Computer-aided design, synthesis and evaluation of potential anti-HCV agents

A thesis submitted in accordance with the conditions governing candidates for the degree of

Philosophiae Doctor in Cardiff University

Marcella Bassetto

Supervisor: Dr. Andrea Brancale

October 2013
Declaration

This work has not previously been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award.

Signed: .. (candidate)
Date: ..

STATEMENT 1

This thesis is being submitted in partial fulfilment of the requirement for the degree of PhD.

Signed: .. (candidate)
Date: ..

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. The views expressed are my own.

Signed: .. (candidate)
Date: ..

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loans, and for the title and summary to be made available to outside organisations.

Signed: .. (candidate)
Date: ..
Acknowledgements

My greatest thanks goes to Andrea, who gave me the opportunity of this PhD: the things I learnt and the experiences I made during the last three years are invaluable, both from a professional and a personal point of view, and I would like to express all my gratitude to the person who made them possible. I am deeply thankful for his endless patience with me, for his trust, constant guidance and support, which I probably never said thanks for, but for sure they did not go unnoticed.

A million thanks to my oldest and dearest friends Anita, Ange, Stefi and Miriam, for still being my friends after all these years, for understanding everything always and for forgiving all my strange behaviours.

One of the reasons why this experience was of immense value is that I met two beautiful new friends, who shine among all the other people for their simple being themselves: a huge thank you to Gilda, for her kindness, brightness and funny sense of humor, and to my favourite labmate ever, la mia cara vecchia Signora Michela, for her absolute honesty, straightforwardness and big heart, for being such a lovely person, and for listening to my music.

I would like to express all my gratitude and appreciation to my beloved mum and dad: I will never thank them enough for everything they have done and always do for me, for their advice, love and support. A special mention to my lovely sister Benedetta: she is my best friend and my personal counsellor, and the only one who manages to keep me in contact with reality when I get lost in the maze of my thoughts.

I am deeply thankful to Salvo: he is a saint for bearing with me, and there are no words to thank him properly for being so sweet and patient, for listening to my complaints and cries, for cooling me down when I get upset, for being the best housemate (and housekeeper), for all the little and big things he does and for everything he is.

Finally, the biggest thanks to my special women, my grandmother Lina and my auntie Gabriella: they are my mentors, my guides, my models of strength, wisdom and smartness. Thanks for being with me always: when I feel lost and I do not know what to do, I think about what they would do, and suddenly everything becomes clear.
Hepatitis C virus (HCV) is a major cause of chronic liver disease, leading to hepatic steatosis, fibrosis, cirrhosis and hepatocellular carcinoma. A vaccine is currently not available, while the standard of care is effective in only 50% of treated patients. The first specific anti-HCV drugs have been recently approved, and new classes of targeted agents are under clinical trials/investigation. Nevertheless, improved treatment strategies are needed, in order to bypass the rapid emergence of resistance.

All the viral non-structural proteins are a possible target for the identification of novel and selective antivirals. Among them, the NS3 helicase is still underexploited, with no known inhibitor under pre-clinical or clinical development. This enzyme plays a crucial role in the virus life cycle: it catalyses the separation of double-stranded RNA strands, which is necessary for genome amplification and translation. Due to its essential function, the NS3 helicase was chosen as a target for the identification of new, specific anti-HCV compounds.

Different computer-aided techniques were employed to identify potential small-molecule inhibitors of the enzyme. Two structure-based virtual screenings of commercially available compounds were performed on the main nucleic acid binding site. A series of candidate inhibitors was evaluated in the HCV replicon assay, yielding two primary hits with low µM activity.

Secondly, the model of the one known inhibitor co-crystallised with the enzyme was used as a starting point for a shape-comparison screening of small molecule libraries. A new series of compounds was selected and evaluated for anti-HCV activity, and one of them was found to inhibit the viral replication at a low µM concentration.

Several new derivatives of the initial hits were synthesised, belonging to four main structural families: bis-aromatic piperazine derivatives, symmetrical phenylendiamine compounds, differently substituted thieno-pyrimidines, and triphenyl-pyrrolone analogues.

Inhibition of HCV replication in the replicon assay was evaluated for the new compounds prepared and several structures showed a range of activity from low-µM to nM.
Contents

Chapter 1: Introduction

1.1 Hepatitis C virus 2
 1.1.1 HCV genome organisation 3
 1.1.2 Viral proteins 4
 1.1.3 Viral life cycle 5
 1.1.4 Current treatment 7
 1.1.5 New treatments under development 9
 1.1.6 Alternative strategies 12
 1.1.7 Experimental techniques 12

1.2 HCV NS3 helicase 14
 1.2.1 Roles in HCV replication 15
 1.2.2 Structure, motifs and binding clefts 16
 1.2.3 Mechanism of action 17
 1.2.4 HCV helicase inhibitors 20
 1.2.5 HCV helicase assays 27

1.3 Molecular modelling 29
 1.3.1 Molecular mechanics: empirical force field models 29
 1.3.2 Energy minimisation 30
 1.3.3 Conformational analysis 31
 1.3.4 Database searching 32
 1.3.5 3D Pharmacophores and conformational databases 32
 1.3.6 Molecular docking 33
 1.3.7 Scoring functions 34
 1.3.8 Drug discovery strategies 35

1.4 Project aims 37

1.5 References 38
Chapter 2: Piperazines

2.1 Structure-based Virtual Screening 52
2.1.1 Database conformational search and pharmacophoric filter 53
2.1.2 Molecular docking and consensus scoring 54

2.2 Synthesis of symmetrical piperazines 57
2.2.1 N,N'-(3,3'-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))diaryl sulfonamides 57
2.2.2 N,N'-(2,2'-(Piperazine-1,4-diyl)bis(ethane-2,1-diyl)) diaryl sulfonamides 59
2.2.3 N,N'-(3,3'-(Piperazine-1,4-diyl)bis(3-oxopropane-3,1-diyl))diaryl sulfonamides 60
2.2.4 N-(3-(Piperidin-1-yl)propyl)arylsulfonamides 62
2.2.5 N,N'-(4,4'-(Piperazine-1,4-diyl)bis(butane-4,1-diyl))bis(4 chlorobenzenesulfonamide) 63
2.2.6 Biological evaluation in the HCV replicon and cytostatic assay 67
2.2.7 Design of a new series of symmetrical derivatives 70
2.2.8 N,N'-(3,3'-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))diaryl sulfonamides 71
2.2.9 N,N'-(2,2'-(Piperazine-1,4-diyl)bis(ethane-2,1-diyl)diquinoline-8-sulfonamide) 74
2.2.10 N,N'-(3,3'-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))bis(4-chloro-benzamide) 74
2.2.11 N,N'-(2,2'-(1,4-Phenylenebis(azanediyl))bis(ethane-2,1-diyl))bis (4-chlorobenzenesulfonamide) 75
2.2.12 Biological evaluation 77

2.3 Synthesis of unsymmetrical piperazines 80
2.3.1 Unsymmetrical N-{3-[4-(3-arylsulfonlamino-propyl)-piperazin-1-yl]-propyl}-arylsulfonamides 80
2.3.2 Unsymmetrical N-(3-(4-(2-arylsulfonamido)ethyl) piperazin-1-yl)propylaryl sulfonamides 83
2.3.3 Unsymmetrical N-(3-(4-(arylsulfonamido)propanoyl)
Chapter 3: p-Phenylendiamines

3.1 Ligand-based optimisation of compound 12

3.1.1 Flexible alignment of compound 12 and known symmetrical inhibitors

3.1.2 Design of new derivatives of compound 12

3.2 Synthesis of phenylendiamine- and ethylendiamine-based structures

3.2.1 N,N'-Bis-(4-arylsulfonylamino-phenyl)-terephthalamides

3.2.2 N,N'-Bis-(4-arylsulfonylamino-phenyl)-fumaramides

3.2.3 N,N'-Bis-(4-(arylsulfonamido)phenyl)-succinamides

3.2.4 N,N'-Bis-(2-(4-chlorophenylsulfonamido)ethyl)-succinamide

3.2.5 Biological evaluation

3.2.6 Synthesis of a second series of N,N'-bis-(4-(arylsulfonamido)phenyl)-succinamides

3.2.7 Biological evaluation of compounds 182-186

3.3 Conclusions

3.4 References

Chapter 4: Thienopyrimidines

4.1 Structure-based virtual screening on the enzyme open conformation

4.2 Synthesis of tetrahydrobenzo[b]thienopyrimidines
4.2.1 (5,6,7,8-Tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazones 118
4.2.2 Biological evaluation of compounds 187, 215-234 122
4.2.3 Design of a second series of 5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d] pyrimidin-4-yl-hydrazones 124
4.2.4 N’-(5,6,7,8-Tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-sulfonyl-hydrazides 126
4.2.5 N’-(5,6,7,8-Tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazides 128
4.2.6 Biological evaluation 130
4.2.7 Design and synthesis of heteroaromatic-hydrazones and hydrazides 132
4.2.8 Biological evaluation 136
4.2.9 Design and synthesis of N-aryl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amines 137
4.2.10 Biological evaluation 140

4.3 Synthesis of thieno[2,3-d]pyrimidines 141
4.3.1 N-(1-Aryl-ethylidene)-N’-(thieno[2,3-d]pyrimidin-4-yl)-hydrazines 143
4.3.2 N’-(Thieno[2,3-d]pyrimidin-4-yl)arylcarbohydrazides 143
4.3.3 Biological evaluation 144

4.4 Synthesis of cyclopentane[b]thienopyrimidines 146
4.4.1 N-(2,3-Dihydro-1H-8-thia-5,7-diaza-cyclopenta[4]inden-4-yl)-N’-(1-phenyl-ethylidene)-hydrazines 147
4.4.2 N’-(6,7-Dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-yl)arylcarbo hydrazides 148
4.4.3 Biological evaluation 149

4.5 Synthesis of benzo[b]thienopyrimidines 151
4.5.1 4-(2-(1-Arylethylidene)hydrazinyl)benzo[4,5]thieno[2,3-d]pyrimidines 153
4.5.2 N’-(Benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)arylcarbohydrazides 153
4.5.3 Biological evaluation 154

4.6 Synthesis of dimethyl[\textit{b}]thienopyrimidines and 6-ethyl-5-methylthieno[2,3-\textit{d}]pyrimidines 156
4.6.1 4-(2-(1-Arylethylidene)hydrazinyl)-5,6-dimethylthieno[2,3-d]pyrimidines and 2-(1-(2-(6-ethyl-5-methylthieno[2,3-d]pyrimidin-4-yl)hydrazone) ethyl)benzene-1,4-diol 157
4.6.2 \textit{N’}-(5,6-Dimethylthieno[2,3-d]pyrimidin-4-yl)pyrazine-2-carbohydrazide 157
4.6.3 Biological evaluation 158

4.7 Synthesis of 6-chloro-5-methyl-thieno[2,3-\textit{d}]pyrimidines 159
4.7.1 6-Chloro-5-methyl-4-(2-(1-arylethylidene)hydrazinyl)thieno[2,3-d] pyrimidines 161
4.7.2 \textit{N’}-(6-Chloro-5-methylthieno[2,3-d]pyrimidin-4-yl) arylcarbohydrazides 161
4.7.3 Biological evaluation 162

4.8 Synthesis of 6-methoxy-5-methyl-thieno[2,3-\textit{d}]pyrimidines 163
4.8.1 6-Methoxy-5-methyl-4-(2-(1-arylethylidene)hydrazinyl)thieno[2,3-d] pyrimidines 164
4.8.2 \textit{N’}-(6-Methoxy-5-methylthieno[2,3-d]pyrimidin-4-yl) arylhydrazides 164
4.8.3 Biological evaluation 165

4.9 Synthesis of ethyl-5-methyl-thieno[2,3-\textit{d}]pyrimidine-6-carboxylates 166
4.9.1 Ethyl 5-methyl-4-(2-(1-phenylethylidene)hydrazinyl)thieno[2,3-d]pyrimidine-6-carboxylates 168
4.9.2 Ethyl 5-methyl-4-(2-picolinoylhydrazinyl)thieno[2,3-d]pyrimidine-6-carboxylate 169
4.9.3 Biological evaluation 170

pyrimidines and 7-methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidines

4.10.1 4-(2-(1-Phenylethylidene)hydrazinyl)[4,5]thieno[2,3-d]pyrimidines 173
4.10.2 [4,5]Thieno[2,3-d]pyrimidin-4-yl) arylhydrazides 174
4.10.3 Biological evaluation 175

4.11 Synthesis of 5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidines 176
4.11.1 4-(2-(1-Phenylethylidene)hydrazinyl)-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidines 179
4.11.2 Biological evaluation 180

4.12 Synthesis of 2-methyl-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidines 181
4.12.1 2-Methyl-4-(2-(1-arylethylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5] thieno[2,3-d]pyrimidines 182
4.12.2 N'-{(2-Methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)aryl hydrazides 182
4.12.3 Biological evaluation 183

4.13 Synthesis of 6-ethylthieno[2,3-d]pyrimidines 184
4.13.1 6-Ethyl-4-(2-(1-arylethylidene)hydrazinyl)thieno[2,3-d]pyrimidines 186
4.13.2 N'-{(6-Ethylthieno[2,3-d]pyrimidin-4-yl)-2-arylcarbohydrazides 187
4.13.3 4-(2-(Thiophen-2-yl/methylene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5] thieno[2,3-d]pyrimidine 187
4.13.4 Biological evaluation 188

4.14 Conclusions 190

4.15 References 193
Chapter 5: Pyrrolones

5.1 Ligand-based Virtual Screening

5.1.1 Conformational search for ROCS query edition 200
5.1.2 Shape complementarity search of the SPECS database 202

5.2 Synthesis of 1-aryl-3-arylidene-5-phenyl-1H-pyrrol-2(3H)-ones 203

5.2.1 3-Arylidene-5-phenylfuran-2(3H)-ones 204
5.5.2 1-Aryl-3-arylidene-5-phenyl-1H-pyrrol-2(3H)-ones 205
5.2.3 Biological evaluation 208

5.3 Conclusions 209

5.4 References 210

Conclusions 212

Chapter 6: Experimental

6.1 General information 217

6.1.1 Molecular Modelling 217

6.2 Synthesis of piperazine structures 219

6.2.1 General procedures 1-11 219
6.2.2 Arylsulfonyl chlorides 225
6.2.3 N-(3-Bromopropyl)arylsulfonamides 227
6.2.4 N-(2-Bromoethyl)arylsulfonamides 238
6.2.5 3-Arylsulfonylamino propionic acids 244
6.2.6 N,N'-(3,3'-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))diaryl sulfonamides 250
6.2.7 N,N'-(2,2'-(Piperazine-1,4-diyl)bis(ethane-2,1-diyl))diaryl sulfonamides 264
6.2.8 N,N'-(3,3'-(Piperazine-1,4-diyl)bis(3-oxopropane-3,1-diyl))diaryl sulfonamides 271
6.2.9 \(N\)-(3-(Piperidin-1-yl)propyl)arylsulfonamides
6.2.10 \(N,N'\)-(4,4'-(Piperazine-1,4-diyl)bis(butane-4,1-diyl))bis(4-chlorobenzene-sulfonamide)
6.2.11 \(N,N'\)-(3,3'-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))bis(4-chlorobenzamide)
6.2.12 \(N,N'\)-(2,2'-(1,4-Phenylenebis(azanediyl))bis(ethane-2,1-diyl))bis(4-chlorobenzene-sulfonamide)
6.2.13 \(N\)-(3-Piperazin-1-yl-propyl)arylsulfonamides
6.2.14 \(N\)-(3-(4-(3-Arylsulfonylamino-propyl)-piperazin-1-yl)-propyl)aryl sulfonamides
6.2.15 \(N\)-(3-(4-(2-(Arylsulfonamido)ethyl)piperazin-1-yl)propyl)arylsulfonamides
6.2.16 \(N\)-(3-(4-(3-(Arylsulfonamido)propanoyl)piperazin-1-yl)-3-oxopropyl)aryl sulfonamides

6.3 Synthesis of \(p\)-phenylenediamine and ethylenediamine structures
6.3.1 General procedures 12-15
6.3.2 \(N\)-(4-Amino-phenyl)arylsulfonamides
6.3.3 \(N\)-(2-Aminoethyl)-4-chlorobenzenesulfonamide
6.3.4 \(N,N'\)-Bis-(4-arylsulfonylamino-phenyl)-terephthalamides
6.3.5 \(N,N'\)-Bis-(4-arylsulfonylamino-phenyl)-fumaramides
6.3.6 \(N,N'\)-Bis-(4-(arylsulfonamido)phenyl)-succinamides
6.3.7 \(N,N'\)-Bis-(2-(4-chlorophenylsulfonamido)ethyl)-succinamide

6.4 Synthesis of thienopyrimidine structures
6.4.1 General procedures 16-23
6.4.2 Tetrahydrobenzo[\(b\)]thienopyrimidines
6.4.3 Thieno[2,3-\(d\)]pyrimidines
6.4.4 Cyclopentane[\(b\)]thienopyrimidines
6.4.5 Benzo[\(b\)]thienopyrimidines
6.4.6 Dimethyl[\(b\)]thienopyrimidines
6.4.7 6-Ethyl-5-methylthieno[2,3-\(d\)]pyrimidines
6.4.8 6-Chloro-5-methyl-thieno[2,3-\(d\)]pyrimidines
6.4.9 6-Methoxy-5-methyl-thieno[2,3-\(d\)]pyrimidines
6.4.10 Ethyl-5-methyl-thieno[2,3-\(d\)]pyrimidine-6-carboxylates 454
6.4.11 6,7,8,9-Tetrahydro-3\(H\)-cyclohepta[4,5]thieno[2,3-\(d\)]pyrimidines 460
6.4.12 5,6-Dihydro-3\(H\)-pyrano[4',3':4,5]thieno [2,3-\(d\)]pyrimidines 467
6.4.13 7-Methyl-5,6,7,8-Tetrahydropyrido [4',3':4,5]thieno[2,3-\(d\)]pyrimidines 474
6.4.14 5,6,7,8-Tetrahydropyrido[4',3':4,5]thieno [2,3-\(d\)]pyrimidines 481
6.4.15 2-Methyl-5,6,7,8-tetrahydro[1]benzothieno[2,3-\(d\)]pyrimidines 487
6.4.16 6-Ethylthieno[2,3-\(d\)]pyrimidines 493

6.5 **Synthesis of pyrrolone structures** 501
6.5.1 General procedures 24-25 501
6.5.2 Ethyl-4-formylbenzoate 502
6.5.3 3-Arylidene-5-phenylfuran-2(3\(H\))-ones 503
6.5.4 1-Aryl-3-arylidene-5-phenyl-1\(H\)-pyrrol-2(3\(H\))-ones 506

6.6 **References** 514

Appendix I

Structure and biological evaluation for purchased compounds 523
Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>Arg</td>
<td>Arginine</td>
</tr>
<tr>
<td>Asn</td>
<td>Asparagine</td>
</tr>
<tr>
<td>Asp</td>
<td>Aspartic acid</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BOC</td>
<td>tert-butyloxycarbonyl</td>
</tr>
<tr>
<td>CC<sub>50</sub></td>
<td>Cytotoxic concentration to observe 50% adverse effect</td>
</tr>
<tr>
<td>CDK</td>
<td>Cyclin-dependent kinase</td>
</tr>
<tr>
<td>CLDN1</td>
<td>Claudin-1</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DIPEA</td>
<td>N,N-Diisopropylethylamine</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>Ds</td>
<td>Double-stranded</td>
</tr>
<tr>
<td>EC<sub>50</sub></td>
<td>Effective concentration to observe 50% activity</td>
</tr>
<tr>
<td>EC<sub>90</sub></td>
<td>Effective concentration to observe 90% activity</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>Glu</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>Gly</td>
<td>Glycine</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine triphosphate</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>HCC</td>
<td>Hepatocellular carcinoma</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C virus</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobases</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>Inhibitory concentration to observe 50% inhibition</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IRES</td>
<td>Internal ribosomal entry site</td>
</tr>
<tr>
<td>LDL-R</td>
<td>Low density lipoprotein receptor</td>
</tr>
<tr>
<td>Lys</td>
<td>Lysine</td>
</tr>
<tr>
<td>MOE</td>
<td>Molecular operating environment</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectroscopy</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NS</td>
<td>Non-structural protein</td>
</tr>
<tr>
<td>OCLN</td>
<td>Occludin</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein Data Bank</td>
</tr>
<tr>
<td>pegIFN</td>
<td>Pegylated interferon</td>
</tr>
<tr>
<td>Phe</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>Rb</td>
<td>Retinoblastoma tumour suppressor protein</td>
</tr>
<tr>
<td>RdRp</td>
<td>RNA-dependent RNA polymerase</td>
</tr>
<tr>
<td>r.t.</td>
<td>Room temperature</td>
</tr>
<tr>
<td>Rf</td>
<td>Retention factor</td>
</tr>
<tr>
<td>RMSD</td>
<td>Root-mean-square deviation</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure-activity relationship</td>
</tr>
<tr>
<td>SBVS</td>
<td>Structure-Based Virtual Screening</td>
</tr>
<tr>
<td>SF2</td>
<td>Super-family 2</td>
</tr>
<tr>
<td>SI</td>
<td>Selectivity index</td>
</tr>
<tr>
<td>SR-BI</td>
<td>Human scavenger receptor class B type I</td>
</tr>
<tr>
<td>Ss</td>
<td>Single-stranded</td>
</tr>
<tr>
<td>TBTU</td>
<td>O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>Thr</td>
<td>Threonine</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>Trp</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
</tr>
<tr>
<td>Val</td>
<td>Valine</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction
1.1 Hepatitis C virus

Hepatitis C virus (HCV) is one of the major causes of chronic liver disease, and affects approximately 170 million people worldwide.\(^1\)

This blood-borne infection becomes chronic in 60-85% of patients and leads to the development of hepatic steatosis, fibrosis, cirrhosis and hepatocellular carcinoma.\(^2-3\)

The virus tropism involves both hepatic and lymphatic systems, and chronic infection is therefore associated also to extrahepatic diseases and malignancies such as cryoglobulinemia, lymphoma and thyroid cancer.\(^4\)

![HCV prevalence map](image)

Figure 1.1: HCV prevalence\(^5\)

Patients are generally asymptomatic before development of cirrhosis; the infection is often underdiagnosed, leading people unaware of their disease to spread the virus by body fluids, and causing the loss of treatment opportunities.\(^4\)

HCV modifies the intracellular environment to promote its replication and long-term persistence within the liver. Moreover, it has developed a multi-factorial immune evasion capacity, characterised by disruption of signalling pathways that control innate antiviral responses, evasion of IFN-mediated responses, retardation and impairment of
T-cell responses.6

A vaccine against the virus is currently not available and treatment options are still limited. The standard of care is a combination of pegylated interferon (pegIFN) and ribavirin, a therapy that is not specific for HCV and efficient in 50\% of treated patients, with many associated side effects.7 In May 2011 the FDA approved the use of the first two specific HCV NS3/NS4A inhibitors, telaprevir and boceprevir, to treat patients not responding to the standard of care, in association with interferon and ribavirin.8

Even if new classes of specific targeted antiviral agents, whose action is mainly directed against the viral non-structural proteins NS5B polymerase and NS3/4A protease, have entered clinical trials, there is still need for improved treatment strategies, which might lead to the cure of all infected patients with an equal effectiveness against all HCV genotypes. A reason for this requirement is the high error rate of the viral RNA-dependent RNA polymerase, which leads to rapid development of drug-resistant viral strains in response to new antiviral administration.9

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{HCV genotype distribution}
\end{figure}

1.1.1 HCV genome organisation

HCV is an enveloped RNA virus that belongs to the \textit{Flaviviridae} family, and is the unique member of the \textit{Hepacivirus} genus.10 The viral single-stranded, positive-sense, 9.6 kb RNA contains an open reading frame (ORF) that encodes a unique polyprotein precursor of about 3000 residues, and is flanked by an untranslated region (UTR) at
both 5’ and 3’ termini. The polyprotein is translated under the control of an internal ribosomal entry site (IRES) within the 5’-UTR, and is subsequently cleaved by cellular and viral proteases into four structural proteins (core, E1, E2 and p7) and six non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A and NS5B).

HCV genome is characterised by a high level of genetic variability: it is divided into eleven main genotypes that differ by 31-34% of nucleotide sequences. Moreover, due to the high error rate of the RNA-dependent RNA polymerase (RdRp) function carried by the NS5B protein, HCV is present in a same infected individual as a population of different but closely related variants identified as quasispecies.

1.1.2 Viral proteins

The four structural proteins, cleaved from the N-terminus of the polyproteic precursor, are the core protein, the E1 and E2 envelope proteins, and a small hydrophobic polypeptide, p7. The core protein is believed to form the viral nucleocapsid and shows a high level of conservation among different HCV strains. The E1 and E2 proteins are necessary components for viral entry, while the p7 hydrophobic polypeptide is essential for infectious virions production in vivo. The six non-structural proteins (NS) are responsible for polyprotein processing, viral
RNA replication and production of infectious virions; they form a multicomponent RNA replication complex that carries out its functions within virus-induced modified subdomains of the ER, referred to as membranous web.19

The NS2 protein is an auto-protease which catalyses the cleavage of the polyproteic precursor on the level of the NS2/NS3.20

The NS3-4A complex is a bifunctional molecule; the N-terminal region is a serine protease, non-covalently bound to the NS4A cofactor, which processes the non-structural proteins.21 The C-terminal portion of NS3 shows a helicase-ATPase domain, whose main function is to unwind double-stranded RNA substrates in the direction 3'-to 5'.22

NS4B is responsible for membrane association: its function leads to the formation of a specialised membrane compartment, the membranous web, where viral RNA replication is believed to take place.19,23

NS5A is a phosphoprotein whose function is not completely clear, but it is believed to influence replication efficiency.24

The NS5B protein shows a conserved sequence motif that characterises viral RNA-dependent RNA polymerases.25

\section*{1.1.3 Viral life cycle}

Infectious HCV particles circulate in the host serum in association with low-density lipoproteins and very-low-density lipoproteins, forming the so-called lipoviroparticles.26

Putative HCV receptors have been identified in CD81, SR-BI, the LDL receptor (LDL-R), claudin-1 (CLDN1) and occludin (OCLN), none of which characterises exclusively liver cells.27
After receptor-mediated endocytosis, fusion and uncoating events lead to the release of the viral RNA into the host cell cytoplasm. The viral genome undergoes then translation and replication processes by the non-structural protein replication complex.28-29

The uncapped viral RNA molecules are translated by a cap-independent IRES-mediated process: the translational product of HCV genome is a large polyprotein precursor processed by cellular and viral proteases into the mature viral proteins.30

The structural proteins are processed by host peptidases on the level of the junctions core/E1, E1/E2, E2/p7, p7/NS2.31 HCV non-structural proteins are processed into their mature forms by two viral proteases: NS2 cystein protease catalyses the cleavage between NS2 and NS3, while the remaining junctions NS3/4A, NS5A/5B, NS4A/4B and NS4B/5B are cleaved by the NS3 serine protease.32

HCV genome replication begins with the synthesis of a complementary negative-strand RNA using the positive-strand genomic RNA as a template. The negative-strand RNA is subsequently used as template for the production and amplification of positive-strand RNA. Both these steps are catalysed by the NS5B RdRp.29
Mature HCV virions consist of a nucleocapsid surrounded by an outer envelope formed by a lipid membrane and envelope proteins. Nucleocapsid assembly requires oligomerisation of the capsid protein and encapsidation of viral genomic RNA. Once the nucleocapsid is formed in the cell cytoplasm, it acquires an envelope by budding into the ER lumen, and is released by the Golgi apparatus through exocytosis.

1.1.4 Current treatment

The standard of care to treat chronic HCV infection is a combination of pegylated interferon alpha (peg-IFN-α) and ribavirin, both non-specific for HCV. In addition to this treatment, two selective inhibitors of NS3/4A protease, telaprevir and boceprevir, have been approved by the FDA in May 2011 for use in combination with peg-IFN and ribavirin.

Interferon alpha is a natural cytokine produced by leucocytes that allows recognition of viral antigens by the immune system and activates natural killer cells and macrophages. This protein is used as a broad-spectrum antiviral to boost the host immune system against pathogen organisms. Many adverse effects are related to its administration, including depression, autoimmune diseases, nausea, fever, chills, headache, muscle pain, leukopenia and thrombocytopenia.

Ribavirin (figure 1.5) is a synthetic nucleoside analogue that exerts activity against a broad spectrum of both RNA and DNA viruses.

![Figure 1.5: Chemical structure of the broad-spectrum antiviral ribavirin](image)

Ribavirin has multiple general mechanisms of action, and in the case of HCV its activity seems to be due to the induction of abnormal viral mutagenesis, that overcomes the threshold of error catastrophe, along with the up-regulation of genes involved in IFN
signalling.41 Efficacy of treatment with ribavirin in combination with pegylated interferon alpha is genotype-specific, with genotype 1 and 4 being more resistant than genotypes 2 and 3: viral eradication or a sustained virological response (undetectable HCV RNA six months after the end of treatment) is achieved in 75-85\% of cases for genotypes 2 and 3, and in 55\% of cases for genotypes 1 and 4.42 The main adverse effect introduced by the addition of ribavirin to therapy with interferon is haemolytic anaemia.43 The significant side effects of the combination treatment, along with its high costs and its limited cross-efficacy against the different viral genotypes, cause the requirement of new, specific anti-HCV agents with a broad spectrum of efficacy across genotypes, reduced adverse effects and unlikeness to develop resistant viral mutants.44 Standard treatment has been improved with the approval of the first specific anti-HCV agents, telaprevir (Incivek, Vertex)45 and boceprevir (Victrelis, Merck)46. They both are NS3/NS4A protease inhibitors, and have been demonstrated to significantly increase a sustained viral response in not-responding patients with genotype 1, in combination with peg-interferon-alpha and ribavirin.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{telaprevir_boceprevir.png}
\caption{Chemical structures of telaprevir and boceprevir}
\end{figure}

These first-generation direct antiviral agents (DAAs) cannot eradicate HCV infection alone, due to rapid development of resistant viral strains. The two drugs are related to different toxicity profiles: for telaprevir the main associated adverse effect is rash, while boceprevir is related to anaemia, dysgeusia and headache.47
1.1.5 New treatments under development

Along with novel types of interferons, several new classes of selective antiviral agents are at different stages of development: the main targets involved are viral NS3/4A protease, NS5B polymerase, binding of NS4B protein to RNA and multifunctional NS5A protein.

Due to the high frequency of mutations that characterises HCV genome and to the fast selection of resistant mutants, a successful therapy with small molecule inhibitors would require the use of a cocktail of antiviral compounds directed against different targets, in order to set a barrier to resistance to multiple separate simultaneous mutations.48

\textbf{Figure 1.7: HCV inhibitors competitive landscape}5

\textbf{NS3/4A protease inhibitors}

Several selective inhibitors of NS3/4A protease are at different stages of preclinical and clinical studies: the main candidates in clinical development are summarised in table 1.1.
<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Phase</th>
<th>IC<sub>50</sub>(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH-2684</td>
<td>Achillion</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>ABT-450</td>
<td>Abbott/Enanta</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>ACH-1625 (Sovaprevir)</td>
<td>Achillion</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>GS-9451</td>
<td>Gilead</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>RG7227 (Danoprevir)</td>
<td>Intermune/Genentech</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>MK-5172</td>
<td>Merck</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>MK-8742</td>
<td>Merck</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Vaniprevir (MK-7009)</td>
<td>Merck</td>
<td>III</td>
<td>0.06-1.4</td>
</tr>
<tr>
<td>BI-201335</td>
<td>Boehringer Ingelheim</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>TMC435</td>
<td>Medivir/Tibotec</td>
<td>III</td>
<td>13</td>
</tr>
<tr>
<td>BMS-650032 (Asunaprevir)</td>
<td>Bristol-Myers Squibb</td>
<td>III</td>
<td>0.2-0.4</td>
</tr>
</tbody>
</table>

Table 1.1: protease inhibitors in clinical development as of June 2013; IC₅₀, 50% inhibitory concentration in biochemical assays of protease

All protease inhibitors show rapid emergence of viral resistance and significant adverse effects such as severe rash and anaemia, characteristics that make not possible their use as monotherapies.⁴⁹

NS5B polymerase inhibitors

NS5B inhibitors are at various stages of preclinical and clinical trials.⁵⁰ These antiviral agents can be classified in nucleosides, targeting the active site of the enzyme, and non-nucleosides, targeting one of the several allosteric sites, and interfering with the enzymatic activity by an induced conformational change. Phase II and III studies include nucleoside and non-nucleoside analogues, as shown in table 1.2.

