Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Microporous polymers for carbon dioxide capture

Croad, Matthew 2013. Microporous polymers for carbon dioxide capture. PhD Thesis, Cardiff University.
Item availability restricted.

[thumbnail of 2014 Croad M Thesis Final.pdf]
Preview
PDF - Accepted Post-Print Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (8MB) | Preview
[thumbnail of 2014 CroadM Form.pdf] PDF - Supplemental Material
Restricted to Repository staff only

Download (497kB)

Abstract

The research described in this thesis relates to the development and optimisation of a novel polymerisation reaction and its subsequent use in the generation of novel ‘Polymers of Intrinsic Microporosity’ (PIMs). The polymerisation reaction takes monomers containing two or more aromatic amines and fuses them together by the synthesis of a bridged bicyclic heterocyclic link called Tröger’s base (TB). This link not only strongly holds the polymer chain together, but also provides a site of contortion, which is necessary for a PIM to exhibit microporosity. The first part of this work introduces the background to the research, detailing the reasons behind the development of a new class of PIM and the competitor materials. Following this is detailed the optimisation of the TB forming condensation reaction and the synthesis of a variety of amine functionalised monomers. Also described in this section is the optimisation of a second condensation reaction used for the synthesis of a family of compounds based around a coumaron framework, all of which lack amine functionality. This precedes discussion of X-ray crystal structure analysis of several TB model compounds, amine functionalised monomers and coumaron-based compounds. After this is a description of the development of the novel TB polymerisation reaction, the results of the TB polymerisation of the amine functionalised monomers, characterisation of the successful polymers and the attempted polymerisation of two coumaron-based monomers. The final part of this work reports the experimental procedure for each compound together with full characterisation. In closing, the TB polymerisation reaction has successfully used for the production of highly stable and soluble PIMs exhibiting a wide range of microporosity, with BET surface areas ranging from 0 m2/g to 1035 m2/g. A few of these PIMs have been found to have excellent molecular weight, capable of forming strong membranes, suitable for gas separation, most notably for the purification of oxygen, hydrogen and carbon dioxide from nitrogen. Conversely, the synthesis of coumaron-based PIMs proved unsuccessful, but nevertheless this research should allow the future synthesis of a coumaron-based PIM. The research on TB polymerisation detailed in this thesis has contributed towards an International Patent122 and a paper in Science123so can be deemed to have been successful by that measure.

Item Type: Thesis (PhD)
Status: Unpublished
Schools: Chemistry
Subjects: Q Science > QD Chemistry
Funders: EPSRC
Date of First Compliant Deposit: 30 March 2016
Last Modified: 19 Mar 2016 23:34
URI: https://orca.cardiff.ac.uk/id/eprint/56377

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics