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Abstract

Respiratory neuronal network activity is thought to require efficient functioning of astrocytes. Here, we analyzed neuron-
astrocyte communication in the pre-Bötzinger Complex (preBötC) of rhythmic slice preparations from neonatal mice. In
astrocytes that exhibited rhythmic potassium fluxes and glutamate transporter currents, we did not find a translation of
respiratory neuronal activity into phase-locked astroglial calcium signals. In up to 20% of astrocytes, 2-photon calcium
imaging revealed spontaneous calcium fluctuations, although with no correlation to neuronal activity. Calcium signals could
be elicited in preBötC astrocytes by metabotropic glutamate receptor activation or after inhibition of glial glutamate uptake.
In the latter case, astrocyte calcium elevation preceded a surge of respiratory neuron discharge activity followed by network
failure. We conclude that astrocytes do not exhibit respiratory-rhythmic calcium fluctuations when they are able to prevent
synaptic glutamate accumulation. Calcium signaling is, however, observed when glutamate transport processes in
astrocytes are suppressed or neuronal discharge activity is excessive.
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Introduction

Breathing is a multifaceted behavior that is dependent on activity

of neuron populations in the medulla oblongata and the pons and

modulated by supra-bulbar and spinal neural networks [1,2,3].

An important functional feature of neurons in this network,

including the pre-Bötzinger Complex (preBötC), is the occurrence

of rhythmic bursts of action potentials, which are accompanied by

parallel increases of potassium ions in the extracellular space

[4,5] and release of neurotransmitters and neuromodulators [6,7,8].

Astrocytes maintain homeostasis of the extracellular space by

regulating the extracellular concentration of neurotransmitters such

as glutamate [9,10] or glycine [11]. Major disturbances of astrocyte

transmitter uptake can impair respiratory activity e.g. by inter-

fering with the glutamine-glutamate cycle and with synaptic

transmission [6,11,12,13]. Astrocytes express K+ channels (Kir4.1;

KCNJ10) that maintain potassium homeostasis and the resting

membrane potential of astrocytes in the medulla [14]. Several

authors recently reported that astrocytes in the respiratory network

respond to prevailing neuromodulators with an increase of

intracellular calcium concentration [15,16,17]. Two consequences

of elevated [Ca2+] in astrocytes have been suggested: astroglial

neurotransmitter release that influences activity of nearby neurons

[18,19,20,21], and effects on central CO2/pH-chemosensitivity

[17].

In the present study, we tested whether astrocytes exhibit

membrane properties or calcium signals that correlate with ongoing

activity of neighboring respiratory neurons. We obtained whole-cell

recordings from fluorescently labeled astrocytes and performed 2-

photon calcium imaging experiments on rhythmic slice prepara-

tions to determine the degree of functional coupling between

astrocytes and neurons in the preBötC.

Results

Rhythmic currents can be measured in astrocytes of the
pre-Bötzinger complex

To test for periodic membrane current transients in astrocytes of

the preBötC that coincide with rhythmic neuron discharges, we

performed whole-cell voltage-clamp recordings from fluorescently

labeled astrocytes in the slice preparation. We recorded from a total of

569 fluorescent astrocytes (Figure 1A). As typical, these astrocytes

exhibited predominantly passive currents that were distinguished

by a linear current-voltage relationship in whole-cell recordings

(Figure 1D). Fifty-nine of these astrocytes (10.4%) also exhibited

membrane current fluctuations (Iresp,A) that were in phase with the

rhythmic discharges of preBötC neurons. Since Iresp,A current

amplitude was imbedded to a large extent in background noise

(figure 1B), it was not possible to measure current accurately from

the raw data. Thus we used cycle triggered averaging to estimate

the amplitude, which in 27 astrocytes was –5.960.7 pA (mean 6

SEM) at Vhold = 270 mV (figure 1C). Iresp,A was recorded as an

inward current at clamping potentials between 290 mV and +20 mV

(see figure 2A).
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Rhythmic currents do not involve the activation of
additional ion channels

In a next step we tried to determine if Iresp,A results in a change

of the membrane resistance induced by activation of ion channels

during neuronal bursts. PreBötC astrocytes have a low membrane

resistance (Rm) at rest (Graß et al., 2004) constraining the detection

of small changes of the membrane conductance during Iresp,A.

Assuming that Iresp,A amplitude varies with the degree of neuronal

synchronization in the network, we blocked GABAergic transmis-

sion with bicuculline (20 mM) to elicit much more intense neuron

discharges activity. Under these conditions giant bursts occurred

that were accompanied with larger and longer lasting inward

currents in the astrocyte (figure 1E). Even under these conditions,

Iresp,A was not accompanied by changes of input resistance

(28.9615.4 MV as compared to the burst intervals 29.0615.4 MV;

n = 3). This observation is in line with the assumption that Iresp,A

reflects fluctuations of the potassium equilibrium potential induced by

a rhythmic elevation of the extracellular potassium activity around the

astrocyte.