<table>
<thead>
<tr>
<th>Name</th>
<th>Class</th>
<th>Company</th>
<th>Phase</th>
<th>Replicon EC<sub>50</sub> (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK-3281</td>
<td>NNI</td>
<td>Merck</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>ABT-333</td>
<td>NNI</td>
<td>Abbott</td>
<td>III</td>
<td>2-7</td>
</tr>
<tr>
<td>ANA-598</td>
<td>NNI</td>
<td>Anadys</td>
<td>II</td>
<td>0.5-52</td>
</tr>
<tr>
<td>IDX184</td>
<td>Nuc</td>
<td>Idenix</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>RG7128 (Mericitabine)</td>
<td>Nuc</td>
<td>Genentech</td>
<td>III</td>
<td>610</td>
</tr>
<tr>
<td>VX-135 (ALS-2200)</td>
<td>Nuc</td>
<td>Vertex/Allos</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>GS-7977</td>
<td>Nuc</td>
<td>Gilead</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>TMC647055</td>
<td>NNI</td>
<td>Tibotec/Janssen</td>
<td>II</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.2: polymerase inhibitors in clinical development; NNI, non-nucleosides; Nuc, nucleosides
NS4B multifunctional protein inhibitors

The NS4B protein is involved in membranous web formation, interaction with other non-structural proteins in the replication complex, GTP hydrolysis and RNA binding, all essential roles for viral replication.\(^{51-52}\)

Clemizole hydrochloride, a H1 histamine receptor antagonist widely used as an antipruritic, has been found to inhibit NS4B interaction with the 3’ terminus of HCV negative-strand RNA, and has shown a strong synergistic effect *in vitro* with both boceprevir and telaprevir: phase I studies are ongoing, while other small molecule inhibitors are in preclinical development.\(^{53-54}\)

![Chemical structure of clemizole hydrochloride](image1)

Figure 1.8: Chemical structure of clemizole hydrochloride

NS5A protein inhibitors

Extensive high-throughput screening studies for the identification of HCV replication inhibitors led to the discovery of BMS-790052 (Daclatasvir), which inhibits viral replication at picomolar concentrations and shows a resistance profile addressing its action to NS5A. Synergistic effects were demonstrated with IFN, NS3 inhibitors and NS5B inhibitors, and phase III clinical trials in individuals with genotype 1 infection are now under the way.\(^{55}\)

Other NS5A inhibitors in clinical development include ABT-267 (Phase III), GS-5885 (Phase III) and PPI688 (Phase II).\(^{56}\)

![Chemical structure of the NS5A inhibitor BMS-790052](image2)

Figure 1.9: Chemical structure of the NS5A inhibitor BMS-790052
Other candidates in preclinical and clinical development

Other therapeutic strategies in preclinical and clinical trials include inhibitors of p7 polypeptide such as amiloride analogues,\(^5^7\) cyclophilin inhibitors such as cyclosporine A analogues (Alisporivir or Debio 025 is in Phase III, and SCY-635, in Phase II studies),\(^5^8\) modulators of the host innate immune response like Nitazoxanide (Phase II studies in combination with pegIFN and ribavirin),\(^5^9\) already approved in the USA for the treatment of specific parasitic gastroenteritides, and modulators of the adaptive immune response.\(^6^0\)

![Chemical structure of immune-modulator Nitazoxanide](image)

Figure 1.10: Chemical structure of immune-modulator Nitazoxanide

Approaches in early development

Several new approaches are at early stages of study, including the possibility to rupture HCV virions,\(^6^1\) interference with host lipid metabolism,\(^6^2\) inhibition of translation initiation,\(^6^3\) and the possibility to achieve a therapeutic vaccination.\(^6^4\)

1.1.6 Alternative strategies

In order to allow oral multitherapies to avoid IFN use and its adverse effects, to have a broad spectrum across genotypes, and to prevent the emergence of viral resistance, targeting different steps of the viral replication with a cocktail of inhibitors is an essential requisite; this goal could be achieved through the exploration of still underexploited viral targets, such as the NS2 protease and the NS3 helicase, which still lack any drug candidate in advanced stages of development.

1.1.7 Experimental techniques

HCV is difficult to grow in laboratory environment and the only non-human animal that the virus can infect is the chimpanzee.\(^6^5\) The first HCV molecular clones were isolated
from infected blood in 1989,66 while the first clones to infect chimpanzees were obtained in 1997,67 and the study of HCV replication in cultured cells, referred to as replicon systems, was possible from 1999.68 The first replicons used recombinant clones that could associate sequences encoding HCV non-structural proteins with a gene encoding a drug-resistant marker, allowing the selection of cells possessing viral RNA autonomous for its replication.68 These systems improved with the identification of adaptive viral mutations that allow a more efficient HCV replication in hepatocytes, more permissive cell lines and replicons containing the full-length HCV genome.69-71
1.2 HCV NS3 helicase

The NS3 helicase is one of the most underexploited targets in the search for HCV replication inhibitors. The enzyme main actions are duplex RNA separation and displacement of proteins bound to nucleic acids, reactions that are permitted by ATP hydrolysis.72-74

This enzyme is formed by three domains and occupies the C-terminal portion of the NS3 protein. It presents multiple ligand-binding regions, the main ones being an ATP binding site in the cleft separating domain 1 from domain 2, a single-stranded nucleic acid binding site at the interface of the three main domains, and a second single-stranded RNA binding site located within the cleft that separates the helicase from the protease portion of NS3.75

\textbf{Figure 1.11a:} Protease and helicase portions of the NS3 protein
A functional NS3 helicase is essential for viral RNA replication in cells, and HCV with a defective NS3 ATPase function is not infective: evidence validates the NS3 helicase as target to inhibit HCV replication.$^{76-77}$

1.2.1 Roles in HCV replication

For their successful replication, *Flaviviruses* synthesise negative-stranded RNA from genomic positive-stranded RNA, subsequently using the newly-synthesised RNA as a template for the synthesis and the amplification of several copies of positive-stranded RNA genome, which is finally assembled into viral particles. As an intermediate of nucleic acid synthesis, double-stranded RNA sequences are formed between the complementary positive and negative strands, requiring the intervention of the helicase unwinding activity in order to separate RNA strands and terminate viral proliferation, by assisting RNA–dependent RNA replication with a tracking movement along RNA, in correspondence of ss-ds RNA junctions. The unwinding process is unidirectional with
respect to the template strand, moving exclusively in the 3’ to 5’ direction.78-79 By inhibiting the helicase, not only the viral replication cycle could be arrested, but a cellular response against the presence of unnatural double-stranded RNA within the cell could be induced.80

\subsection*{1.2.2 Structure, motifs and binding clefts}

HCV NS3 helicase is classified as a DExH/D-box motor protein, belonging to the superfamily 2 (SF2) helicases: all enzymes of this family share a nucleic acid remodelling capacity, promoted by ATP hydrolysis, and move in a unidirectional way along a single-stranded nucleic acid, that is identified as the tracking strand.81-82 The enzyme has three structural domains, three-dimensionally arranged in the shape of a Y. Domains 1 and 2, known as RecA-like domains, show significant structural similarities with all other helicases, and form a molecular motor that allows the protein to move along nucleic acids. In particular, it is believed that ATP binding and hydrolysis regulate domain 2 conformational changes, that lead to the movement of the protein along RNA.83

ATP binding site

The ATP binding cleft has been identified at the interface between the two RecA-like motor domains, 1 and 2. Domain 1 shows a phosphate binding loop known as P-loop, motif I or Walker A motif, and a Mg2+ co-factor binding loop, motif II or Walker B motif. ATP is bound to this region via a conserved lysine (Lys\textsubscript{210}) in the P-loop and an acidic residue (Asp\textsubscript{290} in HCV NS3) that interacts with the divalent metal cation cofactor.84

Main nucleic acid binding site

The RNA tracking-strand along which the NS3 helicase moves is located on the cleft separating the two RecA-like motor domains from domain 3.85 Among the key residues within this site are Val\textsubscript{432} and Trp\textsubscript{501}, which act like bookends between the nucleic acid bases and are critical for unwinding reaction and viral replication.86 Another important residue is Glu\textsubscript{493} (domain 3), that needs protonation for helicase optimal activity: it is conserved in all HCV genotypes, and is characterised by a high pK\textsubscript{a} value of approximately 7, becoming protonated when the
pH falls to the optimum level for the enzyme, at 6.5. This unusual electrostatic profile is believed to help deriving the driving force for helicase movements along RNA. The residue protonation would help attract the nucleic acid in the binding cleft, while following deprotonation as the pH increases the RNA would be repelled, helping the translocation of the protein along the RNA strand.

The nucleic acid is held in this site by an arginine clamp focused on Arg393, that is proved to rotate in consequence of ATP binding and hydrolysis, allowing the protein to translocate.

1.2.3 Mechanism of action

The structural mechanism by which the NS3 helicase translocates along RNA remains unclear. Nevertheless, the publication of two series of crystal structures where NS3 is bound to a labelled DNA oligonucleotide (PDB IDs 3KQH, 3KQK, 3KQL, 3KQN, 3KQU) and a labelled RNA oligonucleotide (PDB IDs 3O8B, 3O8C, 3O8D and 3O8R), provides insights into the positional changes of nucleic acid and protein during a discrete step of ATP hydrolytic cycle.

ssRNA is bound within the enzyme in an extended conformation, and shows interactions with all three helicase domains. Prior to ATP binding, the enzyme is bound to the nucleic acid substrate in a high RNA-affinity ‘open’ conformation, with five RNA residues bound between the conserved bookends, Val432 and Trp501. Trp501 in particular, which belongs to domain 3, anchors the nucleic acid residue to the protein by a stacking interaction with the base of the last nucleotide at the 3’ end of RNA.

Most specific NS3-RNA interactions consist of hydrogen bonds between polar protein atoms and phosphoryl oxygens of the RNA backbone. These interactions are given by backbone NH groups of protein residues Lys371, Arg393, Val232, Gly255, and the polar side chains of Thr411, Thr416 and Thr 269. The only additional contact between NS3 and a RNA base is a solvent-exposed hydrogen bond between the side chain of Asn556 and the base of the last 5’-terminal residue included in the binding cleft of the ATP-free protein conformation.
The two series of crystal structures show the three-dimensional conformations of the NS3 helicase in its apo form (3O8B), in complex with an RNA or DNA nucleic acid substrate (3O8C, 3KQH and 3KQK), in a ternary ground-state complex with an oligonucleotide substrate and an ATP-mimicking residue of ADP·BeF$_3$ (3O8D, 3O8R, 3KQN and 3KQU), and finally in a ternary transition-state complex with a hydrolysed ADP-mimicking residue of ADP·AlF$_4^-$ (3KQL). The ternary complex structures reveal that domain 1 and domain 2 undergo a remarkable conformational change upon ADP·BeF$_3$ binding, with domain 2 pivoting towards domain 1 in the enzyme ternary complex ‘closed’ conformation. The number of contacts between NS3 and ssRNA or ssDNA is reduced in the nucleotide-bound state; Thr416 is shifted away from the binding cleft causing the disruption of a hydrogen bond with the phosphodiester backbone of the nucleic acid. The interaction between NS3 and the 5'-end of bound oligonucleotide is weakened, and the ternary complex shows four bases stacked in the nucleic acid binding cleft.
Following ATP hydrolysis and ADP release, conformational changes allow the movement of the protein of one base along the oligonucleotide in the direction 3’ to 5’. Domains 1 and 2 relax back into the enzyme open conformation, accompanied by the re-exposition of Thr416 to the binding cleft and the restoration of its original interaction, with a shift of one base towards the 5’ direction. In its open conformation, the NS3 helicase shows high affinity for the nucleic acid substrate and pulls an additional nucleotide into the binding cleft, resulting in the 3’-5’ directed movement of domain 2 along the phosphodiester backbone of the tracking strand. Evidence supports a mechanism of action in which ATPase activity allows the protein to cycle between nucleotide-free high affinity and nucleotide-bound low-affinity conformational states: the enzyme grabs and releases the nucleic acid tracking-strand in correspondence of single-stranded/double-stranded RNA junctions. Moreover, a pair of threonine residues, Thr269 in domain 1 and Thr411 in domain 2, interact with the phosphodiester
backbone in both the nucleotide-bound and the nucleotide-free states, acting as pincers to grip the nucleic acid backbone.93 Site-directed mutational studies confirm that replacing either Thr269 or Thr411 with alanine binding to nucleic acids is reduced and helicase activity is lost.94

![Diagram of NS3 movements along a RNA tracking strand](image)

Figure 1.14: Representation of NS3 movements along a RNA tracking strand102

1.2.4 HCV helicase inhibitors

Existing helicase inhibitors can be classified into four main categories, on the basis of their mechanism of action: compounds that inhibit helicase activity by interfering with ATP binding, competitive inhibitors of RNA binding, polynucleotide chain intercalators and compounds binding to unknown sites.
Compounds that interfere with ATP binding

To date, only one small molecule has been directly proven to inhibit the helicase by occupying the ATP-binding site: the dye soluble blue HT (compound 1, figure 1.15), that directly interacts with Lys210 (domain 1), essential for ATP hydrolysis.95 From its structure, compound 2 was derived: it shows inhibition of helicase activity (IC$_{50}$ 10 μM) and a good inhibition of HCV replication in replicon (EC$_{50}$ 2.7 μM), but it is associated with cytotoxicity (CC$_{50}$ 10 μM).96

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1_15}
\caption{Chemical structures of compounds 1 and 2}
\end{figure}

Nucleotides and derivatives are believed to competitively occupy the ATP-binding site (figure 1.16): this is the case for ribavirin 5’-triphosphate (RTP, IC$_{50}$ 180 μM) and ribavirin 5’-diphosphate (RDP, IC$_{50}$ 250 μM), that demonstrate good ATPase inhibition but are weak inhibitors of unwinding activity.97 Other nucleoside or base-analogue inhibitors are dichloro(ribofuranosyl) benzotriazole DRBT (IC$_{50}$ 1.5 μM) and tetrabromo-benzotriazole TBBT (IC$_{50}$ 20 μM), that both inhibit as well HCV RNA replication in cells.98
Chapter 1: Introduction

Another category of compounds shown to inhibit HCV helicase-catalysed reactions in vitro are ring-expanded ‘fat’ nucleosides such as compound 3 (IC\textsubscript{50} 5.5 \mu M).99

Finally, the natural sesterterpene manoalide, isolated from marine sponge extracts, has been shown to inhibit HCV NS3 helicase activity (IC\textsubscript{50} 15 \mu M), by both inhibiting ssRNA binding and ATPase activity (IC\textsubscript{50} 70 \mu M).100
Competitive inhibitors of RNA binding

A small number of compounds are known to inhibit HCV helicase by acting on the known RNA binding cleft. Small molecule inhibitors include symmetrical aminophenylbenzimidazole and piperidinylbenzimidazole derivatives such as (BIP)$_2$B (figure 1.19) and compounds 4-6 (figure 1.20), patented by ViroPharma in 1997, the most active of which being compounds 4 (IC$_{50}$ 0.7 μM) and 5a-e (IC$_{50}$ 0.7 μM).101

![Figure 1.19: Chemical structure and activity of (BIP)$_2$B](image)

Another series of symmetrical inhibitors has been recently reported, with the most active compounds being DB2 and DB11 (IC$_{50}$ 0.7 μM), both sharing the presence of a dimeric benzimidazole system (figure 1.21).102

![Figure 1.20: Chemical structure and activity of compounds 4-6](image)

![Figure 1.21: Chemical structure and activity of DB2 and DB11](image)
Structure optimisation of the nucleotide-mimicking inhibitor QU663 (IC\textsubscript{50} 0.75 \(\mu\text{M}\)) has led to the identification of more potent derivatives, the most effective in enzymatic assays being compound 7 (IC\textsubscript{50} 20 nM) (figure 1.22).

![Chemical structures of QU663 and compound 7](image)

Figure 1.22: Chemical structures of QU663 and compound 7

Finally, a 14 amino acid-long peptide inhibitor, p14, has proven to inhibit both helicase-catalysed DNA unwinding (IC\textsubscript{50} 200 nM) and replication of HCV replicons in cells (EC\textsubscript{50} 83 \(\mu\text{M}\)). This peptide shows basic characteristic that could suggest both a potential activity of sequestration of the nucleic acid substrate and binding in correspondence of the P-loop in domain 1, twisting along it and occupying the RNA-binding cleft surrounding Trp501.

Compounds that inhibit unwinding by intercalating the polynucleotide chain

DNA and RNA duplexes are stabilised by the presence of a bound or intercalated agent, increasing the energy required for duplex unwinding: as a consequence, intercalating compounds become potential helicase inhibitors.

The two anthracyclines epirubicin and nogalamycin show a good activity profile against HCV helicase unwinding reaction, with IC\textsubscript{50} values of 0.75 \(\mu\text{M}\) and 0.1 \(\mu\text{M}\) respectively. Both are associated with a high cytotoxicity and weak penetration into cells, their potential as antiviral agents is limited and the identification of less toxic and more selective derivatives is required.
Compounds binding to unknown sites

A small number of compounds have been found to inhibit HCV helicase activity with a binding mechanism that has not been clarified so far. This group includes a series of tropolone derivatives, the most potent being 3,7-dibromo-5-morpholinomethyltropolone DBMTr, that shows an IC\textsubscript{50} value of 17.6 μM and is not related to high cytotoxicity (figure 1.24).

Some acridone compounds have been identified as potential HCV helicase-inhibitors, with two of the most potent derivatives, compounds 8 and 9 in figure 1.25, showing IC\textsubscript{50} values of respectively 9 and 4 μM. Interestingly, these compounds also inhibit HCV replication in replicon systems, with EC\textsubscript{50} values of approximately 10 μM, and are not cytotoxic.
Application of a *de novo* drug design approach to the structure of HCV NS3 helicase led to the identification of potent inhibitor compound 10 (figure 1.26), which shows activity in both enzymatic (IC$_{50}$ 0.26 μM) and replicon assay (EC$_{50}$ 9 μM), but is relatively toxic to cells (CC$_{50}$ 30 μM).111

Finally, from the isolation of different components of the yellow dyes thioflavine S and primuline, a new series of compounds was found to show both helicase unwinding and viral replication inhibition potential, with the most active compound being P4 (IC$_{50}$ 0.9 +/- 0.4 μM, ~45% HCV inhibition at 10 μM) (figure 1.27).112
1.2.5 HCV helicase assays

A variety of assays are available to monitor HCV-catalysed DNA or RNA unwinding activity, in order to test the ability of small molecules to inhibit this reaction. The most recent and widely used techniques are based on helicase substrates labelled with fluorescent moieties. In a first generation assay, one nucleic acid strand is labelled on the 5'-end with a fluorescent probe annealed to a complementary strand with a quenching molecule at the 3'-end, and the increase of fluorescence as the substrate is incubated with HCV helicase is measured: it will be proportional to the amount of DNA or RNA unwound.113-114 In a new generation assays, dual-labelled single stranded nucleic acid moieties that can form stem loop structures are used: one end of these moieties, called molecular beacons, is attached to a fluorescent molecule, while the other end is linked to a quencher. Molecular beacons are annealed to a complementary DNA or RNA oligonucleotide to form helicase substrates and, once incubated with the enzyme and upon strand separation, the stem-loop structure, or intramolecular hairpin, is irreversibly formed, and fluorescence is quenched as a consequence. The measured decrease in fluorescence will be proportional to the amount of substrate unwound.115-116

Despite the abundance of structural information available, only few specific inhibitors of the enzyme have been reported so far: this might be due to the fact that high throughput screenings yield few hits.116 The reason for such a low success rate could rely on the nature of the assays: the measurement of strand separation upon helicase activity is relatively complex, and inhibitors could act through different mechanisms, which might involve required cofactors not included in the assay. Moreover, the protein conformational changes during the monitoring of its motor action in the assays could interfere with the identification of potential inhibitors. Furthermore, fluorescent compounds or compounds that absorb the light emitted by fluorescent probes can interfere with the assay and give false leads or skipped hit compounds, while the results
of these assays have been proven to be difficult to reproduce.112,117
These limitations in the enzymatic assay could be an explanation for the lack of specific helicase inhibitors identified so far.
1.3 Molecular modelling

Molecular modelling techniques are widely used in pharmaceutical research. Most drugs are effective due to specific interactions with a biological target: many of them have significant shape complementarity with their binding site, and can form hydrogen bonds with the target, while some targets have hydrophobic pockets where the ligand can place a hydrophobic group with the right size. In a drug discovery programme, the first step is usually to identify hit molecules, and then to produce lead series. Finding novel lead series among chemical compounds can be hard, and it becomes often necessary to identify subsets of potential ligands for a given target with the aid of computational techniques, that can be applied also for lead optimisation and identification of structure-activity relationships among series of compounds. Computer-aided techniques can be used to speed up different steps of drug discovery and optimisation processes.

On the basis of how the system energy is calculated, algorithms used in molecular modelling calculations belong to three main categories: programs to perform ab initio quantum mechanics, programs for semi-empirical quantum mechanics and programs for molecular mechanics.118-119

1.3.1 Molecular mechanics: empirical force field models

Molecular mechanics or force field methods ignore the electronic motions and calculate the energy of a system as a function of the nuclear positions only; they can be used for calculations on systems containing large numbers of atoms. Their principal limitation is that it is not possible to calculate properties that depend on electronic distribution.120

Molecular mechanics can be interpreted in terms of a four-component ensemble of the intra- and inter-molecular forces within the system: energetic penalties associated with the deviation of bonds and angles from their equilibrium values (stretching and bending), energetic changes that follow bond rotations (torsional terms), interactions between non-bonded parts of the system (electrostatic and Van der Waals interactions). To these four basic elements, additional terms can be added in more sophisticated elaborations; force fields used in molecular modelling are mainly designed to reproduce certain structural properties and are therefore parameterised accordingly.121
These methods are empirical: there is not an absolute correct form for them, and many share a similar structure that usually tends to conform to the interactions present in a system, and is often the result of a compromise between accuracy and computational efficiency.

A common concept to most force fields is atom type: the atom type for each atom in the system is necessary to be assigned, and it contains not only the atomic number but also its hybridisation state and sometimes the local environment. Often atom types reflect the neighbouring environment and can be extensive for some atoms, making the force field they are included suitable for different categories of molecules: for example, MMFF94 is a force field widely used for small molecules,122 while AMBER force fields are commonly used for proteins and nucleic acids.123

1.3.2 Energy minimisation

Except for the simplest systems, potential energy tends to be a complicated multidimensional function of the system coordinates. The way in which energy varies with the coordinates of the atoms in a system is usually referred to as potential energy surface.124 In molecular modelling, the interest is mainly in minimum points of the energy surface: minimum energy arrangements of atoms correspond to stable states of the system, and any movement away from a minimum gives a configuration with a higher energy level.

![Energy minimisation](image)

Figure 1.29: Example of one-dimension energy surface. Minimisation algorithms move downhill to the closest minimum.
In order to identify those geometries of a system that correspond to minimum points on the energy surface, minimisation algorithms are commonly used: such methods go downhill on the energy surface to locate the nearest minimum for a given system. These analyses are almost always used in molecular modelling and related techniques like conformational search procedures, to prepare a system for other types of calculation, in order to identify and avoid any unfavourable interaction in the system initial configuration.

1.3.3 Conformational analysis

Physical-chemical and biological properties of a molecule can dramatically depend on the three-dimensional structures, or conformations, that it can adopt: a conformational analysis is the evaluation of the conformations of a molecule and their influence on its properties. The different conformations of a molecule are identified as the arrangements of its atoms that can be interconverted by rotation about single bonds. The purpose of a conformational analysis is to identify the preferred conformations of a molecule, which determine its chemical and biological behaviour. These conformations usually correspond to minimum points on the energy surface: energy minimisation plays therefore an important part in conformational analysis.

![Potential energy diagram for cyclohexane conformations](image)

Figure 1.30: Potential energy diagram for cyclohexane conformations
1.3.4 Database searching

Substructure searching is the simplest way to identify compounds of interest. Many databases of chemical compounds can be used as a research source, and some of them are of public access. A quick way to find all the molecules in a database that contain specific required features is a two-dimensional substructure search. Nevertheless, biological targets recognise three-dimensional stereoelectronic features of a molecule, and to search for compounds that satisfy the chemical and geometrical requirements of a given target a three-dimensional database searching method is required. One method that can be used also when detailed information about the target structure is not available is a pharmacophoric model, which indicates the key characteristics of a set of active molecules.

1.3.5 3D Pharmacophores and conformational databases

Typical features of a pharmacophore are hydrogen-bond donors and acceptors, positively and negatively charged groups, and hydrophobic regions, which can be all referred to as pharmacophoric groups: they can be seen as an extension of the concept of bioisosteres. A three-dimensional pharmacophore embodies the spatial relationship between these groups, generally expressed in terms of distance ranges, angles and planes. Once a pharmacophore has been developed, it can be used to find other active molecules. The key point to create a good pharmacophoric model is to deduce which features are required for activity, and to determine conformations in which pharmacophoric groups are in the same relative position. Pharmacophores are often expressed in terms of location constraints, which are points in the space surrounded by a spherical region: a molecule must be able to place the relevant features within the appropriate spheres. The presence of the receptor can also be included in terms of exclusion spheres, which indicate regions where the ligand is not permitted to position any of its parts.
In a three-dimensional database search the three-dimensional structures of the molecules to screen need to be considered: for most of them a well-defined crystal structure is not available, therefore structure generation programs are often used to perform a conformational analysis, in order to find low-energy conformations for the compounds to analyse. In order to take conformational flexibility into account during a database search, many conformations, not only the lowest-energy one, are usually stored for each input structure.

1.3.6 Molecular docking

In the search for new drug-like entities, it is often useful to have a prediction of the potential binding mode of a set of chemical compounds to the biological target of interest. The aim of molecular docking is to predict the structure of the intermolecular complex formed between two or more molecules, thus suggesting the binding modes of ligands to the biological target. Docking algorithms usually generate a large number of possible conformations, each of which needs to be scored in order to identify the most interesting ones. The docking problem is the generation and evaluation of potential structures for intermolecular complexes. It involves many degrees of freedom: six degrees of translational and rotational freedom of one molecule relative to the other, and the conformational degree of freedom of each molecule itself. Most methods to perform conformationally flexible docking include the conformational degrees of freedom of the ligand only, while the receptor is assumed to be rigid.
In order to take into account both ligand and receptor conformational space, the most common solution is to perform a molecular dynamics simulation of the ligand-receptor complex. Nevertheless, such calculations are computationally highly demanding, and are practically useful only to refine structures produced by other docking methods, since they do not explore the range of possible binding modes, except for very small and mobile ligands.

1.3.7 Scoring functions

Most docking algorithms generate a large number of possible solutions: some of these can be immediately rejected because of high-energy clashes with the protein, but the remaining ones have to be assessed with mathematical functions, the scoring functions, used to identify the docked orientation that corresponds to the most probable structure of an intermolecular complex. When docking a database of compounds, the scoring function should not only identify the best docking mode of a given ligand, but also allow the ranking of one ligand relative to another. Many scoring functions approximate the binding free energy for the ligand to the receptor, dividing it in different components that reflect the various contributions to binding: \[\Delta G_{\text{bind}} = \Delta G_{\text{solv}} + \Delta G_{\text{conf}} + \Delta G_{\text{int}} + \Delta G_{\text{rot}} + \Delta G_{t/r} + \Delta G_{vib} \]

\(\Delta G_{\text{solv}} \) is the contribution due to solvent effects, \(\Delta G_{\text{conf}} \) arises from conformational changes in the protein and the ligand, \(\Delta G_{\text{int}} \) is the free energy variation due to specific protein-ligand interactions, \(\Delta G_{\text{rot}} \) is the free energy loss associated with freezing internal rotations of the protein and the ligand, most due to entropic contribution, \(\Delta G_{t/r} \) corresponds to the loss in translational and rotational free energy due to the association of the two structures to give a single body, and \(\Delta G_{\text{vib}} \) is the free energy variation due to changes in vibrational modes.

Many scoring functions also consider the relationship between binding free energy and a series of parameters like hydrogen bonding, ionic and lipophilic interactions, introducing also specific penalty scores that account for large deviations from the ideal geometry of each type of interaction. These parameters are derived from multiple linear regression analyses of experimental binding data on protein-ligand complexes. One
limitation is that they are derived from ligands that bind very tightly to their receptors, while docking is usually used to identify ligands of modest potency from a large database. For this and other reasons, comparing the results of different scoring functions shows better results than the use of a single scoring function: this approach is referred to as consensus scoring.131, 132

1.3.8 Drug discovery strategies

When facing a new biological target or searching for a better treatment for a certain pathology, molecular modelling techniques can provide a variety of useful tools to obtain hit compounds and lead molecules.

Two different approaches can be adopted: attention can be focused on the molecular target, if known, or on the chemical structure of known ligands.

If the starting point is the biological target, the first question to be asked is whether its crystal structure has been experimentally determined or not. If the target structure is available, a structure-based virtual screening or a structure-based drug design study can be performed.133

Structure-based virtual screenings (SBVS) usually start with a database search, in order to find already known compounds that can fit the binding site or show particular features for binding to the protein. This initial phase is often followed by molecular docking analyses, which allow to evaluate the binding free energy associated with each ligand-target complex. The same approach can be applied if a crystal structure is not available for the given target, starting from its amino acid sequence and creating a homology model on the basis of the 3D structures of homologous proteins. A different strategy is to search for new structures to interact within the target binding site: in this case, a structure-based \textit{de novo} design (SBDD, structure-based drug design) method can be used.

If the structure of one or more active ligands is known, a ligand-based drug design or a ligand-based virtual screening study can be performed. In ligand-based drug design the starting point is the ligand structure(s), from which new compounds are derived on the basis of similarity and pharmacophore concepts, or of QSAR, quantitative structure-activity relationship, analyses.134

In ligand-based virtual screening the structures of known ligands are taken as the starting point to perform database searching such as 2D similarity and pharmacophore
matching. Virtual screening studies based on the structure of known active ligands are proven to give better results, in terms of activity, than screenings based on the target structure.135

Once a series of hit compounds has been determined, the next step is lead optimisation, whose aim is to find chemical modifications to the hit structures that can improve their activity or chemical-physical properties.135 This study can be performed on the basis of the target structure, in structure-based lead optimisation, or on the basis of the ligand structure, in ligand-based lead optimisation.
1.4 Project aims

Due to the essential role of a functional NS3 helicase for HCV replication, and the lack of selective inhibitors under development as drug candidates, this enzyme was chosen as a target for the identification of viral replication inhibitors, through the potential interference with its biological activity on the level of the known RNA binding cleft. This purpose will be pursued with the application of different molecular modelling techniques to the study of the enzyme and its known inhibitors structures, in order to identify and synthesise small molecule compounds as potential antiviral agents. All selected compounds will be evaluated for their activity against the viral replication in HCV replicon assays, and their biological evaluation will be considered to direct further studies.
1.5 References

Chapter 1: Introduction

Kim, J.L.; Morgenstern, K.A.; Griffith, J.P.; Dwyer, M.D.; Thomson, J.A.; Murcko, M.A.; Lin, C.; Caron, P.R. Hepatitis C virus NS3 RNA helicase domain with a

87 Frick, D.N.; Rypma, R.S.; Lam, A.M.; Frenz, C.M. Electrostatic analysis of the hepatitis C virus NS3 helicase reveals both active and allosteric site locations. *Nucleic Acids Res.* **2004**, 32, 5519–5528.

Gu, M.; Rice, C.M. Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism. *PNAS* **2010**, 107, 521-528;

Zhang, N.; Chen, H.M.; Koch. V.; et al. Ring-expanded (“fat”) nucleoside and nucleotide analogues exhibit potent in vitro activity against Flaviviridae NTPases/

105 Borowski, P.; Heising, M.V.; Miranda, I.B.; Liao, C.L.; Choe, J.; Baier, A. Viral NS3 helicase activity is inhibited by peptides reproducing the Arg-rich conserved motif of the enzyme (motif VI). *Biochem. Pharmacol.* **2008**, *76*, 28–38.

Willock, D.J.; Lewis, D.W.; Catlow, C.R.A.; Hutchings, G.J.; Thomas, J.M. Designing templates for the synthesis of microporous solids using de novo molecular

Chapter 2

Piperazines
2.1 Structure-based Virtual Screening

Given the abundance of crystal structure information available for the HCV NS3 helicase, different structure-based in silico evaluations were performed to identify potential inhibitors of this enzyme. A recent series of HCV NS3 helicase structures in complex with a single-stranded DNA substrate was used for all the studies carried out.\(^1\) Among the five ssDNA-NS3 helicase complexes, two were chosen for their high resolution and their conformational characteristics, representative respectively of the low-affinity closed conformation (PDB ID 3KQN) and the high-affinity open conformation of the complex (PDB ID 3KQH).\(^1\)

The target site selected was the known nucleic acid binding cleft, in order to inhibit natural substrate binding. Due to the essential role demonstrated for Thr269, Arg393, Thr411 and Trp50, the aim was to identify compounds likely to bind the region including these residues, situated approximately at the interface between the enzyme main domains 1, 2 and 3.\(^2\)

The highest-resolution crystal structure of the NS3 helicase complex with a ssDNA substrate in the closed conformation corresponds to PDB ID 3KQN (2.05 Å). An ATP-mimicking residue, ADP-Be-F\(_3\), is present in the ATP binding pocket, domain 2 is shifted towards domain 1 and four nucleotide residues are spanned between the two bookends, Val432 and Trp501. In this low-affinity conformation of the enzyme the three main domains are close together, and the target residues are all located within a narrow space. In particular, a possible interaction with both Trp501 (domain 3) and Arg393 (domain 2) was evaluated in the search for inhibitors, to ideally block the enzyme in the closed conformation.
2.1.1 Database conformational search and pharmacophoric filter

The site defined by the position of Trp501 and Arg393 in the 3KQN crystal structure was used to perform a structure-based virtual screening (SBVS) of small molecule libraries: the SPECS database was chosen for this search, and pre-screened with a pharmacophoric filter. The approximately 450000 structures available were downloaded and analysed with MOE 2010.10 conformational search tool; 500 low-energy conformations were kept for each input molecule.

The main interactions between the target residues and the co-crystallised substrate were considered to build the pharmacophoric query, and the selection was restricted to five features. A hydrophobic/aromatic group to interact with Trp501 (F1:Hyd|Aro in figure 2.2) and a hydrogen-bond acceptor or anion group to interact with Gly255 and Thr269 (F2:Acc|Ani) were kept as essential elements, while a H-bond donor to target Asp296 (F3:Don), a H-bond donor and acceptor to interact with Thr298 and Ser297 (F4:Acc&Don) and a hydrogen-bond acceptor to target Arg393 (F5:Acc) were added as alternative features, requiring a partial match of four elements.
Exclusion volumes corresponding to the protein occupational space were added, and the model was used to screen the conformational database of the SPECS compounds, obtaining approximately 3000 molecules matching the search criteria.

2.1.2 Molecular docking and consensus scoring

The 3000 hit structures were evaluated within the RNA binding site with a docking analysis, to predict which of them could best fit the target pocket. Three different docking programs were used in parallel; they were chosen for their validated ability to predict binding capacities of different compounds against different target structures: Glide, FlexX and Plants. One conformational database of docked poses was obtained for each algorithm, while the next step was the evaluation of the docking results to select those structures assessed as the best to bind the target pocket.

