |7  — 7 X| < A, a < (3' < 1 inside a Linnik circle from 

Lemma 5.3.6 with radius

5 =  (1 — a)2 +  A2 < 1 — a  +  A.

Then by Lemma 5.3.6 there are

$ 4 8 (1 Iog7+/2AJ l 5 + e 3 ) lOSg *  4^4  +  474(1 — a) log D

< 474 +  D l~a.

zeros inside the circle.

We now give a quantitative version of the Deuring-Heilbronn phenomenon, 

following Linnik, see [13].
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Lemm a 5.3.12 I f the exceptional zero, exists so that

then the function L(s , x) has no other zeros in the region

H o g g - /? ,) lo g qT\
2 log qT

The next Lemma is taken from Prachar [21].

Lem m a 5.3.13 Let x  be a character modq. Then

5.4 The Riem ann Zeta Function

In counting the zeros of Dirichlet L-functions we must at some point consider 

the zeros of L(s, xo) where xo is the trivial character. If we were to look at 

the Euler product of L(s, xo) we would see that you can factor L(s , Xo) into 

a product of two functions, one is nonzero with no poles, and the other is 

£(s), the Riemann zeta function. So when studying the zeros of L(s , xo) we 

can use special information about C(s)- To do this we need the following 

Lemmas.

Lem m a 5.4.1 The non real zeros of L (s ,xo)> where 5ft(s) > 0 are the zeros 

of (,(s) and vice versa.

Lem m a 5.4.2 There exists some positive constant C4 for which £(s) ^  0 in 

the region

1 _________________ °4  <

(log t log log t ) 3 / 4 ~
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The next Lemma is taken from Huxley [11].

Lemm a 5.4.3 Let N (a ,T )  be the number of zeros of £(s) in the rectangle 

i?(a,T) =  {s|a < a < 1 |t| < T} where 1/2 < a < 1 then there exists some 

positive constant A for which

N (a , T) <  T 12/5(1~a) \ogA T.

From Lemmas 5.4.2 and 5.4.3 we can deduce an implicit log-free zero density 

theorem for the Riemann zeta function in the following way.

Lem m a 5.4.4 For some e > 0 and T  large enough we have

N {a ,T )  < 7 i(12/5+«)(1- “)_

Proof. Suppose the implied order of magnitude constant from Lemma 5.4.3 

is c5 > 0 then we have

r 12/ 5 ( i - a )  l o g ' 4 X  <  J > (1 2 /5 + e )( l-a )

for

log c5 -f- 4̂ log log T  
  '

but this range eats into our zero-free region from Lemma (5.4.2) since

_________C4_________  _  logc5 +  A log log T
(log T  log log T )3/ 4 — elog T

for T  large enough.

5.5 Some Inequalities

The following inequality is due to Halasz.
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Lemma 5.5.1 Let

f ( s , x ) =  E  a{n)x{n)
n = N i n ‘

Then

J \  2 N2 \„(„\\2 J J
( E l / ( * . * ) l )  < E  ^ E E * * W  + w < )
V 7 = 1  7  n —N \ K \ n ) i= l  7=1

a ( n ) \ ‘

j = 1 /  n —N i k ( n ) i=1 j =]

where \r)i\ = 1 for i = 1, 2 , J , and

K n)x(p)
K {s , x )  = 5Z rrn —1

where the k(n) are am/ nonegative numbers such that k{n) > 0 when­

ever a(n) ^  0 and the series K (s ,x )  is absolutely convergent for all pairs

{s,x) =  CSj +  SuXjXi)•

The next Lemma is an improvement due to Montgomery and Vaaler of 

Hilbert’s inequality, see [19].

Lemm a 5.5.2 For i = 1 ,2 ,... ,/  let pi = @ 1  + 171 be complex numbers with 

P i > 0  for all i, or @i < 0 for all i, and

Si = min 17 ; -  7 ,|.
j

Then

E E < 8 4 E

for arbitrary complex numbers

The next lemma is taken from Graham [5].
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Lem m a 5.5.3 Let N , X \  and X 2 be sufficiently large real numbers such 

that N  > X 2 > X \ . Let

for ce > 3. Prior to this the best known result in this direction was cq = 221 

due to Jutila [15], in which the height T  is restricted to a small power 

of q. The improvement was due to Selberg’s use of what he referred to as 

’’pseudo-characters”, which are sieve weights that reduce the contribution 

of terms indexed by numbers which have small prime factors. These weights 

are given by

fi(d)
_  fi{d) \og(X2/d) 

/ U  \og(X2/X i )

for d < Xi, 

for X \ < d < X 2 ,

0 for X 2 < d,

and

a(n) =
d\n

Then for e > 0 we have

5.6 Selberg’s Pseudo-C haracters

In 1972, Selberg announced the following result

X mod q

K n ) = Y l x (d)>
d\n

where

A(d) = dfi(d)
m < M

d |m

V2{m)xo{m) (5.6.16)



and Xo is the trivial character modq. We require the following results for 

Selberg’s construction.

The next Lemma is taken from Prachar [21].

Lem m a 5.6.1 For q > 1 we have

q <  log log q.
<t>(q)

The next Lemma is taken from Jutila [16].

Lemma 5.6.2 as M  —> oo we have

l S 6 , 7 )
(m ,q )= l

Lemma 5.6.3 For some e > 0 and M  some large real number we have 

A ( l ) > ( l - e ) 4 — logM.
7T q

Proof. For m > 1 we have 4>{m) < m  and so

A(l) =
rn^M 

(m ,q ) = 1

(m ,q ) = 1

> ( l - € ) - | — log M'k1 q

by Lemma 5.6.2.

Lemma 5.6.4 for d an integer such that d > 1 we have

max|A(d)| =  A(i)

Proof. This is a property of Selberg’s sieve, see Greaves [7].
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Lemm a 5.6.5 For M  a large real number we have

^ E A (rf,)A W =A(1)
d =  1 di d2 a

[di,d2]= d

Proof. This is a standard, but instructive calculation.

Z E E  A(dl)AW = E E E  X{df d{d2)(di.<fe) (5.6.1.8)
d = l  d i d2 ® d = l  dx d2 1 2

[di,d2]= d  [di,d2]=d

There exists some function p(n) such that

X ^ ( e) = n
e\n

then by Mobius inversion we have

9(n) = = <Kn)
e |n

Now let n = (d\,d2) in equation (5.6.18) to obtain

^  V -V - A(rfOA(rf2) ^  A(dOA(d2) ^  ^  x
E E E — j—  =  E E E — j~j—  E  w )
d = l  di d2 d — 1 d i d2 1 2  e |(d i,d2)

[di,d2]= d  [di,d2]=d

= E*to( E ̂ r ) 2 (5-6.19)
e < M  V d= 0  mod e a  '

d< M

The inner sum on the right hand side of (5.6.19) is given by

E ^  = E Mrf) E "2{rf (~ l m)
d= 0  mod e d= 0  m od e m =  1 >

d < M  d < M  d\m

-  i :
f < M / e  m = 1 <P\m )

fe \m

= E M(/e) E
f < M / e  9 < M /e f  ^ ( e / S ')

Me)xo(e) ^  ^  fj.2{fg)xo(fg)
^ ( e ) / < M /e  9 < M /e f  ^ ( /  # )

( / 3 ,e )= l
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Me)xo(e) y> v W x o W
^(e) h<lU/ e  ^

^(e)Xo(e)
0 (e)

after we substitute this back into equation (5.6.19) we have

M(e)xo(e)
e< M

[di,d2]=d

e< M  T O

A(l).
e< M

5.7 Proof o f the Theorem

5.7.1 Introduction

While the Generalised Riemann Hypothesis remains unproven it is natural 

to ask how many zeros can there be in a given region. The results produce 

upper bounds for the number of zeros, which decrease as the region moves 

away from the critical line towards the line s — 1, thus the zeros become ’’less 

dense”; hence the term ” zero density theorem”. There are various methods 

for counting zeros of complex functions. We have already seen one, Jensen’s 

Theorem, our Lemma 5.3.3. We give a brief idea of the method in the hope 

that it will illuminate the idea behind the proof.

Let
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we will not be working with this sum but something similar. Then

V{rn)x(n)x(m)
L(s , x )M (s , x ) =  J2 .. Sns

n = l  m < X man‘
OO 1

=  £  T7 H  Y , ^ d)x(d)x{e)
n = 1 ,lS  d < X  e 

de—n

= a (n )^(n)
)S

n = 1 n*

where a(n) is the incomplete Mobius inversion

aM  = Y lv id )-
d < X  e 

de= n

So

a(n)x(n)

n > X  n ‘
L{ s ,x )M( s ,x )  =  1 +

Suppose that L(s, x) = 0- Then

0 =  1 +  £  (5.7.20)
n > X  n *

If we split the the sum in (5.7.20) into blocks in the following way: 2r~1X  < 

n < 2rX , then we have

o = i +  f ;  v  a(")x(")
r=l n > 2 ’ 1X  n ”

OO

=  1 +  5^ Br(s),
r = l

where

Br(s) = £  a{n)x{n)
n > 2 r ~ 1X  71

Now suppose that
1

r(r  + 1) 
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for each r. Then

So

T , B r(s)
r = l

< £“ J r (r  +  1)
=  1 .

|L (s,x )M (s,x ) -  1 | < 1,

and therefore L(s, x) 7̂  0. So if L(s, x) = 0 at s = p, then for some r we 

have

1

r(r  +  1)

In practice the series Br(s) is truncated so it becomes a Dirichlet polyno­

mial, and the problem of counting zeros reduces to counting large values of 

Dirichlet polynomials.