Barium reduces rhythmic currents in astrocytes
Resting membrane potential in astrocytes of the ventral respiratory

column is largely dominated by Kir4.1-channels [14], so we tested

whether blockade of Kir-channels with Ba2+ affects Iresp,A amplitude.

BaCl2 (100 mM) decreased Iresp,A amplitude by more than 50%, from

26.760.7 pA to 23.060.4 pA (Vhold = 270 mV; n = 12, p,0.01).

Barium induced a reduction of Iresp,A at all holding potentials between

290 mV and +20 mV (figure 2A). The resulting parallel shift of the

IV-relationship is compatible with the assumption that Iresp,A in

preBötC astrocytes partially reflects changes of the potassium

equilibrium potential. The barium effect did not appear to be linked

to changes in the neuronal network activity. Although burst

frequency did increase to 0.1560.02 Hz in the presence of BaCl2
(Ctrl: 0.1160.01 Hz; n = 12; p,0.05), neither the amplitude of

neuron field potentials nor its duration at half-maximal amplitude

changed (0.7960.03 s (Ctrl) vs. 0.7560.04 s with BaCl2).

Glutamate transporter currents contribute to Iresp,A

We tested whether glutamate released from inspiratory neurons

in the preBötC is contributing to Iresp,A by measuring the effect of

blocking glutamate transporters, which are widely expressed on

preBötC astrocytes [14,22]. In the presence of BaCl2, dihydro-

kainate (DHK, 300 mM), a selective blocker of GLT-1 (EAAT2)

further reduced Iresp,A (Vhold = 270 mV) amplitude by 68% from

23.861.2 pA to 21.460.7 pA (figure 2B; p,0.05, n = 5).

Integrated preBötC burst-amplitude was unchanged by DHK,

but half-width-duration of the bursts was reduced from

0.7760.07 s to 0.5660.07 s (p,0.05, n = 5) and burst frequency

increased, from 0.1360.02 Hz to 0.2060.03 Hz (p,0.05, n = 5).

Metabotropic glutamate receptors elicit calcium signals
in preBötC astrocytes

Previous studies from this laboratory demonstrated that

glutamate triggers calcium signaling in astrocytes of the ventral

respiratory region of the medulla [15,23], and other studies have

shown that group I metabotropic glutamate receptors promote

calcium release from intracellular stores and couple neuronal

activity to calcium signals in nearby astrocytes of rat cortex,

hippocampus and suprachiasmatic nucleus [24,25].

In the present study, we tested whether group I metabotropic

receptors contribute to glutamatergic Ca2+ signaling in preBötC

astrocytes. Two-photon excitation microscopy revealed that the

type I agonist quisqualate (5 mM) induced robust astrocyte calcium

transients. We co-applied the AMPA/KA receptor blocker DNQX

(25 mM) in these tests, since quisqualate has agonistic effects on

AMPA receptors as well. In the presence of DNQX and 0.5 mM

TTX, quisqualate induced calcium signals in 53629% of EGFP-

labeled preBötC astrocytes in 4 slices. As shown in figure 3, mGluR

Figure 1. Rhythmic inward currents in astrocytes of the pre-Bötzinger Complex (preBötC). (A) To identify astrocytes a CCD-image was
taken and the astrocyte, identified by its (green) fluorescence in the center of the image was whole-cell recorded in voltage-clamp mode showing (B)
respiratory-rhythmic inward currents that were partly obscured by the noise (Vhold = -70 mV; upper trace). The integrated preBötC-field potential
(preBötC 8), recorded in parallel, is shown in the lower trace. (C) Cycle triggered averaging of inward currents was performed, using preBötC-field
potentials as triggers to allow the measurement of the amplitude of the respiratory rhythmic current (Iresp,A). (D–F) Input resistance of the astrocytes
remains unchanged during astrocytic inward currents: Panels (D) and (E) show whole-cell recordings taken from a fluorescent preBötC astrocyte.
(D) Current traces recorded in response to the voltage step protocol, show in the insert, identified this astrocyte as passive. (E) In the presence of
bicuculline (20 mM), large amplitude preBötC field potentials were accompanied by large inward currents (asterisks) in the astrocytes (D).
Hyperpolarizing voltage steps (210 mV) were applied to the astrocyte to measure membrane input resistance (Rin), which did not change in
association with inward current transients (F; n = 3).
doi:10.1371/journal.pone.0026309.g001

PreBötC-Astrocytes
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activation elicited short oscillatory calcium transients that rode on

top of a much larger, longer lasting calcium elevation (figure 3C).

Astrocyte group 1 mGluR-expression was also demonstrated

by immuno-labeling. We observed mGluR1a-receptors antibody-

staining in 63.667.1% of the EGFP-labeled astrocytes. Labeling was

found on cell bodies as well as on proximal processes (figure 3D–F).

Rhythmic membrane current fluctuations in preBötC
astrocytes are not accompanied by rhythmic Ca2+ signals

We recorded from 15 voltage-clamped astrocytes that exhibited

rhythmic inward current fluctuations and were dialyzed with

calcium indicator dye through the patch pipette. Cycle averaged

Iresp,A amplitude was 23.1763.88 pA. Calcium signals synchro-

nized with preBötC field potentials were detected neither in the

soma (figure 4) nor in the dendritic compartments of the astrocytes.

Two–photon imaging of cells loaded with Oregon Green BAPTA-

1 AM (OGB-1 AM) was also carried out to detect Ca2+ signals

simultaneously in preBötC astrocytes and neurons on the surface and

deeper in the slice. Calcium signals were measured in 14 slices from

300 fluorescent-protein labeled astrocytes and from 103 respiratory

neurons that were located within 50 mm of the labeled astrocytes

(figure 5). Thirty-eight astrocytes (12.7%) exhibited spontaneous

fluctuating calcium signals. The calcium signals, however, were not

correlated with and entrained by preBötC neuron discharges.

Ongoing neuronal activity in the rhythmic medullary slices

might have been too low to produce significant calcium signals in

preBötC astrocytes. Therefore we increased the neuronal activity

in the network by blockade of inhibition. Bath application of

strychnine (10 mM) and bicuculline (10 mM) increased the number

of neurons that we could record a rhythmic calcium signal from to

323 (n = 13 slices), twenty-one of them showing ‘‘giant’’ presum-

ably epileptic bursts. After blockade of inhibition, spontaneous

calcium fluctuations were evident in 61 (19.9%) of the 307

astrocytes (figure 5D). In two astrocytes, a solitary large calcium

signal coincided with neuronal epileptiformic bursts.

Cycle triggered averaging during blockade of synaptic inhibition

did not uncover rhythmic calcium signals in 304 of 307 astrocytes

(99%; figure 5E). In 3 others, rhythmic Ca2+-signals overlapped

astrocyte (EGFP) fluorescence. However, the signals might have

originated from neuronal processes located in the vicinity of the

astrocytes, because cross-correlation activity maps (CC; see

methods) only partially overlapped with EGFP-fluorescence. Of

greater significance was that the temporal signature of the calcium

transients was indistinguishable from a neuronal calcium signals.

Taken together, we can conclude from these data that neuronal

Figure 2. Analysis of respiratory-rhythmic astrocytic currents (Iresp,A). In panel (A) the effect of BaCl2 on Iresp,A is shown. Data, for each cell
normalized (I/Imax) to the largest current measured over the range of holding potentials, are given for the different holding potentials from 290 mV
to +20 mV. Error bars indicate mean 6 SEM. The number of cells is indicated below each set of data points. Panel (B) shows cycle-averaged currents
(holding potential 270 mV) that were recorded from the rhythmic astrocyte (C) under control conditions, in the presence of barium (BaCl2, 100 mM)
and after additional inhibition of glutamate uptake by dihydrokainate (DHK, 300 mM). The cycle-averaged traces of the corresponding integrated
preBötC field potential are depicted underneath.
doi:10.1371/journal.pone.0026309.g002

PreBötC-Astrocytes
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activity does not trigger respiratory-rhythmic calcium signal in

preBötC astrocytes, even under conditions of increased excitation.

Blockade of glutamate transporters in preBötC astrocytes
evokes complex calcium signals and abolishes neuron
discharges

We analyzed effects of blocking astrocyte glutamate transporters

on Ca2+ signaling in astrocytes and neuron discharge properties in

preBötC slice preparations. Bath application of TFB-TBOA

(1 mM), a potent blocker of both glial glutamate transporters

[26], evoked calcium signals in 22 of 25 (88%) astrocytes (n = 5

slices, figure 6). Complex Ca2+ waveforms were detected and

consisted of relatively short bursts superimposed on larger,

prolonged and slow decaying waves (figure 6D). The signal

complexes were similar in appearance to those produced by

mGluR1 activation.

Figure 3. Calcium signals in preBötC astrocytes evoked by activation of mGluR1-receptors. (A–C) Images show (A) the distribution of
astrocytes identified by 900 nm 2-photon excitation and a CFP emission filter (BP 450–500 nm) and (B) Oregon Green BAPTA-1 AM staining (800 nm
excitation and BP 511–551 nm emission filter). (C) Fluorescence traces from astrocyte somata shown in panel (A) in presence of DNQX and TTX.
Application of quisqualate (5 mM) evoked a robust calcium elevation in 4 out of 5 astrocytes. (D–F) Astrocytic mGluR1-receptor expression is
confirmed by immunohistochemistry. Panel (D) shows the confocal image of the EGFP-expressing astrocytes (green), and (E) the mGluR1-receptor
expression. The arrows indicate astrocytes that express mGluR1 receptors (Cy-3, red). Note that neighboring neurons also show a high level of
mGluR1-expression. In panel (F) the overlay of (D) and (E) is depicted.
doi:10.1371/journal.pone.0026309.g003

PreBötC-Astrocytes
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In all slices, the complex astrocyte Ca2+ signals were followed

either by an initial intense and sustained discharge of preBötC

neurons culminating in discharge abolition (n = 3; see figure 6 D), or

by gradually diminishing discharge intensity without antecedent

increase until discharge activity was absent (n = 2). The latency to

complete blockade of the respiratory activity was 5386115 s (n = 5).

Figure 4. Astrocytes do not exhibit rhythmic calcium signals. (A) Current steps evoked in a EGFP-expressing astrocyte by depolarizing and
hyperpolarizing voltage steps (10 mV increments) from a holding potential of 270 mV to potentials between 2150 to +30 mV. This type of current
responses to voltage steps is typical for a passive astrocyte. Panel (B) shows calcium signals (DF/F0) and membrane current (pA) recorded from the
particular astrocyte characterized in panel (A), along with simultaneously recorded field potentials (preBötC 8). In this example, the fluorometric
calcium signals (B, Cc) were obtained with Calcium orange (200 mM) loaded via the recording pipette. Rhythmic current fluctuations are buried in the
noise but are unmasked by cycle triggered averaging in (C). No phase-locked astrocytic calcium signal could be detected.
doi:10.1371/journal.pone.0026309.g004

Figure 5. Lack of respiratory-rhythmic calcium signals in astrocytes of the pre-Bötzinger Complex. The figure shows an example of 2-
photon calcium imaging from identified astrocytes in the pre-Bötzinger Complex in the presence of bicuculline (20 mM) and strychnine (10 mM). EGFP
astrocytes (A) were labeled with Oregon Green BAPTA-1 AM (OGB-1 AM, B). (C) Cross correlation (CC) maps of OGB-1 AM fluorescence were
calculated for each image series between each pixel and a respiratory neuron (cell 7). In panel (D) the OGB-1 AM fluorescence signals from three
astrocytes (1–3) and four respiratory neurons (4–7) are depicted with the integrated network output (preBötC 8). Astrocytes show spontaneous
calcium oscillations that were not phase-locked to the neuronal activity. Additionally, as shown in panel (E) the cycle-averaged data of these
recording did not reveal any respiratory-rhythmic calcium signal in the astrocytes.
doi:10.1371/journal.pone.0026309.g005

PreBötC-Astrocytes
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Figure 6. Inhibition of astrocytic glutamate transport elicits robust calcium signals in astrocytes. Panels (A–D) show an example of
fluorometric calcium imaging during glutamate transport: Panel (A) identifies astrocytes, which were loaded with the calcium indicator Oregon Green
BAPTA-1 AM (panel B). (C) A blockade of astrocyte glutamate transporters by TFB–TBOA (1 mM) elicited calcium signals in astrocytes (green traces)
that were, as shown in (D), not phase-locked to preBötC neuronal activity (preBötC 8). In the second example (E–G) the effects of glutamate transport
inhibition are investigated after mGluR1-blockade. When the incubation of the mGluR1-antagonist CPCCOEt (200 mM) was started 10 min before the
application of TFB-TBOA the astrocytic calcium signals were suppressed. (G) Original OGB-1 AM calcium traces are shown from one respiratory
neuron (1) and three astrocytes (green traces). Panel (E) shows location of the corresponding EGFP-labeled astrocytes and panel (F) the distribution
of the OGB-1-AM labeling.
doi:10.1371/journal.pone.0026309.g006

PreBötC-Astrocytes
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In 5 additional experiments, slices were pretreated for 10 minutes

with an mGluR1 receptor antagonist (CPCOOEt, 200 mM) before

TFB-TBOA application. In all experiments, TFB-TBOA abolished

neuron discharge activity (see figure 6 G), although EGFP-labeled

astrocytes did not exhibit oscillatory calcium signals after blockade

of mGluR1 receptors and glutamate transporters in 3 slices. In a

fourth slice, one astrocyte exhibited a small calcium signal increase

(figure 6 E–G). In a fifth, 90% of the EGFP-expressing astrocytes

exhibited a calcium signal complex after application of CPCOOEt.

Discussion

Our general aim in this study was to identify key factors that

promote functional coupling between astrocytes and neurons in a

critical area of respiratory rhythm control in the brainstem. We

analyzed rhythmic membrane currents in astrocytes and investi-

gated functional coupling between preBötC astrocytes and the local

neuronal network. With 2-photon calcium imaging, we tested

whether neural network discharges trigger Ca2+ signals in

astrocytes. We measured the effects of glutamate uptake inhibition

and mGluR1 activation on astrocyte calcium signaling. Our

principal findings were: (1) Rhythmic inwardly directed currents

(Iresp,A) in astrocytes, heretofore not described in other studies, are

induced by potassium ion efflux and glutamate release from

preBötC inspiratory neurons discharging rhythmically with the

respiratory cycle. (2) Non-physiological high levels of glutamate are

required for the generation of astrocyte Ca2+ waves and therefore

coupling between astrocytes and the preBötC respiratory neuronal

network, and (3) astrocyte metabotropic glutamate receptors play a

role. (4) Glutamate uptake by astrocytes protects preBötC

respiratory neurons against excitotoxicity and discharge arrest.

Each of the main findings is discussed in the paragraphs that follow.

Origin and significance of rhythmic membrane currents
in preBötC astrocytes

Rhythmic, inwardly directed currents entrained to neuron

population discharges were detected in 10% of preBötC astrocytes

(figure 1 B,C). We can partially attribute the current fluctuations

(Iresp,A) recorded from astrocytes in the present investigation to

periodic elevations in [K+]e, produced by efflux from discharging

neurons. Rhythmic fluctuations in extracellular potassium activity

were previously measured in the ventral respiratory column and

ranged from 50 mM to 1.5 mM [4,5]. Such a [K+]e change results

in shifts of the potassium equilibrium potential at the astrocytes.

With preBötC astrocytes having a low membrane resistance [22]

one can measure these changes as an inward current in whole-cell

voltage-clamp experiments [27]. Previous studies from this

laboratory demonstrated that K-currents are large in astrocytes

of the ventrolateral respiratory column [22,23]. The resting

membrane potential of preBötC astrocytes is mainly regulated by

barium-sensitive Kir4.1 channels [14]. In the present investiga-

tion, Ba2+ resulted in a robust reduction of Iresp,A (figure 2), an

observation that is compatible with results from the laboratory,

showing a strong reduction of the [K+]e-induced inward current in

preBötC-astrocytes from Kir4.1 knock-out mice [14].

Another component of Iresp,A is mediated by electrogenic

glutamate uptake via GLT-1. Using the GLT-1 antagonist DHK

at a concentration that preserves the network activity intact, we

were able to block a significant amount of the astroglial Iresp,A.

Since astrocyte input resistance remains unchanged even

when neuron field discharges are greatly intensified by blocking

GABAergic synaptic inhibition (figure 1e), we can conclude that

the measured current in astrocytes do not involve currents through

ionotropic transmitter receptors.

Lack of coupling between astrocytes and the local
preBötC network during physiological activity

Astrocyte cytosolic calcium oscillations are thought to mediate a

bidirectional communication of astrocytes and neurons. Transmit-

ter molecules and modulators released from neurons have been

shown to elicit astroglial calcium signals in many parts of the central

nervous system [28,29] including the respiratory network [15,16].

Through intercellular coupling via gap junctions or by the astroglial

release of glutamate, and also ATP or D-serine, the calcium signal

can spread to other astrocytes or affect neuronal excitability. The

extent of coupling between astrocytes and between astrocytes and

neurons can be regenerative and widespread or limited. Further-

more coupling was shown to be bidirectional, with astrocytes

influencing neurons and vice versa [29,30].

In contrast to the results from other brain regions we found no

evidence to suggest that calcium dependent signaling directly from

astrocytes to the neighboring neuron occurs during physiological

network activity in the pre-Bötzinger Complex. Although we

observed spontaneous calcium oscillations in astrocytes of the

preBötC during constitutive activity, these calcium signals were

often restricted to one astrocyte. Even after blockade of synaptic

inhibition no global astrocytic calcium signal was detected, thus we

conclude that a spread of the calcium waves to neighboring cells is

not a common feature of preBötC astrocytes.

In our experiments there was also no detectable functional

coupling between individual astrocytes and the neural network in

the preBötC. Moreover, preBötC field potentials and single

neuron Ca2+ transients were rhythmic, but astrocyte Ca2+ signals

were arrhythmic and asynchronous (figure 5) further illustrating an

absence of coupling between astrocytes and neurons. However, it

seems that intercellular communication between single astrocytes

and the neural network is normally low in the preBötC, perhaps

limited by intracellular Ca2+ buffering that restricts its spread

through astrocyte gap junctions [30]. At the present state we

cannot provide a final explanation for this obvious discrepancy

and further experiments are necessary to search for the underlying

aspects of astroglial heterogeneity.

Functional relevance of mGluR-1 mediated calcium
signaling and extracellular glutamate levels

Astrocytes in the preBötC network are responsive to glutamate

[22] and Ca2+ transients can be evoked by application of glutamate

[15,23]. In this paper we were able to show that metabotropic

glutamate receptors coupled to the PLC/IP3 pathway play a role for

glutamate induced astroglial calcium signaling in the preBötC. Since

synchronous calcium signaling of astrocytes was only observed

after external application of agonists (figure 3) or blockade of glial

glutamate uptake (figure 6c) it appears that astrocyte Ca2+ signaling is

only induced if non-physiological high extracellular glutamate

concentrations are reached at the astrocyte. Such conditions occur

when the uptake of glutamate released by the local respiratory

neurons [31,32] is blocked pharmacologically (figure 6c) but might

also be present during hypoxia when extracellular glutamate levels

are significantly increased [33]. In the present study, blockade of

mGluR1-receptors prevents glutamate-induced Ca2+ signaling in

astrocytes after blockade of glutamate transporter but it does not

prevent the respiratory failure, indicating that the astroglial calcium

signal, although preceding it, is not causal for the network failure

(figure 6 g).

Thus we conclude that the most important role of astrocytes in

the preBötC is the control of extracellular levels of neurotransmit-

ters. As figure 6 shows, there are fatal consequences for respiratory

neuron viability and rhythm generation when glutamate uptake into

astrocytes is impeded.

PreBötC-Astrocytes
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Methods

Breeding of mice
Animals were bred in the animal facility of the University

Hospital Göttingen and treated in accordance with the guidelines

of the German Physiological Society as well as the regulations of

the State of Lower Saxony and the Federal Republic of Germany.

The institutional permit number is T19.08. We used transgenic

mice, TgN(hGFAP-EGFP) [34] and TgN(hGFAP-mRFP1) [35],

expressing green or red fluorescent proteins in astrocytes,

respectively. For some initial wide field imaging experiments,

NMRI (naval medical research institute) mice were used.

Slice preparations
Acute brainstem slices of mice from postnatal day 0–11 were

prepared as described previously [13]. Briefly, animals were

decapitated under diethyl ether anesthesia, the brainstem was

isolated and placed in ice-cooled, carbogen-saturated (95% O2,

5% CO2) artificial cerebrospinal fluid (aCSF: 118 mM NaCl, 3

KCl, 1.5 mM CaCl2, 1 mM MgCl2, 1 mM NaH2PO4, 25 mM

NaHCO3, and 30 mM D-glucose). The osmolarity was 325–

335 mosm/l and the pH 7.4. The isolated brainstem was glued

with cyanoacryl glue (Loctite Deutschland GmbH, Munich,

Germany) to an agar block. Transverse slices were cut from the

caudal medulla at the level of the pre-Bötzinger complex using a

vibroslicer (Leica VT 1000S, Leica Instruments, Nussloch,

Germany). For experiments, slices were transferred to the

recording chamber that was mounted on an upright microscope

(Axioscope FS, Zeiss Germany). Slices were kept submerged by a

nylon fiber grid [36] and continuously perfused with aCSF at a

flow rate of 5–10 ml/min.

Extracellular recording of preBötC neuron discharges in
the brainstem slice preparation

Slices, 600–650 mm thick, were cut from the region of the

medulla near the rostral portion of the inferior olive and stored for

at least 30 min at room temperature in carbogen-saturated aCSF.

After transferring to a recording chamber they were superfused

with carbogen-saturated 29–30uC aCSF, while the potassium

concentration of aCSF was elevated to 8 mM over a period of

30 minutes to maintain respiratory rhythmic activity. The

respiratory rhythm was recorded with extracellular microelec-

trodes filled with aCSF. Rhythmic population field potentials were

amplified (5000–20000 times), band-pass filtered (0.5–2.5 kHz),

rectified and integrated using a custom-made amplifier (Electronic

workshop, Physiology, Göttingen). Signals were digitized at

10 kHz with interface (ITC-16; InstruTECH/HEKA, Lambrecht)

using Axograph software 4 (Axon Instruments, Foster City, CA) or

Digidata 1322a interface using pClamp9 software (Molecular

Devices, Inc., Sunnyvale, CA), respectively. Digital data were

stored on personal computers for later off-line analysis.