Each docking program evaluates the output poses by applying its own scoring function, assigning an internal score to each generated conformation. Nevertheless, the use of a single scoring function is not recommended in virtual screening, since for their own definition different scoring functions typically give different importance, for the binding free energy calculation, to diverse aspects, that may or may not be the most significant
to evaluate the effective binding potential of a specific compound. To overcome these limitations, a combination of multiple scoring functions was used to evaluate the docking results.10 The three docking outputs were re-scored with the scoring functions implemented in each docking program: Glide XP, Plants ChemPLP and FlexX scoring function, all belonging to the most widely used and best validated scoring algorithms.11-12

Prior to the application of the rescoring procedure, all docking solutions were minimised within the RNA binding site of the 3KQN structure: the Glide Refinement tool was used to perform such conformational smoothing. Once refined, the three conformational databases deriving from docking were rescored with the three scoring functions, and the results belonging to a same docking output were combined together for each docked pose. A consensus scoring function was elaborated to equally give the same importance to the three scoring algorithms, and to select the structures belonging to the best 25\% according to all functions at the same time (Chapter 6.1).

The selected poses were visually inspected in the context of the 3KQN target site in MOE 2010.10,4 in order to identify a small number of candidates to purchase and test against HCV replication in the replicon assay.13 The main criterion that guided the identification of potential NS3 inhibitors was the interaction with Trp501 and Arg393, and with the surrounding residues important for nucleic acid binding.

A final selection of fourteen molecules was made (Appendix I). Among them, compound 12 (figure 2.3) showed a good activity profile, without relevant toxicity against cells: its EC\textsubscript{50} value for HCV replication inhibition was 8 \(\mu\)M, with a CC\textsubscript{50} greater than 90 \(\mu\)M. Due to these results, its structure was chosen as the starting point for the synthesis of a series of new derivatives.
Figure 2.3: structure and predicted binding mode for compound 12
2.2 Synthesis of symmetrical piperazines

Compound 12 has a symmetrical structure, with a central piperazine ring and two aliphatic linkers connected by a sulfonamide group to two equal aromatic systems (figure 2.4).

![Figure 2.4: Structure and features of compound 12](image)

The first modifications designed included different aromatic substitutions, linker chain variations and disruption of the molecule symmetry.

2.2.1 \(N,N'-(3,3'-(\text{Piperazine-1,4-diyl})\text{bis(propane-3,1-diyl)})\text{diaryl sulfonamides} \) (12, 30-36)

A first series of new derivatives was designed to explore the effect of the aromatic substituent on the original structure, by varying the substitutions on the phenyl rings while keeping the central piperazine nucleus and the three-carbon saturated linker. Some commercially available aromatic sulfonyl chlorides (13-20) were chosen as starting materials to obtain piperazine derivatives 12, 30-36 according to a two-step synthetic pathway (scheme 2.1).
Scheme 2.1: Pathway for the synthesis of compounds 12, 30-36

Synthesis of N-((3-bromopropyl)aryl)sulfonamides (22-29)

Intermediates 22-29 were obtained with a nucleophilic displacement by the amine group of 3-bromopropylamine on the electrophilic site of the sulfonylechloride. In order to avoid a self-reaction between two molecules of the nucleophile, the amine group of 3-bromopropylamine hydrobromide (21) was slowly released by the dropwise addition of the base, triethylamine, at 0°C, to favour the reaction towards the sulfonylechloride.

Synthesis of \(N,N'(3,3'-(piperazine-1,4-diyI)bis(propane-3,1-diyI))diaryl sulfonamides (12, 30-36)\)

Compound 12 and its derivatives 30-36 were obtained with a second nucleophilic substitution, with the displacement of the bromide leaving group of intermediates 22-29 by the two secondary amine groups of piperazine, thus obtaining the final symmetrical derivatives.

Two good methods in terms of yield (approximately 60% after purification) were identified for the synthesis of compound 12: the first consisted of stirring the two

<table>
<thead>
<tr>
<th>Starting Sulfonyle Chloride</th>
<th>Ar</th>
<th>Bromide Intermediate</th>
<th>Yield %</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>4-Chlorophenyl</td>
<td>22</td>
<td>94</td>
<td>12</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td>Phenyl</td>
<td>23</td>
<td>97</td>
<td>30</td>
<td>64</td>
</tr>
<tr>
<td>15</td>
<td>4-Methylphenyl</td>
<td>24</td>
<td>89</td>
<td>31</td>
<td>68</td>
</tr>
<tr>
<td>16</td>
<td>4-Methoxyphenyl</td>
<td>25</td>
<td>86</td>
<td>32</td>
<td>60</td>
</tr>
<tr>
<td>17</td>
<td>4-Nitrophenyl</td>
<td>26</td>
<td>73</td>
<td>33</td>
<td>43</td>
</tr>
<tr>
<td>18</td>
<td>3,4-Dimethoxyphenyl</td>
<td>27</td>
<td>61</td>
<td>34</td>
<td>65</td>
</tr>
<tr>
<td>19</td>
<td>2,5-Dimethoxyphenyl</td>
<td>28</td>
<td>70</td>
<td>35</td>
<td>71</td>
</tr>
<tr>
<td>20</td>
<td>2-Naphthyl</td>
<td>29</td>
<td>89</td>
<td>36</td>
<td>79</td>
</tr>
</tbody>
</table>
reagents with triethylamine in THF for 48 h,15 the second using NaHCO\textsubscript{3}/ethanol as base/solvent system, and refluxing the reaction mixture for 24 h.16 Due to the shorter time required by the second procedure, it was generally adopted for the preparation of all remaining compounds of this series.

2.2.2 N,N'-(2,2’-(Piperazine-1,4-diyl)bis(ethane-2,1-diyl)) diaryl sulfonamides (46-53)

A second series of derivatives was planned to modify, along with the aromatic substituent, the length of the aliphatic linker, by shortening it from a three-carbon to a two-carbon saturated chain, while maintaining the symmetry of the molecule with the central piperazine ring. The previous two-step reaction strategy was applied (scheme 2.2).

![Scheme 2.2: Pathway for the synthesis of compounds 46-53](image-url)
Synthesis of \(N\)-(2-bromoethyl)arylsulfonamides (38-45)

The same nucleophilic displacement strategy adopted for compounds 22-29 was followed for the synthesis of compounds 38-45, using 2-bromoethylamine hydrobromide (37) to obtain a two-carbon linker, to be subsequently functionalised by piperazine secondary amine groups.

Synthesis of \(N,N'\)-(2,2'-(piperazine-1,4-diyl)bis(ethane-2,1-diyl))diaryl sulfonamides (46-53)

Final symmetrical piperazine derivatives with a shorter linker 46-53 were prepared in the system NaHCO\(_3\)/ethanol under reflux for 24 h, to allow the nucleophilic displacement by piperazine secondary amine groups on the level of the alkyl bromide leaving group.

2.2.3 \(N,N'\)-(3,3'-(Piperazine-1,4-diyl)bis(3-oxopropane-3,1-diyl))diaryl sulfonamides (74-80)

A third series of derivatives was designed to rigidify the three-carbon linker and study the importance of the two positive charges/H-bond acceptors of the piperazine amine groups. For this reason, it was planned to insert an amide group in correspondence of piperazine nitrogen atoms, obtaining an oxypropylic linker in the symmetrical structure: to achieve this result, the scaffold of \(\beta \)-alanine (54) was chosen as the new linker, and inserted in the two-step synthetic pathway shown in scheme 2.3.
Chapter 2: Piperazines

Starting Sulfonyl Chloride

<table>
<thead>
<tr>
<th>Ar</th>
<th>Acid intermediate</th>
<th>Yield %</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Chlorophenyl</td>
<td>55</td>
<td>64</td>
<td>62</td>
<td>41</td>
</tr>
<tr>
<td>Phenyl</td>
<td>56</td>
<td>52</td>
<td>63</td>
<td>57</td>
</tr>
<tr>
<td>4-Methoxyphenyl</td>
<td>57</td>
<td>72</td>
<td>64</td>
<td>46</td>
</tr>
<tr>
<td>4-Nitrophenyl</td>
<td>58</td>
<td>51</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>3,4-Dimethoxyphenyl</td>
<td>59</td>
<td>58</td>
<td>66</td>
<td>47</td>
</tr>
<tr>
<td>2,5-Dimethoxyphenyl</td>
<td>60</td>
<td>64</td>
<td>67</td>
<td>52</td>
</tr>
<tr>
<td>2-Naphthyl</td>
<td>61</td>
<td>61</td>
<td>68</td>
<td>54</td>
</tr>
</tbody>
</table>

Scheme 2.3: Pathway for the synthesis of compounds 62-68

Synthesis of 3-arylsulfonylamine propionic acids (55-61)

Intermediate acids 55-61 were obtained through a nucleophilic substitution by β-alanine (54) amine group on the level of the sulfonyl chloride, according to procedures reported for glycine. By following the reaction with monitoring of the pH to maintain basic conditions with 1M NaOH, the corresponding carboxylates were obtained, while the free acids were subsequently precipitated out by acidification of the reaction mixture.

Synthesis of \(N,N'-(3,3'-(piperazine-1,4-diyl)bis(3-oxopropane-3,1-diyl))diaryl\) sulfonamides (62-68)

Final symmetrical amide derivatives 62-68 were obtained with a coupling reaction between propionic acids 55-61 and piperazine, using TBTU as coupling agent. TBTU, \(O-(benzotriazol-1-yl)-N,N',N'\text{-}tetramethyluronium tetrafluoroborate\), belongs to a family of coupling agents called uronium compounds, used for efficient amide bond formation under mild reaction conditions. Uronium reagents, like most coupling agents, are used to enhance the electrophilic characteristic of the carbonyl carbon towards nucleophilic substitution, by the formation of a highly reactive intermediate ester.
This type of reaction can be carried out efficiently at r.t. for a few hours or overnight.

2.2.4 *N*-((3-(Piperidin-1-yl)propyl)aryl)sulfonamides (69, 70)

Aiming to evaluate the role of the length and the symmetry of the molecule, two shorter unsymmetrical derivatives were obtained by reacting intermediates 22 and 29 with piperidine. This was used to replace the piperazine central core with a single nucleophilic substitution by piperidine secondary amine on the alkyl bromide leaving group (scheme 2.4).

![Scheme 2.4: Synthesis of compounds 69 and 70](image)

<table>
<thead>
<tr>
<th>Bromide intermediate</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>4-Chlorophenyl</td>
<td>69</td>
<td>75</td>
</tr>
<tr>
<td>29</td>
<td>2-Naphthyl</td>
<td>70</td>
<td>71</td>
</tr>
</tbody>
</table>
2.2.5 \(N,N'(4,4'-(\text{Piperazine-1,4-diyl})\text{bis(butane-1,4-diyl})\text{bis(4 chlorobenzenesulfonamide)}) (73) \)

Several attempts were made in order to synthesise one symmetrical derivative with a longer aliphatic linker of four carbons. The first strategy designed for the preparation of the desired analogue, compound 73, is shown in scheme 2.5.

The two-step synthetic pathway started with the formation of intermediate 72, 4-chlorobenzenesulfonic acid 4-(4-chloro-benzenesulfonylamino)-butyl ester, through a double nucleophilic displacement on 4-chlorobenzenesulfonyl chloride (13) by both the amine and the hydroxyl groups of 4-aminebutanol (71), following procedures previously reported for tosyl chloride.\(^{20}\) This intermediate was isolated and reacted with piperazine in THF and triethylamine at r.t., in order to displace the good leaving group of the sulfonate ester with the two amine groups of piperazine. The desired reaction did not proceed at r.t., and only starting material 72 was isolated after 48 h. The reaction mixture was then heated under reflux for 24 h, and even though the formation of a new species was observed by T.L.C, it was not possible to purify the new compound via column chromatography or recrystallisation.

To overcome purification difficulties, a second synthetic strategy, shown in scheme 2.6, was attempted.
The amine group of 4-aminebutanol was first substituted with 4-chlorobenzenesulfonyl chloride to give compound 74, 4-chloro-N-(4-hydroxy-butyl)-benzenesulfonamide. Next a good leaving group was created on the free hydroxy function in 74 by conversion to mesylate ester, through a nucleophilic displacement on mesyl chloride. Intermediate 75, methanesulfonic acid 4-(4-chloro-benzenesulfonylamine)-butyl ester, was obtained and purified, but different attempts to displace the mesylate ester with piperazine were unsuccessful. Only starting material 75 was recovered after reacting it with piperazine in THF and triethylamine for 48 h at r.t. Reaction conditions were then changed to reflux in EtOH for 24 h, using sodium bicarbonate as base. In this second reaction system, all starting material 75 was converted into its ring-closure derivative on the sulfonamide nitrogen, compound 76 (1-(4-chloro-benzenesulfonyl)-pyrrolidine).

The reason of the formation of this side product could be explained by the reflux conditions, where the energy given by heating could enhance the intramolecular displacement of the mesylate leaving group by the sulfonamide group.

Due to these unsuccessful attempts, it was decided to avoid any possible interference of the sulfonamide group by freezing its residual reactivity towards nucleophilic displacement through amine protection of 4-aminebutanol 71 with BOC, using di-tert-butyl dicarbonate (BOC)₂O, stable in basic environment and easily removed under acidic conditions.
Chapter 2: Piperazines

The new synthetic pathway is shown in scheme 2.7.

Scheme 2.7: Third synthetic pathway designed for compound 73

In this third strategy, the free amine in 4-aminebutanol was first protected with BOC to give 78, and then a good leaving group was obtained by converting the hydroxy function to mesylate ester in compound 79. Once substituted the two amine groups of piperazine by nucleophilic displacement of the mesylate group (80), under reflux in ethanol and sodium bicarbonate, it was designed to deprotect the two terminal amine groups by hydrolysis of the carbamate ester with trifluoroacetic acid in compound 81. This fourth intermediate was not isolated, but precipitated as the trifluoroacetate salt from the reaction mixture, and directly treated with an excess of 4-chlorobenzenesulfonyl chloride (13) in basic conditions, in order to obtain the desired final product 73. This third synthetic approach was successful and compound 73 was finally isolated after purification by flash column chromatography. Each step of this successful procedure will now be discussed.
Synthesis of (4-hydroxy-butyl)-carbamic acid tert-butyl ester (78)

The amine group of 4-aminebutanol 71 was protected by conversion to carbamic ester using the BOC protecting group, which was chosen due to its stability under basic conditions, required in the following reaction steps where a nucleophilic displacement was to be performed. Desired protected amine 78 was obtained in high yield (93%) after stirring the reagents at r.t. for 7 h in DCM and NEt3.

Synthesis of methanesulfonic acid 4-tert-butoxycarbonylamine-butyl ester (79)

The free hydroxy group of compound 78 was converted to a good leaving group, for the subsequent nucleophilic displacement with piperazine, by using mesyl chloride, in order to obtain a methanesulfonic ester function, easily replaced by nucleophiles, such as the secondary amine groups of piperazine. Also this second intermediate was obtained in high yield (86%) and purity.

Synthesis of (4-[4-(4-tert-butoxycarbonylamine-butyl)-piperazin-1-yl]-butyl)-carbamic acid tert-butyl ester (80)

In order to achieve a double nucleophilic displacement by the piperazine amine groups on mesylate ester 79, the two starting materials were reacted for 24 h under reflux in ethanol, using sodium bicarbonate as base, in the same reaction conditions that had been previously adopted. Symmetrical piperazine intermediate 80 was obtained in 70 % yield and used for the following step without purification.

Synthesis of N,N’-(4,4’-(piperazine-1,4-diyl)bis(butane-4,1-diyl))bis(4-chlorobenzene-sulfonamide) (73)

The two protected carbamic ester functions of compound 80 were converted to free amine groups by removal of the BOC protecting group, using trifluoroacetic acid. In the acidic reaction conditions, symmetrical tetra-amine 81, 4,4’-(piperazine-1,4-diyl)bis(butan-1-amine), was present as a trifluoroacetate salt, that was precipitated after concentrating the reaction mixture under vacuum and pouring the residue into diethyl ether. The white precipitate formed was washed with diethyl ether and directly treated with an excess of 4-chlorobenzenesulfonyl chloride (13) and triethylamine. Compound 73 was finally obtained following this five-step synthetic route, after purification by flash column chromatography.
2.2.6 Biological evaluation in the HCV replicon and cytostatic assay

HCV replicon systems, genetic elements that can replicate under their own control in a cell, are powerful tools to study HCV replication and evaluate the potential interference of chemical compounds. The most recent HCV subgenomic replicons are genetically modified to replace the region encoding the structural proteins with a reporter gene, such as firefly luciferase, that allows the evaluation of HCV replication inhibition through the measurement of the reduction of luciferase signal.

For all compounds prepared, the subgenomic replicon assay in the human hepatoma cell line Huh-7 and the cytostatic assay were kindly performed in the Rega Institute for Medical Research, KU Leuven, Leuven, Belgium, under the supervision of Professor Johan Neyts.

Activity is expressed for each compound in terms of EC50, that is the effective concentration (μM) of compound required to reduce HCV replication by 50%, and eventually EC90, that is the effective concentration (μM) of compound required to reduce HCV replication by 90%. Cytotoxicity is evaluated in terms of CC50, that is the cytostatic/cytotoxic concentration (μM) required to observe 50% of adverse effect on the host cell. The selectivity index, SI, is evaluated by calculating the ratio CC50/EC50.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar-</th>
<th>EC50(μM)</th>
<th>CC50(μM)</th>
<th>EC90(μM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>4-Chlorophenyl</td>
<td>13</td>
<td>>182</td>
<td>-</td>
<td>>14</td>
</tr>
<tr>
<td>30</td>
<td>Phenyl</td>
<td>58.3</td>
<td>>104</td>
<td>-</td>
<td>>1.7</td>
</tr>
<tr>
<td>31</td>
<td>4-Methylphenyl</td>
<td>19</td>
<td>>197</td>
<td>>197</td>
<td>>10.4</td>
</tr>
<tr>
<td>32</td>
<td>4-Methoxyphenyl</td>
<td>>92.5</td>
<td>>92.5</td>
<td>>92.5</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>4-Nitrophenyl</td>
<td>17.5</td>
<td>77.4</td>
<td>61.1</td>
<td>4.4</td>
</tr>
<tr>
<td>34</td>
<td>3,4-Dimethoxyphenyl</td>
<td>82</td>
<td>>166</td>
<td>>166</td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td>2,5-Dimethoxyphenyl</td>
<td>>83</td>
<td>>83</td>
<td>>83</td>
<td>-</td>
</tr>
<tr>
<td>36</td>
<td>2-Naphthyl</td>
<td>4.9</td>
<td>49.9</td>
<td>-</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Table 2.1: activity and cytotoxicity data for compounds 12, 30-36

As can be inferred from table 2.1, compound 12 confirmed the activity potential
previously found, while a hydrophobic substituent in the *para* position in the aromatic rings was related to activity retention (compound 31). Compounds 33 and 36, with *para*-nitrophenyl and 2-naphthyl aromatic moieties, respectively, were associated with cytotoxicity, while the removal of the substituent or its replacement with methoxy groups led to loss of activity.

\[\text{N,N\'-(2,2'-(Piperazine-1,4-diyl)bis(ethane-2,1-diyl)) diaryl sulfonamides (46-53)} \]

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar-</th>
<th>EC_{50}(\mu M)</th>
<th>CC_{50}(\mu M)</th>
<th>EC_{90}(\mu M)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>4-Chlorophenyl</td>
<td>>95.9</td>
<td>>95.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>47</td>
<td>Phenyl</td>
<td>>110</td>
<td>>110</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>48</td>
<td>4-Methylphenyl</td>
<td>>104</td>
<td>>104</td>
<td>>104</td>
<td>-</td>
</tr>
<tr>
<td>49</td>
<td>4-Methoxyphenyl</td>
<td>>97.5</td>
<td>>97.5</td>
<td>>97.5</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>4-Nitrophenyl</td>
<td>17.4</td>
<td>22.3</td>
<td>-</td>
<td>1.3</td>
</tr>
<tr>
<td>51</td>
<td>3,4-Dimethoxyphenyl</td>
<td>85.8</td>
<td>>87.3</td>
<td>>87.3</td>
<td>>1</td>
</tr>
<tr>
<td>52</td>
<td>2,5-Dimethoxyphenyl</td>
<td>>87</td>
<td>>87</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>53</td>
<td>2-Naphthyl</td>
<td>10.6</td>
<td>>90.5</td>
<td>-</td>
<td>>8.5</td>
</tr>
</tbody>
</table>

Table 2.2: activity and cytotoxicity data for compounds 46-53

Symmetrical shortening of the aliphatic linker was associated with loss of activity, indicating an important role played by the length of the linker for viral replication inhibition. The only exception to this trend was compound 53, where the presence of the 2-naphthyl ring resulted in activity retention, while the shortening of the linker appears to reduce the toxic effect found for its three-carbon analogue, compound 36.
Chapter 2: Piperazines

\[N,N'-(3,3'-(piperazine-1,4-diyl)bis(3-oxopropane-3,1-diyl))diarylsulfonamides \ (62-68) \]

![Chemical structure of \(N,N'-(3,3'-(piperazine-1,4-diyl)bis(3-oxopropane-3,1-diyl))diarylsulfonamides \)]

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar-</th>
<th>(EC_{50}(\mu M))</th>
<th>(CC_{50}(\mu M))</th>
<th>(EC_{90}(\mu M))</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>4-Chlorophenyl</td>
<td>-</td>
<td>>86.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>63</td>
<td>Phenyl</td>
<td>>197</td>
<td>>197</td>
<td>>197</td>
<td>-</td>
</tr>
<tr>
<td>64</td>
<td>4-Methoxyphenyl</td>
<td>-</td>
<td>>87.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>65</td>
<td>4-Nitrophenyl</td>
<td>84</td>
<td>>167</td>
<td>>167</td>
<td>>1.9</td>
</tr>
<tr>
<td>66</td>
<td>3,4-Dimethoxyphenyl</td>
<td>>159</td>
<td>>159</td>
<td>>159</td>
<td>-</td>
</tr>
<tr>
<td>67</td>
<td>2,5-Dimethoxyphenyl</td>
<td>>79.5</td>
<td>>79.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>68</td>
<td>2-Naphthyl</td>
<td>12.4</td>
<td>40.8</td>
<td>78.3</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Table 2.3: activity and cytotoxicity data for compounds 62-68

For the third series of symmetrical derivatives prepared, biological results indicate that either the presence of the positive charge on the two amine groups or the flexibility of the two linkers are important for viral replication inhibition, since this modification is correlated to loss of activity. The only exception is represented by compound 68, where the 2-naphthyl group is associated with retained activity, but also shows increased toxicity against the cell.

\[N-(3-(Piperidin-1-yl)propyl)arylsulfonamides \ (69, 70) \]

![Chemical structure of \(N-(3-(Piperidin-1-yl)propyl)arylsulfonamides \)]

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar-</th>
<th>(EC_{50}(\mu M))</th>
<th>(CC_{50}(\mu M))</th>
<th>(EC_{90}(\mu M))</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>4-Chlorophenyl</td>
<td>61</td>
<td>>157</td>
<td>-</td>
<td>2.5</td>
</tr>
<tr>
<td>70</td>
<td>2-Naphthyl</td>
<td>12.7</td>
<td>70.4</td>
<td>-</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Table 2.4: activity and cytotoxicity data for compounds 69, 70

Biological results for the two shorter unsymmetrical derivatives where the piperazine central core is replaced with a piperidine ring, compounds 69 and 70, confirmed the importance of the overall length of the molecule, since this last modification is associated with loss of activity for compound 69, while the values for the 2-naphthyl
analogue confirmed the cytotoxic effect associated with this substitution.

\[N,N'-(4,4'-\text{(Piperazine-1,4-diyl)bis(butane-4,1-diyl)})\text{bis(4-chlorobenzene sulfonamide)}} \] (73)

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC_{50}(\mu M)</th>
<th>CC_{50}(\mu M)</th>
<th>EC_{90}(\mu M)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>69</td>
<td>>173</td>
<td>164</td>
<td>>2.5</td>
</tr>
</tbody>
</table>

Table 2.5: activity and cytotoxicity data for compound 73

Loss of activity associated with a longer aliphatic linker of four methylene groups, in compound 73, confirmed that the length of the original molecule 12 plays an important role for the viral replication inhibition.

2.2.7 Design of a new series of symmetrical derivatives

Following the biological results obtained for the first series of analogues tested, a new series of compounds was designed, and for most of them the original three-carbon aliphatic linker was maintained. The new modifications planned aimed to explore the effect of the hydrophobic substituent in the aromatic system, by changing the position of the original chlorine to meta and ortho, and by replacing the hydrophobic group in the position para with a tert-butyl, trifluoromethyl and phenyl functions. In order to investigate the residual activity shown for the 4-nitro analogue 33, it was decided to insert a carboxylic function in the para position of the aromatic system, and also the carboxylate ethyl ester was chosen for preparation and biological evaluation. Moreover, the aromatic system in the original scaffold was replaced with heteroaromatic rings (pyridine, thiophene and quinoline), and the 2-naphthyl system in compound 33 was substituted with a 1-naphthyl group. In order to assess the importance of the two sulfonamide groups, it was decided to replace them with an amide group. Finally, the first non-piperazine derivative was designed, aiming to rigidify the original structure and to remove its double positive charge, while maintaining the opportunity of hydrogen-bond formation. To achieve this result, the scaffold of para-phenylenediamine was chosen to replace piperazine.
2.2.8 \(N,N'-(3,3'-(\text{piperazine-1,4-diyl})\text{bis(propane-3,1-diyl)})\text{diaryl}sulfonamides \) (100-108, 111, 116)

Nine new derivatives with a linear three-carbon linker were prepared following the previously applied two-step synthetic pathway, starting from sulfonyl chlorides 82-90, preparing intermediate alkyl bromides 91-99, and finally alkylating piperazine amine groups to obtain symmetrical products 100-108, as shown in scheme 2.8.

![Scheme 2.8: Synthesis of compounds 100-108](image)

<table>
<thead>
<tr>
<th>Starting Sulfonyl Chloride</th>
<th>Ar</th>
<th>Bromide intermediate</th>
<th>Yield %</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>3-Chlorophenyl</td>
<td>91</td>
<td>75</td>
<td>100</td>
<td>79</td>
</tr>
<tr>
<td>83</td>
<td>4-\text{tert-}Butylphenyl</td>
<td>92</td>
<td>77</td>
<td>101</td>
<td>82</td>
</tr>
<tr>
<td>84</td>
<td>4-Trifluoromethylphenyl</td>
<td>93</td>
<td>80</td>
<td>102</td>
<td>61</td>
</tr>
<tr>
<td>85</td>
<td>4-Biphenyl</td>
<td>94</td>
<td>67</td>
<td>103</td>
<td>87</td>
</tr>
<tr>
<td>86</td>
<td>1-Naphthyl</td>
<td>95</td>
<td>95</td>
<td>104</td>
<td>91</td>
</tr>
<tr>
<td>87</td>
<td>8-Quinoline</td>
<td>96</td>
<td>73</td>
<td>105</td>
<td>63</td>
</tr>
<tr>
<td>88</td>
<td>1-Thiophene</td>
<td>97</td>
<td>89</td>
<td>106</td>
<td>83</td>
</tr>
<tr>
<td>89</td>
<td>3-Pyridine</td>
<td>98</td>
<td>56</td>
<td>107</td>
<td>63</td>
</tr>
<tr>
<td>90</td>
<td>4-Ethylcarboxyphenyl</td>
<td>99</td>
<td>66</td>
<td>108</td>
<td>41</td>
</tr>
</tbody>
</table>

Sulfonyl chlorides 82-88 were commercially available, while 3-pyridine sulfonyl chloride (89) and ethyl 4-(chlorosulfonyl)benzoate (90) were synthesised starting from pyridine-3-sulfonic acid (109) and 4-chlorosulfonyl benzoic acid (110), respectively.
Synthesis of pyridine-3-sulfonyl chloride (89)24

\begin{center}
\begin{align*}
\text{Scheme 2.9: Synthesis of sulfonfyl chloride 89}
\end{align*}
\end{center}

Following reported procedures, compound 89 was obtained by refluxing over night pyridine-3-sulfonic acid (109) with phosphorus pentachloride and phosphorus oxychloride, in order to perform a substitutive chlorination of the sulfonic acid function to sulfonyl chloride.24

Synthesis of 4-chlorosulfonyl-benzoic acid ethyl ester (90)

The carboxylic function of 4-chlorosulfonyl benzoic acid (110) was converted to its ethyl ester derivative following procedures reported for the preparation of the methyl ester (scheme 2.9).25

\begin{center}
\begin{align*}
\text{Scheme 2.9: Synthesis of sulfonfyl chloride 90}
\end{align*}
\end{center}

Starting material 110 was first treated with thionyl chloride in DCM, refluxing the reaction mixture for 2 h prior removal of the solvent at reduced pressure, thus obtaining the acyl chloride. This intermediate was immediately treated with cold ethanol at 0°C, allowing the nucleophilic substitution of the chloride leaving group with the formation of the ethyl ester derivative, compound 90.

3-(N-(3-(4-(3-(4-Carboxyphenylensulfonamide)propyl)piperazin-1-yl)propyl)sulfamoyl)benzoic acid (111)

The designed derivative 111 with a carboxylic substituent in the \textit{para} position of the aromatic group in the lateral chain was obtained through a base-catalysed hydrolysis of the two ester functional groups of compound 108, as shown in scheme 2.10.
Ethyl ester groups in compound 108 were hydrolysed into the free carboxylic acids with lithium hydroxide, stirring the reaction mixture at 80°C over night. The final product 111 was precipitated after removal of the organic solvent and subsequent acidification of the water residue to pH 5.

\[\text{N,N'-}(3,3'-(\text{Piperazine-1,4-diyl})\text{bis(propane-3,1-diyl)})\text{bis(2-chlorobenzene-sulfonamide)} \] (116)

In order to move the original 4-chloro aromatic substituent into the ortho position, 2-chlorobenzenesulfonamide (112) was the only starting material available. The first step of the usual synthetic pathway had therefore to be changed to obtain this derivative (scheme 2.11).

\[\text{Synthesis of N-(3-bromo-propyl)-2-chloro-benzenesulfonamide (115)} \]
Intermediate alkyl bromide 115 was obtained by reacting 2-chlorobenzene sulfonamide (112) with 1,3-dibromopropane (113). One proton of the sulfonamide nitrogen was first removed by treating with 1 equivalent of NaH in anhydrous DMF, followed by the addition of compound 113 to the mixture, in order to obtain the displacement of one of the bromides by the nitrogen lone pair.26

Desired intermediate 115 was not the main product formed: most of the starting material was converted into the product of the double substitution on the sulfonamide nitrogen, to give compound 114, while compound 116 was obtained in 39% yield.
2.2.9 \(N,N'-(2,2'-(\text{Piperazine-1,4-diyl})\text{bis(ethane-2,1-diyl)})\text{diquinoline-8-sulfonamide} \) (118)

Due to the activity potential revealed for compound 53, which shows a shorter two-carbon linker and a 2-naphthalene aromatic system, it was thought that the insertion of another bicyclic aromatic system could maintain a certain activity in the shorter scaffold. One new symmetrical derivative was therefore prepared with a two-carbon linker, through the usual synthetic approach, starting from 8-quinoline sulfonyl chloride (87) (scheme 2.12).

![Scheme 2.12: Synthesis of compound 118](image)

2.2.10 \(N,N'-(3,3'-(\text{Piperazine-1,4-diyl})\text{bis(propane-3,1-diyl)})\text{bis(4-chloro benzamide)} \) (122)

In order to investigate the role of the sulfonamide group for antiviral activity, it was replaced with an amide group. The synthetic pathway carried out was the same previously used (scheme 2.13).
Scheme 2.13: Synthesis of compound 122

Synthesis of \(N\)-(3-bromopropyl)-4-chlorobenzamide (120)
As was done for the synthesis of previous intermediate alkyl bromides, 4-chlorobenzoyl chloride (119) was converted into the corresponding benzamide 120 through a nucleophilic substitution with 3-bromopropylamine hydrobromide (21) in the presence of triethylamine.

Synthesis of \(N,N'\)-(3,3'-(piperazine-1,4-diyl))bis(propane-3,1-diyl))bis(4-chlorobenzamide) (122)
A first attempt to obtain final product 122 was made by heating compound 120 at reflux with piperazine in ethanol and sodium bicarbonate, following the usual strategy previously used for sulfonamide products. Nevertheless, under these conditions all of the starting material was converted into its internal closure product, compound 121: the energy given by heating could enhance an intramolecular reaction with the formation of a cyclic side-product. Before changing the synthetic strategy, it was decided to repeat the reaction without heating, using triethylamine and THF at r.t. for 48 h: this second attempt was successful and the desired product 122 was obtained in a 36% yield.

2.2.11 \(N,N'\)-(2,2'-(1,4-Phenylenebis(azanediyl)))bis(ethane-2,1-diyl))bis(4-chlorobenzenesulfonamide) (125)

At this point of the study, a modification of the piperazine central nucleus was designed, in order to rigidify the molecule and remove the positive charge associated with the two
amine groups, while keeping the opportunity of hydrogen-bond formation. The structure of 4-phenylendiamine (123) was chosen as a new scaffold, separated by two methylene groups from the two terminal arylsulfonamide groups, in order to maintain the original length of compound 12. Different strategies were attempted to obtain one derivative with the new central system.

As shown in scheme 2.14, a first attempt began with the formation of \(N,N'\)-bis-(2-amine-ethyl)-benzene-1,4-diamine 124 as the first intermediate. Subsequent substitution of the free amine groups with 4-chlorobenzenesulfonyl chloride was planned to obtain compound 125.\(^{27-28}\)

![Scheme 2.14](image)

The first step was attempted by stirring of 4-phenylendiamine (123) with 2-bromoethylamine hydrobromide (37) for half of the reaction time in the appropriate solvent before adding the base, pyridine or triethylamine. These two attempts to obtain intermediate 124, using different base/solvent systems, were unsuccessful. A different strategy was therefore planned, starting from intermediate alkyl bromide 38 and trying to obtain a double nucleophilic displacement by the two aromatic amine groups of compound 123 (scheme 2.15).

![Scheme 2.15](image)

The reaction was first tried by heating under reflux in ethanol and sodium bicarbonate. This attempt gave a complex mixture of products that was not possible to purify.
successfully.
The reaction system was therefore changed, and the reaction was repeated at room temperature for 72 h, using triethylamine and THF as base/solvent. Also in this case the formation of a complex mixture of products was observed, but after a series of chromatographic purifications, which reduced the yield of the reaction to 17%, it was possible to isolate desired pure product 125.

2.2.12 Biological evaluation

\(N,N'-(3,3'-(\text{piperazine-1,4-diyl})\text{bis(propane-3,1-diyl)})\text{diaryl sulfonamides (100-108, 111, 116)}\)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar-</th>
<th>EC(_{50}) (µM)</th>
<th>CC(_{50}) (µM)</th>
<th>EC(_{90}) (µM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3-Chlorophenyl</td>
<td>76.9</td>
<td>>182</td>
<td>173</td>
<td>>2.4</td>
</tr>
<tr>
<td>101</td>
<td>4-\text{tert-Butylphenyl}-</td>
<td>4.9</td>
<td>91.5</td>
<td>42.9</td>
<td>18.6</td>
</tr>
<tr>
<td>102</td>
<td>4-Trifluoromethylphenyl</td>
<td>6.5</td>
<td>>162</td>
<td>-</td>
<td>>24.9</td>
</tr>
<tr>
<td>103</td>
<td>4-Biphenyl</td>
<td><1.2</td>
<td>4.25</td>
<td>-</td>
<td>>3.5</td>
</tr>
<tr>
<td>104</td>
<td>1-Naphthyl</td>
<td>>172</td>
<td>>172</td>
<td>>172</td>
<td>-</td>
</tr>
<tr>
<td>105</td>
<td>8-Quinoline</td>
<td>42.5</td>
<td>>182</td>
<td>173</td>
<td>>4.3</td>
</tr>
<tr>
<td>106</td>
<td>1-Thiophene</td>
<td>62</td>
<td>>203</td>
<td>156</td>
<td>>3.3</td>
</tr>
<tr>
<td>107</td>
<td>3-Pyridine</td>
<td>>207</td>
<td>>207</td>
<td>>207</td>
<td>-</td>
</tr>
<tr>
<td>108</td>
<td>4-Ethylcarboxyphenyl</td>
<td>56.2</td>
<td>>160</td>
<td>-</td>
<td>>2.8</td>
</tr>
<tr>
<td>111</td>
<td>4-Carboxyphenyl</td>
<td>>176</td>
<td>>176</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>116</td>
<td>2-Chlorophenyl</td>
<td>39.6</td>
<td>>182</td>
<td>>182</td>
<td>>4.6</td>
</tr>
</tbody>
</table>

Table 2.5: activity and cytotoxicity data for compounds 100-108, 111, 116

As can be inferred from table 2.5, the presence of a \text{para}-hydrophobic aromatic substituent in the original scaffold seems necessary for retention of activity: moving the 4-chloro group to position 2 and 3 is associated with loss of activity, while the presence of a bulkier lipophilic substituent in the \text{para} position, such as a \text{tert}-butyl in compound 101 and a trifluoromethyl in compound 102, results in retained activity. The lowest EC\(_{50}\) value is reached when a second phenyl group replaced the original 4-chloro (compound 103): however, this last modification also shows an increased toxic effect.
Replacement of the two phenyl rings with heteroaromatic ones leads to loss of activity, and the same effect can be noticed for the substitution of the previous 2-naphthyl group (compound 36) with 1-naphthyl: cytotoxicity is reduced in compound 104, but activity potential against viral replication is lost as well.

Trying to mimic the effect of a 4-nitro group (compound 33), a 4-carboxylate function was introduced as aromatic substituent (compound 111): with this last modification, toxic effect is lost, but the same can be said for antiviral activity. A mild inhibition of viral replication is observed for ethyl ester derivative 108, but antiviral potential is reduced in comparison with compound 12.

\[\text{N,N'-(Piperazine-1,4-diylbis(ethane-2,1-diyl))bis(quinoline-8-sulfonamide)} \]

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC_{50}(\mu M)</th>
<th>CC_{50}(\mu M)</th>
<th>EC_{90}(\mu M)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td>>180</td>
<td>>180</td>
<td>>180</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2.6: activity and cytotoxicity data for compound 118

The same trend shown in the three-carbon linker series, where replacement of the 2-naphthyl group with a 1-naphthyl or a 8-quinoline substituent led to loss of activity, can be observed in the two-carbon linker series: activity previously found for compound 53 is lost when a 8-quinoline moiety replaces the 2-naphthyl.

\[\text{N,N'-(3,3'-(Piperazine-1,4-diylbis(propane-3,1-diyl))bis(4-chlorobenzamide)} \) (122)

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC_{50}(\mu M)</th>
<th>CC_{50}(\mu M)</th>
<th>EC_{90}(\mu M)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>122</td>
<td>>209</td>
<td>>209</td>
<td>>209</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2.7: activity and cytotoxicity data for compound 122

Along with the presence of a 4-hydrophobic aromatic substituent, the two sulfonamide groups seem to play an essential role for antiviral activity: their replacement with an amide group in compound 122 is associated with a dramatic loss of antiviral potential.
\[N,N'-(2,2'-(1,4-\text{Phenylenebis(azanediyl)})\text{bis(ethane-2,1-diyl)})\text{bis(4-chlorobenzene sulfonamide}) \] (124)

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC_{50}(\mu M)</th>
<th>CC_{50}(\mu M)</th>
<th>EC_{90}(\mu M)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>124</td>
<td>12.1</td>
<td>22</td>
<td>-</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Table 2.8: activity and cytotoxicity data for compound 124

Biological results for compound 124, with which the structure of compound 12 was rigidified and the positive charges removed with the introduction of a new 4-phenylendiamine central scaffold, show that this modification does not seem to be successful for cytotoxicity reasons: even though activity is retained from an EC_{50} point of view, compound 124 is mainly associated with an adverse effect against cells.
2.3 Synthesis of unsymmetrical piperazines

In order to explore the importance of symmetry in the original scaffold, three series of new derivatives were designed to introduce small asymmetry elements in the structure, without dramatically modifying its overall length or chemical nature, and considering the biological results obtained for the previous series of derivatives.

In all new compounds designed, the presence of two aromatic sulfonamide groups was to be maintained, along with a para hydrophobic substituent in at least one phenyl ring. Another element to be kept was the central piperazine nucleus and one three-carbon linker.

2.3.1 Unsymmetrical \(N\)-{3-[4-(3-arylsulfonylamine-propyl)-piperazin-1-yl]-propyl}-arylsulfonamides (126-138)

A first series of unsymmetrical derivatives was designed to maintain the original scaffold while introducing different para hydrophobic substituents in the two aromatic rings, combining together the most successful substitutions previously obtained (4-chloro, 4-methyl, 4-tert-butyl and 4-trifluoromethyl), along with the unsubstituted phenyl moiety and the biphenyl one (for which the lowest EC\(_{50}\) value had been found, but was also associated with a toxic effect in compound 103).

To achieve the desired results, the two amine groups of the central piperazine core had to be functionalised with two different \(N\)-(3-bromopropyl)arylsulfonamide intermediates.

Starting from alkyl bromide intermediates 22-24, 92-94, a first strategy was attempted to obtain the final products in a one-pot manner, as shown in scheme 2.16.

![Scheme 2.16: First strategy attempted for the synthesis of compounds 126-138. Conditions: 1. NaHCO\(_3\), EtOH, reflux, o.n.; 2. Reflux, 24h](image)

In this attempt, the first alkyl bromide (22) was refluxed in ethanol o.n. with an equimolar quantity of piperazine, in the presence of NaHCO\(_3\), in order to allow the
formation of the product of the nucleophilic displacement by one of piperazine amine groups, monitoring the presence of this intermediate by TLC. The second alkyl bromide (23) was subsequently added in small excess to the reaction mixture, leaving it stirring under reflux for a further 24 h. Formation of the desired product 126 was confirmed by both NMR and MS experiments, but it was not possible to purify, due to the simultaneous formation of both the two symmetrical products, confirmed by MS.

Several attempts were made in terms of molar ratio of the starting materials and reaction conditions, in order to enhance the formation of the unsymmetrical product, but it was not possible to purify it by either chromatographic techniques or re-crystallisation.

In order to overcome purification difficulties, it was decided to first isolate the pure products of monosubstitution on the level of piperazine, and then react these intermediates with the second alkyl bromide, thus obtaining unsymmetrical products 126-138 after chromatographic purification (scheme 2.17).
Alkyl bromide 1 R1 Mono-intermediate Yield % Alkyl bromide 2 R2 Product Yield %
22 -Cl 139 56 23 -H 126 68
22 -Cl 139 - 24 -Me 127 86
22 -Cl 139 - 92 -tBu 128 60
22 -Cl 139 - 93 -CF3 129 85
22 -Cl 139 - 94 -Ph 130 71
92 -tBu 142 71 23 -H 131 54
92 -tBu 142 - 24 -Me 132 83
92 -tBu 142 - 93 -CF3 133 70
92 -tBu 142 - 94 -Ph 134 58
24 -Me 141 59 23 -H 135 52
24 -Me 141 - 94 -Ph 136 67
94 -Ph 143 41 23 -H 137 71
23 -H 140 71 93 CF3 138 50

Scheme 2.17: Final pathway for the synthesis of compounds 126-138

Synthesis of N-(3-piperazin-1-yl-propyl)-arylsulfonamides (139-143)
Pure mono-substituted piperazine intermediates 139-143 were obtained with a nucleophilic displacement by one of the piperazine amine groups on the bromide leaving group. In order to reduce the formation of double substitution products, which was always noticed with different molar ratios and reaction systems attempted, the starting alkyl bromide was treated with a large excess of piperazine, and the mixture was heated at reflux in ethanol for 24 h. Pure intermediates were isolated by flash column chromatography before being used for the final step.
Synthesis of \(N\)-(3-[4-(3-arylsulfonylamine-propyl)-piperazin-1-yl]-propyl)-arylsulfonamides (126-138)

Final unsymmetrical products 126-138 were prepared by treating mono-substituted intermediates 139-143 with a small excess of the second alkyl bromide, in order to obtain a further nucleophilic displacement by the piperazine secondary amine while refluxing the mixture in ethanol for 24 h, in the presence of NaHCO\(_3\), added to neutralise the hydrobromic acid formed.

2.3.2 Unsymmetrical \(N\)-(3-(4-(2-(arylsulfonamide)ethyl)piperazin-1yl)/propyl)aryl sulfonamides (144-146)

A second small series of unsymmetrical derivatives was designed to maintain the same \textit{para} hydrophobic substituent in the two aromatic rings, while reducing the length of one of the two linkers from three to two methylene groups. According to biological results obtained for the previous series of compounds, it was chosen to synthesise corresponding derivatives with a 4-chloro and a 4-\textit{tert}-butyl substituent respectively, along with the unsubstituted phenyl derivative.

The synthetic strategy applied was the same designed for compounds 126-138: final products 144-146 were obtained by reacting mono-substituted intermediates 139, 140, 142 with \(N\)-(2-bromoethyl)arylsulfonamides 38, 39, 147, as shown in scheme 2.18.

<table>
<thead>
<tr>
<th>Ethyl bromide</th>
<th>Mono-intermediate</th>
<th>R</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>139</td>
<td>-Cl</td>
<td>144</td>
<td>72</td>
</tr>
<tr>
<td>39</td>
<td>140</td>
<td>-H</td>
<td>145</td>
<td>47</td>
</tr>
<tr>
<td>147</td>
<td>142</td>
<td>-tBu</td>
<td>146</td>
<td>53</td>
</tr>
</tbody>
</table>

Scheme 2.18: Synthetic pathway for compounds 144-146

The previous system NaHCO\(_3\)/ethanol under reflux conditions was used to obtain final products 144-146 from mono-substituted intermediates 139, 140 and 142, reacting them with \(N\)-(2-bromoethyl)arylsulfonamides in order to displace the bromide leaving group with the secondary amine group of piperazine. \(N\)-(2-Bromoethyl)-4-\textit{(tert}-butyl)}
benzenesulfonamide 147 was prepared by reacting 4-\textit{tert}-butylbenzene sulfonyl chloride 83 with 2-bromopropylamine, following the procedure previously applied for the synthesis of ethyl bromide intermediates 38-45.

2.3.3 Unsymmetrical \(N\)-(3-(4-((aryl)sulfonamide)propanoyl)piperazin-1-yl)-3-oxo propyl)aryl sulfonamides (148-152)

A third and final series of unsymmetrical derivatives was designed to functionalise one amine group in the original structure to amide, thus removing one positive charge and partially rigidifying the scaffold, while keeping the overall length of the molecule and the same hydrophobic substituent in the \textit{para} position of the two aromatic rings. A derivative with an unsubstituted phenyl moiety was chosen as well for preparation, to potentially confirm the importance of a 4-hydrophobic substituent for antiviral activity. Starting from mono-substituted intermediates 139-143, it was planned to convert the piperazine secondary amine group to amide by inserting an oxypropylic spacer in the structure, using the scaffold of \(\beta\)-alanine (54), following a TBTU-assisted coupling reaction (scheme 2.19), as had been done previously for symmetrical compounds 62-68.

![Scheme 2.19: Pathway for the synthesis of compounds 148-152](image)

<table>
<thead>
<tr>
<th>Propionic acid</th>
<th>Mono-intermediate</th>
<th>(R)</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>139</td>
<td>-Cl</td>
<td>148</td>
<td>46</td>
</tr>
<tr>
<td>56</td>
<td>140</td>
<td>-H</td>
<td>149</td>
<td>37</td>
</tr>
<tr>
<td>57a</td>
<td>141</td>
<td>-Me</td>
<td>150</td>
<td>34</td>
</tr>
<tr>
<td>153</td>
<td>142</td>
<td>-tBu</td>
<td>151</td>
<td>47</td>
</tr>
<tr>
<td>154</td>
<td>143</td>
<td>-Ph</td>
<td>152</td>
<td>47</td>
</tr>
</tbody>
</table>

Intermediate propanoic acids 153 and 154 were prepared by reacting 4-\textit{tert}-butylbenzene sulfonyl chloride 83 and 4-biphenyl sulfonyl chloride 85, respectively, with \(\beta\)-alanine, according to the same procedure previously followed for compounds 55-61.
2.3.4 Biological evaluation

N-(3-[4-(3-Arylsulfonylamine-propyl)-piperazin-1-yl]-propyl)-arylsulfonamides

![Chemical structure of N-(3-[4-(3-Arylsulfonylamine-propyl)-piperazin-1-yl]-propyl)-arylsulfonamides](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R1</th>
<th>R2</th>
<th>EC<sub>50</sub>(μM)</th>
<th>CC<sub>50</sub>(μM)</th>
<th>EC<sub>90</sub>(μM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>126</td>
<td>-Cl</td>
<td>-H</td>
<td>18.6</td>
<td>81.5</td>
<td>>64.1</td>
<td>4.4</td>
</tr>
<tr>
<td>127</td>
<td>-Cl</td>
<td>-CH<sub>3</sub></td>
<td>8.7</td>
<td>48.8</td>
<td>36.2</td>
<td>5.6</td>
</tr>
<tr>
<td>128</td>
<td>-Cl</td>
<td>-tBu</td>
<td>1.9</td>
<td>8.7</td>
<td>4.9</td>
<td>4.6</td>
</tr>
<tr>
<td>129</td>
<td>-Cl</td>
<td>-CF<sub>3</sub></td>
<td>10.1</td>
<td>68.7</td>
<td>33.5</td>
<td>6.8</td>
</tr>
<tr>
<td>130</td>
<td>-Cl</td>
<td>-Ph</td>
<td>2.1</td>
<td>3.9</td>
<td>-</td>
<td>1.9</td>
</tr>
<tr>
<td>131</td>
<td>-tBu</td>
<td>-H</td>
<td>3.8</td>
<td>18.8</td>
<td>-</td>
<td>4.9</td>
</tr>
<tr>
<td>132</td>
<td>-tBu</td>
<td>-CH<sub>3</sub></td>
<td>3.8</td>
<td>14.3</td>
<td>9.4</td>
<td>3.8</td>
</tr>
<tr>
<td>133</td>
<td>-tBu</td>
<td>-CF<sub>3</sub></td>
<td>7.4</td>
<td>25.5</td>
<td>13.8</td>
<td>3.4</td>
</tr>
<tr>
<td>134</td>
<td>-tBu</td>
<td>-Ph</td>
<td>1.5</td>
<td>4.1</td>
<td>3.1</td>
<td>2.7</td>
</tr>
<tr>
<td>135</td>
<td>-CH<sub>3</sub></td>
<td>-H</td>
<td>26.4</td>
<td>138</td>
<td>>66.7</td>
<td>5.2</td>
</tr>
<tr>
<td>136</td>
<td>-CH<sub>3</sub></td>
<td>-Ph</td>
<td>2.1</td>
<td>6.1</td>
<td>-</td>
<td>2.9</td>
</tr>
<tr>
<td>137</td>
<td>-Ph</td>
<td>-H</td>
<td>2.9</td>
<td>12.1</td>
<td>-</td>
<td>4.2</td>
</tr>
<tr>
<td>138</td>
<td>-H</td>
<td>-CF<sub>3</sub></td>
<td>11.9</td>
<td>70</td>
<td>-</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Table 2.9: activity and cytotoxicity data for N-(3-[4-(3-arylsulfonylamine-propyl)-piperazin-1-yl]-propyl)-arylsulfonamides

Biological data for compounds **126-138** suggest that a different *para*-hydrophobic substitution in the two aromatic rings of the original scaffold is tolerated and does not decrease viral replication inhibition: the EC₅₀ values for most compounds tested are in the range of 1-10 μM. Nevertheless, the small modifications carried out on the original structures seem to strongly affect cytotoxicity: for all newly synthesised compounds the selectivity index is below 10, and an increased toxic effect against cells appears to be the most evident trend for this series of compounds.
N-(3-(4-(2-(Arylsulfonamide)ethyl)piperazin-1-yl)propyl)arylsulfonamides

![Chemical structure]

Table 2.10: activity and cytotoxicity data for N-(3-(4-(2-(arylsulfonamide)ethyl)piperazin-1-yl)propyl)arylsulfonamides

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>EC50(μM)</th>
<th>CC50(μM)</th>
<th>EC90(μM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>-Cl</td>
<td>5.6</td>
<td>32.5</td>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td>145</td>
<td>-H</td>
<td>69.2</td>
<td>>214</td>
<td>212</td>
<td>>3.1</td>
</tr>
<tr>
<td>146</td>
<td>-iBu</td>
<td>1.7</td>
<td>5.09</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Except for compound 145, which does not show relevant activity nor cytotoxicity, unsymmetrical shortening of one aliphatic linker is associated with a retained antiviral effect, suggesting that symmetry is not an essential requirement for activity. Nevertheless, also in this second series of unsymmetrical compounds the small structural modification seems to be related to an increased cytotoxic effect.

N-(3-(4-(3-(Arylsulfonamide)propanoyl)piperazin-1-yl)-3-oxopropyl)aryl sulfonamides

![Chemical structure]

Table 2.11: activity and cytotoxicity data for N-(3-(4-(3-(arylsulfonamide)propanoyl)piperazin-1-yl)-3-oxopropyl)arylsulfonamides

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>EC50(μM)</th>
<th>CC50(μM)</th>
<th>EC90(μM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td>-Cl</td>
<td>8.5</td>
<td>69.1</td>
<td>25.9</td>
<td>8.1</td>
</tr>
<tr>
<td>149</td>
<td>-H</td>
<td>>202</td>
<td>>202</td>
<td>>202</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>-Me</td>
<td>64.3</td>
<td>>191</td>
<td>173</td>
<td>3</td>
</tr>
<tr>
<td>151</td>
<td>-iBu</td>
<td>4.1</td>
<td>28</td>
<td>>4.9</td>
<td>6.8</td>
</tr>
<tr>
<td>152</td>
<td>-Ph</td>
<td>3.0</td>
<td>7.52</td>
<td></td>
<td>2.5</td>
</tr>
</tbody>
</table>

Biological results for the final family of unsymmetrical derivatives highlight the same trend found for the previous two series of compounds: antiviral potential seems to be retained by functionalising one of the piperazine nitrogens to amide, but toxic effect
against cells is enhanced, since the selectivity index for all new compounds is below 10. The only exception to this trend is again represented by the unsubstituted phenyl-derivative, compound 149: as expected, it does not show antiviral activity, confirming the essential role played by a para-hydrophobic aromatic group for viral replication inhibition, but represents at the same time the unique analogue for which cytotoxic effect is not observed.
2.4 Conclusions

In the course of this first part of the study, the application of computer-aided techniques led to the identification of compound 12, which showed antiviral potential against HCV replication in the replicon assay. Starting from its structure, a series of modifications was designed to explore the potential activity associated with this molecule, and 61 new compounds were subsequently synthesised and sent for biological evaluation. The antiviral activity originally found for compound 12 was confirmed, and with the evaluation of its derivatives it was possible to identify several structural analogues with a retained antiviral effect against HCV replication.

Different structural modifications were explored in order to understand the role of aromatic substituents, sulfonamide groups, linker chains, piperazine central nucleus and symmetry of the original molecule. Two equal phenyl rings with a hydrophobic substituent in the para position are essential for antiviral activity, along with the presence of the two sulfonamide groups and the central piperazine ring. The length and nature of the two linker chains is also important for activity retention: a three-carbon aliphatic linker is required on both sides of the structure, while shortening or elongating either one or two of them is associated with loss of activity. The same effect can be observed with the functionalization of piperazine amine groups to amide, by inserting a carbonyl group in the terminal methylene group of the linker either by one side of the structure or both. Replacement of the piperazine central ring with the ones of phenylendiamine or piperidine is associated with loss of activity. The overall symmetry of the structure plays as well an important role for activity retention: the insertion of small asymmetry elements in the structure has a negative impact on the cytotoxicity, and most unsymmetrical derivatives prepared show low values of CC50 and SI.

Even if a clear trend was identified for the antiviral potential of this family of compounds, the modifications attempted so far did not lead to a significant improvement in terms of activity. For this reason, a further modification of the structure
of compound 12 was planned: a ligand-based *in silico* comparative analysis against known symmetrical inhibitors of the HCV NS3 helicase was performed, in order to replace and expand the central piperazine linker while maintaining the two sulfonamide groups and the symmetry of the molecule.
2.5 References

Chapter 2: Piperazines

23 Paeshuyse, J.; Vliegen I.; Coelmont, L.; Leyssen, P.; Tabarrini, O.; Herdewijn P.; Mittendorfer, H.; Easmon, J.; Cecchetti, V.; Bertanschlager, R.; Puerstinger, G.; Neyts, J. Comparative in vitro anti-hepatitis C virus activities of a selected series of

Chapter 3

p-Phenylendiamines
3.1 Ligand-based optimisation of compound 12

With the aim to further modify the structure of compound 12, its symmetrical scaffold was the object of a computer-based comparative analysis against the structures of known symmetrical HCV NS3 helicase inhibitors, in order to evaluate possible similarities in their chemical features. Symmetrical known inhibitors considered are shown in figure 3.1.

Figure 3.1: Chemical structures and inhibitory activities of known symmetrical inhibitors considered\(^1\)\(^2\)

3.1.1 Flexible alignment of compound 12 and known symmetrical inhibitors

In order to identify a common structural pattern between the known inhibitors and compound 12, the Flexible Alignment application available in MOE 2010.10 was used:\(^3\) its main function is to flexibly align (or superimpose) small molecules by maximising steric and feature overlap while minimising internal ligand strain.\(^4\)

For each alignment performed, the average internal strain energy \(U\), the total mutual similarity score \(F\) (the lower value it assumes, the more similar two structures appear to
be), and the value of the objective function S (corresponding to the sum of U and F values for a given alignment, the lower the better) are evaluated. Alignments with a low S value usually correspond to the best alignments. Nevertheless, since the application balances intramolecular strain forces and intermolecular pharmacophoric features, pharmacophoric forces can overpower internal strain energies in a molecular system, giving an alignment with large similarity scores, associated with large positive dU values. A good alignment should present a dU value lower than 1 kcal/mol.

Once flexibly aligned the structure of compound 12 (in pink) to the ones of the known symmetrical inhibitors (in green), alignments with a dU value up to 3 kcal/mol were analysed, in order to evaluate potential structural overlapping that could be achieved by chemically modifying compound 12 (figures 3.2-3.9).

Figure 3.2: Aligned compound 12 and DB2

Figure 3.3: Aligned compound 12 and (BIP)$_2$B

Figure 3.4: Aligned compounds 12 and 4

Figure 3.5: Aligned compounds 12 and 5a
From the alignment results, the structure of compound 12 appears to be too short to allow a good spatial superimposition with the known inhibitors, but a common overlapping feature can be identified: the aromatic sulfonamide group of compound 12 shows good superimposition with the benzimidazole ring of the known inhibitors, in particular with its NH group, present in most of the structures analysed. This overlapping feature was taken as the starting point to modify the scaffold of compound 12.

3.1.2 Design of new derivatives of compound 12

The structures of four inhibitors, BD2, (BIP)2B, compounds 4 and 5a, were chosen as reference scaffolds for the optimisation of compound 12. New derivatives were designed with the aim to maintain the two equal aromatic sulfonamide groups, while varying the linker between them, according to the evaluation of the conformational overlap with the corresponding known inhibitor. Both structures analysed in each pair
(reference known inhibitor and newly designed derivative) were kept as flexible in MOE’s Flexible Alignment, as had previously been done for compound 12. Trying to combine the structures of compound 12 and DB2 in order for the sulfonamide groups to better overlap with the internal benzimidazole cycles, three new scaffolds were designed and analysed for their alignment with the reference inhibitor. Their structures and alignments are shown in table 3.1.

Table 3.1: Structures and alignment results of designed compounds 155-157

All three new derivatives present an improved overlapping with the known inhibitor
DB2, with the sulfonamide groups superimposing well with the internal benzimidazole portions of the reference compound. Among them, the scaffold of compound 155 was chosen to be further developed, since it corresponds to the only alignment with a dU value lower than 1 kcal/mol.

The same approach was applied for the design of new derivatives starting from the structural combination of compound 12 and (BIP)_2B, compound 4 and 5a.

![Compound 158: dU= 0 kcal/mol](image1)

![Compound 159: dU= 0 kcal/mol](image2)

Table 3.2: Structures and alignment results of designed compounds 158, 159

Both new derivatives present a dU value equal to zero kcal/mol, but only the scaffold of compound 158 was chosen for further evaluation, since it was considered more accessible from a synthetic point of view.
Table 3.3: Structures and alignment results of designed compounds 160, 161

Between the two structures designed to achieve a good overlapping with compound 4, only compound 160 shows a $dU < 1$ kcal/mol: its structure was selected for further development.
Designed to achieve a better overlapping with compound 5a, both compounds 162 and 163 are associated with dU values < 1 kcal/mol. Compound 162 was more accessible synthetically, and its scaffold was chosen to be further developed.

In order to better validate the selected scaffolds of compounds 155, 158, 161 and 162, their structures were analysed with a molecular docking study on the enzyme open conformation. The GlideSP docking algorithm was chosen for this purpose, using a 16 Å binding site grid derived from the 3KQH crystal structure. All the structures analysed demonstrate a good fitting of the RNA binding pocket, with a good spatial occupation of the region at the interface of the three main domains, and all show probable hydrophobic and hydrogen-bond interactions with several target residues, including Trp501, Arg393, Glu493, Thr411, Ser287, Asn556 and Phe557.
(figure 3.10 a-d).

Figure 3.10 a-d: Predicted binding mode for compounds 155, 158, 160, 162, respectively

As their potential as helicase inhibitors was confirmed by a structure-based docking analysis, all four new scaffolds were chosen for synthetic development.
3.2 Synthesis of phenylendiamine- and ethylendiamine-based structures

The four new symmetrical scaffolds were synthesised according to two different procedures, a general one for compounds 158, 160 and 162, and a second one for compound 155. Moreover, in the case of molecular structures 158, 160 and 162, different substituents in the para position of the sulfonamide aromatic rings were explored, in order to follow the initial SAR data obtained for compound 12, where a hydrophobic group in this position had proven to be important for antiviral activity. In particular, a 4-chloro, 4-methyl and eventually an unsubstituted aromatic ring were chosen for a first series of new compounds.

The common synthetic pathway applied for the scaffolds of compounds 158, 160 and 162 is shown in scheme 3.1.

Scheme 3.1: Common synthetic strategy applied for compounds 158, 170, 160, 171-172, 162, 173-174

Synthesis of N-(4-amino-phenyl)-arylsulfonamides (164-166)

Two possible strategies were evaluated for the synthesis of common intermediates 164-166. One option could have been to first react arylsulfonyl chlorides with 4-nitroaniline, in order to obtain the product of nucleophilic displacement of the chloride leaving group by the free aromatic amino group, and subsequently reduce the nitro function to amine to isolate the desired intermediate. Comparing yields and reaction times of reported
procedures, it was decided to follow a one-step synthetic pathway, and react the starting sulfonyl chloride with an excess of 4-phenyldiamine (123), in anhydrous conditions, using DIPEA to neutralise the hydrochloric acid formed. The desired intermediates, product of the monosubstitution of one free amino group of compound 124, were then purified by flash column chromatography.

3.2.1 *N,N'-Bis-(4-arylsulfonylamino-phenyl)-terephthalamides (158, 170)*

A first small series of two compounds was prepared by reacting intermediates 164 and 165 with terephthaloyl chloride (167), in order to obtain a double nucleophilic displacement of the two chloride leaving groups by the free aromatic amine group of the intermediates (scheme 3.2).

![Scheme 3.2: Final step for the synthesis of compounds 158, 170](image)

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>R</th>
<th>Yield %</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>164</td>
<td>-Cl</td>
<td>75</td>
<td>158</td>
<td>36</td>
</tr>
<tr>
<td>165</td>
<td>-Me</td>
<td>73</td>
<td>170</td>
<td>69</td>
</tr>
</tbody>
</table>

3.2.2 *N,N'-Bis-(4-arylsulfonylamino-phenyl)-fumaramides (160, 171-172)*

Three new derivatives were obtained with the scaffold of compound 160 by reacting an excess of intermediates 164-165 with fumaryl chloride (168) (scheme 3.3).
3.2.3 \(N,N\text{'-Bis-(4-(arylsulfonamido)phenyl)}\)-succinamides (162, 173-174)

The same strategy applied for the previous compounds was followed to obtain a small series of new derivatives with the structural scaffold of compound 162, by reacting an excess of intermediates 164-166 with succinyl chloride (169) (scheme 3.4).

Scheme 3.3: Final step for the synthesis of compounds 160, 171-172

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>R</th>
<th>Yield %</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>164</td>
<td>-Cl</td>
<td>-</td>
<td>160</td>
<td>61</td>
</tr>
<tr>
<td>165</td>
<td>-Me</td>
<td>-</td>
<td>171</td>
<td>47</td>
</tr>
<tr>
<td>166</td>
<td>-H</td>
<td>77</td>
<td>172</td>
<td>39</td>
</tr>
</tbody>
</table>

3.2.4 \(N,N\text{'-Bis-(2-(4-chlorophenylsulfonamido)ethyl)}\)-succinamide (155)

Compound 155 was obtained following the previous two-step synthetic strategy, with the only difference being the use of an excess of 1,2-diaminoethane 175 in the first reaction step (scheme 3.5).
Synthesis of \(N-(2\text{-aminoethyl})-4\text{-chlorobenzenesulfonamide} \) (176)

Intermediate 176 was prepared by reacting 4-chlorobenzenesulfonyl chloride (13) with an excess of ethylenediamine 175, in order to achieve a single nucleophilic displacement on the chloride leaving group.

Synthesis of \(N,N'\text{-bis}(2-(4\text{-chlorophenylsulfonamido})\text{-ethyl})\text{-succinamide} \) (155)

Final compound 155 was obtained with a double nucleophilic displacement of the two leaving groups of succinyl chloride by the free amine group of intermediate 176.
3.2.5 Biological evaluation

All new derivatives were evaluated for their potential inhibition of HCV replication in the subgenomic replicon assay,\(^7\) as well as for their toxicity in the cytostatic assay. Their biological data are shown in tables 3.5-3.9.

N,N'-Bis-(4-arylsulfonylamino-phenyl)-fumaramides

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>EC(_{50})((\mu)M)</th>
<th>CC(_{50})((\mu)M)</th>
<th>EC(_{90})((\mu)M)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>158</td>
<td>-Cl</td>
<td>140.9</td>
<td>>143.8</td>
<td>>143.8</td>
<td>>1</td>
</tr>
<tr>
<td>170</td>
<td>-Me</td>
<td>25.2</td>
<td>>152.7</td>
<td>>152.7</td>
<td>>6</td>
</tr>
</tbody>
</table>

Table 3.5: Activity and cytotoxicity data for compounds 158, 170

N,N'-Bis-(4-arylsulfonylamino-phenyl)-fumaramides

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>EC(_{50})((\mu)M)</th>
<th>CC(_{50})((\mu)M)</th>
<th>EC(_{90})((\mu)M)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>-Cl</td>
<td>>154.9</td>
<td>>154.9</td>
<td>>154.9</td>
<td>-</td>
</tr>
<tr>
<td>171</td>
<td>-Me</td>
<td>42</td>
<td>>82.7</td>
<td>-</td>
<td>>2</td>
</tr>
<tr>
<td>172</td>
<td>-H</td>
<td>>173.4</td>
<td>>173.4</td>
<td>>173.4</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3.6: Activity and cytotoxicity data for \(N,N'\)-bis-(4-arylsulfonylamino-phenyl)-fumaramides
N,N'-Bis-(4-(arylsulfonamido)phenyl)-succinamides

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>EC$_{50}$(µM)</th>
<th>CC$_{50}$(µM)</th>
<th>EC$_{90}$(µM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>162</td>
<td>-Cl</td>
<td>10.8</td>
<td>>154.4</td>
<td>140.7</td>
<td>>14.3</td>
</tr>
<tr>
<td>173</td>
<td>-Me</td>
<td>52.4</td>
<td>>164.8</td>
<td>>164.8</td>
<td>>3.1</td>
</tr>
<tr>
<td>174</td>
<td>-H</td>
<td>31.6</td>
<td>172.8</td>
<td>-</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Table 3.7: Activity and cytotoxicity data for \(N-(3-(4-(2-(arylsulfonamido)ethyl)piperazin-1-yl)propyl)arylsulfonamides\)

N,N'-Bis-(2-(4-chlorophenylsulfonamido)ethyl)-succinamide

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC$_{50}$(µM)</th>
<th>CC$_{50}$(µM)</th>
<th>EC$_{90}$(µM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>>181.3</td>
<td>>181.3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3.8: Activity and cytotoxicity data for compound 155

Among the new scaffolds designed to optimise compound 12, compound 162 is associated with a positive antiviral effect against HCV replication, with an EC$_{50}$ value that indicates retention of activity compared to compound 12. The activity pattern of its analogues 173 and 174 seems to indicate the same effect for a para-hydrophobic substituent in the sulfonamide aromatic ring previously seen for the first structural analogues of compound 12, where antiviral activity was positively correlated with an increased hydrophobic group in this position.