We prove the following theorem.

Theorem  5.7.1 Let N (a ,T ,x )  be the number of zeros of L(s,x) in the 

rectangle R(a,T)  =  {a +  it | a < a < 1, \t\ < T}, where 1 — v < a < 1 

and e > 0 and v > 0 can be taken as small as we like for T  large enough. 

Then for any m > 0

Y, N(a,T,x) < 127r̂ 604+.jm\ gr)3(1+4,n+e)(1-a). (5.7.21)
771X mod q

5.7.2 T he P roof

Now we have the idea behind the proof we can proceed. We choose a far 

more complicated M(s, x) given by

M ( s , x ) =  £  5 .  ^ r W x ( M ) ,
d < X 2 e< M
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where f(d)  is the function from Lemma 5.5.3, A(e) is the function from 

(5.6.16), Xi = DXl and X 2 are large real numbers such that X \ < X 2 and 

M  = X 2/X \  = Dm. We now multiply M(s, x) by L(s, x) to obtain

L{s,x)M {s,x)  =  £  ^
m = l  m 'S d<.X2 „ < M

_  Y '  f { f l \  V '  V '  -^(e ) x ( [ ^ )  e ] ) x ( m )

'  h  k k  (M™)s
°° X(n)

= E f E / M  E M e )
n = l  d |n  e|n

=  g  a(n)5(n)x(n)
n = l

=  y -  a(n)b(n)x(n) ^  a(n)6(n)x(n)
'  71s 72sn < X i n  n > X i n

^  5 ( n ) x ( n ) ^ ^ + ^  a(n)b{n)x{ri)
n < X  i n * d\n n > X \ n *

A (l)+  J ]  a(n)b{n)x(n)
n>Xi nS

By a well known Mellin transform we have the identity

n^X, eU/
r l+ to o

—  / L(s +  2 ,x)M (s + 2:,x)^iZr ( 2:)d2:, (5.7,
^7TZ j  1 — too

22)

for some large real number Yi, We take Yi = DVl and we assume that 

Yi > X 2. As before the expression in (5.7.22) should be small for most s 

except where s = p is a nontrivial zero of L(p, x)- We evaluate (5.7.22) at 

a zero, p, of L(s, x) to obtain

e-*/«A(1)+ £  a{n)b% )x{n) -
n>Xi e"7

^ /*l-Hoo

27TZ

/•1 -HOO
/ L(p + 2 , x) Af (p + 2 , x)Y1gT(z)dz1

J 1 —too
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so that

rl+ to o
J L(p + z ,x)M (p  + z,x)Y?r(z)dz -  ^
l - to o n > X \

a(n)b(n)x(n)
en/YinP

(5.7.23)

for Yi large enough. Given (5.7.23) there are two possibilities, either the 

zero p forces the sum above a certain bound

we call such zeros p case 1 zeros, or the zero p forces the integral in (5.7.23) 

above a certain bound

these are case 2 zeros. The method is to count the number of times (5.7.24) 

happens, thus counting case 1 zeros, and bound the integral in (5.7.25) so 

that case 2 zeros do not occur.

Case 2 Zeros

We begin with the treatment of case 2 zeros. Move the contour in (5.7.25) 

to the line 3ft(z +  p) = 0, so that 2 =  —(3 + it where a < (3 < 1. There is 

a pole of the L-function in the integrand at z +  p = 1 if x  = Xo, the trivial 

character. First we suppose that x  7  ̂Xo, then we estimate each term in the 

integral as follows.

^  a(n)b(n)x(n) A(l)
■  ̂ cn/VlrjP *en/ Yi np 6 ’ (5.7.24)

r l+ io o
/ L(p + z ,x )M {p  +z,x)Y?T(z)d.

J 1 —too
(5.7.25)

(d,e)’(t+7>x([d,e])
e< M

«  E  \ m \  E  |A(e)|
d < X  2 e< M

<  A(1 )X2M
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by Lemma 5.6.4. By Lemma 5.3.2 we have

|L(p + z,x)\  <  VD\ogD.

So our integral in (5.7.25) is

<  A(1 )X2M Y { a\fD  logD [ +°° |r(-/9 + it)\dt,
J  — OO

where by Lemmas 5.2.1 and 5.2.3 we have

+ ^ f _ i \ Y { l - 0  + it)\dt

<< ( r +j - i y i~p+i/2exp( - i iti)dt
■+■ J  |r(l — /3 + it)\dt 

J™ t~p+1/2 exp (  -  ^tj  dt 

+ J  |r(l — (3 + it)\dt

«  ^ ° ° e x p ( - | t ) d t

+ J  |r(l — ft -+■ i£)\dt

«: 1 + J '  \T(1 -  0 + it)\dt. (5.7.26)

In order to estimate the remaining integral in (5.7.26) we use lemmas 5.3.10 

and 5.2.2 as follows.

dt[  |T(1 -  p  + it)\dt <C [  —j=  
J-1 Jo ^ ( i

-  P)2 + t2
dt

«  (/. +£ . ) ( 7 o
1 — p f 1 dt 

^  / + / — 
V ( i  -  /?)2 J l - 0 1

<  1 +  log

<  1 + log g

/?)2 + 12
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Hence the integral in (5.7.25) is

«  X(i )X2M Y f aVDlog2D (5.7.27)

for x  ^  Xo- Suppose the implied order of magnitude constant in (5.7.27) is 

A  then we eliminate A  by substituting in an extra logarithmic factor of D 

so that we have a strict inequality. Hence the integral in (5.7.25) is now

<A(1 )X2M Y f avrDlog3D, (5.7.28)

for D large enough. We can now rule out case 2 zeros for all L-functions 

modulo q except the one with the trivial character, if we bound expression 

(5.7.28) away from A(l)/3. So suppose

A(1 )X2M Y1~aVDlog3D < 
6

which forces

x2 <  Z  , . (5.7.29)
M \/D log D

Now in the special case X — Xo then the integral in (5.7.25) has a pole at 

z  + p  = 1 with residue

<P(q) (5.7.30)q . . . . .  . 

and so this also needs to be bounded away from A(l) /6  if possible. We have

1^(1, Xo)| < £  M  £  M {d, e ) x o M
d < X  2 a  e< M  e

«  A(1)M £  ^
d < X  2 “

«  a(i )m  y: i  
d < X 2 a  

<C A(1)M(1 +  logX2)

<  A ( l)M lo g X 2 (5.7.31)
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for X 2 large enough. To estimate the T term in (5.7.30) we need to shift it 

again, so that the real part is such that, we do not have a situation where 

the real and imaginary parts could be simultaneously zero. For |̂ y| < 1 we 

have

\T(2 -  0 -  iy)\
|1 - 0  +  i7|

« -  0 -  n ) \

<  v/glog2q, (5.7.32)

by lemma 5.3.10, and for I7 I > 1 we have

| r ( l - p ) |  <  |7|1̂ “1/2e x p ( - 1 | 7 | )

<  e x p ( - | | 7 |) (5.7.33)

by Lemma 5.2.3. The inequalities (5.7.32) and (5.7.33) give the following

|r ( l  — p)| <C exp | | 7 |^V5 log2D (5.7.34)

for all 7 . So by equations (5.7.31) and (5.7.34) the residue is

<S 2 0 ^ A ( l ) M y l1- “v/Olog2 £>exp ( ^ f r l )  log*2

4>W)
9

<  ^ ^ A ( l) M y 11-“ exp ( -^ - |7 |)\/01og 3 D. (5.7.35)

Suppose the implied order of magnitude constant from (5.7.35) is A , we 

can obtain a strict inequality in (5.7.35), without the need to calculate A 

by substituting in another logarithmic factor of D. As before we wish to 

bound the contribution from the trivial character so that case 2 zeros do 

not occur. However this is not quite possible as the bound depends on the 

height of the zeros in other words

«K<?) w ^ w v l - a  A(!)■A tlJM y/^exp ( - ^ | 7 |)\/Zjlog4 D <
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for

^ ^ - M Y } ~ a\fD  log4 D < exp (^-
q \2

So case 2 zeros do not occur for

H  > ^  log ( ^ M y 11- “'/D log4 £>).

Lemma (5.4.1) tells us that counting zeros of L(s, Xo) is equivalent to count­

ing zeros of £(s) so by Lemma (5.4.4) the number of case 2 zeros is

<  ( ^ l o g ( ^ M y l1- “ \/Dlog4£ l) ) .<12/5+‘)(1- a) (5.7.36)

Case 1 Zeros

We now turn our attention to the main portion of the proof of Linnik’s 

density theorem, which is counting case 1 zeros, which are nontrivial zeros 

p of L(s , x) such that

y~ a(n)b(n)x(n)
n > X i  'n P e n ' Yl

> (5.7.37)
0

We wish to truncate this sum since it is easier to work with Dirichlet poly­

nomials than Dirichlet series. We cut off the sum at >2 where Y2 = Y\ log D. 

The tail of the series now has to be bounded to prove we can do this. 

Cauchy’s inequality gives 

a{n)b(n)x{n)U,V LJVV VJA V OJ y y  Ia (n )|2 |^(^)|2̂ 1 + 1//1°gyi
n>Y2 n 1+1/ ‘»ei5 ^

(5.7.38)

For a > 1/2 +  1/2 log Y\ the second sum on the right hand side of (5.7.38) 

is

|6(ra)|2ra1+1/ logyi ^  |6(m)|2
Zy g2m/Vi jy i^oc — g2m/Vi
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-  5 Z  „2m /V i S ^ ( e )e2 m/n 
m>Y2 e\m

< E ^ E
m > Y 2 d i d2

[dx,d2]|m

< E E E W W  E  i
d dx d2 m = 0  mod d

[dx,d2]= d ™>*2

<
 ___________  rOO
E  E E  M<*i)A(d2) J  e~2ld/Y'dx
d di d2 •/Y* /rf

[di,d2]=d

< yie-2y,/n ^  ^  A(d!)A(rf2)

2 ( i d  id ]  “
[di,d2]=d

s 4 w ^ )
< i r -  (5.7.39) 2 D2~yi

by Lemma 5.6.5. The first sum on the right hand side of (5.7.38) is 

V- H " ) |2 < y~ K « ) |2
n l+l/logrx -  ^  ^  1+1/log Kx

n > Y 2 U  r = 0 n > 2 T 2 n

oo , N 1+1/ log yx 2r+1y2
< E ( o ^ )  E  ia (n )i2

r = 0  u  J 2 /  n>2r Y2

^  “  /  1 y + i / i » g V ' i ( i  +  £) 2 ’- + i y 2

_  log X i /X \

5  W ^ U d * ) '  ( M )

by Lemma 5.5.3. The sum on the right hand side of (5.7.40) is a geometric

progression, so we have

00 /  1 \ r 1
E U l / i ^ n )  = i  , i
r= 0  '  '  2 1/  lo« Yl

for Ti large enough. Hence (5.7.40) becomes

y -  |a(n)|2 ^  8(1 + e) log ̂
n2 . 2 n l+l/logVx -  r V.ogKl l o g M ’
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where

y 21/logn > e,

since Y\ < >2- So

„  |a(n)|2 8(l +  e)logyi (5741)
2L f  ^ 1  +  l / l o e Y i  —  c l r t f r  f l / f  V • • /n>y-a ,i1+1/ 1°gŷ  — elogM

Using equation (5.7.39) and (5.7.41) we have

a(n)b(n)x{n) 2 4(1 +  e)A(l)logyi
E

„ > y 2 " pen/yi eD2~y 1 log M

< «A(1)

for some e > 0. Condition (5.7.37) becomes

X i < n < Y 2 U e  /

for some e > 0. The sum on the left of (5.7.42) is our zero detecting 

Dirichlet polynomial, serving our aim to bound the number of times that 

the inequality in (5.7.42) can occur.

Now we want to split the rectangle R(a,T)  into smaller ones. Let A = 

1/logD, and consider the region

a  < g  < 1, max(—T, A;A) < t <  min(T, (k + 1)A) (5.7.43)

for k = 0, ±1, ±2,... For each L(s,x)  having a zero in the region (5.7.43) 

we choose an arbitrary one of the zeros to represent the whole group. Con­

sidering the even and odd numbers k separately, we get two A-well spaced 

systems. Let J  denote the cardinality of the system containing at least 

half of the zeros. In view of Linnik’s Lemma, Lemma 5.3.6, it is sufficient 

to estimate the number J  in order to prove the zero density theorem for
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the number J. We wish to apply the Halasz inequality to our Dirichlet 

polynomial in (5.7.42). Let

v- a(n)b(n)x(n) 
s < -'«•'« •

and in Lemma 5.5.1 let f ( s , x ) =  g(s,x)> then sum over pairs (pi — a, Xi), 

which run over the zeros with the corresponding characters in the larger of 

the two A-well spaced systems. So in Lemma 5.5.1 let Si = pi — a,

fc(n) =  ^ (ew » _ ew * ) = $ & £ A(n).
n  n

Ni = X\  and iV2 =  Y2 . Then by Lemma 5.5.1 we have

a ( n ) b ( n )  2 n

i< J  '  X i< n < y 2 TVO L g T l / Y l b2 ( n ) h ( n )

S  h V j B (si +  S j , X i X j ) I, 
i< J  j < J

so that

(E l^ x O l)2 < E
i < J  '  X !<n<y2

. X i ( n ) X j ( n ) b 2 ( n ) h ( n )

n 2a - l  en/yi/l(n)

E E  Y.ViVr r?P i+ p ,+ l-2 a  
i < J j < J  n = 1 n

(5.7.44)

We now expand out the second part of the right hand side of (5.7.44) to get

. X i { n ) X j ( n ) b 2 ( n ) h ( n )
r)pi+'pj+\—2a

i < J j < J n = 1 11

K n)Xi(ri)Xj(n)
=  E  E E M W ^ l E E w  E  nPi+mi-2a

d < M 2 d\ d2 i< J  j < J  n=0 mod d
[diM=d

= E  E E M * ) a( * ) x
d < M 2 di d2 

[di,d2]=d

^  h(md)x<(md)xj(md)
h h  h > ■ ( 5)
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Now

h(md) =  exp ( ^ )  -  exp ( ^ )

'Xi y 2h(  1 2 ^
=  K t  ’ 7 ; m >

Let stJ = pi + Pj -  2a + 1, xy =  X*Xj and

(  d ’ d ,Sij,Xij)  ^  H  d '  d ' m ) m°» '

so that the expression in (5.7.45) becomes

E E W i  5Z D I Z  X(d1)\{d2) H ( - ^ , - j , s ij)X i X  (5.7.46)
i < J j < J  d < M 2 a  d! d2 \  a  a  /

[di,d2]=d

Expressing the Dirichlet series in (5.7.46) in terms of its corresponding in­

tegral gives us the equation

'* i  y 2
h (  -  —  S  - Y  - }  =

I  d ’ d '  ', ' x '3)

i C L^ +z){ & ) z- { ^ ) z) r{z)dz- (5-7-47)
\  p l+ io o

27n

We estimate the integral in (5.7.47) by moving the contour back to the line 

3ft(z) =  — 1 with a semicircle radius A at 2 = —1 to avoid the pole of T. If 

Xi — Xj Xij — Xo and there is a pole of our L-function at z = 1 — s^. First 

we assume Xi 7̂  Xj then split the contour into the following five parts

C\ =  {z = cr + it E C\cr = —l , t  < —1},

C2 = {z — a +  it G C\a = —1 ,-1  < t < -A },

C3 = {z  =  Aeie — 1 € C\9 € [—7r/2, tt/2]},

C4 = {z = (j +  it G C\a = — 1, A < t < 1},

C5 = {z = a +  it e  C\cr = - l , t  > 1}.
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On each contour C* we integrate approximations of the T function and 

bound the other terms in the integral for the corresponding range. First we 

consider the integral on C3. Shifting the T function twice gives

r M - i r ( * +  I> - * T T ) r ‘'  + 2)'

so that on C3 we have

\z\ = \Aeid — 1 | > 1 -  A,

\z +  1| — A,

\r(~M /  lr (^ +  2)l 
lr(2)l -  A O ^ A )-

We have +  2) E [1,1  +  A] and |S (2 + 2)| < A < 1 so by Lemma 5.2.3

we have

1
A ( l - A ) ’

which gives

/  \r(z)\\d
J C'K (5.7.48)'c3 ...............  A (1 -  A)

for D large enough. On C2 and C4 we have, as above |r(z  + 2)| <  1 and

\z(z + 1)| =  \(it — l)it\ = | -  t2 — it\ 

= V t4 + 12 = \t\Vt2 + l > t2,

so

dt

1 , 1
<  -7- -  1 <C -rA A

On C\ and C5 we have

T(z +  2) 
z(z +  1)

(5.7.49)
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by Lemma (5.2.3), and so we have

(X.+/a)|rwiw« f £ -
roo
f  t -W dt<

< 1. (5.7.50)

By (5.7.48), (5.7.49) and (5.7.50) we have

[  r (z)di
Jx(z)=1

<  1 + -7-A
<  log D,

for D large enough. We now estimate the other terms of the integrand in

(5.7.47), for 2 on any one of our contours C{ for z =  1,2,3,4,5, we have

A —1

©  -(f)! * (? )♦ (? )
< d ' - ^ Y f - 1 + X f - 1)

2 Vy2 Xi

Xi

for Y2 > B X 1 where B  is some constant which can be taken as large as we 

require. Now we want to bound the L-function term of the integrand in

(5.7.47). We use

(di + (3j — 2cl +  1 — 1 < +  z) < /3i +  (dj — 2o: +  1 — 1 +  A,

so that 0 < + z) < 2(1 — a) +  A. Hence by Lemma 5.3.2

\L{s*j +  z , Xi j ) \  <  y /~D\ogD.

So if Xi ±  Xj then
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which makes the expression in (5.7.46)

« E E w E  EE A(d ,)A(«yflSi j+A-
t< J  j < J  d< M2 di 2̂

[di,d2]=d

K,A« log2 £* E E E E E A(<*i)A(d2)
A l  i< J  j < J  d < M 2 di d2

[di ,d2]=d

«  ^ - V ~ D J 2M 2\ ( l ) 2 log2 D .
Xi

(5.7.51)

Now we need to consider the case when Xi =  Xj and there is a pole coming 

from our L-function. The residue is

and so the residue terms contribute

<

<

E E W  £  ^  £ £  A(di)A(da)
j ^ J  d< M 2 d\ d2

[di ,d2]=d

q

<t>(q)

E E mfi](Y2 - *rSij)r(i-««) E EE ,
i < J j < J  d < M 2 di d2 a

[di ,d2]=d

A(di)A(d2)

A(l) E E 21_sy - xr,y )r(i - s«)
i<J  j < J

.1 -Si (5.7.52)

by Lemma 5.6.5. Now

1 -  Sy = 1 -  pi -  pj +  2a  -  1

=  2 a - / ? i - f t + z ( 7 j - 7 i),

so that 3ft(l — Sij) G [—1/2,0] for a > 3/4 and S (1 — Sij) = 7j — 7*. As 

before the estimates involving the T function break down into two cases, 

one where the imaginary part is greater than one in modulus and the other 

where the imaginary part is less than one in modulus. First we suppose that

81



|7 j-7» l ^  1- Then we can use Lemma (5.2.3) to bound the right hand side 

of (5.7.52) with the following expression

4>(g) , , V ^ e n /16\ Y t ail - X r * ‘,'|
i h k j  1^ "  1'i|1/2exp(7r/2|7j -  7i|)
|7<-7j I>1

-1-Si
(5.7.53)

By Lemma 5.3.4 in a unit interval 7* +  n < 7  ̂ < 7* +  n +  1 there are 

< 20logD imaginary parts 7 j of |L(s,x)|- The expression (5.7.53) is

<  20\/27re11/16— A (l) lo g I> ^ e - ’r/2
9  i< J

< 5V25ren/16^pA (l)Jlog£> . (5.7.54)

Now suppose that |7j — 7*| < 1. By the proof of Lemma 5.2.2 we have the 

following identity

(-i)*= 1

k=0
+ /oo

e-H-** dt

1 i   , y  (~ l) fc 1
1 -  1 — sn -1-1 k\ 1 -  sa +  kk=2 ’ij

/ oo
e~H~Sijdt,

+

(5.7.55)

where

E
(-!)<=

&! 1 — +  A;

By (5.7.55) and (5.7.56) we have

1

/+ I e~lt~Sijdt

r(i -  s^)
1

< 1

11 — Si j  +  1 1

< e + e

+ e +  -

(5.7.56)

(5.7.57)

then we have the following upper bound to (5.7.52)



+20 ̂ 2 4----- (- s'j J  log D

^  ^ y y  ViVj0^2  ^ i 3)
i < J j < J  
I7j-7»I<1

1 -  Si
4

120 J  log D j

For i = j  we have
-1-SiYPi *>ij V i — ^ ^ 2 -/Yl

-1—  S i  

•1

i<  J j <  J 
i= j

1 — S
y2 1

dx
t“ rjJXl r-

/•r2 i
< J  /  -d x

./X i X

Now we suppose that z ^  j ,  let 

5  = E E
i< J  j < J  

i^j

= J  log

y l —s*j   5*

1 -  Si

Then
-1-Si

E E f +5 <

= 5(y2) + 5(xo

+
■y 1—5ij

E E r —
i<  J j<  J 1 Sij

i^j

We now invoke Lemma 5.5.2 with ar = Y2 Pi+Q and as =
  1 —  5  • •aras = Y2 '3. By Lemma 5.5.2 we have

s w  < §  E i i r fti2 < ^  

s (* o  < § E i * r ,,f

which means that

S <
168 J  

A ’
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(5.7.59)

Y2 pj+a, then

(5.7.60)



Hence we have the following upper bound for (5.7.52)

< M j A(l)(5781ogD + l o g ^ )

So by (5.7.54) and (5.7.61) our integral in (5.7.47) is

< J A ( l ) ^ ( ( 5 ^ 2 7 r e 11/16 +  578)logD + log-p-

< JA (l)^M ((6031ogD  + l o g ^ )  

if Xi =  Xj- By (5.7.51) and (5.7.62), (5.7.46) is

< ^ $ - 4 D J 2M 2A(l)2 log2 D + A ( l ) ^ b ( 6 0 3 lo g D -I
X\ q \

logf ’)

where a is some positive constant and 

*  -

-  - p ( t;!^ )
f y i  log D +  log log D) \

=  6XP(  b iD  )
= eyi+i

for some e > 0. Also
Y2

log =  (y2 Xj) log D 
^ 1

and the expression (5.7.63) becomes

< - ^ rV D J2M 2X(l)2 log2 D +
X\

A ( l ) ^ ^  Jlog £)(603 + y2 — xi).

So by (5.7.44) we have

(H lp(A .X i)l) < ^ - ^ V D J 2M 2X(1)2 log2 D
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(5.7.62)

(5.7.63)

(5.7.64)

(5.7.65)



A ( l ) ^ )  J  log £>(630 + 7/2 -  * i)),0(9)
Q

V~̂  lQ(n)l  /c 7
x S < Y i n20~ien/Y' h(nY

It remains to estimate the sum on the right hand side of (5.7.66). First we

note that for n > X\  we have

e" /* ft(n ) =  « p ( n ( i - l ) ) - e x p  ( - « ( £ _ £ ) )

>  e» - e x p ( - X 1( i - - l ) )

> e° - e x p ( | i - l )

> 1 — exp (̂ e — 1

for any e > 0, so let e be small enough so that

en/Ylh(n) > i  (5.7.67)
o

say. Now the remainder of the summand in (5.7.66) is estimated by partial 

summation, Lemma 5.5.3 and Lemma 5.3.9.

L   ̂ y2 ^ W n ) | 2- /  ( l - 2 a ) r 2“£ |a(n)|2dt
X i< n < y 2 11 n < Y 2 n < t

(1 +  e7)y2 , ,0 [Y> (1 +  e7)t1~2QV-*■ ■ €7 ) * 2  , _  , [** (1 +  €7)t
-  log X 2/ X 1 ^  1 } J i - e  log X 2/  log X 1
^  (1 +  67)^2 (2a  — 1)(1 +  €7)y22~2a
-  log X 2/  X\  (2 — 2a) \o%)X 2jX \

Y2 ( 2a — 1
< ; l + e +

dt

logX2/X i V 2 — 2a 
Y 2 ( 1  , , 10 log D \

-  f o g M V  2 )
(5 +  e )l2 log D<

log M

< ^ - ^ Y ? - 2a. (5.7.68)
m  v

So by (5.7.66), (5.7.67) and (5.7.68) we have

]Cl0(ft,Xi)l) < \{ l )2 log2 D +
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A (l)^ J lo g D (6 0 3  +  3/2 -  X ! ) ) ^ ^ 2- 20. (5.7.69)q /  m

We now require a lower bound for the left hand side of (5.7.69). By (5.7.42) 

we have

\9(Pi,Xi)\ > A(1) (^  +  e) ’

so that

and therefore (5.7.69) becomes

J 2A(1)2 < f ^ - / D 7 2M2A(l)2log2D +
\A i

A (l)^ 7 1 o g D (6 0 3  + y2 -  i i ) ) ^ ^ * ? -20. (5.7.70)

Once we have rearranged (5.7.70) so that all the terms involving J 2 are

together, we will need the coefficient in J 2 to be positive on the left hand

side of (5.7.70). Suppose we want the coefficient of J 2 to be greater than 

1/2 then this gives the condition

Xi > 2ay/DM2Y 2~2Q log2 D,

which will be satisfied if

X 1 > y/DM2Y 2~2a log3 D. (5.7.71)

Condition (5.7.29) gives

Xi  < „ ,  . (5.7.72)
M 2y/Dlog D

We need

V D W r f - h i  D < (5.7.731
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or

s/DM 2Y2~2a log2 D <
M2\/Z> log4 D ’ 

which yields the following condition

y2 > (M“Dlog6 D )1/(3“- 2). (5.7.74)

By Lemma 5.3.8 we only need to prove the zero density theorem for a > 

1 — v, so we choose

Y2 = (M4Dloge D)ini- 3v\

= {M4D\og6D)1+‘ (5.7.75)

from which it follows that

?/i =  4 m  +  1 +  e, (5.7.76)

since Y2 = Y\ log D. Substitution of this into (5.7.70) gives

j  31(603 +  y2 -  xi)4>(q) ,gl+4m+e)2- 2a■ D 
~ mq\( l)

31(603 +  y2 -  xM jg )  D(2+Sm+t)(1_a) 
mq\( l)

Lemma 5.6.3 gives

<j){q) log D 7r2 log D 7r2
A(l)</ 6m(l — e)\ogD 6m( 1 — e) ’

so that (5.7.77) becomes

31t2(603 +  y2 -  s i)  n<2+Sm+em_a)
6m2(l -  e)

6^(4697-11̂ j 1£ i ) n2(1+4m+e)(i - o) 
m2(l — e)

which is true for 1 — v < a < 1. Now J  is the well spaced system containing 

at least half of the zeros, so we need to multiply J  by 2 and also by the
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number of zeros in our spaced regions, which we have by Lemma 5.3.11. 

Then we must add in the zeros of £(s), and so by (5.7.36)

Y ,  N (a ,T ,X) < 2(478+  0 1- “ ) f ^ ^ l i ^ - ^ £ > 2(1+4m+e)(1- Q)') 
x™d, '  ro2( l - e )  J

(2  f(b{q) , r -  A \  \  (12 /5+ e)(l-a )
+ { -  log \ ^ - M Y ^ - a'/D\ogi D j j

^  12̂ r2(603 +  j/2 - x i ) D 3(i+4m+e)(i_Q) (5 ,7 .78)
m2(l — e)

It remains to choose the powers of the parameters. Expressions (5.7.29) and 

(5.7.71) are together implied by

1 1 
2yie +  -  +  2m < x\ < yi(l  — e) — 2m — - .  (5.7.79)

For simplicity we choose the mid point of the interval (5.7.79) and let x\ =

2/i (1 +  e)/2. Due to the fact that X 2 Y \  we must have x\ +  m < y\ and

therefore

m  < |- (1  -  e), (5.7.80)

thus by virtue of equation (5.7.76) the inequality (5.7.80) will be satisfied 

for all m > 0.
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Chapter 6

Fogels’ Theorem

Fogels [4] was the first to prove Linnik’s log-free zero-density theorem in 

rectangles which are taller than the value of the modulus of the L-function. 

As an application Fogels proves the following theorem.

Theorem  6.0.2 There exist constants 9 < 1 and rj such that if q > qo and 

(q,l) = 1, then for any x > qv in the interval (x, x +  x e) there is a prime 

p = I mod q.

In his paper Fogels does not calculate the constants in his zero density 

theorem and therefore fails to give admisable values for 0 or rj. Versions of 

this theorem have been proved since, but their aim is to reduce the size of 

8 which costs you in your size of 77, these theorems take the following form.

Theorem  6.0.3 For q < log"4 x where A is some large positive constant 

there exists a prime p = I mod q in the interval (x, x  -f- xe)

The most recent version of this theorem is due to Baker, Harman and Pintz 

[2] who prove 9 > 0.55. We prove Fogels’ original result with 9 and 77 given 

explicitly. We follow Fogels’ method for calculating 0, with the difference
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being we have the advantage of a much simpler proof of the Linnik log-free 

zero density theorem, which makes calculating constants much easier. The 

following lemma is taken from Fogels [4].

Lemma 6.0.4 Let q and I be integers, y and x be large positive real numbers 

Then

s  = <p{g) E  A(«) exP ( x ;  lQg2 0 ) )  =
n = l  m o d  q  V \ X  /  /

*\/“  J  . E  X ( l ) j 7 j ^ r x 3 exp(s2y)ds. (6.0.1)V 7r J2-100 x mod q L(s, x)

We begin the calculation of Fogels’ constant by moving the contour in (6.0.1) 

to the line 3ft(s) =  — 1. This gives the following

s ^  S T - I  x s  qm i M xS e M s 2 y )  ds

+2tn R e s (  Y2 x (0  j  v'S—i Xs exp(s2y ) ) ) . (6.0.2)
—  l < c r <2  x  m o d  q  '  ’ X j  '  '

Our sum has a residue from zeros and poles of the L-function, since there is 

a pole at s =  1, and we have also passed all nontrivial zeros in the critical 

strip s = p. These are given by the following

L'{s,x)
X V )

X  m o d  q

and

Re s (  X(0 LJ f ' ’X? ^ exp(g2y)) =  -x e x p (y)
v  m od a  Xj '

5Z x(0T / ~ ~ \ X3 exp(g2y)) = 52 52 XXPexp(p2y)-
X  mod q  X j  '  x  mod q  P

L{p,x)=0
- l < R ( p ) < l

We aim to show that the integral in (6.0.2) is negligible, and that the residue 

terms give a main term in the formula for S. Let

I = [  X(0 Lj  f S’X} x8 exp {s2y)ds
x  m od q  M 5 > X )
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then by Lemma 5.3.13 we have

/  «  / +°° 6Xp(^(l ~  *2))q log(g(|t| +  2))dt
J —oo X

«  p  expfad -  ^ ))  t
Jo X

«  ! ^ l o g 2 9

<C x~l/2̂ l+Gl^q\ogq,

where we have chosen y = x6l~l for some 6\ G (0,1). This gives the following 

formula for S:

S = 2y/iry(xexp(y) -  Y  12 x(0 xp exp{p2y))
X  mod q  P

L ( P , X ) =  0 
— l< 8 ? (p )< l

+0(x~lt2̂ 1+9x̂ qlogq).

We estimate the sum in S  by taking a subset of the zeros that are in a 

rectangle G = {s =  a +  it \ a G [0,1], \t\ < T}  into the main term and 

the contribution from the remaining zeros into the error term. Firstly we 

estimate the contribution from the zeros outside the rectangle G. This is 

given by the following sum

12 12 x(0*Pexp (p2y). (6.0.3)
X  m od q  P

L{p ,x ) = 0
|Q (p ) |> T

We estimate the inner sum in (6.0.3) with the use of Lemma 5.3.9 which 

tells us that since the zeros under consideration in (6.0.3) have $s(p) > 0 we 

have

Y  x{l)xpexp(p2y) <  x l~5° Y  exp(-£2?/), (6.0.4)
p p

L(p ,X) = 0 \ t \>T
|9 (p ) |> T
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where

1

£0 = 10 log qT

We estimate the sum on the right hand side of (6.0.4) with Lemma 5.3.4 as 

follows

52 exp{ - t 2y) = (  52 +  5Z +•••) ex p (-t2y), (6.0.5)
p '  p  p '

| t |> T  T < \ t \< m  m < |£ |< m + l

where T  < m < [T] + 1 and m  is an integer. So by Lemma 5.3.4 we know 

that the sum in (6.0.4) is

o ( e x p ( - T 2y) log(q(m +  2)) +  52 exp(-/c2) log(g(fc +  2)))
'  k > m  '

= 0(exp(T +  1 -  T 2y) log q) .

When we substitute this back into the the expression (6.0.3), we get an 

extra factor (f)(q) from the summation over the characters modq. So that 

the contribution to S  from zeros outside the rectangle G is

4>(q)x1~So exp(T +  1 -  T 2y) log q. (6.0.6)

We now make the following substitutions. Let

T  = x 1/C1, (6.0.7)

x > gc\  (6.0.8)

y = x9l_1, (6.0.9)

so that (6.0.4) becomes

0 ( x l/ci+e+l~6° exp(z1/ci + 1 -  x 2/ci+dl~1))

= 0 { x 2 exp(x1/Cl — x2/Cl+01_1)). (6.0.10)
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We require the contribution from (6.0.10) to be <  x 2 which yields the 

following condition on 6\ :

0! >  1 -  (6.0.11)
Cl

The following representation of S  has now been established

S = 2y/iry(xexp(y) -  D  x(0^Pexp(p2y) + 0{x~2)\
X mod q P

L(p ,x)=0
p £G

-\-0{x~l^ l+9i>iq\ogqx). (6 .0 . 12)

Now we need to estimate the contribution from the zeros p with p £ G. 

There are two possibilities: either the exceptional zero exists or it does not. 

We have to treat each case separately as the theory will not allow us to 

assume that the exceptional zero might exist. Firstly we assume that the 

exceptional zero does not exist, and that the region in Lemma 5.3.9 is zero 

free. Secondly we assume that the region in Lemma 5.3.9 does contain a 

real zero, and then Lemma 5.3.12 implies that other zeros are even further 

into the critical strip than in the non-exceptional case.

6.1 The N onexceptional Case

Here we assume that the exceptional zero does not exist. Hence by Lemma

5.3.9 there are no zeros in the region

1  A   < a < 1, m < T.
10 log qt

By Theorem 5.7.1 there are

'c3(n +  1)
< C2(gT)C3(n+1)/101og9T =  c2 exp (

10 
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zeros, where we will choose the values of c<i and C3 within their constraints 

later, in the region

1 " Ttnog^r - ^ -  1 “ l o l ^ T ’

We use this to bound the sum on the right hand side of (6.0.12). Let

s '= 51 x(0*Pexp(p2y)
X  m o d  q  P

L ( P * ) =  0 

p£G

Then

S' < xexp(y) 51 X~S
X  m o d  q  p = l —8+ i t  

L ( P , X )= 0 

p e G

< C2x e x p ( y ) |; e x p ( I ^ ; log x + ^ ? ^ ) .  (6.1.13) 

By (6.0.7) and (6.0.8) we have

x > (qT)Cl/2 => —logo: < — ̂ -loggT,z

which after substitution into the expression for S' gives

•ci n c3(n + 1)o/ ^  t \ ( ~ cin , c3 n + l  ^5 < c2a; exp(i/) X , exP  J

< c2sexp ( y  +  | | )  X jexp ( " ( ^ p  C‘) ) -  (6.1.14)

The sum over n on the right hand side of (6.1.14) is a geometric progression 

with common ratio
2 c 3 -  c iexp

20 

Hence



and
( 2 c3 -  c i \  1 

exp \  20 /  < 2
for

ci > 2 c 3 +  20 log 2, (6.1.15)

which we will arrange to be the case on our choice of ci. So

S' < 2c2x exp (y  +  y  -  . (6.1.16)

We require

S' < ^xexp{y),

so that the expression in brackets in (6.0.12) is greater than something 

positive in absolute value, ie

S > y/wyxexp(i/) +  O(x0l~3 +  x ^ ^ ^ ^ q l o g q x ) .