Intracellular whole-cell recordings
Astrocytes were identified by their green fluorescence in the

epifluorescence illumination (excitation 488 nm; dichroic mirror

495 nm, Polychrome II, TILL Photonics, Gräfelfing, Germany) as

well as by their I-V relationship. Images of astrocytes were

acquired with CCD cameras controlled by ‘‘Imspector’’-software

(LaVision BioTec, Bielefeld, Germany) or Imaging Workbench

software (Indec Biosystem, Santa Clara, CA, USA).

Whole-cell voltage-clamp recordings from astrocytes were

obtained with a Multiclamp 700A amplifier (Axon Instruments,

Inc., Forster City, CA, USA). Patch-electrodes were fabricated

from borosilicate glass capillaries (Biomedical Instruments, Zülpich,

Germany) on a horizontal pipette-puller (Zeitz-Instrumente, Ger-

many) and filled with (in mM) 125 K-Gluconate, 1 CaCl2, 2 MgCl2,

4 Na2ATP, 10 EGTA, 10 HEPES (pH adjusted to 7.2 with KOH).

Electrode resistance ranged from 2 to 6 MV. Astrocytic membrane

currents were sampled at 10 kHz, low-pass filtered at 0.6–1 kHz. The

amplifier was controlled by Multiclamp 700A Commander software

and Clampex/pClamp 9 (Molecular Devices, Inc., Sunnyvale, CA).

For some early experiments we used a L/M-PCA patch clamp

amplifier (E.S.F. electronic., Friedland Germany) connected to an

interface (ITC-16; Instrutech/HEKA, Lambrecht) that was con-

trolled by ‘‘Pulse’’ software (HEKA, Lambrecht, Germany).

For single-cell calcium measurement of identified astrocytes,

electrodes were filled with an intracellular solution containing (in

mM): 144 KCl, 0.4 Na-GTP, 2 MgCl2, 4 Mg-ATP, 10 HEPES

and 100-200 mM Oregon Green BAPTA-1 (n = 5), Fluo 8L (n = 4)

and Calcium Orange (n = 6), respectively.

Cycle triggered averaging of whole-cell currents
To facilitate the detection of small currents in astrocytes we used

a MatlabH routine (Mathworks Inc., Natick, MA, USA) that

processed membrane current recordings from consecutive respi-

ratory cycles. Peaks of the rhythmic integrated field potential

bursts were used to align whole-cell-current for averaging. Whole-

cell currents from 5 s before to 15 s after the peak of a respiratory

burst were averaged from at least 6 respiratory cycles. Averaged

peak currents were analyzed using IGOR Pro (WaveMetrics,

Oregon, USA). Mean 6 SEM values were calculated with

SigmaPlot software (Systat Software GmbH, Erkrath, Germany).

Cell loading for calcium imaging
Multi-cell bolus loading was performed as described in detail

earlier [37]. Briefly, 50 mg Oregon Green BAPTA-1 AM (OGB-1,

Molecular Probes, Eugene, OR) was dissolved in DMSO (5 ml)

containing 20% Pluronic F-127 (Molecular Probes, Karlsruhe,

Germany), and stored at -20uC in 0.5 ml aliquots until used. For

injection, one aliquot of this stock solution was dissolved in 5–12 ml

of an extracellular solution containing (in mM) 150 NaCl, 2.5 KCl,

10 HEPES (pH adjusted to 7.4). At a final concentration between

0.3 and 0.8 mM a small amount of the OGB-1 AM solution was

injected (2 bar; 2 min; 50–100 mm below the slice surface) into the

preBötC using a patch pipette [37] followed by an incubation

period of 30 min to allow for sufficient dye loading.

Calcium imaging using multifocal 2-photon excitation
microscopy

For 2-photon calcium imaging experiments we used multifocal

(16 or 32 foci) excitation. The principle arrangement of our

microscope (TriMScope, LaVision BioTec, Bielefeld, Germany)

was described earlier [37]. Here we used 406 (0.8 NA) or 206 (1.0

NA) water immersion objectives (Zeiss; Oberkochen, Germany),

and CCD-cameras (Ixon 885 or Clara; Andor Technology,

Belfast, Northern Ireland, or PCO; Sensicam QE; Kehlheim,

Germany).

Calcium signals in hGFAP-EGFP expressing astrocytes were

detected and analyzed using OGB-1 AM. OGB-1 fluorescence

was detected at 800 nm excitation wavelength through a YFP-Filter

(BP 511–551 nm), whereas EGFP-fluorescence was detected through

a CFP-filter (475–500 nm) with 900 nm excitation wavelength [37].

Optical filters were obtained from AHF Analysentechnik AG

(Tübingen, Germany). Astrocytes expressing mRFP1 were identified

through 645/75 nm band pass filters by 2-Photon excitation with

720 nm [38] and analyzed using OGB-1 AM (excitation and

emission as above).
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Image processing
For offline analysis, ‘‘Imspector’’-images were exported to TIFF-

format and processed by MATLAB (Mathworks Inc., Natick, MA,

USA) or with ImageJ software (http://rsb.info.nih.gov/ij/) using

some macros from the Wright Cell Imaging Facility (http://

www.uhnres.utoronto.ca/facilities/wcif/download.php). To corre-

late field potential recordings with optical signals, trigger pulses for

each image were recorded simultaneously with the electrical signals

using pClamp 9 software and Digidata 1322a (Molecular Devices,

Inc., Sunnyvale, CA).

Somatic calcium changes were further analyzed after using the

ImageJ macro for background subtraction (‘‘rolling ball’’ algo-

rithm; radius 30–50 pixel). Fluorescence changes of individual cells

were then determined using the ‘‘multi measure’’ regions of

interest (ROI)-macro from ImageJ. Average ROI-intensities of

individual cell somata were expressed as relative changes (DF/Fo)

using a custom made IGOR pro (WaveMetrics, Lake Oswego,

OR) macro.

To increase signal to noise ratio of rhythmic signals, the image

series from consecutive respiratory cycles were averaged using an

algorithm for cycle triggered averaging that was implemented in a

MATLAB routine as described earlier [37]: Briefly, a region of

interest (ROI) was set on an inspiratory neuron. Peaks of calcium

transients associated with the inspiratory activity were detected

within the ROI. Using the timing of the inspiratory peaks as the

reference, optical signals of frames preceding and following that

peak were averaged (5–20 times). Additionally, the cross-

correlations (CC) between each pixel and the ROI was calculated

(For details see [37]).

Drugs
Electrolytes for aCSF (see above) were purchased from Sigma-

Aldrich (Taufkirchen, Germany) and Merck chemicals (Darm-

stadt, Germany). Drugs were stored at 220uC as stock solutions in

the following concentrations: Barium chloride (BaCl2, 100 mM in

H2O), bicuculline (10 mM in H2O) and strychnine (10 mM in

H2O) were purchased from Sigma-Aldrich, while dihydrokinate

(DHK; 100 mM in 1N NaOH), DL-threo-b-Benzyloxyaspartic

acid (DL-TBOA; 100 mM in DMSO), (3S)-3-[[3-[[4-(Trifluor-

omethyl)benzoyl]amino]phenyl]methoxy]-L-aspartic acid (TFB-

TBOA; 5 mM in DMSO), 7-(Hydroxyimino)cyclopropa[b]chro-

men-1a-carboxylate ethyl ester (CPCCOEt; 25 mM in DMSO),

(RS)-3,5- Dihydroxyphenylglycine (DHPG, 10 mM in 1N NaoH)

tetrodotoxin (TTX, 1 mM in acetic acid), 6,7-Dinitroquinoxaline-

2,3-dione (DNQX, 10 mM in DMSO) were ordered from Tocris

bioscience (Bristol, UK)) and L-Quisqualic acid (20 mM in H2O

from Alexis biochemical/Enzo Life Sciences (Lörrach, Germany).

For the experiments, stock solutions were diluted in aCSF to reach

the final concentrations as indicated in the text. Drugs were

applied by changing the superfusion of the slice.

Immunohistochemistry
Brain tissue of four P5 mice was removed and fixed in 4%

paraformaldehyde in 100 mM phosphate buffer. For longer

storage tissue was stored at 4uC in PBS, 0.01% sodium azide.

Immunohistochemical labeling was performed on free-floating

vibratome (Leica VT 1000S, Leica Instruments, Nussloch,

Germany) slices at room temperature. Brain tissue slices, 40–

50 mm thick, were permeabilized for 2 h in 0.1% Triton X-100

and 10% goat serum in PBS at room temperature and incubated

over night at 4uC in PBS with primary anti-mGluR1a antibody

(rabbit polyclonal, 1:250, Abcam, Cambridge, UK). Slices were

washed 3 times in PBS for 10 min and incubated with Cy3-

conjugated secondary antibodies (1:500 and 1:1000, Dianova,

Hamburg, Germany) for 2 h at room temperature. After washing

in PBS, slices were mounted on object slides with Immu-Mount

(Shandon, Pittsburgh, PA, USA). Digital images were obtained

with confocal laser-scanning microscopy (Zeiss LSM 510Meta,

Axiovert 200M, Zeiss, Oberkochen, Germany). Images were

stored and processed with the Zeiss LSM software or ImageJ.
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