In order to better investigate the antiviral potential of compound 162, its scaffold was chosen to be further modified.
3.2.6 Synthesis of a second series of N,N'-bis-(4-(arylsulfonamido)phenyl)-succinamides

The first modification designed for compound 162 was the substitution of the aromatic sulfonamide groups, in order to explore different hydrophobic groups in the para position and increase their occupational volume inserting a condensed aromatic ring. The synthetic pathway followed for this new series of compounds was the same previously carried out for 162: starting from the appropriate sulfonyl chloride (83-87), N-(4-amino-phenyl)-arylsulfonamides 177-181 were obtained in the first reaction step, and then reacted in excess with succinyl chloride (169) to give final products 182-186.

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Ar</th>
<th>Yield %</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>177</td>
<td>4-tert-butylphenyl</td>
<td>82</td>
<td>182</td>
<td>39</td>
</tr>
<tr>
<td>178</td>
<td>4-trifluoromethylphenyl</td>
<td>93</td>
<td>183</td>
<td>42</td>
</tr>
<tr>
<td>179</td>
<td>4-biphenyl</td>
<td>69</td>
<td>184</td>
<td>44</td>
</tr>
<tr>
<td>180</td>
<td>1-naphthyl</td>
<td>84</td>
<td>185</td>
<td>53</td>
</tr>
<tr>
<td>181</td>
<td>8-quinoline</td>
<td>53</td>
<td>186</td>
<td>35</td>
</tr>
</tbody>
</table>

Scheme 3.6: Synthetic pathway for compounds 182-186
3.2.7 Biological evaluation of compounds 182-186

The five new \(N,N'\)-bis-(4-(arylsulfonamido)phenyl)-succinamide derivatives were evaluated for their antiviral potential and cytotoxicity in the subgenomic replicon assay (table 3.9).\(^7\)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar</th>
<th>EC(_{50}) ((\mu M))</th>
<th>CC(_{50}) ((\mu M))</th>
<th>EC(_{90}) ((\mu M))</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>182</td>
<td>4-tert-butylphenyl</td>
<td>14.6</td>
<td>>144.7</td>
<td>34.1</td>
<td>>10.7</td>
</tr>
<tr>
<td>183</td>
<td>4-trifluoromethylphenyl</td>
<td>86.5</td>
<td>>139.9</td>
<td>>139.9</td>
<td>>1.6</td>
</tr>
<tr>
<td>184</td>
<td>4-biphenyl</td>
<td>12.2</td>
<td>>136.8</td>
<td>55</td>
<td>>11.2</td>
</tr>
<tr>
<td>185</td>
<td>1-naphthalene</td>
<td>32.9</td>
<td>>147.3</td>
<td>>147.3</td>
<td>>4.5</td>
</tr>
<tr>
<td>186</td>
<td>8-quinoline</td>
<td>>146.9</td>
<td>>146.9</td>
<td>>146.9</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2.20: Biological data for compounds 132-136

As can be inferred from the data above, the most successful modification corresponds to compound 182, where the presence of a tert-butyl substituent in the para position of the phenylsulfonamide groups is associated with activity retention and to an improved EC\(_{90}\) value. A similar trend is found for compound 184, where the presence of a biphenylsulfonamide group is still associated with activity retention. The other three modifications attempted are related to loss of activity, thus confirming the importance of a para-hydrophobic substituent in the molecule, but suggesting a negative influence of a bicyclic or heterocyclic aromatic ring.
3.3 Conclusions

In silico comparative analyses of compound 12 against the structures of known symmetrical inhibitors of the HCV NS3 helicase led to the design of four new structural scaffolds, derived to maximise the functional overlapping shared between compound 12 and some of the known active molecules.

The newly designed compounds show the presence of the two equal phenyl-sulfonamide groups of compound 12, while the linker was modified to achieve a better structural superimposition with the known symmetrical inhibitors. For each new structural family a small series of new derivatives was synthesised and sent for biological evaluation in the HCV replicon assay. One of these families showed antiviral activity in the range of the low micromolar concentration, and was therefore chosen for further development. Data found so far suggest that antiviral activity is associated with the presence of two equal phenylenediamine rings in the linker, connected by a central succinamide group. As had been found for compound 12, a hydrophobic substituent in the *para* position of the two terminal phenyl groups is required for activity retention. Due to the positive results initially obtained, a second series of new compounds was designed to explore different aromatic rings on the terminal part of the structure. Two new succinamide analogues, compound 182 and 184, with a 4-tert-butylphenyl and a 4-biphenyl substituent on the two sulfonamide groups, respectively, were found to inhibit HCV replication with EC$_{50}$ values in the range of the low µM. As had happened for the previous series of derivatives of compound 12, a significant improvement in terms of antiviral activity was not achieved with the modifications attempted so far. With the aim to find more potent inhibitors of the HCV replication with different structural scaffolds, a new structure-based virtual screening was planned and carried out.
3.4 References

Chapter 4

Thienopyrimidines
4.1 Structure-based virtual screening on the enzyme open conformation

The structure of the enzyme in the open-conformation, high-affinity complex with the single-stranded oligonucleotide substrate was considered for a structure-based evaluation of potential inhibitors of RNA binding. The 3KQH crystal structure (resolution 2.4 Å) was used for all analyses performed.\(^1\)

In the high-affinity complex of the enzyme, domain 2 is shifted outwards from domain 1, and the substrate is located in a wide binding cleft within the interface of the three domains. In order to select a restricted region within this large RNA-binding space, the five structures corresponding to the three main steps of DNA unwinding (PDB IDs 3KQH, 3KQK, 3KQL, 3KQN, 3KQU) were compared to one another:\(^1\) the aim was to identify a relatively fixed region, in which protein residues conserve their relative positions more than the other ones surrounding. A subsite with similar characteristic could represent a good target to inhibit substrate binding.

The sequences of the five structures were aligned and the residues defining the known RNA binding pocket were selected and evaluated with the RMSD function available in MOE 2010.\(^2\) By measuring the Root Mean Square Deviation of the relative positions among different protein conformations, it was possible to identify the positional shift of each residue from its starting position, defined as the one found in the 3KQH crystal structure. Following this analysis, significant positional changes were observed for most selected residues, with the main deviations found in domain 2.

Due to the overall elevate of RMSD values, it was decided to focus attention on residues with RMSD values below 3 Å with respect to all the proteins (in blue in figure 4.1), and to consider as fixed regions including residues with RMSD values below 2 Å (in pink in figure 4.1).
Figure 4.1: Residues with low RMSD values (<3 Å in blue, < 2 Å in pink) shown within the 3KQH RNA binding cleft

The residues with the lowest RMSD were identified in Glu493, Asn556 and Phe557, located in the middle of the three domains: this region, and in particular a possible interaction with Glu493, that is essential for enzymatic activity, or the close Asp296, was chosen as the target for the identification of potential inhibitors.

A new pharmacophoric model was built to pre-screen the SPECS database;\(^3\) based on the mutagenesis studies reported for HCV NS3 helicase,\(^4\) the residues essential for enzymatic activity located within the known RNA binding pocket were identified: Thr269, Arg393, Thr411, Glu493 and Trp501 (figure 4.2).
These residues were considered for the pharmacophoric filter, along with the occupation of the region in the middle of the three domains, included in the query as a polar interaction with either Glu493 (F2:Don in figure 4.3) or Asn556 (F3:Don), none of which was set as essential. Other three features were added to target Trp501 (F1:Aro|Hyd), Arg393 (F5:Acc|Ani), both required as essential, and Thr411 (F4:Ani|Acc).

Once added the exclusion volumes corresponding to the protein surface, a partial match of four was required, and approximately 3000 matching hits were selected for the
docking phase.

In the first virtual screening on the 3KQN structure (Chapter 2.1), the Glide docking program had shown the best potential in locating the greatest number of compounds within the RNA binding cleft, while with Plants and FlexX many structures had to be discarded due to their placement in different subsites. For this reason, it was decided to use the only Glide docking algorithm, run in the standard precision SP mode.\(^5\) The output poses were re-scored with the Glide extra precision scoring function XP, that has been proven to increase effective binding prediction potential after SP docking,\(^6\) Plants ChemPLP and FlexX scoring functions,\(^7\)\(^8\) which were combined in a consensus scoring procedure (Chapter 2.1). The 25\% best performing structures were visually inspected to identify which ones could best interact with the selected residues and fit the target defined by Glu493 (figure 4.4).

![Figure 4.4: Ideal binding mode considered within the 3KQN target site](image)

Twenty-one new compounds were purchased from the SPECS company and tested in the HCV replicon assay (Appendix I). One of them, compound **187** (figure 4.5), showed antiviral activity against HCV replication, with an EC\(_{50}\) value lower than 1\(\mu\)M.
As shown in figure 4.5, the predicted binding mode found for compound 187 suggests a good spatial occupation of the target site, with the cyclohexyl portion of the molecule in close proximity to Trp501, the pyrimidine ring filling the space defined by Glu493 and Asn556, and the opportunity of hydrogen-bond formation between the 2'-hydroxyphenyl group and Arg393 lateral chain. Given its potential to inhibit HCV replication, compound 187 was chosen for further investigation. Moreover, a structural parallelism could be observed between compound 187 and previously published helicase inhibitors QU663 and compound 7 (figure 4.6).9

Occupational volume and predicted binding mode for compound 187 were found to be similar to the ones of the known inhibitors, further confirming the potential of this hit molecule as a selective NS3 helicase inhibitor.
4.2 Synthesis of tetrahydrobenzo[b]thienopyrimidines

Compound 187 presents a central thieno-pyrimidinic nucleus, which is condensed with a tetrahydrobenzene system in position 4 and 5 of the thiophene ring, and functionalised with a 2,5-dihydroxyphenyl-ethylidene moiety via a hydrazone linker in position 4 of pyrimidine (figure 4.7).

![Structural features of compound 187](image)

Compound 187 was resynthesised, in order to confirm the activity values found for the batch bought from the SPECS company, and a first series of new derivatives was prepared to explore different aromatic substituents on the phenylethylidene portion.

4.2.1 (5,6,7,8-Tetrahydro-benzo [4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazones (187, 215-234)

Following reported procedures for the preparation of tetrahydrobenzothienopyrimidines, the synthetic pathway shown in scheme 4.1 was planned to resynthesise compound 187 and prepare a first series of new analogues.\(^\text{10-11}\)
The planned strategy started with the preparation of 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid ethyl ester (190) through a Gewald reaction, followed by treatment of 190 with an excess of formamide to obtain cyclic pyrimidinone 191, that was subsequently chlorinated using phosphorus oxychloride to give compound 192. Aromatic nucleophilic displacement of the chloride leaving group with aqueous hydrazine was carried out to form aromatic hydrazine derivative 193, which was finally used to obtain a Schiff base with ketones 194-203 and aldehydes 204-214, giving desired compound 187 and its analogues 215-234.

In order to obtain a preliminary SAR for the scaffold of compound 187, it was decided to react final intermediate 193 with readily available, differently substituted benzaldehydes and acetophenones, changing only the last step in the reaction scheme to prepare several new derivatives.
The first four common steps of the synthetic route needed to be optimised, due to a significant loss in yield subsequent to the scale up of the starting materials, to allow the use of fourth intermediate 193 for the formation of multiple final products.

Synthesis of ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thienophene-3-carboxylate (190)

A widely used method to prepare poly-substituted 2-aminothiophenes is the Gewald reaction, which involves the condensation of a ketone or aldehyde with an \(\alpha \)-cyanoester in the presence of elemental sulphur and a base. The postulated mechanism for this reaction is shown in scheme 4.2.\(^{14-16}\)

![Scheme 4.2: Postulated mechanism for the formation of 2-amino substituted thiophenes](image)

The first step for the formation of the thiophene ring is a Knoevenagel condensation between the ketone and the \(\alpha \)-cyanoester, to produce a stable intermediate to which elemental sulphur is added by a mechanism which is still unclear. The intermediate formed is postulated to undergo cyclisation and tautomerisation to give the final poly-substituted 2-aminothiophene.

Compound 190 was obtained by heating cyclohexanone, ethyl cyanoacetate and sulphur at reflux in absolute ethanol, after adding triethylamine.

By changing the reaction time from 16 to 24 h and the purification procedure from flash column chromatography to recrystallisation from EtOH/H\(_2\)O, it was possible to improve the yield of this step from 70 to 85%.
Synthesis of 5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one (191)
Thienopyrimidinones and their derivatives can be obtained by reaction between 2-amino-3-ethoxycarbonylthiophenes and amides, through the formation of intermediate amidines, that undergo an intramolecular cyclisation to give thienopyrimidinones.17
Along with compound 190, formamide was used in excess, as reagent and solvent. The yield was improved from 50 to 93% by refluxing the mixture for 8 h instead of 2 h, and purifying the product by recrystallisation from EtOH/H\textsubscript{2}O.

Synthesis of 4-chloro-5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidine (192)
Following reported procedures, pyrimidone derivative 191 was chlorinated by refluxing with an excess of the chlorinating agent, phosphoryl chloride, to afford the formation of the thienopyrimidine system in compound 192.12 The yield of this third reaction step was optimised from 20 to 79% by refluxing the mixture for 8 h instead of 3 h, and changing the purification method from recrystallisation from MeOH to flash column chromatography.

Synthesis of (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193)
Hydrazine derivative 193 was prepared through a nucleophilic aromatic substitution of the chloride leaving group on the pyrimidine system, by reacting compound 192 with an excess of hydrazine monohydrate, and refluxing the mixture in methanol. Desired product was obtained with an improved yield, from 70 to 89%, by refluxing the reaction for 8 h instead of 3 h and changing the recrystallisation system from MeOH to EtOH/H\textsubscript{2}O.

Synthesis of (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazones (187, 215-234)
A first series of twenty new derivatives was readily prepared, along with compound 187, through the formation of a Schiff base between compound 193 and differently substituted acetophenones (194-203) and benzaldehydes (204-214), by refluxing the two starting materials in ethanol for 24 h.
Scheme 4.3: Synthesis of final compounds 187, 215-234

4.2.2 Biological evaluation of compounds 187, 215-234

Before proceeding with further modifications on the structure of compound 187, the first series of tetrahydrobenzo[b]thienopyrimidines prepared was evaluated for potential antiviral activity in the HCV replicon assay18, as well as for associated cytotoxicity, in order to obtain a rational criterion for further studies.
Table 4.1: Biological data for compounds 187, 215-234

<table>
<thead>
<tr>
<th>Compound</th>
<th>R₁</th>
<th>R₂</th>
<th>EC₅₀(µM)</th>
<th>CC₅₀(µM)</th>
<th>EC₉₀(µM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>193</td>
<td>-</td>
<td>-</td>
<td>23</td>
<td>243</td>
<td>45.1</td>
<td>10.6</td>
</tr>
<tr>
<td>187</td>
<td>Me</td>
<td>2,5-OH</td>
<td><1</td>
<td>>282</td>
<td>135</td>
<td>>282</td>
</tr>
<tr>
<td>215</td>
<td>Me</td>
<td>H</td>
<td>33.6</td>
<td>53.4</td>
<td>>310</td>
<td>1.6</td>
</tr>
<tr>
<td>216</td>
<td>Me</td>
<td>4-OMe</td>
<td>17.5</td>
<td>86</td>
<td>>284</td>
<td>4.9</td>
</tr>
<tr>
<td>217</td>
<td>Me</td>
<td>3,4,5-OMe</td>
<td>17</td>
<td>43.5</td>
<td>>242</td>
<td>2.6</td>
</tr>
<tr>
<td>218</td>
<td>Me</td>
<td>3-F, 4-OMe</td>
<td>>270</td>
<td>5.9</td>
<td>>270</td>
<td>-</td>
</tr>
<tr>
<td>219</td>
<td>Me</td>
<td>3,4-O-CH₂-O</td>
<td>28.5</td>
<td>116</td>
<td>-</td>
<td>4.1</td>
</tr>
<tr>
<td>220</td>
<td>Me</td>
<td>4-NO₂</td>
<td>60.8</td>
<td>192</td>
<td>-</td>
<td>3.2</td>
</tr>
<tr>
<td>221</td>
<td>Me</td>
<td>4-C₆H₁₁</td>
<td>61.2</td>
<td>235</td>
<td>>309</td>
<td>3.8</td>
</tr>
<tr>
<td>222</td>
<td>Me</td>
<td>2-OH</td>
<td>2.28</td>
<td>154</td>
<td>4.36</td>
<td>6.7</td>
</tr>
<tr>
<td>223</td>
<td>Me</td>
<td>3-OH</td>
<td>403</td>
<td>>443</td>
<td>>443</td>
<td>>1.1</td>
</tr>
<tr>
<td>224</td>
<td>H</td>
<td>H</td>
<td>23.8</td>
<td>41.9</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>225</td>
<td>H</td>
<td>4-OMe</td>
<td>26.3</td>
<td>40.4</td>
<td>>295</td>
<td>1.5</td>
</tr>
<tr>
<td>226</td>
<td>H</td>
<td>2-OMe</td>
<td>6.8</td>
<td>45.6</td>
<td>-</td>
<td>6.7</td>
</tr>
<tr>
<td>227</td>
<td>H</td>
<td>3-OMe</td>
<td>21.3</td>
<td>32.9</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>228</td>
<td>H</td>
<td>3,4,5-OMe</td>
<td>121</td>
<td>204</td>
<td>-</td>
<td>1.7</td>
</tr>
<tr>
<td>229</td>
<td>H</td>
<td>3,4-OEt</td>
<td>>252</td>
<td>>252</td>
<td>>252</td>
<td>-</td>
</tr>
<tr>
<td>230</td>
<td>H</td>
<td>4-OH</td>
<td>24.8</td>
<td>40.6</td>
<td>-</td>
<td>1.6</td>
</tr>
<tr>
<td>231</td>
<td>H</td>
<td>4-Br</td>
<td>15.4</td>
<td>54.7</td>
<td>30</td>
<td>3.6</td>
</tr>
<tr>
<td>232</td>
<td>H</td>
<td>3-Br</td>
<td>8.04</td>
<td>60.2</td>
<td>19.6</td>
<td>7.5</td>
</tr>
<tr>
<td>233</td>
<td>H</td>
<td>4-tBu</td>
<td>7.83</td>
<td>>274</td>
<td>>274</td>
<td>>35.1</td>
</tr>
<tr>
<td>234</td>
<td>H</td>
<td>4-iPr</td>
<td>11.3</td>
<td>178</td>
<td>-</td>
<td>15.8</td>
</tr>
</tbody>
</table>

Considering biological results, position and nature of the two hydroxy substituents on the phenylethylidene system seem to play an important role for antiviral potential: all attempted modifications in compounds 215-234 were associated with loss of activity, except for compound 222, where activity improved for the EC₉₀ value.

Most of the antiviral potential seems to be associated with the hydroxy substitution in position 2: compound 223, with the sole 3’-hydroxy group, shows a significant loss of activity in comparison to compound 187.
As for the phenylidene derivatives 224-234, at a first evaluation the absence of the phenylethylidene methyl group seems associated with an increased toxicity against cells, showing most of these derivatives low values of CC$_{50}$ and SI. Activity seems to be partially retained only in compound 233, where the hydrophobic substituent in para position is associated with a reduced cytotoxicity while a relatively low EC$_{50}$ value is preserved.

In order to further explore antiviral potential of compounds 187 and 222, three new series of derivatives were designed. The first new modification was to study the role of the two hydroxy groups and their possible replacement; the second had the purpose of modifying the hydrazone linker, known to be poorly stable in aqueous systems, with a sulfonyl hydrazide and a hydrazide function, respectively, thus increasing stability in water, while maintaining the same length of the original functional group.

4.2.3 Design of a second series of 5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl-hydrazones

Aiming to understand the role of the two hydroxy groups, in particular in position 2’, a second series of N-(1-aryl-ethylidene)-N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazines was designed, to change the position of the hydroxy groups from 2 and 5 to 4 in the phenylethylidene ring, and to replace them with methoxy and halogen groups (chlorine and fluorine).

Moreover, in order to mimic polarity of the original substituents and opportunity of hydrogen bond formation, it was planned to replace the phenyl ring with heteroaromatic systems, such as pyrazine, 2-pyridine, indole and benzimidazole, by reacting their ethanone derivatives with final intermediate 193. The insertion of a pyrazine and 2-pyridine system in this part of the molecule was also supported by the structural similarity observed for compound 187 and helicase inhibitors QU663 and compound 7. The presence of a pyrazine or 2-pyridine group had been demonstrated to be important for inhibitory activity of the published compounds, these same modifications were attempted for compound 187.

Once synthetically obtained non-commercially available 1-(1H-indol-2-yl)ethanone (235) and 1-(1H-benzo[d]imidazol-2-yl)ethanone (236), 14 new derivatives were prepared following the same synthetic route previously used, where only the last reaction step needed to be changed to obtain different final compounds.
In order to understand the function of the phenylethylidene methyl group for antiviral activity, it was decided to synthesise 2,5-dihydroxy derivative without this methyl function, reacting intermediate 193 with 2,5-dihydroxybenzaldehyde (191), according to the usual strategy.

Synthesis of 1-(1H-indol-2-yl)ethanone (235)

The 2-acetylate form of indole was obtained starting from indole-2-carboxylic acid (238), converted to the desired product using methyllithium as a nucleophilic methyl source, as shown in scheme 4.4.

![Scheme 4.4: Synthesis of ethanone 235](image)

Following reported procedures, the reaction was performed at 0°C in anhydrous diethyl ether, in order to control the methylating agent high reactivity towards water.19

Synthesis of 1-(1H-benzimidazol-2-yl)-ethanone (236)

A two-step synthetic approach was followed, as shown in scheme 4.5, to prepare the acetylate form in position 2 of benzimidazole.

![Scheme 4.5: Synthetic strategy for ethanone 236](image)

Following reported procedures, the 2-substituted benzimidazole nucleus was first obtained through an acid-catalysed ring condensation between o-phenylenediamine 239 and D,L-lactic acid, with the formation of a secondary alcohol intermediate, 1-(1H-
benzimidazol-2-yl)-ethanol (240). The secondary alcoholic function of intermediate 240 was subsequently oxidised to ketone using potassium dichromate in diluted sulphuric acid, following an oxidoreduction reaction.²⁰

Synthesis of (5,6,7,8-tetrahydro-benzo [4,5]thieno[2,3 d]pyrimidin-4-yl)-hydrazones (252-265)

Newly designed compounds 252-265 were prepared according to the previously optimised synthetic strategy, by reacting final intermediate 193 in the fifth step with ketones 241, 242-251, 235, 236 and 2,5-dihydroxy-benzaldehyde (237).

<table>
<thead>
<tr>
<th>Aldehyde/ketone</th>
<th>R</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>241</td>
<td>Me</td>
<td>4-hydroxy-phenyl</td>
<td>252</td>
<td>66</td>
</tr>
<tr>
<td>237</td>
<td>H</td>
<td>2,5-dihydroxyphenyl</td>
<td>253</td>
<td>61</td>
</tr>
<tr>
<td>242</td>
<td>Me</td>
<td>2,5-dimethoxyphenyl</td>
<td>254</td>
<td>41</td>
</tr>
<tr>
<td>243</td>
<td>Me</td>
<td>2-methoxyphenyl</td>
<td>255</td>
<td>51</td>
</tr>
<tr>
<td>244</td>
<td>Me</td>
<td>3-methoxyphenyl</td>
<td>256</td>
<td>35</td>
</tr>
<tr>
<td>245</td>
<td>Me</td>
<td>2,5-dichlorophenyl</td>
<td>257</td>
<td>74</td>
</tr>
<tr>
<td>246</td>
<td>Me</td>
<td>2-chlorophenyl</td>
<td>258</td>
<td>94</td>
</tr>
<tr>
<td>247</td>
<td>Me</td>
<td>4-chlorophenyl</td>
<td>259</td>
<td>77</td>
</tr>
<tr>
<td>248</td>
<td>Me</td>
<td>2,5-difluorophenyl</td>
<td>260</td>
<td>45</td>
</tr>
<tr>
<td>249</td>
<td>Me</td>
<td>2-fluorophenyl</td>
<td>261</td>
<td>42</td>
</tr>
<tr>
<td>250</td>
<td>Me</td>
<td>pyrazine</td>
<td>262</td>
<td>55</td>
</tr>
<tr>
<td>251</td>
<td>Me</td>
<td>2-pyridine</td>
<td>263</td>
<td>81</td>
</tr>
<tr>
<td>235</td>
<td>Me</td>
<td>2-indole</td>
<td>264</td>
<td>53</td>
</tr>
<tr>
<td>236</td>
<td>Me</td>
<td>2-benzimidazole</td>
<td>265</td>
<td>42</td>
</tr>
</tbody>
</table>

Table 4.2: Newly synthesised compounds 252-265

4.2.4 N’-(5,6,7,8-Tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-sulfonyl-hydrazides (218-220)

In a first attempt to replace the poorly stable hydrazone linker, it was thought to insert a sulfonyl hydrazide group in the molecule, thus maintaining the same length of the
original structure. Three derivatives with this linker were obtained by reacting final intermediate 193 with sulfonyl chlorides 13, 83, 266. Due to the impossibility to preserve the original hydroxy groups in the starting arylsulfonyl chlorides, on the basis of the residual activity of compound 233, a hydrophobic para substituent was chosen for aryl sulfonyl hydrazides, in particular 4-tert-butyl and 4-chloro, along with a 2-pyridine system, in an attempt to reproduce polarity associated with the 2'-hydroxy group.

The synthetic strategy applied is shown in scheme 4.6.

<table>
<thead>
<tr>
<th>Aryl sulfonyl chloride</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>4-tert-butylphenyl</td>
<td>267</td>
<td>38</td>
</tr>
<tr>
<td>13</td>
<td>4-chlorophenyl</td>
<td>268</td>
<td>46</td>
</tr>
<tr>
<td>266</td>
<td>2-pyridine</td>
<td>269</td>
<td>34</td>
</tr>
</tbody>
</table>

Scheme 4.6: Synthetic strategies for compounds 267-269

Synthesis of 2-pyridinesulfonyl chloride (266)

2-Pyridinesulfonyl chloride was not commercially available, and it was therefore synthesised, according to reported procedures, by oxidising the thiol group of 2-mercaptopyridine (270) to sulfonyl chloride, using NaOCl and sulphuric acid, as shown in scheme 4.7.21

Scheme 4.7: Synthesis of 2-pyridine sulfonyl chloride 266

Synthesis of N'-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-sulfonyl-hydrazides (267-269)

As reported in scheme 4.7, a first attempt was made to obtain compound 267 by
reacting the two starting materials in anhydrous DCM and adding triethylamine to neutralise the hydrochloric acid formed: in these conditions, a complex mixture of multiple products was obtained, and it was not possible to purify desired compound 267 by chromatographic or recrystallisation techniques. Following reported procedures, the reaction was repeated in anhydrous pyridine, and in this second system desired products 267-279 were finally obtained after flash column chromatography purification.22

4.2.5 N’-(5,6,7,8-Tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazides (272-273, 278-279)

A second attempt was made to replace the hydrazone bond with a more stable chemical function, while maintaining the length of the linker: a hydrazide group was chosen for a new series of six derivatives. These compounds were obtained according to two different synthetic approaches: compounds 272-273, carrying a para hydrophobic substituent in the phenyl ring, were prepared following the same strategy and reaction conditions used for compounds 267-269, reacting intermediate 193 with acyl chlorides 271 and 119, as shown in scheme 4.8.

![Scheme 4.8: Synthetic strategy for compounds 272-273](image)

<table>
<thead>
<tr>
<th>Acyl chloride</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>271</td>
<td>4-tert-butylphenyl</td>
<td>272</td>
<td>86</td>
</tr>
<tr>
<td>119</td>
<td>4-chlorophenyl</td>
<td>273</td>
<td>37</td>
</tr>
</tbody>
</table>

A further small series of four derivatives was obtained through a coupling reaction between intermediate 193 and differently substituted carboxylic acids 274-277, using TBTU as the coupling agent as done for several previous compounds (Chapter 2). Starting from carboxylic acids instead of chlorides, it was possible to obtain, along with pyrazine and 2-pyridine products 280 and 281, hydrazides 278 and 279, where the hydroxy groups of the original active structure are maintained, thus allowing a direct
comparison between the two series of compounds (scheme 4.9).

<table>
<thead>
<tr>
<th>Carboxylic acid</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>274</td>
<td>2,5-dihydroxyphenyl</td>
<td>278</td>
<td>28</td>
</tr>
<tr>
<td>275</td>
<td>2-hydroxyphenyl</td>
<td>279</td>
<td>35</td>
</tr>
<tr>
<td>276</td>
<td>pyrazine</td>
<td>280</td>
<td>29</td>
</tr>
<tr>
<td>277</td>
<td>2-pyridine</td>
<td>281</td>
<td>67</td>
</tr>
</tbody>
</table>

Scheme 4.9: Synthesis of hydrazide compounds 278-281
4.2.6 Biological evaluation

Newly synthesised thieno-pyrimidines were tested for antiviral activity in the subgenomic replicon and cytostatic assays.18 Their biological results are shown in tables 4.3-4.5.

(5,6,7,8-Tetrahydro-benzo [4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazones

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>Ar</th>
<th>EC\textsubscript{50} (\mu M)</th>
<th>CC\textsubscript{50} (\mu M)</th>
<th>EC\textsubscript{90} (\mu M)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>252</td>
<td>Me</td>
<td>4-hydroxy-phenyl</td>
<td>>295</td>
<td>>295</td>
<td>>295</td>
<td>-</td>
</tr>
<tr>
<td>253</td>
<td>H</td>
<td>2,5-dihydroxyphenyl</td>
<td>0.84</td>
<td>18.2</td>
<td>3.1</td>
<td>21.7</td>
</tr>
<tr>
<td>254</td>
<td>Me</td>
<td>2,5-dimethoxyphenyl</td>
<td>36.7</td>
<td>63.6</td>
<td>-</td>
<td>1.7</td>
</tr>
<tr>
<td>255</td>
<td>Me</td>
<td>2-methoxyphenyl</td>
<td>8.1</td>
<td>48.9</td>
<td>18.8</td>
<td>6</td>
</tr>
<tr>
<td>256</td>
<td>Me</td>
<td>3-methoxyphenyl</td>
<td>16</td>
<td>30</td>
<td>-</td>
<td>1.9</td>
</tr>
<tr>
<td>257</td>
<td>Me</td>
<td>2,5-dichlorophenyl</td>
<td>9.4</td>
<td>>256</td>
<td>55.1</td>
<td>>27.2</td>
</tr>
<tr>
<td>258</td>
<td>Me</td>
<td>2-chlorophenyl</td>
<td>10.9</td>
<td>70</td>
<td>34.7</td>
<td>6.4</td>
</tr>
<tr>
<td>259</td>
<td>Me</td>
<td>4-chlorophenyl</td>
<td>18.6</td>
<td>187</td>
<td>96</td>
<td>10.1</td>
</tr>
<tr>
<td>260</td>
<td>Me</td>
<td>2,5-difluorophenyl</td>
<td>30.9</td>
<td>60.3</td>
<td>33.5</td>
<td>2</td>
</tr>
<tr>
<td>261</td>
<td>Me</td>
<td>2-fluorophenyl</td>
<td>22.3</td>
<td>39.3</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>262</td>
<td>Me</td>
<td>pyrazine</td>
<td>0.355</td>
<td>21.1</td>
<td>0.775</td>
<td>59.4</td>
</tr>
<tr>
<td>263</td>
<td>Me</td>
<td>2-pyridine</td>
<td>1.04</td>
<td>8.06</td>
<td>3.34</td>
<td>7.8</td>
</tr>
<tr>
<td>264</td>
<td>Me</td>
<td>2-indole</td>
<td>17.8</td>
<td>26.3</td>
<td>>277</td>
<td>1.5</td>
</tr>
<tr>
<td>265</td>
<td>Me</td>
<td>2-benzimidazole</td>
<td>2.97</td>
<td>50.1</td>
<td>7.94</td>
<td>16.9</td>
</tr>
</tbody>
</table>

Table 4.3: Antiviral and cytotoxicity data for compounds 252-265

Biological results for compounds 252-265 further confirm the importance of a hydroxy substituent in position 2’ and 5’ of the original scaffold: their replacement with methoxy and halogen groups is associated with activity reduction. The same negative effect is observed with a 4’-hydroxy substituent in the aromatic ring, while the absence of the acetophenyllic methyl group in compound 253 leads to activity retention, but is associated with increased toxicity against cells, with a CC\textsubscript{50} value much lower than its
analogue 187.
A successful replacement of the original hydroxy functions is achieved with the introduction of heteroaromatic rings in the ethylidene portion of the molecule: the presence of pyrazine (262), 2-pyridine (263) and 2-benzimidazole (265) is tolerated, with compound 262 showing the best activity profile found so far. This conclusion cannot be extended to compound 264, where the 2-indole ring appears to be associated with loss of activity.