In order to satisfy this condition we require

ci >  4 c 3 +  201og4c2. (6.1.17)

In the sum S  on the left hand side of (6.0.1), the exponential term in the

summand gives weight to an interval of the form (x — /(x), x 4- f(x))  where

f (x )  = yjbix1+dl logx (6.1.18)

for some constant b\ > 0 to be made explicit later. To see the result of this 

weighting, we consider the size of S  inside and outside the interval. Firstly 

suppose n G [x +  /(x), 2x]. Then n = x +  m where m  G [/(x),x]. By the 

Macluarin expansion of log(l +  ic) for w G (—1,1), we have

/  yJbiX1+01 log X\ ^
-  V
> 6ix01_1logx. (6.1.19)
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So the contribution to S  for n E [x +  f{x),  2x] is

< J2  log(n) exp -x° log
9  n £ [ x + f ( x ) , 2 x ]

<  X ~ b l / 4 \ o g X  ^ 2  1
n € [ x + f ( x ) ,2 x ]

< x l~bl 4̂ logx

<  1  (6.1.20)

for 61 > 12. Now we consider the contribution to S  from the terms with 

n G [1,x — /(a;)], so n =  x — m  where m  G [/(a;), x], in this case we have

hence the argument follows the same as before. So the contribution to S  for 

n € [1, x — f(x)] n  [x +  /(a;), 2x] is

<  2 x i - < ’i / 4 i o g x . ( 6 . 1 . 2 1 )

It remains to estimate the contribution made by the interval (2x, 00). On 

this interval we have

log ^ > b2xBx 1\ogn

for x large enough, and some b2 > 0 , so that the contribution to S  on the 

interval (2a:, 00) is

—b')
Log n exp I

n > 2 x

< V  ,
-  ^  n b2

< lognexp ( —^■x°\ogn\

logn

n >  2x
r OOf  OO

< / u~^/4+edu
J 2x
(2x)1~b2/4+e J_

~  6 2 / 4  — 1 — € ~  X 2
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for 62 > 12. Let I  =  (x — f ( x ), x  +  f ( x ) )  then we have the following result

4(q) S  A(n ) exP { T “  lo§2 ( “ ) )  > h x 1/2+6l/2 (6.1.22)
n £ l  \ X J  J

n = l  m o d  q

for some 63 > y/n. The left hand side of (6.1.22) is

< x 1/ci y , A(n)-
n € /  

n = l  m o d  q

Hence

A(n) > bsx1/2*01/2 1/°1,

and so

n € /  

n = l  m o d  q

l / 2 + 0 i / 2 - l / d

§  1 > — e s — • <“  “ >
p = l  m o d  q

where

I  = (x — yj\2xl+dl logx, X  +  \J\2xl+ei logx).

Now if we shift the interval I  so that we are looking at the interval

(x, X  +  2yjl2xl+dl logx), 

then our new interval is of the right form for Fogels’ Theorem with

x G > \J\2xl+e' log 2;, (6.1.24)

which is satisfied for

9 > 1/2 + 9x12. (6.1.25)

Thus we have explicitly proved Fogels’ theorem under the assumption that

there are no exceptional zeros.
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6.2 The Exceptional Case

Now we suppose that the exceptional zero pi =  1 — does exist. By Lemma

5.3.9 we know that p\ is real and that

' - i o (6-226)

We take the contribution from the exceptional zero in (6.0.12) into the main 

term, M, and contributions from all other zeros go into the error term, E.

M  = \ x e x p { y ) - X 0 1{ l ) x 01exp( / 3 l y ) \
T—$i

> x[ 1 —
Pi

> x ( p i - x ~ 51)

> x{l -  5i -  {qT)~SlCl/2)

> J  _ f l )
“  Vl +  ^M oggT  V

by (6.0.7) and (6.0.8). Also by (6.2.26) we have

1
Si< 10 log qT ’

which gives

M  > x (  0 5lCx1' V T  r  -  Si) \ 2  +  8 i C i \ o g q T  J

V 20 + Ci J

£  ( 6 2 2 7 )

The contribution from all other zeros in (6.0.12) is estimated using the 

Deuring-Heilbronn phenomenon, Lemma 5.3.12. So by Lemma 5.3.12 there 

are no other zeros in the region
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If we put this result into the zero density theorem, Theorem 5.7.1 we find 

that for n =  1,2,3,... there are at most

< C2 exp

< C2 exp

( c3(n +  1)1 log(l -  A) log9^1 \
V 2 logqT )
^c3(n +  1)| log(l -  Pi) loggT\^ ^  2 ^

zeros p  =  <7 +  i t  in the intervals

, (n +  1)| log(l — Pi) log qT\ ^  n| log(l -  fa) log <fT\ Ul ^  m
1 ----------------- 2 t o r f T -------------- - CT- 1 --------------2 W --------- ’ | 4 | - T '

We wish to estimate the sum over all nonreal zeros in (6.0.12), call it S", 

using (6.2.28) as follows:

S" = Y  Y  xPexP(p2y)x{i)
X mod q P

p&G R  
L(p,x)=0

< x exp(y) Y  Y  x~6
X mod q p = l—5+it 

ft
L(P,X)=  0

00 'c3(n + 1)| log(l - P i )  log qT\/
< c2x exp(?/) Y ,  exp (-

n = 1 '

n|log(l -  (3i)\ogqT\ logx^j
2 log qT

, c3| 1 y + —
f n \ \o g ( l-P i)  logqT\ f  logs ^

E e x p  ( ------------- -2 v  3 -

From (6.1.17) we see that

c// /  (  , c3|l°g(l ~A )loggT |\ yS < C2X exp yy-----H-------------- -- -----------J x

n\ \og(l -  Pi) logqT\ f  aexp y
n = 1

We know that

c3| log(l /?i) logqT\^
< c2x exp ( y + -----------------  -\ x

t  « P  (-ra!1̂ l ) - g ‘?T|(c3 -  I ) ) -  (6.2.29)

> 8\ => rx > ^log^T ,10 log qT -  1 10
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so

log(l -  A ) log qT -  log(A log qT) < 0,

which means that

| log(l -  A) log qT\ = -  log(l -  A) log qT.

Hence the expression on the right hand side of (6.2.29) is a geometric pro­

gression with common ratio

exP( i o g ( i - y ios9T( i - c 3 ) )  =
l  ^ ci/ 4 - c3/2

<
10

1
2

for

Cl - 203 +  S w • (6'2'30)

and so

5 "  <  2 c 2 , e x p ( y + l 0 ^ ^ ° g < ? r ) ( | - 2 c

< 2c2x exp(y) (A log qT)Cl̂ 4~°3

< c2(2 +  e)x(5i log qT)Cl/4~C3

for some e > 0 and for x large enough. So in the light of (6.2.27) we require

2(2 + 20%) > C2(2 + ^  l0g9r)Cl/4̂ 3' f6-2'31)
We ensure the inequality (6.2.31) by imposing two separate inequalities

which when satisfied will satisfy (6.2.31) for c\. The first inequality is given

by

A log qT > (A log qT)Cl/4~C3, (6.2.32)
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and this is satisfied when

ci > 4(c3 +  1) (6.2.33)

since S log qT < 1. The second inequality is

which is satisfied for

Cl> 1 — 4(2 +  e)c2'
40(2 +  e) (6.2.34)

For ci satisfying (6.2.33) and (6.2.34) we have the inequality (6.2.31). Hence

S  > b±x8\ log gT,

So by the same argument that was used for the nonexceptional case we have

So the same result follows as in the nonexceptional case, but with different 

conditions on ci, which yield a different 9. We choose the strongest of the 

conditions on 6 so that both the nonexceptional and the exceptional cases 

hold.

6.3 Fogels5 Constant

We need now to calculate a value for 9 for which Theorem 6.0.2 holds. We 

have the following theorem.

where

—  20

^  h x 1 1/C18i log qT
* J  lnrr m
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Theorem  6.3.1 For q large enough and any x > q328 the interval (x,x  + 

x655/656) contains a prime p = I mod q as long as (q, /) = 1

Proof. Out of (6.1.22), (6.1.17), (6.2.30), (6.2.33) and (6.2.34) the strongest 

condition on c\ is (6.1.17). By our zero density Theorem 5.7.1 we have

12tt2(604 + 2m)
c2 > -------— j-------m l

and

C3 > 3(1 +  4m)

substitution of these into condition (6.1.17) gives the following

ci > 12(1 +  4m) +  20(log487T2 +  log(604 + 2m) — 2 logm). (6.3.35)

We must find m so that ci can be chosen as small as possible. The expression 

in (6.3.35) is minimal when the derivative is zero, so we must solve the 

following equation

48+  20 ( — i  ----- —) = 0 ,  (6.3.36)
\4698-f2m  m j

which gives us the quadratic

12m2 +  3619m -  1020 =  0 (6.3.37)

Thus we find there is a zero of (6.3.37) for m ~  0.281582916. Substitution 

of this value for m into (6.3.35) gives us ci =  328. then by (6.0.11) and 

(6.1.25) we have 0 =  655/656.
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Part III

Farey Fractions W ith Prime 

D enom inator
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Chapter 7

Introduction

Dirichlet showed that any real number a  can be approximated by a rational 

number a/q with
a
 a
q

<
q Q ’

for 1 < q < Q. It is natural to ask whether there are results of this type with 

q restricted to certain sequences, such as the sequence of primes. However 

if a = 1/4 and q is an odd prime

a
 a
q

We have a trivial obstacle, that there are no Farey fractions sufficiently 

near to 1/4. This problem is due to the fact that the Farey sequence has 

some areas where Farey fractions are more dense than in others. When we 

are in an area where there are lots of Farey fractions, rationals are easily 

approximated We call such areas the minor arcs. When we are in an area 

where Farey fractions are less dense, for example near 1/4, rationals are 

not as well approximated, these are the so called major arcs. The problem 

described above when we are near 1/4 can be avoided if we redefine what 

we mean by distance. Let T(Q ) be the Farey sequence of order Q and
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let NQ(a,/3) be the number of fractions of T(Q) in the interval [a,/3\ (if 

a < (3) or \j3,a] (if (3 < a). Then the above problem can be reworded in 

the following way, given a real number a  G (0,1) and Q an integer, if we 

travel along the real line from a  how many Farey fractions do we have to 

pass to be sure we have passed at least one with prime denominator? In 

other words what is the size of

nun N q ( oc, a / p ) l  (7.0.1)

We use Fogels’ reformation of Linnik’s theorem on small primes in arithmetic 

progressions and a special case of Vaughan’s theorem on the distribution of 

a p  modulo one for p  prime.

7.1 Heuristics and Trivial Argum ents

To my knowledge this problem has not before been considered, so it is 

necessary that we first try to construct some idea of what our answer should 

look like. I wrote a program which calculated the maximum number of Farey 

fractions one would have to pass to find one with prime denominator. The 

first version had complexity in the order of magnitude Q4 for the Farey 

sequence of order Q, and as a result only went up to the Farey sequence 

of order 500. The second program I wrote had complexity in the order of 

magnitude Q2, but at the current time the program contains too many bugs 

to have provided any results worth mentioning.

We begin by considering what we know to be true, then we construct a 

heuristic argument to find the best possible conjecture. We require the 

following Lemma taken from Huxley [12].
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Lemma 7.1.1 Let I  be an interval of length A. Then

Y  1 <  a  Q2 + 1.
a/qZF^Q)

We constrict ourselves to considering primes p x  Q otherwise our results

do not work. For Q large enough there exists a prime p G (Q/2, Q], which

appears in T{Q) as a denominator (f>{p) =  p — 1 times. The Farey fractions

with p as a denominator are spaced at a distance

1 _  1_
Q

apart. By Lemma 7.1.1 we can see that in between these Farey fractions 

with prime denominators there are at most N  Farey fractions where

Q2i V « ^ x Q .

So trivially we know that the answer is at most order of magnitude Q. But 

we should be able to do much better, as we only considered a very small 

subset set of the primes. The actual number of Farey fractions with prime 

denominator in T{Q) is given by

Y, 0(p) =  Y  p ~ n(Q)
p < Q  p < Q

=  j \ d , { x ) + 0 { ^ )

Q 2 _  [ Q X I n (  ( Q X A r r  A .

Ji logx \ J i log2 x log Q /log Q J1 log X log x
Q

log Q,

2 log Q Vlog2 Q,

by Riemann-Stieltjes integration and the prime number theorem. The best 

possible result would be obtained if all Farey fractions with prime denom­

inators were equally spaced by some distance A, which is clearly not the
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case, but it helps to assume it true for our heuristic argument. Then if there 

were K  Farey fractions with prime denominator we would have

A (K  +  1) =  1.

Since we know the order of magnitude for K  we can approximate A as 

follows
_  logQ 

Q 2 ’

and so in light of Lemma 7.1.1 we can say that

N  x  log Q.

So we now have some idea of the range our answer should be in, we are 

looking for a result that is of the order of magnitude Qe where 6 < 1 but we 

know we can not do any better than log Q. What we prove is the following 

theorem.

Theorem  7.1.2 Let a be a real number in the interval (0,1). There exists 

a Farey fraction a/p such that p G  (Q /2, Q) is prime and

NQ(a,a/p) «  Q1_1/1312log8Q.

7.1.1 Selberg’s S ieve on th e  Farey Fractions

An alternative wording of the problem suggests a new approach. Given 

a  G [0,1] can we find a number (3 G  [0,1] such that there is at least one Farey 

fraction with prime denominator in [a, /?]f)^(Q )  if a  < /?, or \(3, ct]flF(Q) if 

a > p? We would require an approximation of the number of Farey fractions 

with prime denominator in a sub-interval of [0,1]. Let NQyP(a, P) be the 

number of Farey fractions between a  and P that have prime denominators. If
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we knew Â Q)P(a, j3) we could adjust (3 until our approximation of ATg p(a, (3) 

was positive. Then we could use Lemma 7.1.1 to find an upper bound for 

Nq{ol,(3). The best we can hope for in this direction is an upper bound for 

JVQ> ,  (3) which can be done using Selberg’s sieve. We need the following 

Lemma.

Lemma 7.1.3 For integers a > 1, d > 1 and b > 1, such that (a, b) =  1 we 

have

X YE E  i  =  - t  +  o (x  +  y ).
x < X y < Y  °

ax+by=0 mod d

Proof. Solutions of ax -4- by =  0 mod d form a lattice of determinant d. 

Suppose this lattice has the basis wlt w2, where Wi = {ui,vi) and w2 — 

(u2,v2). So the solutions of ax +  by = 0 mod d are lattice points with 

coordinates (x, y) = muh +  nw2 for some integers m  and n. One of our 

requirements is that

1 < x = mui +  nu2 < X

and

1 <  y  = mu i +  nu2 < Y.

This represents a parallelogram in (m, n ) space in which we need to count 

the number of vectors with integer coordinates. Divide up (m, n) into unit 

squares to form the fundamental lattice. Suppose N\ squares are inside the 

parallelogram and N2 squares are partly inside the parallelogram. Then if 

A  is the area of the parallelogram we have N\ < A < N\ + N2. We shall 

adopt the convention that each square belongs to the point in the lower 

left corner of the square. Suppose N$ of the N2 squares have their lattice
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points inside the parallelogram and 7V4 do not. So iV3 + iV4 = N2. The 

number of lattice points inside the parallelogram is therefore N\ + iV3 and 

we have N \  <  A <  N i  +  N $  +  N 4 . If we imagine an arrow on the boundary 

of the parallelogram with an anticlockwise direction then we see that the 

boundary of the parallelogram enters each of the N2 boxes on one side and 

leaves usually by another side. The number of vertical lines that get cut 

are < [B] +  1 < B  +  1 where B  is the breadth of the parallelogram. Each 

line gets cut at most twice so the number of lines the curve enters a new 

square along a vertical side is < 2B  +  2. Similarly at most 2H  +  2 squares 

are entered by the curve across a horizontal side, where H  is the height of 

the parallelogram. Hence N2 < 2B + 2H  +  4. Let N  = N\ +  Â3, then we 

have

N  -  N3 = Nx < A < N  + A/4,

which gives

\ N -  A\ < 2B + 2H + A. (7.1.2)

The area of the parallelogram is

\V\U 2  ~  U \ V 2 \ '

by a standard calculation. The area of the parallelogram in the lattice of 

determinant d is \viu2 — uiv2\, so we have

, x yA = —  (7.1.3)

By equations (7.1.2) and (7.1.3) we have



which proves the result.

Now we can use Selberg’s sieve to calculate an upper bound for NQ#(a,(3).

Given a  and (3, where we shall suppose that a < (3, we find Farey fractions 

a/b and c/d  in F'iQ), such that

a c

and a/b and c/d  are consecutive in ^r(max(6, d)). Farey fractions in the set 

Jr{Q) n  [a/b, c/d] are of the form

ax +  cy 
bx + dy’

where (x ,y ) = 1, and bx + dy < Q. We use Selberg’s sieve to sieve the set 

A = {bx +  dy < Q\(x, y) =  1} for primes. The result is as follows.

Lemm a 7.1.4 The number of Farey fractions with prime denominator of 

Q) in the interval [a/b, c/d], where a/b and c/d are consecutive in f(max(6, d)), 

is at most

(2 +  e)Q2 
bd log Q

for e > 0.

Now if we take the interval [a/b, c/d] and assume that there are as many 

Farey fractions with prime denominator as lemma 7.1.4 will allow then, by 

lemma 7.1.1, roughly speaking the ratio of the number of Farey fractions to 

the number of Farey fractions with prime denominator is

Q2/bd 
Q2/bd\ogQ  ~  sQ '

So that for every interval containing log Q Farey fractions, one should be 

prime.
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Chapter 8

The Minor Arcs

The following theorem is due to Vaughan [23].

Theorem  8.0.5 (Vaughan) Suppose that (a,q) = 1, \a — a/q\ < 1 /q2, H > 

1, N  > 1. Let

S  =  ^2  5Z A(n)e(a/m) .
h < H  n < N

Then

s « rn itf + ^  + ( J f)v’ + (jJs )1''),

where A von Mangoldt’s function, and e(x) = explflmx).

Using this result Vaughan proved the following corollary.

Corollary 8 .0 .6  Suppose that a is irrational and ||7 || denotes the distance 

of 7  from a nearest integer. Then there are infinitely many prime numbers 

p such that

\\oqp-PW < p—1/4 log8p.

We require a similar result to this, given in the following Corollary to The­

orem 8.0.5.



Corollary 8.0.7 Suppose a is a real number in (0,1), Q is a large positive 

number, c2, c3 and C4 are positive constants and a/q is a convergent to the 

continued fraction expansion for a with q in the range

Then there is a prime p G (Q/2, Q] for which

\\ap\\ <C S.

We will need the following lemma which is essentially Lemmas 8a, and 8b 

of Chapter 1 of Vinogradov [24].

Lem m a 8.0.8 Let Y  > 2  be an integer and \a — a/q\ < 1/q2, where (a, q) = 

1. Then for all real numbers (5 and positive integers N  we have

We can now proceed to the proof of Corollary (8.0.7).

Let p { t )  =  [t] — t  + 1/2 be the rounding error function which is well known 

to have Fourier expansion

counts the exact number of primes in the range (Q/2,Q\ for which

where

) < (i + ^)(3r + 4giogy)J2 min (
n <r AT 'n < N

-f 0 ( min ( 1,
l < h < \ H \

for t  not an integer. Then for 6  < 1/2, the sum

M aP +  S) ~ P(aP ~ S) +  2S)
Q /2< p< Q

\\ap\\ < 5.
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Following Vaughan we shall count powers of primes with a logarithmic 

weight. So we require an estimate for the sum

y ;  A(n)(p(cm +  <S) — p(an — 8) +  28).
Q /2 < n < Q

By the prime number theorem this sum reduces to

2 8Q+  E  H n )(p(an + 6 )~  p(a n - s )) + o ( / - ^ / )
Q /2<n<Q  MogQ/

=  25Q +  E 1 +  o ( i^ ) .

We estimate Ei using the Fourier expansion of the rounding error function, 

which gives

s  = y  y  ("eWan + <5) )~ eWQri~'<5))>\ | pf'E:)
Q /2 < n < Q  l< h < \H \  '  2 m h  )  \  )

where by Lemma 8.0.8 we have

£ 2  =  77 E  111111 ( H> 71— T7T7
H  n<Q '  | |a n  +  <5||

< +  +  4<jlogtf).

Now

E1 + 0 (E 2) =  E  (  E  - nt t hn) (£(m ) -  e(- M )))
Q /2 < n < Q  X l< h < \H \  Z7*m  '

-  E  (  E  ^
Q /2 < n < Q  V 5 7

E l  E  A(n)e(a/m)|
h < H  Q /2 < n < Q  '

/ 1 2 /  a \  V2 1 \
«: J/fQ log + \j j q )  ^ J J p Q y J l)

by Theorem 8.0.5. On choosing H = 1/8 we obtain the following

(?)
» (  1 1 f 8 q \ lt2 / £ 2\ 1/5Ei «  giog g ( ^  + gl/I + ( g )  +
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and
Q . rl—e (_ , Q

£2  1 H------ e (9 4 ) >q \  q

for some e > 0. This gives

i ln ' )  =  9 A O  -4- C ) (
>log Q

£  A(n) = 250 + 0 ( ^  + 2 1
Q /2< n< Q  /

a n \\<8

Hence we need to choose 8 so that £1  8Q, the order of magnitude of the

expected number of primes. This yields the three following conditions

c2 log16 Q
q >  

q <

8 >

82
C3 8 Q

log16 Q ’
c4 log8 Q

Q1/4 ’

stated in the Corollary.

To obtain his Corollary Vaughan chose the least 8, which is

c4 log8 Q

We would also like 8 to be as small as possible but this gives us a much 

smaller measure for the set of a  for which Corollary 8.0.7 holds. We defer 

our choice of 8 until we have treated all such a E (0,1).

We have the following corollary.

Corollary 8.0.9 Suppose a and 8 satisfy the conditions of Corollary (8.0.7) 

and a/p is a Farey fraction of T{Q) withp a prime in (Q/2, Q]. Then

NQ(a, a/p) <  8Q + 1.

Proof. From Corollary 8.0.7 we have ||o;p|| < 8 which means there exists 

some integer a such that

|ap — a\ < 8 
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a
a ----

P
5 25

< p ~  Q

and by Lemma 7.1.1 we have

25
Q {

^  25Q -f" 1.

NQ{a,a/p) < ^ Q 2 +  i
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Chapter 9

The M ajor Arcs

Lem m a 9.0.10 Suppose a G (0,1) is a real number with two succesive 

convergents in its continued fraction expansion ar/qr and ar+i/qr+i where

Then there is a prime number p G (Q/2, Q] for which

||c*p|| < S.

Proof. For simplicity we shall assume that r  is even, then the proof for r 

odd follows similarly.

Since ar/qr and ar+i/qr+i are succesive convergents of a, we have

(9.0.1)

and

(9.0.2)

where

— < a < qr
ar.)-i
Qr+l
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Farey fractions in

are of the form
CLr X  " t  Q>p-|_i?/

qrx  +  qr+iy ’

where (a;, y) =  1 and qrx  +  qr+\y < Q, (simple property of the Farey se­

quence, see Huxley [12] Lemma 1.2.2). We choose y =  y0 so that

Now we consider fractions of the form

CLr X  -|- CLr -(-l2/o

qrx  +  qr+iyo ’
with (x , yo) = 1 and qrx +  qr+iyo < Q■ The denominators form a short seg­

ment of an arithmetic progression within which we require a prime number. 

As x increases we could be moving further away from a  so we require an 

upper bound for x which forces the following inequality

CLr X  “|“ <2r -|-i2/o &a --------------------- <  —.
qrx +  qr+m Q

Firstly we need to consider the case where

§  <  qr+m < Q-

(9.0.3)

(9.0.4)

We have the following inequality

a —CLr X  ^  ^ r + 1  CLr X  O 'r+lVo

qrx +  qr+ m  ~ Qr+i qrx  + Qr+m
X

qr+i(qrx +  qr+iVo)

<
qr+i Q
x log16 Q 

6Q 2  ’
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by (9.0.2) and (9.0.3). So we must have

x  log16 Q 5_
SQ2 Q ’

which gives the following upper bound for x

52Q
x  <C

log16 Q
(9.0.5)

Now we suppose that

CLr X  -f- Or -f.i?/o /  ® r+ l \
-  G  ( a , -----------1.

qrx +  qr+iyo \  qr+1 /

Then we have

a  —
qrx  H- qr+iVo

< a  —
(Zr + 1

9r+l 

*  ^ - « 1« f i  0 2

by (9.0.3). Then

for <5 »  Q_1, which is the case, so we only need to consider the case where 

(9.0.4) holds. By (9.0.5) we have an arithmetic progression I mod qr of 

length L , where

62QL
log16 Q

(9.0.6)

Theorem 5.7.1 states that this arithmetic progression will contain a prime 

if q828 < Q and L Q655/656. The condition q828 < Q forces

^  log8Q
0  q  1/656 ’

by (9.0.1 and the condition L  Q655/656 becomes

log8Q
Q l/1 3 1 2  ’ 
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by (9.0.6). We choose

_  f log Q log Q 
maX vQ1/656’ Q1/1312 
log8 Q
Q l/1 3 1 2  •

So we have the following Corollary equivalent to Corollary 8.0.9.

Corollary 9.0.11 Suppose a satisfies the conditions of Lemma 9.0.10 and 

a/p is a Farey fraction of J7(Q) withp a prime in (Q/2,Q\. Then

N Q(a , a/p) <  6Q +  1,

for

log*_Q_
Q l/1 3 1 2 '

Proof. The proof follows from Lemma 9.0.10 along the same lines as Corol­

lary 8.0.9.

9.1 A subcase o f the Major Arcs

Now we need to consider the case where Q < qr+\. We have the following

Lemma.

Lemm a 9.1.1 I f a has two successive convergents ar/qr and ar+\/qT+\ 

where

_  log16 Q /n 1 ^
qr <  —^ — , (9.1.7)

and qr+i > Q then the interval (a, /3) or (/?, a) contains a Farey fraction, 

a/p where p is a prime, of J-{Q) where

NQ(a,0) C 6 Q  + 1,
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for

5 » log8Q
Q 1/1312

Proof. Instead of looking at Farey fractions of X(Q) between ar/qr and 

ar+i/qr+i as we did in Lemma 9.0.10, we now look at Farey fractions of 

X(Q) between ar/qr and ar- i/q r- \. Consider the sequence of rationals

CLrX 4~ 0L1—i 
qrx  +  qr -1  ’

it is tending towards the closest fraction of X(Q) to ar+\/qr+\. Choose X  

so that

qrX  4- qr -1  < Q, 

qr{X  +  1) +  qr_i > Q;

then

by (9.1.7), and

x  =  Q qr-i +  0(1)
qT

9.
q r

+  0 (1)

N Q( a ,

S*Q 
log16 Q ’

| CLf*—J
qrX  4- qr- i

=  0 .

Now we choose x so that

Q 30
— < qrx  4- qr -1  < —

and (X, x) = 1. We have

CLrX  4” 0>r— 1 CLrX 4“ Uj—1
qrX  4- qr- i  qrx +  Q r - i

\X — x\

(9.1.8)

(qrX  4- qr- i ) ( q rx  + qr- 1)
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<

<

<

\ X - x \
(iqrx + qr- 1)2 
4 | X - x |

Q2
82

Qiog16g
5_
Q'

So by Theorem 5.7.1 there is a Farey fraction with prime denominator in 

the interval

CLrX  -f CLr—i drX +  CLr~ i

provided that

by (9.1.8), and

qrX  +  qr- i  ’ qrx +  gr_i

by (9.1.7). As in the previous major arcs case we have

, -  lpg8Q
Q l/1 3 1 2 '

Now we see that

/  cirx -}- ar_ i \  /  drx n,—i arX  -f- cir—i \  . .
N n la ,   = i vn  ------------- , ——---------  , (9.1.9)

^ V qrx +  qr -1  J \  qrx + qr -1 grA + <?r_i J

and the proof follows.
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