N'(5,6,7,8-Tetrahydro-benzo [4,5]thieno [2,3-d]pyrimidin-4-yl)-sulfonylhydrazides

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar</th>
<th>EC_{50} (μM)</th>
<th>CC_{50} (μM)</th>
<th>EC_{90} (μM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>267</td>
<td>4-tert-butyphenyl</td>
<td>42.8</td>
<td>116</td>
<td>-</td>
<td>2.7</td>
</tr>
<tr>
<td>268</td>
<td>4-chlorophenyl</td>
<td>57.6</td>
<td>253</td>
<td>-</td>
<td>4.4</td>
</tr>
<tr>
<td>269</td>
<td>2-pyridine</td>
<td>43.9</td>
<td>145</td>
<td>83.2</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Table 4.4: Antiviral and cytotoxicity data for compounds 267-269

The first attempt to replace the hydrazone bond with a sulfonylhydrazide does not seem to be successful: for all three compounds prepared, this modification is associated with loss of activity.
$N'-(5,6,7,8$-Tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazides$

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar</th>
<th>EC$_{50}$(μM)</th>
<th>CC$_{50}$(μM)</th>
<th>EC$_{90}$(μM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>272</td>
<td>4-tert-butylphenyl</td>
<td>13.9</td>
<td>>263</td>
<td>-</td>
<td>>18.9</td>
</tr>
<tr>
<td>273</td>
<td>4-chlorophenyl</td>
<td>9.2</td>
<td>12.9</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>278</td>
<td>2,5-dihydroxyphenyl</td>
<td>0.51</td>
<td>99.9</td>
<td>0.939</td>
<td>195.9</td>
</tr>
<tr>
<td>279</td>
<td>2-hydroxyphenyl</td>
<td>0.301</td>
<td>66.4</td>
<td>0.549</td>
<td>221</td>
</tr>
<tr>
<td>280</td>
<td>pyrazine</td>
<td>1.12</td>
<td>7.76</td>
<td>2.55</td>
<td>6.9</td>
</tr>
<tr>
<td>281</td>
<td>2-pyridine</td>
<td>1.11</td>
<td>8.34</td>
<td>0.819</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Table 4.5: Antiviral and cytotoxicity data for compounds 272-273, 278-281

Greater success is associated with the replacement of the hydrazone group with a hydrazide: except for compounds 272 and 273, all remaining derivatives of this series show EC$_{50}$ values equal to or below 1 μM, with good SI values for two of them, compounds 278 and 279. Moreover, while a successful replacement of the hydrazone linker was achieved, the importance of the original hydroxyl groups is further confirmed (compounds 278 and 279), along with their potential replacement with heteroaromatic moieties such as pyrazine (280) and 2-pyridine (281), as shown for the hydrazone scaffold (compounds 262 and 263). Compound 279 in particular shows the lowest EC$_{50}$ value found so far, and represents an encouraging starting point for further studies.

4.2.7 Design and synthesis of heteroaromatic-hydrazones (290-294) and hydrazides (302-309)

Due to the successful replacement of the 2',5'-dihydroxyphenyl group in compound 187 with heteroaromatic rings, it was decided to expand the phenylethylidene series: inserting 2-quinoline, to see how the expansion of occupational volume on this level might affect antiviral activity, 3-pyridine, to determine whether the presence of a nitrogen in position 2 is essential for activity retention with the same trend observed for 2'-hydroxy group, 2-pyrrole, 2-furan and 2-thiophene, in order to explore the effect of a
smaller heteroaromatic ring in this portion of the structure. Moreover, due to the improved activity profile associated with the hydrazide linker, it was planned to further explore this series of compounds. In order to assess whether the activity pattern follows the one observed for hydrazone compounds, it was decided to first replace the aromatic hydrazide substituent with the 3-hydroxyphenyl and the 3-pyridine groups, and then to carry out the same heteroaromatic modifications of the hydrazone series, corresponding to the insertion of 2-indole, 2-benzimidazole, 2-quinoline, 2-pyrrole, 2-furan and 2-thiophene substituents on the hydrazide group. Once prepared non-commercially available 2-acetylquinoline 285, five new hydrazone-derivatives were synthesised following the usual route, changing only the last reaction step to obtain final products 283-286.

Synthesis of 2-acetylquinoline (285)

A three-step synthetic approach was followed to prepare acetylate quinolone in position 2, as shown in scheme 4.10.

![Scheme 4.5: Synthetic strategy for 2-acetylquinoline (282)](image)

Starting from quinaldic acid (282), following reported procedures, it was decided to first prepare methyl ester 283, in order to perform a Claisen condensation with ethyl acetate and obtain β-ketoester 284. The β-ketoester was subsequently treated with hydrochloric acid while heating to give ester hydrolysis first, and then decarboxylation of the free acid formed the desired ketone 285.23
Synthesis of (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazones (290-294)

Five new hydrazone compounds 290-294 were prepared following the synthetic route previously optimised, by reacting intermediate 193 with ketones 285-289.

<table>
<thead>
<tr>
<th>Aldehyde/ketone</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>285</td>
<td>2-quinoline</td>
<td>290</td>
<td>71</td>
</tr>
<tr>
<td>286</td>
<td>3-pyridine</td>
<td>291</td>
<td>61</td>
</tr>
<tr>
<td>287</td>
<td>2-pyrrole</td>
<td>292</td>
<td>62</td>
</tr>
<tr>
<td>288</td>
<td>2-furan</td>
<td>293</td>
<td>36</td>
</tr>
<tr>
<td>289</td>
<td>2-thiophene</td>
<td>294</td>
<td>44</td>
</tr>
</tbody>
</table>

Table 4.6: Synthesis of compounds 290-294

Synthesis of N'-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazides (302-309)

Eight new hydrazide products were synthesised by a coupling reaction between aryl carboxylic acids 282, 295-301 and intermediate 193, following the same procedure used for compounds 274-277 (table 4.7).
Chapter 4: Thienopyrimidines

Table 4.7: Synthesis of compounds 302-309

<table>
<thead>
<tr>
<th>Carboxylic acid</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>295</td>
<td>3-hydroxyphenyl</td>
<td>302</td>
<td>29</td>
</tr>
<tr>
<td>296</td>
<td>3-pyridine</td>
<td>303</td>
<td>23</td>
</tr>
<tr>
<td>297</td>
<td>2-indole</td>
<td>304</td>
<td>36</td>
</tr>
<tr>
<td>298</td>
<td>2-benzoimidazole</td>
<td>305</td>
<td>26</td>
</tr>
<tr>
<td>282</td>
<td>2-quinoline</td>
<td>306</td>
<td>68</td>
</tr>
<tr>
<td>299</td>
<td>2-pyrrole</td>
<td>307</td>
<td>65</td>
</tr>
<tr>
<td>300</td>
<td>2-furan</td>
<td>308</td>
<td>35</td>
</tr>
<tr>
<td>301</td>
<td>2-thiophene</td>
<td>309</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 4.7: Synthesis of compounds 302-309
4.2.8 Biological evaluation

Newly synthesised heteroaromatic hydrazones and hydrazides were evaluated for inhibition of HCV replication in the HCV replicon and cytostatic assay.18 Biological results are shown in table 4.8.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar</th>
<th>Linker X</th>
<th>EC\textsubscript{50}(\mu M)</th>
<th>CC\textsubscript{50}(\mu M)</th>
<th>EC\textsubscript{90}(\mu M)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td>2-quinoline</td>
<td>hydrazone</td>
<td><0.697</td>
<td>7.23</td>
<td>t.b.d.</td>
<td>t.b.d.</td>
</tr>
<tr>
<td>291</td>
<td>3-pyridine</td>
<td>hydrazone</td>
<td>79.4</td>
<td>>309</td>
<td>>103</td>
<td>3.9</td>
</tr>
<tr>
<td>292</td>
<td>2-pyrrole</td>
<td>hydrazone</td>
<td>4.8</td>
<td>17</td>
<td>12.8</td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>2-furan</td>
<td>hydrazone</td>
<td>14.9</td>
<td>61.5</td>
<td>-</td>
<td>4.1</td>
</tr>
<tr>
<td>294</td>
<td>2-thiophene</td>
<td>hydrazone</td>
<td>22.3</td>
<td>49.8</td>
<td>-</td>
<td>2.2</td>
</tr>
<tr>
<td>302</td>
<td>3-hydroxyphenyl</td>
<td>hydrazide</td>
<td>210</td>
<td>90.9</td>
<td>>220</td>
<td>>1.4</td>
</tr>
<tr>
<td>303</td>
<td>3-pyridine</td>
<td>hydrazide</td>
<td>128</td>
<td>>307</td>
<td>>307</td>
<td>2.4</td>
</tr>
<tr>
<td>304</td>
<td>2-indole</td>
<td>hydrazide</td>
<td>14.8</td>
<td>64.7</td>
<td>-</td>
<td>4.4</td>
</tr>
<tr>
<td>305</td>
<td>2-benzimidazole</td>
<td>hydrazide</td>
<td>0.193</td>
<td>2.92</td>
<td>0.679</td>
<td>15.1</td>
</tr>
<tr>
<td>306</td>
<td>2-quinoline</td>
<td>hydrazide</td>
<td>23.9</td>
<td>59</td>
<td>-</td>
<td>2.4</td>
</tr>
<tr>
<td>307</td>
<td>2-pyrrole</td>
<td>hydrazide</td>
<td>147</td>
<td>>319</td>
<td>-</td>
<td>>2.2</td>
</tr>
<tr>
<td>308</td>
<td>2-furan</td>
<td>hydrazide</td>
<td>199</td>
<td>230</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>309</td>
<td>2-thiophene</td>
<td>hydrazide</td>
<td>31.1</td>
<td>36.7</td>
<td>-</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Table 4.8: Antiviral and cytotoxicity data for compounds 272-273, 278-281

Biological data for hydrazone compounds 290-294 suggest, for the presence of a heteroaromatic nitrogen in the phenylethylidene substituent, the same trend in antiviral activity found for hydroxy groups: loss of activity associated with 3-pyridine derivative 291 indicates the same essential role for a nitrogen in position 2 (present in pyrazine and 2-pyridine analogues 262 and 263), already noticed for the 2’-hydroxyphenyl group. Furthermore, replacement of 6-membered heteroaromatic rings with 5-membered rings is associated with loss of activity.

The same considerations can be extended to the hydrazide series of compounds: among this family of structures, the presence of a 2-hydroxyphenyl group is essential for
activity retention. As observed in the hydrazone derivatives, replacement of the 2-pyridine group with 3-pyridine (compound 303) is associated with loss of activity, suggesting the same effect for a heteroaromatic ring with a nitrogen in position 2 and a 2-hydrophenyl substituent. Also for this series of compounds, 5-member heteroaromatic groups in the hydrazide part of the molecule are associated with loss of activity, while 2-benzimidazole is correlated to activity retention, but an increased toxicity against the cell can be noticed for this modification. Finally, a 2-indole or 2-quinoline group in the hydrazide scaffold are associated with a decreased antiviral potential.

In conclusion, the general trend in activity profile appears to be the same for the two families of structures, hyrazones and hydrazides: this evidence could suggest the same mechanism of action for the two structural scaffolds, and represents a further confirmation of the successful replacement of the hydrazone linker with a hydrazide function.

4.2.9 Design and synthesis of \(N\)-aryl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amines (310-312)

Conformational search on compound 222

In an attempt to understand the role of the 2’-hydroxy group in compound 187 and 222, a conformational search was performed on the structure of 222.

Using the Conformational Search tool in MOE2010.10,\(^2\) the lowest energy conformation for compound 222 was found to show an internal hydrogen bond between the 2’-hydroxy group and the nitrogen of the hydrazone linker (figure 4.8).

![Figure 4.8: Lowest energy conformation found for compound 222](image)

In order to freeze this interaction and explore a new linker modification, it was planned to replace the hydrazone bond with an aromatic amino group, to be functionalised with
heteroaromatic bicyclic rings, such as benzimidazole (312) and quinoline (311), along with naphthalene ring (310), to be used as potential reference for activity evaluation. Before carrying out this new modification from a synthetic point of view, MOE Flexible Alignment was used to superimpose the newly designed compounds with the low-energy conformation found for compound 222, kept rigid during the analysis, to confirm the volume overlapping shared between the modified structures and the parent molecule (figure 4.9).

![Figure 4.9: Flexible Alignment results of the superimposition between compound 222, in pink, and a. 310, in blue; b. 311, in purple; c. 312, in green](image)

All alignments shown in figure 4.9 correspond to dU values equal to 0 kcal/mol and large negative S values. The best alignment is found for compound 312 (S= -163): freezing the internal H-bond found in the low energy conformation of compound 222 seems to be most successful with this last modification, where the 2-hydroxyphenylidene function is replaced by a 2-aminobenzimidazole group (312, figure 4.9c). With this designed compound, the benzene ring of benzimidazole overlaps completely with the phenyl ring of compound 222, and the formation of an internal hydrogen bond between imidazole NH group and pyrimidine aromatic nitrogen could make the conformation found for this alignment particularly stable, confirming the good superimposition of benzimidazole ring with the 2-hydroxyphenyl group of the parent molecule.

Alignment results show that in the case of compounds 310 (S= -121) and 311 (S= -128) spatial superimposition of the condensed bicyclic aromatic rings and the phenylethylidene group of 222 is not as good as the one found for compound 312: 1-naphthyl and 8-quinoline groups, respectively, only partially overlap the volume occupied by the 2-hydroxyphenyl hydrazine function. Nevertheless, all three modifications were chosen for synthetic development, in order to use their biological
results as reference for the evaluation of compound 312.

Synthesis of N-aryl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amines (310-312)

In order to replace the hydrazone linker with an amino function, it was planned to react the third intermediate of the usual synthetic pathway, 4-chloro-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (192), with commercially available bicyclic aromatic amines.

In a first attempt, chloride 192 was treated with an excess of 1-naphthylamine (313) and heated under reflux in anhydrous DMF for 20 h. Under these conditions, the only new species formed and isolated after column chromatography purification was undesired product 316, as shown in scheme 4.6. In an attempt to see if the formation of the side product was due to a low reactivity of the amine used, the reaction was tried in the same conditions using an excess of 2-aminobenzimidazole (315), but also in this case the only new species isolated after column chromatography was compound 316.

![Scheme 4.6: First attempt for the synthesis of compounds 310-312](image)

To avoid the interference of DMF with the reaction, the solvent was changed, and a second attempt was made refluxing chloride 192 with an excess of 2-aminobenzimidazole (315) in pyridine for 20 h. In this second case, the formation of a mixture of different new species was observed by T.L.C., but all attempts to isolate desired compound 312 by column chromatography or recrystallization were unsuccessful (scheme 4.7.).

The reaction mixture was then refluxed in isopropanol, but only the two starting materials 192 and 315 were recovered after 72 h, with no new species observed by monitoring the reaction via T.L.C.
Chapter 4: Thienopyrimidines

A successful method was finally identified by adding to the isopropanol solvent NaHCO₃ as base: as shown in scheme 4.7, the three desired products 310-312 were obtained according to this procedure, in low yield.

![Scheme 4.7: Synthesis of compounds 310-312](image)

<table>
<thead>
<tr>
<th>Arylamine</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>313</td>
<td>1-naphthyl</td>
<td>310</td>
<td>21</td>
</tr>
<tr>
<td>314</td>
<td>8-quinoline</td>
<td>311</td>
<td>14</td>
</tr>
<tr>
<td>315</td>
<td>2-benzimidazole</td>
<td>312</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar</th>
<th>EC₅₀(µM)</th>
<th>CC₅₀(µM)</th>
<th>EC₉₀(µM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>1-naphthyl</td>
<td>32.4</td>
<td>281</td>
<td>>33.5</td>
<td>8.7</td>
</tr>
<tr>
<td>311</td>
<td>8-quinoline</td>
<td>186</td>
<td>>301</td>
<td>>100</td>
<td>>1.6</td>
</tr>
<tr>
<td>312</td>
<td>2-benzimidazole</td>
<td>55.4</td>
<td>231</td>
<td>>104</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Table 4.9: Antiviral and cytotoxicity data for compounds 310-312

Biological results indicate that the last modification, attempted to replace the hydrazone linker and freeze the internal hydrogen bond found for compound 187, is associated with a significant loss of activity.
4.3 Synthesis of thieno[2,3-\textit{d}]pyrimidines

Due to the wide exploration of the phenylethylidene aromatic portion and the hydrazone linker done so far, it was decided to start and investigate the role of the tetrahydrobenzo substituent on the thiophene ring.

Several series of new derivatives were designed to remove or replace this part of the molecule, while maintaining the central thienopyrimidine nucleus, either the hydrazone or hydrazide linker, and the most successful modifications on the level of the original 2',5'-dihydroxyphenyl ring.

In particular, five new families of structures were chosen, inserting an unsubstituted thieno-pyrimidine system, a cyclopentane ring condensed to the thiophene ring, an oxidised benzene substituent, two methyl groups, and finally an unsymmetrical substitution with one methyl and one ethyl group.

In order to insert an unsubstituted thienopyrimidine system in the original scaffold, the same five-step synthetic pathway previously validated was used, as shown in scheme 4.8.
The only step that changed corresponds to the preparation of ethyl 2-aminothienophene-3-carboxylate (318), which takes place through a different version of the Gewald reaction, in which 1,4-dithiane-2,5-diol 317 is condensed with ethyl cyanoacetate. The four remaining steps followed the strategy and conditions already applied for previous tetrahydrobenzo[b]thienopyrimidines.

Synthesis of ethyl 2-aminothienophene-3-carboxylate (318)

An improved version of the Gewald reaction uses dimeric forms of an α-sulfanylcarbonyl compound, that is condensed with an α-activated acetonitrile in the presence of a base.

Desired condensation to give 2-aminothiophene 318 was obtained by adding triethylamine to a mixture of ethyl cyanoacetate (189) and 1,4-dithiane-2,5-diol (317), in anhydrous DMF, and heating at 45 °C for 30 min. The ester intermediate 318 was isolated after flash column chromatography in 64% yield.
4.3.1 \textit{N-(1-Aryl-ethyldene)-N\prime-(thieno[2,3-\textit{d}]pyrimidin-4-yl)-hydrazines (322-325)}

Four new derivatives were prepared through the formation of a Schiff base between hydrazine intermediate 321 and ketones 194, 202, 203, and 250, by refluxing the two starting materials in ethanol for 24 h.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Ketone & Ar & Product & Yield \% \\
\hline
194 & 2,5-dihydroxyphenyl & 322 & 81 \\
202 & 2-hydroxyphenyl & 323 & 61 \\
203 & 3-hydroxyphenyl & 324 & 37 \\
250 & pyrazine & 325 & 96 \\
\hline
\end{tabular}
\caption{Synthesis of compounds 322-325}
\end{table}

4.3.2 \textit{N\prime-(Thieno[2,3-\textit{d}]pyrimidin-4-yl)arylcarbohydrazides (326-329)}

A small series of four compounds was obtained with a hydrazide linker in the new thiophene scaffold by reacting intermediate 321 with carboxylic acids 274-277, according to the coupling procedure previously applied for amide bond formation.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Carboxylic acid & Ar & Product & Yield \% \\
\hline
274 & 2,5-dihydroxyphenyl & 326 & 15 \\
275 & 2-hydroxyphenyl & 327 & 19 \\
276 & pyrazine & 328 & 31 \\
277 & 2-pyridine & 329 & 30 \\
\hline
\end{tabular}
\caption{Synthesis of compounds 326-327}
\end{table}
4.3.3 Biological evaluation

Newly synthesised thienopyrimidine derivatives were tested for inhibition of viral replication in the HCV replicon assay:18 data are shown for both families, hydrazones and hydrazides, in table 4.10.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar</th>
<th>Linker X</th>
<th>EC<sub>50</sub>(µM)</th>
<th>CC<sub>50</sub>(µM)</th>
<th>EC<sub>90</sub>(µM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>322</td>
<td>2,5-dihydroxyphenyl</td>
<td>hydrazone</td>
<td>2.99</td>
<td>226</td>
<td>4.55</td>
<td>75.6</td>
</tr>
<tr>
<td>323</td>
<td>2-hydroxyphenyl</td>
<td>hydrazone</td>
<td>4.75</td>
<td>77.2</td>
<td>>10.6</td>
<td>16.3</td>
</tr>
<tr>
<td>324</td>
<td>3-hydroxyphenyl</td>
<td>hydrazone</td>
<td>52</td>
<td>78.1</td>
<td>-</td>
<td>1.1</td>
</tr>
<tr>
<td>325</td>
<td>pyrazine</td>
<td>hydrazone</td>
<td>4.39</td>
<td>11.9</td>
<td>4.19</td>
<td>2.7</td>
</tr>
<tr>
<td>326</td>
<td>2,5-dihydroxyphenyl</td>
<td>hydrazide</td>
<td>2.75</td>
<td>>165</td>
<td>9.4</td>
<td>>60</td>
</tr>
<tr>
<td>327</td>
<td>2-hydroxyphenyl</td>
<td>hydrazide</td>
<td>12.9</td>
<td>>349</td>
<td>>38.8</td>
<td>>27</td>
</tr>
<tr>
<td>328</td>
<td>pyrazine</td>
<td>hydrazide</td>
<td>0.85</td>
<td>233</td>
<td>2.28</td>
<td>274.1</td>
</tr>
<tr>
<td>329</td>
<td>2-pyridine</td>
<td>hydrazide</td>
<td>0.31</td>
<td>138</td>
<td>0.67</td>
<td>445</td>
</tr>
</tbody>
</table>

Table 4.10: Antiviral and cytotoxicity data for compounds 322-329

Biological data for hydrazone compounds 323-325 suggest loss of activity and an increased toxic effect against cells associated with the removal of the tetrahydrobenzene substituent. Along with lower CC₅₀ and SI values in comparison to their original analogues, compounds 323-325 also show higher EC₅₀ values, indicating a cytotoxic rather than antiviral effect associated with this modification. Compound 322 represents an exception to this trend: data found so far suggested activity retention for this derivative.

An inconsistent pattern is also found for hydrazide derivatives 326-329: for hydroxy analogues 326 and 327 antiviral potential seems to be reduced in comparison to original tetrahydrobenzothienyl compounds 278 and 279, while for pyrazine and 2-pyridine derivatives 328 and 329 this last modification seems to be successful both for activity retention and for a decrease in cytotoxic effect, since their CC₅₀ and SI values are higher than the ones found for compounds 280 and 281.
In conclusion, removal of the substituent on the thiophene portion does not have a consistent effect between the two families of compounds, nor does it show the same trend in activity and toxicity profiles. For hydrazone compounds 323-325, it is associated with loss of activity and increased cytotoxicity, while among the hydrazide family, it has a different effect on hydroxyphenyl compounds 326-327, where activity potential is reduced, and heteroaromatic products 328-329, for which both activity and cytotoxicity profiles are improved.
4.4 Synthesis of cyclopentane[b]thienopyrimidines

With the aim to replace the tetrahydrobenzene ring in compound 187 with a condensed cyclopentane system, the previous synthetic pathway was followed, with the only difference being the use, in the first synthetic step corresponding to the Gewald condensation of 2-aminothiophene nucleus, of cyclopentanone (330) instead of cyclohexanone, as shown in scheme 4.11. All reagents and conditions for the preparation of the four common intermediates and the two series of final products, hydrazones and hydrazides, were the same previously discussed for tetrahydrobenzothienopyrimidine compounds.

The rationale that guided the selection of ketones and acids to react with the fourth intermediate 334 in the fifth reaction step, for the formation of final products, was the biological evaluation of the previous series of compounds: for both hydrazone and hydrazide series, the aim was to choose the most significant modifications on the phenylethylidene or hydrazide portion of the molecule, to better understand the effect of the new modification on the antiviral potential associated with these structures.
4.4.1 *N*-((2,3-Dihydro-1H-8-thia-5,7-diaza-cyclopenta[a]inden-4-yl)-N’-(1-phenylethylidene)-hydrazines (335-340)

Six new derivatives were prepared according to the usual procedure for Schiff base formation, by reacting intermediate 334 with ketones 194, 202, 203, 250, 251 and 298, under reflux conditions in EtOH for 24h.
Chapter 4: Thienopyrimidines

4.4.2 \(N'\)-(6,7-Dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-yl)arylcarbohydrazides (341-346)

A second series of six new compounds was obtained with a coupling reaction between intermediate 334 and carboxylic acids 274-277, 297 and 298, using TBTU as coupling agent as previously done for all the previous compounds with this functional group.

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>194</td>
<td>2,5-dihydroxyphenyl</td>
<td>335</td>
<td>74</td>
</tr>
<tr>
<td>202</td>
<td>2-hydroxyphenyl</td>
<td>336</td>
<td>71</td>
</tr>
<tr>
<td>203</td>
<td>3-hydroxyphenyl</td>
<td>337</td>
<td>64</td>
</tr>
<tr>
<td>250</td>
<td>pyrazine</td>
<td>338</td>
<td>42</td>
</tr>
<tr>
<td>251</td>
<td>2-pyridine</td>
<td>339</td>
<td>36</td>
</tr>
<tr>
<td>298</td>
<td>2-benzoimidazole</td>
<td>340</td>
<td>58</td>
</tr>
</tbody>
</table>

Scheme 4.12: Synthesis of compounds 335-340

<table>
<thead>
<tr>
<th>Carboxylic acid</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>274</td>
<td>2,5-dihydroxyphenyl</td>
<td>341</td>
<td>26</td>
</tr>
<tr>
<td>275</td>
<td>2-hydroxyphenyl</td>
<td>342</td>
<td>30</td>
</tr>
<tr>
<td>276</td>
<td>pyrazine</td>
<td>343</td>
<td>15</td>
</tr>
<tr>
<td>277</td>
<td>2-pyridine</td>
<td>344</td>
<td>30</td>
</tr>
<tr>
<td>297</td>
<td>2-indole</td>
<td>345</td>
<td>38</td>
</tr>
<tr>
<td>298</td>
<td>2-benzimidazole</td>
<td>346</td>
<td>47</td>
</tr>
</tbody>
</table>

Scheme 4.12: Synthesis of compounds 341-346
4.4.3 Biological evaluation

Biological results in the HCV replicon assay for compounds 335-346 are shown in table 4.11.18

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar</th>
<th>Linker X</th>
<th>EC$_{50}$ (µM)</th>
<th>CC$_{50}$ (µM)</th>
<th>EC$_{90}$ (µM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>335</td>
<td>2,5-dihydroxyphenyl</td>
<td>hydrazone</td>
<td>17.8</td>
<td>>367</td>
<td>25.7</td>
<td>>20.6</td>
</tr>
<tr>
<td>336</td>
<td>2-hydroxyphenyl</td>
<td>hydrazone</td>
<td>1.72</td>
<td>141</td>
<td>4.07</td>
<td>81.9</td>
</tr>
<tr>
<td>337</td>
<td>3-hydroxyphenyl</td>
<td>hydrazone</td>
<td>88</td>
<td>>385</td>
<td>>385</td>
<td>>4.4</td>
</tr>
<tr>
<td>338</td>
<td>pyrazine</td>
<td>hydrazone</td>
<td>0.688</td>
<td>1.12</td>
<td><0.839</td>
<td>1.6</td>
</tr>
<tr>
<td>339</td>
<td>2-pyridine</td>
<td>hydrazone</td>
<td>1.18</td>
<td>14</td>
<td>1.44</td>
<td>11.9</td>
</tr>
<tr>
<td>340</td>
<td>2-benzimidazole</td>
<td>hydrazone</td>
<td>0.802</td>
<td>6.68</td>
<td><2.24</td>
<td>8.3</td>
</tr>
<tr>
<td>341</td>
<td>2,5-dihydroxyphenyl</td>
<td>hydrazide</td>
<td>2.13</td>
<td>198</td>
<td>3.67</td>
<td>92.9</td>
</tr>
<tr>
<td>342</td>
<td>2-hydroxyphenyl</td>
<td>hydrazide</td>
<td>0.186</td>
<td>119</td>
<td>0.352</td>
<td>639.8</td>
</tr>
<tr>
<td>343</td>
<td>pyrazine</td>
<td>hydrazide</td>
<td>0.0759</td>
<td>3.18</td>
<td><0.256</td>
<td>41.9</td>
</tr>
<tr>
<td>344</td>
<td>2-pyridine</td>
<td>hydrazide</td>
<td>0.745</td>
<td>6.61</td>
<td>1.79</td>
<td>8.9</td>
</tr>
<tr>
<td>345</td>
<td>2-indole</td>
<td>hydrazide</td>
<td>-</td>
<td>47.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>346</td>
<td>2-benzimidazole</td>
<td>hydrazide</td>
<td>0.594</td>
<td>6.9</td>
<td>1.11</td>
<td>11.6</td>
</tr>
</tbody>
</table>

Table 4.11: Antiviral and cytotoxicity data for compounds 335-346

As had been noticed for unsubstituted thienopyrimidine compounds 322-329, replacement of the tetrahydrobenzene substituent with a cyclopentyl ring does not have a consistent effect in terms of antiviral activity between the two families of analogues synthesised, hydrazones and hydrazides, and among different compounds belonging to the same structural family. In the case of hydrazone structures, with the exception of compound 335, which is associated with loss of activity in terms of EC$_{50}$ in comparison to compound 187, activity potential seems to be retained, but the modification is associated with an increased toxic effect against cells in the case of heteroaromatic derivatives 338-340.

In the case of hydrazide structures 341-346, while compound 345 is associated with a toxic effect only, for all remaining analogues in this group activity potential seems to be
retained, and for two of them, compounds 342 and 343, an improvement can be noticed both in terms of EC₅₀ and SI. Moreover, the EC₅₀ associated with compound 343 reaches the lowest value found so far, in the nanomolar range. Despite the differences found, this last modification is mainly associated with a retained or improved activity profile, suggesting a role in antiviral activity for a cyclic aliphatic substituent on the thiophene ring.
4.5 Synthesis of benzo[b]thienopyrimidines

With the purpose to better understand and explore the role of the tetrahydrobenzene substituent on the thiophene, it was planned to aromatise this group and prepare a new series of compounds with a third aromatic ring condensed to the thienopyrimidine system.

In order to obtain final hydrazones and hydrazides with the new tricyclic aromatic nucleus, it was decided to oxidise the cyclohexyl ring in ester intermediate 190, and then insert aromatised aminoester 347 in the usual synthetic route, as shown in scheme 4.13.

Scheme 4.13: Synthetic approach for compounds 351-358
Synthesis of ethyl 2-aminobenzo[b]thiophene-3-carboxylate (347)

Following reported procedures, a first strategy was carried out to aromatise the tetrahydrobenzene ring in compound 190 as shown in scheme 4.14.26

Scheme 4.14: First strategy attempted for the preparation of compound 347

This first attempt began with the protection of aromatic amine in 190 to cyclopropanecarboxamide in compound 359, followed by oxidation of the cyclohexyl ring with manganese dioxide in intermediate 360. The protected amine group was then to be deprotected from the cyclopropylamide group with methyl sulphate, to give tricyclic aromatic ester 347.

The first step in this pathway, corresponding to the protection of the amine group, was carried out by adding cyclopropane carbonyl chloride to compound 190 in pyridine at 5°C: after 1h the desired product was obtained by acidification of the reaction mixture and precipitation, in 83% yield. The following oxidation step was attempted by adding a large excess of MnO₂ to compound 359 in toluene, and refluxing the mixture for 5 days. After this time, starting material 359 was still the main species present in the reaction mixture, and only 5% product 360 was obtained after flash column chromatography.

Due to the low yield of this second step, it was decided to attempt a different oxidative strategy, without protecting the amino group in compound 190. The new approach attempted, shown in scheme 4.15, followed the catalytic oxidation of tetrahydrobenzene ring over Pd/C.27

Scheme 4.15: Catalytic aromatization of compound 190

This second strategy was attempted a first time by refluxing compound 190 and 10% Pd/C in toluene for 48 h: most of the starting material was still present, and only 10% of desired product 347 was obtained after chromatographic purification. The reaction was

152
then repeated by heating at reflux the mixture for 5 days, and in this case 41% of desired product 347 was obtained. Even though the yield was not high and there were four other steps ahead in the synthetic route to obtain final products 351-358, this second method was preferred for its better yield and the requirement of only one reaction step.

As previously discussed (scheme 4.13), oxidized intermediate 347 was inserted in the usual synthetic route for the preparation of final hydrazones 351-354 and hydrazides 355-358.

4.5.1 4-(2-(1-Arylethylidene)hydrazinyl)benzo[4,5]thieno[2,3-d]pyrimidines (351-354)

Four new hydrazone compounds were obtained by reacting hydrazine intermediate 350 with hydroxyphenyl ketones 194 and 202 and heteroaromatic ketones 250 and 298.

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>194</td>
<td>2,5-dihydroxyphenyl</td>
<td>351</td>
<td>73</td>
</tr>
<tr>
<td>202</td>
<td>2-hydroxyphenyl</td>
<td>352</td>
<td>81</td>
</tr>
<tr>
<td>250</td>
<td>pyrazine</td>
<td>353</td>
<td>73</td>
</tr>
<tr>
<td>298</td>
<td>2-benzimidazole</td>
<td>354</td>
<td>62</td>
</tr>
</tbody>
</table>

Scheme 4.16: Synthesis of compounds 351-354

4.5.2 N’-(Benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)arylcarbohydrazides (355-358)

Another small series of four new hydrazide compounds was prepared reacting intermediate 350 and carboxylic acids 274-277, all characterised by the presence of either hydrophenylfunctions or heteroaromatic rings.
Chapter 4: Thienopyrimidines

Scheme 4.17: Synthesis of compounds 355-358

4.5.3 Biological evaluation

Compounds 351-358 were evaluated for their antiviral potential in the HCV replicon assay (table 4.12).\(^\text{18}\)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar</th>
<th>Linker X</th>
<th>EC(_{50}) (μM)</th>
<th>CC(_{50}) (μM)</th>
<th>EC(_{90}) (μM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>351</td>
<td>2,5-dihydroxyphenyl</td>
<td>hydrazone</td>
<td>0.343</td>
<td>20.3</td>
<td>0.968</td>
<td>59.2</td>
</tr>
<tr>
<td>352</td>
<td>2-hydroxyphenyl</td>
<td>hydrazone</td>
<td>0.0861</td>
<td>12</td>
<td>0.421</td>
<td>139.4</td>
</tr>
<tr>
<td>353</td>
<td>pyrazine</td>
<td>hydrazone</td>
<td>0.415</td>
<td>1.99</td>
<td>0.858</td>
<td>6.4</td>
</tr>
<tr>
<td>354</td>
<td>2-benzoimidazole</td>
<td>hydrazone</td>
<td>1.1</td>
<td>18.6</td>
<td>3.25</td>
<td>16.9</td>
</tr>
<tr>
<td>355</td>
<td>2,5-dihydroxyphenyl</td>
<td>hydrazide</td>
<td>0.715</td>
<td>43.6</td>
<td>2.14</td>
<td>61</td>
</tr>
<tr>
<td>356</td>
<td>2-hydroxyphenyl</td>
<td>hydrazide</td>
<td>0.832</td>
<td>108</td>
<td>1.6</td>
<td>129.8</td>
</tr>
<tr>
<td>357</td>
<td>pyrazine</td>
<td>hydrazide</td>
<td>0.0783</td>
<td>1.31</td>
<td>0.143</td>
<td>17</td>
</tr>
<tr>
<td>358</td>
<td>2-pyridine</td>
<td>hydrazide</td>
<td>0.461</td>
<td>1.54</td>
<td>1.01</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Table 4.12: Antiviral and cytotoxicity data for compounds 351-358

Aromatisation of the cyclohexyl ring is associated with a retained or improved antiviral potential in comparison to the original structures. In the hydrazone family, improved activity profiles are found for hydroxy derivatives 351 and 352, with compound 352
showing an EC\textsubscript{50} value in the nanomolar range. For heteroaromatic hydrazones 353 and 354, antiviral profile originally identified for tetrahydrobenzene analogues 262 and 265 appears to be retained. Among the hydrazide family, for hydroxy derivatives 355 and 356 antiviral potential is retained, while heteroaromatic hydrazides 357 and 358, even if showing low EC\textsubscript{50} values (in the nanomolar range for compound 357), are still associated with a toxic effect against cells, as their tetrahydrobenzene analogues 280 and 281.

In conclusion, this last modification is associated with activity retention, indicating that the rigidity due to a tricyclic system in this part of the molecule is tolerated, and further confirming the importance of the occupational volume, given by an aliphatic or aromatic cyclic substituent, on the thiophene ring for antiviral activity.
4.6 Synthesis of dimethyl[b]thienopyrimidines and 6-ethyl-5-methylthieno[2,3-d]pyrimidines

Aiming to further explore the role of the cyclic substituent on the thiophene ring, it was decided to prepare a small series of new derivatives replacing the cyclohexyl group with two methyl groups and a 5-methyl-6-ethyl substituent.

In order to achieve this result, the usual synthetic pathway was followed. Thiophene ring with the desired substituents was obtained according to the Gewald condensation, by reacting ethyl cyanoacetate (189) with 2-butanone (361) and 2-pentanone (362) respectively, as shown in scheme 4.18. The first step in the synthetic route was the only one that needed to be changed.

Scheme 4.18: Synthetic approach for compounds 371-374
4.6.1 4-(2-(1-Arylethylidene)hydrazinyl)-5,6-dimethylthieno[2,3-d]pyrimidines (371-372) and 2-(1-(2-(6-ethyl-5-methylthieno[2,3-d]pyrimidin-4-yl)hydrazono)ethyl)benzene-1,4-diol (373)

Three new hydrazone compounds were prepared by reacting final intermediates 369 and 370 with hydroxyphenyl ketones 194 and 202, as shown in scheme 4.19.

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Product</th>
<th>R</th>
<th>Ar</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>194</td>
<td>371</td>
<td>Me</td>
<td>2,5-dihydroxyphenyl</td>
<td>71</td>
</tr>
<tr>
<td>202</td>
<td>372</td>
<td>Me</td>
<td>2-hydroxyphenyl</td>
<td>54</td>
</tr>
<tr>
<td>194</td>
<td>373</td>
<td>Et</td>
<td>2,5-dihydroxyphenyl</td>
<td>53</td>
</tr>
</tbody>
</table>

Scheme 4.19: Synthesis of compounds 371-373

4.6.2 N’-(5,6-Dimethylthieno[2,3-d]pyrimidin-4-yl)pyrazine-2-carbohydrazide (374)

One new product was obtained by a coupling reaction between hydrazine intermediate 369 and pyrazine carboxylic acid (276).

Scheme 4.20: Synthesis of compound 374
4.6.3 Biological evaluation

Biological data in the HCV replicon assay for compounds 371-374 are shown in table 4.13.\(^1\)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>Ar</th>
<th>Linker X</th>
<th>EC(_{50})((\mu)M)</th>
<th>CC(_{50})((\mu)M)</th>
<th>EC(_{90})((\mu)M)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>371</td>
<td>Me</td>
<td>2,5-dihydroxyphenyl</td>
<td>hydrazone</td>
<td>1.3</td>
<td>>305</td>
<td>4.65</td>
<td>>305</td>
</tr>
<tr>
<td>372</td>
<td>Me</td>
<td>2-hydroxyphenyl</td>
<td>hydrazone</td>
<td>0.384</td>
<td>93.6</td>
<td><1.28</td>
<td>243.8</td>
</tr>
<tr>
<td>373</td>
<td>Et</td>
<td>2,5-dihydroxyphenyl</td>
<td>hydrazone</td>
<td>0.803</td>
<td>>292</td>
<td>1.62</td>
<td>>363.6</td>
</tr>
<tr>
<td>374</td>
<td>Me</td>
<td>pyrazine</td>
<td>hydrazide</td>
<td>0.091</td>
<td>1.58</td>
<td>0.26</td>
<td>17.3</td>
</tr>
</tbody>
</table>

Table 4.13: Antiviral and cytotoxicity data for compounds 371-374

Hydrazone structures 371-373 are associated with activity retention in comparison to tetrahydrobenzene analogues 187 and 202: both in the case of 5,6-dimethyl derivative 372 and 5-methyl-6-ethyl compound 373 improved activity and SI values are found.

Biological data for new hydrazide derivative 374 suggest activity retention associated with the new modification: even though it is associated with a lower CC\(_{50}\) value compared to original derivative 280, the EC\(_{50}\) found for this structure is in the nanomolar range.

What these data seem to suggest is that replacement of the cyclic substituent on the thiophene system with non-cyclic aliphatic groups is associated with activity retention.

In order to further validate the evidence found so far, it was decided to explore new modifications on the thiophene ring.

New non-cyclic aliphatic modifications were planned: in particular, it was decided to replace one of the 5,6-dimethyl groups with a chlorine, a methoxy and an ethyl ester.

To evaluate the impact of the cyclic substituents, it was decided to increase the size of the aliphatic ring from cyclohexyl to cycloheptyl, and to insert heteroatoms in the cyclohexyl moiety.

Finally, it was planned to explore the role of the pyrimidine aromatic proton, by replacing it with a methyl group.
4.7 Synthesis of 6-chloro-5-methyl-thieno[2,3-d]pyrimidines

Aiming to further explore the role of the substituent on the thiophene ring, it was decided to prepare a small series of new derivatives by replacing the 6-methyl group with a 6-chloro, 6-methoxy and 6-ethyl carboxylate.

In order to obtain a direct comparison for activity of the new series of compounds, it was decided to prepare one or two hydrazone derivatives, with a 2’-hydroxyphenyl and a pyrazine substituent, and one or two hydrazide derivatives, with the same 2’-hydroxyphenyl and a 2-pyridine group, for each one of the new families.

Insertion of a chlorine in position 6 of the thienopyrimidine ring, according to reported procedures, was planned starting with the preparation of mono-methylated thiophene derivative 376, by reacting acetone (375) and ethyl cyanoacetate (189) in the usual conditions for the Gewald condensation. Intermediate aminoester 376 was then condensed with formamide in order to obtain the pyrimidinone ring closure in compound 377, and position 6 of intermediate 377 was then chlorinated with N-chlorosuccinimide.

Once the 6-chloro intermediate 378 was obtained, the usual two remaining steps were followed for the formation of hydrazine intermediate 380, to be finally functionalised to hydrazones 381-382 and hydrazides 383-384 (scheme 4.21).
Scheme 4.21: Synthetic route for compounds 381-384

Synthesis of 6-chloro-5-methylthieno[2,3-d]pyrimidin-4(3H)-one (379)
As can be seen in scheme 4.21, chlorination of pyrimidinone intermediate 377 was carried out using N-chlorosuccinimide as chlorinating agent. The two reagents were heated in glacial acetic acid for 1.5 h under reflux conditions, and the desired chlorinated product 379 was isolated after precipitation from H₂O in 63% yield.
4.7.1 6-Chloro-5-methyl-4-(2-(1-arylethylidene)hydrazinyl)thieno[2,3-d]pyrimidines (381-382)

Hydrazine intermediate 380 was reacted with ketones 202 and 250, in the usual conditions applied for Schiff base formation, to give hydrazone products 381-382.

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>2-hydroxyphenyl</td>
<td>381</td>
<td>77</td>
</tr>
<tr>
<td>250</td>
<td>pyrazine</td>
<td>382</td>
<td>64</td>
</tr>
</tbody>
</table>

Scheme 4.22: Synthesis of compounds 381-382

4.7.2 N'-(6-Chloro-5-methylthieno[2,3-d]pyrimidin-4-yl)arylcarbohydrazides (355-358)

A small series of two new hydrazide compounds was obtained with the usual TBTU coupling reaction between intermediate 380 and aryl carboxylic acids 275 and 277.

<table>
<thead>
<tr>
<th>Carboxylic acid</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>2-hydroxyphenyl</td>
<td>383</td>
<td>19</td>
</tr>
<tr>
<td>277</td>
<td>2-pyridine</td>
<td>384</td>
<td>61</td>
</tr>
</tbody>
</table>

Scheme 4.23: Synthesis of compounds 383-384
4.7.3 **Biological evaluation**

Newly synthesised compounds **381-384** were evaluated for their antiviral potential in the HCV replicon assay (table 4.14).\(^{18}\)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar</th>
<th>Linker X</th>
<th>EC(_{50}) (µM)</th>
<th>CC(_{50}) (µM)</th>
<th>EC(_{90}) (µM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>352</td>
<td>2-hydroxyphenyl hydrazone</td>
<td>0.17</td>
<td>>9.01</td>
<td>t.b.d.</td>
<td>>56.1</td>
<td></td>
</tr>
<tr>
<td>353</td>
<td>pyrazine</td>
<td>hydrazone</td>
<td>0.058</td>
<td>3.13</td>
<td>0.289</td>
<td>53.9</td>
</tr>
<tr>
<td>356</td>
<td>2-hydroxyphenyl hydrazide</td>
<td>0.159</td>
<td>>8.96</td>
<td>t.b.d.</td>
<td>>56.1</td>
<td></td>
</tr>
<tr>
<td>358</td>
<td>2-pyridine</td>
<td>hydrazide</td>
<td>0.088</td>
<td>>9.38</td>
<td>0.286</td>
<td>>106</td>
</tr>
</tbody>
</table>

Table 4.14: Antiviral and cytotoxicity data for compounds **381-382**

The presence of a chloride moiety on the thiophene ring is associated with activity retention for the four new compounds prepared. However, the presence of a halogen in this part of the structure could influence the cytotoxicity in a negative fashion, since the CC\(_{50}\) values found so far for this new series of compounds, which need to be confirmed with further biological analyses, might be in the low µM range for all of them.
4.8 Synthesis of 6-methoxy-5-methyl-thieno[2,3-d]pyrimidines

The 6-ethyl substituent on the thienopyrimidine system was modified to a methoxy group by changing the starting ketone in the first step of the previously validated synthetic pathway: as can be seen in scheme 4.24, methoxy-aminoester intermediate 386 was obtained by Gewald condensation between methoxyacetone (385) and ethyl cyanoacetate (189). In this case, the first reaction step had to be repeated for a longer time than usual: after refluxing the reaction mixture for 24 h as was done for all previous series of compounds, desired product 386 was obtained in a low 30% yield after chromatographic purification. The reaction was repeated and left under reflux conditions for 72 h: in this case desired intermediate 386 was obtained in an improved yield of 49%, which was considered acceptable to perform the next reaction step.

Scheme 4.24: Synthetic route for compounds 390-393

Synthesis of 6-methoxy-5-methylthieno[2,3-d]pyrimidin-4(3H)-one (387)
Condensation of the thienopyrimidinone ring had been previously carried out by
refluxing aminoester intermediates in formamide, which has a high boiling point of 220°C and is difficult to be removed by chromatographic techniques. All previous thienopyrimidinone products of the condensation step had been precipitated out from the reaction mixture by addition of water.

Due to the fact that intermediate aminoester 386 was isolated after column chromatography as an oil, and given the low reactivity of the starting materials in the first step of the synthetic pathway, it was thought to change the reaction system for this step, in order to use milder conditions and allow a potential recovery of the starting material, compound 386. For these reasons it was decided to avoid formamide as reagent and solvent, and pyrimidinone ring condensation was attempted using formamidine acetate salt in anhydrous DMF, heating the mixture at 100 °C for 16 h. After removal of the solvent under vacuum, desired thienopyrimidinone product 388 was precipitated from water and obtained pure in a 52% yield.

4.8.1 6-Methoxy-5-methyl-4-(2-(1-arylethylidene)hydrazinyl)thieno[2,3-d] pyrimidines (390-391)

Two new hydrazone products were prepared for this series of compounds, by reacting final intermediate 389 with a small excess of ketones 202 and 250 (scheme 4.25).

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>2-hydroxyphenyl</td>
<td>390</td>
<td>50</td>
</tr>
<tr>
<td>250</td>
<td>pyrazine</td>
<td>391</td>
<td>43</td>
</tr>
</tbody>
</table>

Scheme 4.25: Synthesis of compounds 390-391

4.8.2 N’-(6-Methoxy-5-methylthieno[2,3-d]pyrimidin-4-yl)arylhydrazides (392-393)

Two new hydrazide derivatives were obtained according to the coupling procedure previously carried out for all hydrazide analogues prepared, reacting compound 389
with carboxylic acids 275 and 277.

<table>
<thead>
<tr>
<th>Carboxylic acid</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>2-hydroxyphenyl</td>
<td>392</td>
<td>19</td>
</tr>
<tr>
<td>277</td>
<td>2-pyridine</td>
<td>393</td>
<td>61</td>
</tr>
</tbody>
</table>

Scheme 4.26: Synthesis of compounds 392-393

4.8.3 Biological evaluation

Biological data (HCV replicon assay) for newly synthesised compounds 390-393 are shown in table 4.15.\(^{18}\)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar</th>
<th>Linker X</th>
<th>EC(_{50})((\mu\text{M}))</th>
<th>CC(_{50})((\mu\text{M}))</th>
<th>EC(_{90})((\mu\text{M}))</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>390</td>
<td>2-hydroxyphenyl</td>
<td>hydrazone</td>
<td><0.264</td>
<td>>305</td>
<td>t.b.d.</td>
<td>>1155</td>
</tr>
<tr>
<td>391</td>
<td>pyrazine</td>
<td>hydrazone</td>
<td><0.267</td>
<td>0.337</td>
<td><0.267</td>
<td>>1.22</td>
</tr>
<tr>
<td>392</td>
<td>2-hydroxyphenyl</td>
<td>hydrazide</td>
<td><0.263</td>
<td>30.5</td>
<td><0.788</td>
<td>>138</td>
</tr>
<tr>
<td>393</td>
<td>2-pyridine</td>
<td>hydrazide</td>
<td><0.275</td>
<td>16.5</td>
<td><0.275</td>
<td>>60</td>
</tr>
</tbody>
</table>

Table 4.15: Antiviral and cytotoxicity data for compounds 390-393

The presence of a methoxy substituent on the thiophene ring is generally associated with a retained antiviral potential among the four new compounds tested. However, this modification is also related to an inconsistent effect as for the cytotoxicity: the CC\(_{50}\) and SI values found for compound 391 indicate a toxic effect induced by this last modification in the case of the pyrazine-hydrazone substrate. This trend cannot be seen in the other three derivatives prepared. Further studies are ongoing to establish EC\(_{50}\) and EC\(_{90}\) values for the new compounds and to confirm the trend found so far.
4.9 Synthesis of ethyl-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylates

With the purpose to replace the ethyl group in position 6 of thienopyrimidine system with an ethyl ester function, the usual five-step synthetic route was attempted, as shown in scheme 4.27, by changing the ketone in the first step and starting from Gewald condensation between ethyl acetoacetate (394) and ethyl cyanoacetate (189).

Scheme 4.27: Strategy attempted for the synthesis of compounds 399-401
The first step was successful with the usual condition applied for the Gewald condensation, and desired aminoester 395 was obtained after chromatographic purification in 66% yield.

The following two steps however, corresponding to pyrimidinone ring condensation and chlorination of pyrimidinone intermediate with aromatisation of pyrimidine ring, did not work in the usual conditions optimised with the previous series of compounds, and needed to be attempted in different systems.

Synthesis of ethyl 5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxylate (396)

In the case of diester 395, condensation with formamide to give pyrimidinone compound 396 did not work in the usual reflux conditions. As can be seen in scheme 4.27, a first attempt was made by refluxing intermediate 395 in formamide for 2 h. In this case, starting material 395 was completely consumed, but the formation of a complex mixture of products was observed, and it was not possible to purify desired product 396 nor to confirm its formation either by NMR or MS experiments. Following reported procedures, it was decided to add a catalytic amount of acetic acid, and the reaction was repeated under reflux in formamide.29

![Scheme 4.28: Second and third attempts for the synthesis of compound 396](image)

As shown in scheme 4.28, catalytic AcOH was added to compound 395 in formamide, and the reaction mixture was heated under reflux for 2h. In this case, the formation of a thienopyrimidinone product was observed, and it was isolated and purified by recrystallization. However, NMR experiments suggest that the new pyrimidinone species corresponds to decarboxylation product 377: this was attributed to the combination of the presence of an acid catalyst and the strong heating conditions.
Before trying with a different condensation system, such as formamidine acetate in DMF, the reaction was repeated at a lower temperature, 150°C. In this third attempt, the conversion of starting material 395 into a new species was monitored by T.L.C., and after 5 days of heating, desired product 396 was finally obtained in 71% yield after recrystallisation from EtOH/H₂O.

Ethyl 4-chloro-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (397)

A first attempt was made to chlorinate and aromatise intermediate 396 to obtain chloropyrimidine 397 in the usual reaction system. With this procedure, the formation of a mixture of different products was noticed, and it was not possible to purify nor confirm the presence of desired compound 397.

According to literature, it was decided to use POCl₃ only as reagent, changing the solvent to toluene, and to add a base to neutralise phosphoric acid formed (scheme 4.29).³⁰

Following this new procedure, desired product 397 was obtained in 79% yield after flash column chromatographic purification.

The remaining steps in the synthetic route were successful in the usual reaction conditions.

4.9.1 Ethyl 5-methyl-4-(2-(1-phenylethylidene)hydrazinyl)thieno[2,3-d]pyrimidine-6-carboxylates (399-400)

Two hydrazone final products were obtained by reacting hydrazine intermediate 398 with ketones 202 and 250 (scheme 4.30).
Scheme 4.30: Synthesis of compounds 399-400

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>2-hydroxyphenyl</td>
<td>399</td>
<td>29</td>
</tr>
<tr>
<td>250</td>
<td>pyrazine</td>
<td>400</td>
<td>45</td>
</tr>
</tbody>
</table>

4.9.2 Ethyl 5-methyl-4-(2-picolinoylhydrazinyl)thieno[2,3-d]pyrimidine-6-carboxylate (401)

One new hydrazide compound was prepared by a coupling reaction between intermediate 398 and picolinic acid (277) (scheme 4.31).

Scheme 4.31: Synthesis of compound 401
4.9.3 Biological evaluation

Ethyl ester compounds 399-401 were evaluated for their antiviral potential in the HCV replicon assay. Biological data are shown in table 4.16.

Table 4.16: Antiviral and cytotoxicity data for compounds 399-401

<table>
<thead>
<tr>
<th>Product</th>
<th>Ar</th>
<th>Linker X</th>
<th>EC_{50}(μM)</th>
<th>CC_{50}(μM)</th>
<th>EC_{90}(μM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>399</td>
<td>2-hydroxyphenyl</td>
<td>hydrazone</td>
<td><0.234</td>
<td>187</td>
<td><0.234</td>
<td>>799</td>
</tr>
<tr>
<td>400</td>
<td>pyrazine</td>
<td>hydrazone</td>
<td><0.244</td>
<td>0.281</td>
<td><0.244</td>
<td>>1.16</td>
</tr>
<tr>
<td>401</td>
<td>2-pyridine</td>
<td>hydrazide</td>
<td><0.243</td>
<td>19.8</td>
<td><0.243</td>
<td>>81.5</td>
</tr>
</tbody>
</table>

The presence of an ethyl ester substituent on the thiophene ring is in general associated with a retained antiviral effect, confirming the potential of structural expansion in this part of the molecule. Only in the case of compound 400, this last modification is also associated to an increased cytotoxic effect: further studies are ongoing to confirm this trend and establish the EC_{50} value for the three new compounds prepared.

With the purpose to further modify the cyclic substituent on the thienopyrimidine ring, it was decided to expand the original cyclohexyl group to a cycloheptyl one, and to insert heteroatoms on the aliphatic six-member system. This result was achieved by using different cyclic ketones, cycloheptanone (402), tetrahydro-4H-pyrano[4,3-d]pyrimidines (403) and N-methyl-4-piperidone (404), respectively, in the first step of the previously optimised synthetic route (scheme 4.32).
As shown above, the usual synthetic route fitted well the first two families of structures, with a cycloheptyl and a dihydropyran substituent attached to the thiophene ring. For the \(N \)-methyl-tetrahydropyridine series of compounds, the second step in the synthetic route needed to be changed from the usual conditions.

Synthesis of 7-methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one (410)

In the \(N \)-methyl-tetrahydropyridine series of compounds, condensation of the pyrimidinone nucleus was not successful with the usual reaction conditions: in a first attempt, aminoester intermediate 407 was refluxed with an excess of formamide for 8 h,
but even if formation of desired product 410 was confirmed by MS experiments, it was not possible to isolate it pure with recrystallisation or column chromatography techniques, due to its interaction with formamide, used in large excess.

As shown in scheme 4.33, the reaction was repeated using DMF as solvent and formamidine acetate as reagent to obtain pyrimidinone ring condensation: also in this second attempt, it was not possible to completely purify desired product 410, due to its interaction with DMF. Most DMF was removed under high vacuum and the crude oily residue was used for the next step without further purification.

![Scheme 4.33: Attempts for the synthesis of compound 410](image)

4-Chloro-7-methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine (413)

As discussed above, it was decided to use crude pyrimidinone intermediate 410 for the chlorination step without purification. Usual reaction conditions for this step require the addition of an excess of phosphorus oxychloride, reagent and solvent, and the mixture is refluxed for 6 h. In this case, the formation of a thick precipitate was noticed immediately after addition of POC\(_3\)., and monitoring of the reaction by T.L.C. did not indicate any conversion of the starting material into the product after 4 h. An insoluble salt on the methyl-tetrahydropyridine amine group might have been formed in the acid reaction environment. The reaction mixture was cooled to 0°C, a small excess of NEt\(_3\) was then added to neutralise the potential salt, and finally the mixture was heated under reflux for 6 h. The solid precipitate solubilised immediately after addition of the base, while complete conversion of the starting material was confirmed by T.L.C. after 6 h. Chloro-pyrimidine intermediate 413 was isolated in 49% yield over two steps after flash column chromatography purification.

4.10.1 4-(2-(1-Phenylethylidene)hydrazinyl)[4,5]thieno[2,3-d]pyrimidines (417-422)

Hydrazine intermediates 414-416 were reacted with ketones 202 and 250 to obtain six new hydrazone products, as shown in scheme 4.34.
Scheme 4.34: Synthesis of compounds 417-422

4.10.2 [4,5]Thieno[2,3-d]pyrimidin-4-yl) arylhydrazides (423-428)

Six new hydrazide products were obtained with a coupling reaction between intermediates 414-416 and aryl carboxylic acids 275 and 277.

Scheme 4.35: Synthesis of compounds 423-428
4.10.3 Biological evaluation

Newly synthesised compounds 417-428 were evaluated in the HCV replicon assay.18

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>Ar</th>
<th>Linker X</th>
<th>EC\textsubscript{50}(\textmu M)</th>
<th>CC\textsubscript{50}(\textmu M)</th>
<th>EC\textsubscript{90}(\textmu M)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>417</td>
<td>CH\textsubscript{2}CH\textsubscript{2}</td>
<td>2-hydroxyphenyl</td>
<td>hydrazone</td>
<td>0.268</td>
<td>51.5</td>
<td>0.757</td>
<td>192</td>
</tr>
<tr>
<td>418</td>
<td>CH\textsubscript{2}CH\textsubscript{2}</td>
<td>pyrazine</td>
<td>hydrazone</td>
<td>0.195</td>
<td>3.83</td>
<td>0.368</td>
<td>19.6</td>
</tr>
<tr>
<td>419</td>
<td>O</td>
<td>2-hydroxyphenyl</td>
<td>hydrazone</td>
<td>0.512</td>
<td>>294</td>
<td>1.59</td>
<td>574</td>
</tr>
<tr>
<td>420</td>
<td>O</td>
<td>pyrazine</td>
<td>hydrazone</td>
<td>0.528</td>
<td>4.42</td>
<td>1.22</td>
<td>8.4</td>
</tr>
<tr>
<td>421</td>
<td>NCH\textsubscript{3}</td>
<td>2-hydroxyphenyl</td>
<td>hydrazone</td>
<td>0.834</td>
<td>30</td>
<td>1.79</td>
<td>36</td>
</tr>
<tr>
<td>422</td>
<td>NCH\textsubscript{3}</td>
<td>pyrazine</td>
<td>hydrazone</td>
<td><0.767</td>
<td>>295</td>
<td><0.767</td>
<td>>384</td>
</tr>
<tr>
<td>423</td>
<td>CH\textsubscript{2}CH\textsubscript{2}</td>
<td>2-hydroxyphenyl</td>
<td>hydrazide</td>
<td>0.451</td>
<td>144</td>
<td><1.65</td>
<td>319</td>
</tr>
<tr>
<td>424</td>
<td>CH\textsubscript{2}CH\textsubscript{2}</td>
<td>2-pyridine</td>
<td>hydrazide</td>
<td>0.272</td>
<td>16.6</td>
<td>1.74</td>
<td>61</td>
</tr>
<tr>
<td>425</td>
<td>O</td>
<td>2-hydroxyphenyl</td>
<td>hydrazide</td>
<td>0.887</td>
<td>202</td>
<td>1.65</td>
<td>227.7</td>
</tr>
<tr>
<td>426</td>
<td>O</td>
<td>2-pyridine</td>
<td>hydrazide</td>
<td>1.19</td>
<td>62.3</td>
<td>2.05</td>
<td>52.4</td>
</tr>
<tr>
<td>427</td>
<td>NCH\textsubscript{3}</td>
<td>2-hydroxyphenyl</td>
<td>hydrazide</td>
<td><0.733</td>
<td>>281</td>
<td><0.733</td>
<td>>383</td>
</tr>
<tr>
<td>428</td>
<td>NCH\textsubscript{3}</td>
<td>2-pyridine</td>
<td>hydrazide</td>
<td>1.45</td>
<td>99.7</td>
<td>2.47</td>
<td>68.8</td>
</tr>
</tbody>
</table>

Table 4.17: Antiviral and cytotoxicity data for compounds 417-428

As can be deduced from table 4.17, the new modifications on the level of the thiophene substituent are associated with activity retention, both for hydrazone and hydrazide series of compounds. Data obtained so far suggest that the enlargement of the cyclohexyl ring does not affect antiviral potential, and the same indication can be obtained also in the case of the insertion of a heteroatom in the original six-membered aliphatic ring. The presence of an N-methyl group in the ring is as well associated with activity retention.

In conclusion, modifications carried out so far suggest that an expanded or heteroatomic aliphatic ring on the thiophene is tolerated and does not interfere with antiviral activity: while the presence of a substituent seems to be required for activity retention, data found so far indicate the potential for expansion of the occupational volume in this part of the molecule.
4.11 Synthesis of 5,6,7,8-tetrahydropyrido[4',3':4,5]thieno [2,3-d]pyrimidines

Aiming to evaluate the effect of heteroatoms in the aliphatic cyclohexyl substituent on the thiophene system, along with the preparation of previously discussed dihydropyran and N-methyl-tetrahydropyridine compounds, a tetrahydropyridine ring was inserted in this part of the structure.

In order to avoid potential interference of a free amine group in the first three steps of the usual synthetic pathway, 4-piperidone hydrochloride (429) was protected with BOC protecting group. Protected ketone tert-butyl 4-oxopiperidine-1-carboxylate (430) was then inserted in the usual synthetic route, and used to form thieno-aminoester intermediate 431 according to Gewald condensation, followed by pyrimidinone ring closure in compound 432, and chlorination with aromatisation of pyrimidine system in compound 433. As can be seen in scheme 4.34, the plan at this point was to deprotect the amino group of compound 433 into free amine 434, which was then to be reacted with hydrazine to give final intermediate 435.

The deprotection step in this first strategy attempted was not straightforward.
Scheme 4.34: First synthetic strategy attempted for tetrahydropyridine compounds

Synthesis of tert-butyl 4-chloro-5,6-dihydropyrido[4′,3′:4,5]thieno[2,3-d]pyrimidine-7(8H)-carboxylate (433)

Following reported procedures, the protected pyrimidinone system was aromatised into pyrimidine 433 and chlorinated using phosphorus oxichloride in the presence of
triethylamine. The reaction mixture was stirred under milder heating than the usual reflux conditions, and desired product 433 was isolated in 96% yield after flash column chromatography.

Synthesis of 4-hydrazinyl-5,6,7,8-tetrahydropyrido[4',3';4,5]thieno[2,3-d]pyrimidine (435)

In the first strategy attempted, as shown in scheme 4.34, intermediate 433 was to be deprotected and the remaining steps in the synthetic pathway were to be completed with the free amine group in the tetrahydropyridine ring.

Nevertheless, after removal of the BOC group in acid conditions using a saturated solution of HCl in dioxane, it was not possible to obtain deprotected intermediate 434 as a pure species: all attempts to precipitate it from the reaction mixture failed, and this compound could only be isolated as an impure oily residue after several neutralisations and extractions. The following step of aromatic nucleophilic displacement with hydrazine was performed anyway, and even if the presence of desired hydrazine intermediate 435 as the main species was confirmed by MS, its isolation was not successful, and the oily residue obtained was considered not pure enough to attempt any further reaction.

Attempting to reduce purification difficulties, it was decided to carry out the aromatic nucleophilic displacement to obtain hydrazine species on BOC-protected chloride 433 (scheme 4.35).

![Scheme 4.35: Second deprotecting strategy applied to obtain intermediate 435](image)

BOC-protected hydrazine intermediate 436 was successfully obtained in the usual reaction system, with 46% yield after recrystallization from EtOH/H2O.

Deprotection of compound 436 was then performed using trifluoroacetic acid in DCM: it was not possible to obtain the free-amine product 435 as a pure compound, due to its oily nature. MS experiments confirmed however its presence as the main species in the crude residue; it was therefore decided to use it in the final step for the formation of two hydrazone products. This decision was taken due to the high solubility of crude oily
compound 435 in EtOH and to the fact that all hydrazone products prepared so far were isolated by precipitation from the reaction mixture and subsequent recrystallisation. Also in this case, Schiff base products could be isolated in the same manner, thus removing the impurities present in the starting material.

4.11.1 4-(2-(1-Phenylethylidene)hydrazinyl)-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno [2,3-d]pyrimidines (437-438)

Two new hydrazone compounds were finally obtained for this series, by reacting final intermediate 435 with ketones 202 and 250 (scheme 4.36). Both of them precipitated as yellow solids from the reaction mixture, and were recrystallised from EtOH.

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Ar</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>2-hydroxyphenyl</td>
<td>437</td>
<td>23</td>
</tr>
<tr>
<td>250</td>
<td>pyrazine</td>
<td>438</td>
<td>10</td>
</tr>
</tbody>
</table>

Scheme 4.36: Synthesis of compounds 437-438
4.11.2 Biological evaluation

Biological data in the HCV replicon assay for compounds 437-438 are shown in table 4.16.18

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar</th>
<th>EC_{50}(μM)</th>
<th>CC_{50}(μM)</th>
<th>EC_{90}(μM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>437</td>
<td>2-hydroxyphenyl</td>
<td>0.061</td>
<td>>2.95</td>
<td>t.b.d.</td>
<td>>47.7</td>
</tr>
<tr>
<td>438</td>
<td>pyrazine</td>
<td>0.038</td>
<td>7.71</td>
<td>t.b.d.</td>
<td>201</td>
</tr>
</tbody>
</table>

Table 4.16: Antiviral and cytotoxicity data for compounds 437-438

The presence of a tetrahydropiridine substituent on the thiophene ring is associated with a retained activity profile in the hydrazone family of structures: the two new derivatives prepared, compounds 437 and 438, show EC_{50} values in the nanomolar range.
4.12 Synthesis of 2-methyl-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidines

With the purpose to explore the role of the aromatic proton in the pyrimidine ring in the original tetrahydrobenzothiophene nucleus, its replacement with a methyl group was designed and carried out.

As shown in scheme 4.37, this result was achieved by condensing aminoester intermediate 190 with acetonitrile instead of formamide, in order to obtain pyrimidinone intermediate 439 with a methyl group replacing the aromatic proton. Compound 439 was then inserted in the previously optimised synthetic route, to give functionalised hydrazine intermediate 441, which was reacted to give both hydrazone and hydrazide products, as had been done for the past series of derivatives.

![Scheme 4.37: Synthetic approach for compounds 442-445](image)

Synthesis of 2-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (439)

According to optimised reported procedures, the methyl-pyrimidinone ring in compound 439 was condensed reacting aminoester 190 with acetonitrile in a saturated HCl solution in dioxane, under pressure in a sealed tube. Aminoester 190 forms a thick precipitate in the reaction system; the mixture was therefore sonicated in an
ultrasonic bath for 4 h, in order to solubilise the starting material, and then heated at 100°C for 16 h. Desired pyrimidinone intermediate 439 was then precipitated off by addition of water, filtered, dried and obtained in high purity with 40% yield.

4.12.1 2-Methyl-4-(2-(1-arylethylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines (442, 443)

Two hydrazone final products were prepared for this family of compounds by reacting hydrazine intermediate 441 with ketones 202 and 250.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Ketone} & \text{Ar} & \text{Product} & \text{Yield \%} \\
\hline
202 & 2-hydroxyphenyl & 442 & 86 \\
250 & pyrazine & 443 & 59 \\
\hline
\end{array}
\]

Scheme 4.38: Synthesis of compounds 442 and 443

4.12.2 \(N'\)-(2-Methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)aryl hydrazides (444, 445)

A small series of two new hydrazide compounds was synthesised reacting intermediate 441 and carboxylic acids 275 and 277, following as usual a TBTU-promoted coupling reaction.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Carboxylic acid} & \text{Ar} & \text{Product} & \text{Yield \%} \\
\hline
275 & 2-hydroxyphenyl & 444 & 36 \\
277 & 2-pyridine & 445 & 38 \\
\hline
\end{array}
\]

Scheme 4.39: Synthesis of compounds 444 and 445
4.12.3 Biological evaluation

Compounds 442-445 were tested for their antiviral potential in the HCV replicon assay (table 4.12).18

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar</th>
<th>Linker X</th>
<th>EC\textsubscript{50} (µM)</th>
<th>CC\textsubscript{50} (µM)</th>
<th>EC\textsubscript{90} (µM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>442</td>
<td>2-hydroxyphenyl</td>
<td>hydrazone</td>
<td>>284</td>
<td>>284</td>
<td>>284</td>
<td>-</td>
</tr>
<tr>
<td>443</td>
<td>pyrazine</td>
<td>hydrazone</td>
<td>0.069</td>
<td>>3</td>
<td>0.24</td>
<td>>42.7</td>
</tr>
<tr>
<td>444</td>
<td>2-hydroxyphenyl</td>
<td>hydrazide</td>
<td>1.26</td>
<td>25</td>
<td>3.07</td>
<td>19.8</td>
</tr>
<tr>
<td>445</td>
<td>2-pyridine</td>
<td>hydrazide</td>
<td>0.077</td>
<td>>2.95</td>
<td>0.32</td>
<td>>38.1</td>
</tr>
</tbody>
</table>

\textbf{Table 4.17:} Antiviral and cytotoxicity data for compounds 442-445

Methylation of the pyrimidine ring is associated with an inconsistent effect among the series of compounds tested: while in general this modification induces activity retention, with EC\textsubscript{50} values in the nanomolar range for compounds 443 and 445, antiviral potential is completely lost in compound 442, carrying a 2'-hydroxyphenyl group in the original hydrazone structure. Further biological studies are ongoing to confirm the heterogeneous activity profile found for this last modification.
4.13 Synthesis of 6-ethylthieno[2,3-d]pyrimidines

A series of recently published structures were considered interesting for a potential comparison with thienopyrimidine compounds synthesised and evaluated so far: compound 446 (figure 4.8) was discovered as the most potent derivative of a series of inhibitors of cyclin-dependent kinase CDK4, with IC\textsubscript{50} values of 0.75 µg/mL for the inhibition of CDK4 activity, 1.610 µg/mL for antiproliferative activity in human colon carcinoma HCT116 cell lines, and 0.556 µg/mL antiproliferative activity in human lung carcinoma PC6 cell lines.33

![Figure 4.8: Structure of compound 446](image)

Cyclin-dependent kinases CDKs are a family of kinases involved in the regulation of growth, proliferation and apoptosis of eukaryotic cells;34 they coordinate the progress of cells through the phases of the cell cycle and phosphorylate the retinoblastoma tumor suppressor protein Rb. When hyperphosphorylated, Rb triggers the release of E2F proteins, transcription factors which cause activation of gene expression, leading cells to enter the S phase.35 CDK activities are down-regulated in normal cells by tumor suppressor p16 and other kinase inhibitors.36 In many tumors, mutations, deletions and silencing of p16 or Rb gene are found, and deregulation of Rb pathway and CDK4 seems to play an important role in cancer progression.37

Inhibition of CDK4 expression has been demonstrated to cause hypophosphorylation of Rb, with a subsequent accumulation of cells in G1 phase,38 while CDK4 knockdown in mammary tumor cells inhibits tumor formation.39 CDK4 inhibitors represent therefore a potential anticancer strategy.

Evidence has been found suggesting that up-regulation of CDK4 and its regulatory subunit cyclin D1 are activated in cirrhosis, a precancerous condition that leads to the development of HCC, hepatocellular carcinoma, and this up-regulation is related to differentiation and progression of HCC.40 Moreover, HCV core protein has been recognised to be strongly involved in HCC pathogenesis: it interacts with cellular
proteins and transduction pathways which regulate transcription of proto-oncogenes, and has been proven to be directly implicated in transformation and immortalisation of cells. In this scenario, one of the regulatory systems led to up-regulation is cyclin D1-CDK4, while inactivation of p16 gene is frequently associated with HCC tumours.

Due to the fact that the HCV replicon assay is performed on a human hepatoma cell line, the opportunity of an interaction with an overexpressed cellular factor, such as CDK4, was taken into consideration for thienopyrimidine structures evaluated so far, due to the structural similarities they share with compound 446. Their potential inhibition of kinases is going to be evaluated in future studies.

Nevertheless, as a proof of concept, it was decided to re-synthesise compound 446 and have it tested against HCV replication in the replicon assay. Moreover, its 6-ethylthienopyrimidine scaffold was used to prepare four new compounds, two hydrazone and two hydrazide derivatives, with the most successful hydroxyphenyl and heteroaromatic substitutions found for the previous series of structures discussed in this study. Finally, a sixth new product was designed to insert the thiophen-2-ylmethylen substituent of compound 446 in the tetrahydrobenzothienopyrimidine scaffold of compound 187.

As can be seen in scheme 4.40, starting from butyraldehyde 447 in the first step of Gewald condensation, the usual five-step synthetic approach was followed to obtain compound 446 and final products 452-456.
Scheme 4.40: Synthetic approach for compounds 442-445

4.13.1 6-Ethyl-4-(2-(1-arylethylidene)hydrazinyl)thieno[2,3-d]pyrimidines (446, 453-454)

Along with compound 446, two hydrazone final products were obtained for this group of compounds, through Schiff base formation between hydrazine intermediate 451 and carbonyl compounds 452, 202 and 250.
Scheme 4.41: Synthesis of compounds 446, 453-454

4.13.2 \(N'-(6-\text{Ethylthieno}[2,3-d]\text{pyrimidin-4-yl])\)-2-arylcarbohydrazides (455-456)

Two hydrazide compounds were prepared by reacting intermediate 451 with carboxylic acids 275 and 277.

Scheme 4.42: Synthesis of compounds 444-445

4.13.3 4-(2-(Thiophen-2-yl)methylene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (457)

Thiophene-2-carboxaldehyde 452 was reacted with compound 193 to obtain final product 457, as shown in scheme 4.43.
4.13.4 Biological evaluation

Compounds \textit{446} and \textit{453-457} were evaluated in the HCV replicon assay. Biological results are shown in table 4.18.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>Ar</th>
<th>Scaffold</th>
<th>EC_{50}(\mu\text{M})</th>
<th>CC_{50}(\mu\text{M})</th>
<th>EC_{90}(\mu\text{M})</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{446}</td>
<td>H</td>
<td>2-thiophene</td>
<td>A</td>
<td>4.69</td>
<td>22.8</td>
<td>-</td>
<td>4.9</td>
</tr>
<tr>
<td>\textit{453}</td>
<td>Me</td>
<td>2-hydroxyphenyl</td>
<td>A</td>
<td>1.8</td>
<td>24.6</td>
<td>-</td>
<td>13.7</td>
</tr>
<tr>
<td>\textit{454}</td>
<td>Me</td>
<td>pyrazine</td>
<td>A</td>
<td>0.895</td>
<td>4.55</td>
<td>0.662</td>
<td>5.1</td>
</tr>
<tr>
<td>\textit{455}</td>
<td>-</td>
<td>2-hydroxyphenyl</td>
<td>B</td>
<td>1.46</td>
<td>>318</td>
<td>2.97</td>
<td>>217.8</td>
</tr>
<tr>
<td>\textit{456}</td>
<td>-</td>
<td>2-pyridine</td>
<td>B</td>
<td>1.12</td>
<td>41.1</td>
<td>2</td>
<td>36.7</td>
</tr>
<tr>
<td>\textit{457}</td>
<td>H</td>
<td>2-thiophene</td>
<td>C</td>
<td>4.91</td>
<td>40.5</td>
<td>-</td>
<td>8.2</td>
</tr>
</tbody>
</table>

\textbf{Table 4.18:} Antiviral and cytotoxicity data for compounds \textit{446}, \textit{453-457}

Biological data for compound \textit{446} do not suggest significant activity against viral replication: its effect seems to be more correlated to cytotoxicity rather than inhibition of HCV replication, with a profile similar to the ones found for some of the previously tested hydrazone compounds (\textit{215-234, 252-265, 290-294}), which were not considered as potential antiviral hits.

The same observation can be extended to compound \textit{457}: as its ethenyl-thiophene analogue \textit{294}, it is not associated with a significant antiviral potential. These data are in line with the trend previously found in the structure-activity relationships observed so far for these compounds.

As for the 6-ethyl substitution on the thienopyrimidine system in hydrazone compounds...
453 and 454, this modification is associated with loss of activity in the case of 2-hydroxyphenyl product 453, and to an increased cytotoxic effect in the case of pyrazine derivative 454, in comparison to previously discussed analogues carrying these two ethenylic aromatic groups.

This observation cannot be transferred to hydrazide products 455 and 456: these compounds show a retained antiviral profile in comparison to previously tested analogues with the same aromatic hydrazide substituents.

What can be concluded is that, as for CDK4 inhibitor 446, its biological evaluation does not suggest the same antiviral potential found for thienopyrimidine hit structures identified in the course of this study. This assumption needs however to be confirmed with specific enzymatic tests, which may or may not exclude inhibition of CDK4 as the mechanism of action for compound 187 and its analogues.

Regarding instead the 6-ethyl substitution on the thienopyrimidine system, this modification seems to have a different influence between the two series of structures, hydrazones and hydrazides: while in the first case it is associated with loss of antiviral potential, in the second it appears instead to confer retention of antiviral activity. This evidence may indicate that the substituent on the thienopyrimidine system has a greater influence on antiviral activity for hydrazone structures, and its effect may be compensated in the hydrazide series by a stronger interaction with the target given by the hydrazide group.
4.14 Conclusions

Following molecular modelling studies, compound 187 was identified as a hit for the inhibition of HCV replication in the HCV replicon assay. Its structure was the starting point for the design and synthesis of 128 new analogues, which were evaluated for their antiviral potential against the HCV replication.

According to biological results obtained so far, antiviral activity originally found for compound 187 was confirmed, and several new derivatives showed an improved antiviral effect, with some of them being associated with EC$_{50}$ values in the nanomolar range.

Structure-activity relationships could be identified with the modifications performed on the structural scaffold of compound 187: the presence of a hydrazine linker in the molecule is essential, but this bond can be successfully replaced with a hydrazide group, which is believed to be more stable in aqueous conditions. Moreover, an ethyldene group on the hydrazone bond is important for the cytotoxicity profile: the absence of the methyl group on this bond is associated with low CC$_{50}$ and SI values.

In the case of both hydrazone and hydrazide structures, the linker has to be functionalised with a six-membered aromatic ring carrying a hydroxyl group in position 2, or a heteroaromatic ring with a nitrogen in position 2: among the different series of
derivatives prepared, the most successful modifications are obtained with a 2-hydroxyphenyl, a 2-pyridine or a pyrazine group in this part of the structure. The presence of a 2-bendimidazole group is tolerated, while all the other modifications attempted were associated with loss of activity.

The presence of an aliphatic or aromatic substituent on the thienopyrimidine nucleus appears to be essential for activity retention, and suggests expansion potential for this part of the structure: when the original tetrahydrobenzene ring is completely removed, an enhanced cytotoxic effect can be observed, while the aromatisation of this group is associated with activity retention. Replacement of this substituent with a smaller cyclopentyl ring or with a bigger cycloheptyl group is associated with a retained antiviral profile, and the same effect is seen with the insertion of heterocyclic functions such as an N-methyl-tetrahydropyridine ring, a pyran group or a tetrahydropiridine ring. The original tetrahydrobenzene group on the thiophene ring can also be replaced with aliphatic groups such as methyl, ethyl, methoxy and ethyl ester moieties: all these modifications are associated with retention of activity. Biological data obtained so far suggest that the occupational volume in this part of the molecule is important for antiviral activity.

The role of the pyrimidine proton has also been explored: its replacement with a methyl group is associated with an inconsistent effect among the structural derivatives prepared, and even if the general trend suggests activity retention, further biological evaluations are required to confirm this assumption.

The most promising modifications found so far are summarised in table 4.19.
Chapter 4: Thienopyrimidines

![Thienopyrimidine structure](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ar</th>
<th>Linker X</th>
<th>R₁, R₂</th>
<th>EC₅₀(µM)</th>
<th>CC₅₀(µM)</th>
<th>EC₉₀(µM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td>pyrazine</td>
<td>hydrazide</td>
<td>cyclopentyl</td>
<td>0.0759</td>
<td>3.18</td>
<td><0.256</td>
<td>41.9</td>
</tr>
<tr>
<td>352</td>
<td>2-hydroxyphenyl hydrazide</td>
<td>benzene</td>
<td>0.0861</td>
<td>12</td>
<td>0.421</td>
<td>139.4</td>
<td></td>
</tr>
<tr>
<td>357</td>
<td>pyrazine</td>
<td>hydrazide</td>
<td>benzene</td>
<td>0.0783</td>
<td>1.31</td>
<td>0.143</td>
<td>17</td>
</tr>
<tr>
<td>374</td>
<td>pyrazine</td>
<td>hydrazide</td>
<td>dimethyl</td>
<td>0.091</td>
<td>1.58</td>
<td>0.26</td>
<td>17.3</td>
</tr>
<tr>
<td>437</td>
<td>2-hydroxyphenyl hydrazide</td>
<td>tetrahydropyridine</td>
<td>0.061</td>
<td>>2.95</td>
<td>t.b.d.</td>
<td>>47.7</td>
<td></td>
</tr>
<tr>
<td>438</td>
<td>pyrazine</td>
<td>hydrazide</td>
<td>tetrahydropyridine</td>
<td>0.038</td>
<td>7.71</td>
<td>t.b.d.</td>
<td>201</td>
</tr>
</tbody>
</table>

Table 4.19: Thienopyrimidine derivatives with EC₅₀ values in the nanomolar range.

Future modifications of the original structure could involve the replacement of the central thienopyrimidine nucleus with different heteroaromatic scaffolds, in order to determine the impact of this condensed ring on antiviral activity.

Further biological studies are ongoing in order to determine the actual EC₅₀, EC₉₀ and CC₅₀ values for some of the compounds prepared, along with the determination of the viral or cellular target of these structures, and potentially their mechanism of action.
4.15 References

1 Gu, M.; Rice, C.M. Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism. *PNAS* 2010, 107, 521-528.

Chapter 4: Thienopyrimidines

22 Gemma, S.; Butini, S.; Campiani, G.; Brindisi, M.; Zanoli, S.; Romano, M.P.; Tripaldi, P.; Savini, L.; Fiorini, I.; Borrelli, G.; Novellino, E.; Maga, G. Discovery of

29 Goldfarb, D.S. Method using lifespan-altering compounds for altering the lifespan of eukaryotic organisms, and screening for such compounds. US patent 20090163545A1, June 25, 2009.

Chapter 5

Pyrrolones
5.1 Ligand-based Virtual Screening

An essential requirement for mutual recognition between small molecules and their protein targets is shape complementarity.\(^1\) Common docking-based virtual screening techniques, even though evaluating shape complementarity between a hit and the binding pocket, usually estimate the ligand binding energy by a scoring procedure that emphasises electrostatics rather than shape.\(^2\) In ligand-based screening methods, for which a high accuracy in finding active molecules has been demonstrated, the shapes of known ligands are compared with unknown ones, while the chemical properties of known molecules can be included in the comparison as pharmacophoric or electrostatic models. These methods based on ligand similarity can evaluate two-dimensional similarities, such as fingerprints,\(^3\) or three-dimensional similarities, focusing on the occupational volume acquired by molecules. While 2D comparison methods tend to find hits with the same functional groups of the query molecule,\(^4\) 3D methods are focused on the occupational volume associated with each molecule, thus allowing the identification of novel lead structures with a higher level of scaffold diversity. In 3D similarity search softwares such as ROCS, pharmacophoric properties or associated electrostatic potential of the query molecule can be implemented to the search, thus enriching the use of complementarity shape with chemical features that might be important for ligand-target recognition.\(^5\)

In order to explore the potential of a shape-comparison method in the search for HCV NS3 helicase inhibitors, this type of approach was applied for a new screening of the SPECS library.

Due to the wide chemical diversity and variability of target subsites associated with known helicase inhibitors, the structures of the dye soluble blue HT, compound 1, and its chemical derivatives were chosen as a starting point,\(^6\) since compound 1 is the only helicase inhibitor for which a crystal structure in complex with the enzyme is available (PDB ID 1ZJO, figure 5.1).\(^7\)
Many of the published HCV NS3 helicase inhibitors have recently been re-tested in both an optimised enzymatic assay and a replicon cell-based assay among them, one structural derivative of compound 1, the triphenylmethane analogue 458 (figure 5.2), has been confirmed to inhibit both the enzyme (IC\textsubscript{50} 17 +/- 7 \(\mu\)M) and the viral replication (~80% inhibited at 10 \(\mu\)M compound) without relevant cytotoxicity (~75% cell viability at 10 \(\mu\)M compound).

Due to its activity profile, the structure of compound 458 was chosen as the query molecule for a shape comparison-based screening of the SPECS library, performed with ROCS 3D similarity search software.

Figure 5.1: 1ZJO crystal structure. Compound 1 in complex with the HCV NS3 helicase

Figure 5.2: Structure of compounds 1 and 458
5.1.1 Conformational search for ROCS query edition

In order to evaluate the shape complementarity between target query and screened compounds, the program considers the shape-density overlapping volumes of molecular shape in each superimposition, and the superimposed molecules are scored on the basis of a Tanimoto-like overlapping value of molecular volumes, the higher it is (between 0 and 1), the most similar the two compared volumes are considered. In such context, the conformational state of the query molecule plays an essential role for hits selection, since all analysed structures will be scored on the basis of their overlapping with the target conformation. Conformation selection for the query structure becomes crucial, along with the evaluation of the different three-dimensional states that the molecules to screen can assume.

As had been previously done for the two pharmacophoric searches of the SPECS library, a conformational search with MOE2010.10 was performed for the creation of a conformational database of the compounds to be screened. A conformational analysis was performed on the structure of compound 458, in order to identify low-energy three-dimensional states to be used as the query in the shape screening. Multiple low-energy conformations were obtained. For a more accurate selection of the target query, results found for compound 458 were compared to the conformation of compound 1 in the 1ZJO crystal structure: MOE Flexible Alignment tool was used for this purpose. The low-energy conformations found for compound 458 were rigidly aligned to compound 1, and the one corresponding to the best alignment (dU=0 kcal/mol, S= -220, figure 5.3) was chosen as target query for ROCS screening.
Figure 5.3: Conformational superimposition between compound 1, coloured in blue, and compound 458, in cyan.
5.1.2 Shape complementarity search of the SPECS database

The conformational database obtained for SPECS compounds was analysed against the selected conformation of compound 458 with the vROCS 3.1.2 software,\(^5\) considering both shape and electrostatics complementarity with the target query for the evaluation of screened structures.

All screened conformations were ranked on the basis of their similarity score with the given target molecule. In order to choose a small number of hits to purchase and test in the cell-based replicon assay, a selection was made among the screened molecules in order to identify those showing the highest values of similarity index (Combo-shape tanimoto score) and the major number of different conformations matching the query.

On the basis of these parameters, six compounds were finally selected (Appendix I). One of them, compound 459 (figure 5.4), showed antiviral effect in the replicon assay, with an EC\(_{50}\) and EC\(_{90}\) value of 38 and 149 \(\mu\)M, respectively, and a CC\(_{50}\)\(>204\) \(\mu\)M. Its scaffold was chosen for further development.

![Figure 5.4: chemical structure and best alignment of compound 459 (aligned in green against compound 458, in blue)](image-url)
5.2 Synthesis of 1-aryl-3-arylidene-5-phenyl-1\(H\)-pyrrol-2(3\(H\))-ones

The structure of compound 459 shows a central pyrrolone nucleus, substituted in position 1 and 5 with two aromatic rings, and linked in position 2 with a phenylidene system (figure 5.5).

Figure 5.5: Chemical features of compound 459

In order to confirm the antiviral potential associated with this scaffold, it was decided to synthesise, along with the original structure, a preliminary series of triphenyl-pyrrolone derivatives by only varying the aromatic substituents on the 1-phenyl and 3-phenylidene rings. For the preparation of desired compounds, a two-step synthetic pathway was planned, as shown in scheme 5.1.

Scheme 5.1: Synthetic pathway planned for compounds 459, 475-482
The strategy carried out began with the condensation between 3-benzoyl propanoic acid (460) and differently para substituted benzaldehydes, with the formation of intermediates 466-470 through furanone ring closure, followed by phenyl-amine displacement of the cyclic ester with the formation of the pyrrolone system in final products 459, 475-482.

Synthesis of ethyl 4-formylbenzoate (461)

Due to the presence of a 4-benzoic acid ethyl ester substituent in the structure of compound 459, benzaldehyde 461 was synthesised by a Fischer esterification of 4-formyl-benzoic acid (483), which was refluxed with ethanol in presence of sulphuric acid to give desired ethyl 4-formylbenzoate (461), as shown in scheme 5.2.

![Scheme 5.2: Synthesis of starting benzaldehyde 461](image)

5.2.1 3-Arylidene-5-phenylfuran-2(3H)-ones (466-470)

Following reported procedures, furanone intermediates 258-262 were obtained by heating the starting materials at 95 °C in acetic anhydride in presence of sodium acetate. The formation of the central butenolide ring is believed to follow a Perkin condensation between the β-benzoylpropionic acid and aryl aldehyde, which are thought to form an aldol-condensation product that subsequently undergoes internal cyclisation with the formation of furanone ring, as shown in scheme 5.3.
Following this procedure, five butenolide intermediates were prepared by changing the starting benzaldehyde (table 5.1). For this preliminary series of compounds it was decided to maintain a common unsubstituted phenyl ring in position 5 of the final pyrrole derivatives, while exploring a few different substitutions in the para position of the 3-phenylidene system.

<table>
<thead>
<tr>
<th>Aldehyde</th>
<th>R<sub>1</sub></th>
<th>Furanone intermediate</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>461</td>
<td>COOEt</td>
<td>466</td>
<td>31</td>
</tr>
<tr>
<td>462</td>
<td>H</td>
<td>467</td>
<td>35</td>
</tr>
<tr>
<td>463</td>
<td>OMe</td>
<td>468</td>
<td>33</td>
</tr>
<tr>
<td>464</td>
<td>Br</td>
<td>469</td>
<td>51</td>
</tr>
<tr>
<td>465</td>
<td>Ph</td>
<td>470</td>
<td>41</td>
</tr>
</tbody>
</table>

Table 5.1: Chemical structure of furanone intermediates 466-470

5.2.2 1-Aryl-3-arylidene-5-phenyl-1H-pyrrol-2(3H)-ones (459, 475-482)

According to reported procedures, a first attempt to obtain final compound 459 was made by heating at 100 °C in toluene furanone intermediate 466 with 2-bromo-4-methyl-aniline (471). Formation of the final pyrrole product is thought to take
place through an intermediate stage where the furanone ring is opened as a result of the ammonolysis of the starting compound by the aromatic amine. The amide initially formed is then believed to undergo cyclisation to a tautomeric 5-hydroxyl species, followed by dehydration with the formation of pyrrolone ring (scheme 5.4).\(^\text{16}\)

![Scheme 5.4: Postulated mechanism for the formation of compounds 459, 475-482](image)

The reaction was tried with different molar ratios of the reagents and time was increased from 12 to 48 h, but formation of desired product 459 was not observed in this solvent system, while the starting material 461 was recovered after flash column chromatography purification.

Following reported procedures for the synthesis of phthalimides,\(^\text{17}\) in an attempt to enhance the electrophilic characteristics of the ketone carbonyl carbon of the intermediate amide, and in order to create a dehydrating environment to favour the formation of final pyrrolone products, toluene was replaced with glacial acetic acid, and the mixture was heated under reflux for 22 h, as shown in scheme 5.5.

![Scheme 5.5: Attempted conditions for the synthesis of compounds 459, 475-482](image)

Eight new derivatives, along with compound 459, were obtained with the new synthetic
procedure, by combining intermediates 461-465 with differently substituted anilines (471-474). Their structures are shown in table 5.2.

![Diagram](image)

<table>
<thead>
<tr>
<th>Furanone intermediate</th>
<th>R₁</th>
<th>Aniline</th>
<th>R₂</th>
<th>Product</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>461</td>
<td>COOEt</td>
<td>471</td>
<td>2-Br, 4-Me</td>
<td>459</td>
<td>44</td>
</tr>
<tr>
<td>462</td>
<td>H</td>
<td>472</td>
<td>H</td>
<td>475</td>
<td>34</td>
</tr>
<tr>
<td>461</td>
<td>COOEt</td>
<td>472</td>
<td>H</td>
<td>476</td>
<td>57</td>
</tr>
<tr>
<td>463</td>
<td>OMe</td>
<td>472</td>
<td>H</td>
<td>477</td>
<td>39</td>
</tr>
<tr>
<td>464</td>
<td>Br</td>
<td>472</td>
<td>H</td>
<td>478</td>
<td>29</td>
</tr>
<tr>
<td>465</td>
<td>Ph</td>
<td>472</td>
<td>H</td>
<td>479</td>
<td>27</td>
</tr>
<tr>
<td>461</td>
<td>COOEt</td>
<td>473</td>
<td>4-Me</td>
<td>480</td>
<td>32</td>
</tr>
<tr>
<td>461</td>
<td>COOEt</td>
<td>474</td>
<td>2,3-Me</td>
<td>481</td>
<td>56</td>
</tr>
<tr>
<td>462</td>
<td>H</td>
<td>471</td>
<td>2-Br, 4-Me</td>
<td>482</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 5.2: Structure of compounds 459, 475-482
5.2.3 Biological evaluation

Newly synthesised triphenylpyrrolone structures were tested for antiviral activity in the subgenomic replicon and cytostatic assays. Their biological results are shown in table 5.3.

<table>
<thead>
<tr>
<th>Product</th>
<th>R₁</th>
<th>R₂</th>
<th>EC₅₀ (µM)</th>
<th>CC₅₀ (µM)</th>
<th>EC₉₀ (µM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>459</td>
<td>COOEt</td>
<td>2-Br, 4-Me</td>
<td>20.2</td>
<td>>205</td>
<td>61.7</td>
<td>>10.1</td>
</tr>
<tr>
<td>475</td>
<td>H</td>
<td>H</td>
<td>4.9</td>
<td>29</td>
<td>15.3</td>
<td>5.9</td>
</tr>
<tr>
<td>476</td>
<td>COOEt</td>
<td>H</td>
<td>22.8</td>
<td>99.6</td>
<td>73.2</td>
<td>3.2</td>
</tr>
<tr>
<td>477</td>
<td>OMe</td>
<td>H</td>
<td>5.31</td>
<td>97.2</td>
<td>21.6</td>
<td>18.3</td>
</tr>
<tr>
<td>478</td>
<td>Br</td>
<td>H</td>
<td>3.52</td>
<td>25.7</td>
<td>11.6</td>
<td>7.3</td>
</tr>
<tr>
<td>479</td>
<td>Ph</td>
<td>H</td>
<td>17.4</td>
<td>156</td>
<td>61.7</td>
<td>8.9</td>
</tr>
<tr>
<td>480</td>
<td>COOEt</td>
<td>4-Me</td>
<td>22.9</td>
<td>>244</td>
<td>82</td>
<td>>10.7</td>
</tr>
<tr>
<td>481</td>
<td>COOEt</td>
<td>2,4-Me</td>
<td>43.1</td>
<td>90.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>482</td>
<td>H</td>
<td>2-Br, 4-Me</td>
<td>3.3</td>
<td>>240</td>
<td>11.3</td>
<td>>73</td>
</tr>
</tbody>
</table>

Table 5.3: Biological results for compounds 459, 475-482

Re-synthesised compound 459 confirmed its activity profile, with EC₅₀, EC₉₀ and CC₅₀ values close to the ones previously found for the batch acquired from SPECS. Considering the substitutions attempted so far, the presence of an ethyl ester function in the 3-phenylidene ring does not appear to be essential for activity retention, since compound 482, where this group is removed, is the most active found for this series of compounds, with EC₅₀ and EC₉₀ values in the low µM range. A similar profile can be found also for derivatives 475, 477 and 478, where the 1-phenyl ring is unsubstituted and the ethyl ester group is replaced respectively with 4-H, 4-Me and 4-Br groups, but these modifications are associated with increased cytotoxicity.

Antiviral potential associated with triphenylpyrrolone compounds was only partially explored with the modifications carried out so far, but activity confirmation obtained for compound 459 and improved antiviral profile found for derivative 482 could be an encouraging starting point for future development.
5.3 Conclusions

In the course of this final part of the study, ligand-based molecular modelling techniques were applied to the analysis of the HCV NS3 helicase enzyme. A shape-comparison screening of commercially available compounds led to the identification of a third hit molecule, compound 459, associated with a positive anti-HCV potential in cellular assays. The original structure was successfully re-synthesised, together with a preliminary series of eight new analogues, all of which have been tested in the HCV replicon assay.

![Chemical Structure](image)

The antiviral potential originally found was confirmed for compound 459, and new structural derivatives were associated with an improved antiviral activity in the low µM range: the most active analogue in this first series of structures is compound 482, for which an improvement of antiviral potential is observed in terms of both EC$_{50}$ and CC$_{50}$ values. A preliminary SAR evaluation suggests that the antiviral effect is mainly due to the N-phenyl substituent: the original 2-bromo-4-methyl-phenyl ring is essential for activity, while with the removal of the ethyl ester function on the phenylethylidene ring of compound 459 is associated with an improved antiviral profile. These results represent a promising starting point for future studies, with which different substituents could be investigated for all the three aromatic rings, along with the replacement of the central pyrrolone nucleus with new scaffolds.
5.4 References

12. Kobuke, Y.; Ogawa, K. Porphyrin compound, process for producing porphyrin compound, three-dimensional recording material, and three-dimensional recording

Conclusions
Conclusions

In the course of this study, different molecular modelling techniques were applied to the analysis of the NS3 helicase enzyme with the aim to identify potential inhibitors of HCV replication.

A first virtual screening study on the enzyme closed conformation allowed the identification of compound 12, which was associated to low-µM antiviral effect in the replicon assay.

Starting from the structure of compound 12, 61 new derivatives were designed and synthesised to explore the antiviral effect associated to its scaffold, and several compounds were found to inhibit the viral replication at low µM concentration. The presence of two equally substituted phenyl-sulfonamide groups is essential for retention of activity, along with the presence of the central piperazine nucleus and two equal three-carbon aliphatic linkers. A hydrophobic substituent in the para position of the terminal aromatic rings is also essential for antiviral activity, along with the preservation of the symmetry of the molecule. A significant improvement in terms of potency could not be achieved with this series of structures, therefore further computer-based analyses were planned and carried out.

A ligand-based optimisation approach on compound 12 guided the synthesis of a first series of nine derivatives belonging to four new structural scaffolds.

Due to the antiviral potential associated to one of the new structures synthesised, compound 162, an extended series of five new analogues was synthesised, and two derivatives showed anti-HCV activity in the low µM range. Two equal para-phenyldiamine groups are required in the linker for activity retention, along with the presence of a central succinamide group and a para-hydrophobic substituent on the two phenyl-sulfonamide groups. Even if activity retention was obtained with different new
compounds, the desired improvement in potency was not achieved for the antiviral effect of this new series of compounds. A second virtual screening study was therefore planned with the aim to find more potent inhibitors of the HCV replication.

The second virtual screening was performed on the crystal structure of the NS3 helicase enzyme in the open conformation, and among the new structures screened and selected for biological evaluation compound 187 was identified as a HCV replication inhibitor with a sub-μM activity: its structure was the starting point for the design and synthesis of 128 derivatives, which were biologically evaluated against HCV replication in the replicon assay.

![Diagram](image)

187: R₁, R₂= C₄H₈, X= NCCH₃, Ar= 2,5-OH-Ph

Structural modifications aiming to explore the antiviral potential associated with this new scaffold led to the synthesis of several new compounds with an improved antiviral potential, and some of them were associated to EC⁵₀ values in the nanomolar range. The presence of an aliphatic, aromatic or heterocyclic substituent on the thiophene ring is essential for antiviral activity, along with a hydrazone or hydrazide linker group between the thienopyrimidine ring and a second aromatic group. This second aromatic ring has to be a 2-hydroxyphenyl group or a six-membered heteroaromatic ring with a nitrogen in position 2, such as 2-pyridine or pirazine. Further biological evaluations are ongoing to identify the biological target and the mechanism of action of these promising antiviral agents, while future studies could include the substitution of the central thienopyrimidine ring with different heteroaromatic moieties, further expansion of the occupational volume of the substituent on the thiophene ring, and the replacement of the pyrimidine proton with new functional groups, since the only modification carried out so far on this part of the structure was the insertion of a methyl group.

Finally, a shape-comparison ligand-based screening allowed to the identification of a third hit molecule, compound 459, associated to antiviral effect in the low μM range. Its structure was successfully re-synthesised, along with a first series of eight new
Among the small series of compounds prepared, the antiviral potential originally found was confirmed for compound 459, while its derivative compound 482 shows improved antiviral activity in the replicon assay. Biological data obtained so far suggest that inhibition of the viral replication is mainly associated with the 2-bromo, 4-methyl substituents on the N-phenyl ring, which are essential for activity, while the removal of the ethyl ester function on the phenylethylidene moiety leads to an improved activity profile. The results found so far for this last series of compounds represent a promising starting point for future structural modifications, which could include the exploration of different aromatic modifications on the three phenyl rings, the removal of these rings one at a time, the substitution of the central pyrrolone group with different heterocycles. Even though these findings represent a successful application of computer-aided techniques for the identification of biologically active compounds, specific studies are required to define the mechanism of action of these molecules, and confirm whether or not their molecular target can be identified as the HCV NS3 helicase.
Chapter 6

Experimental
6.1 General information

All chemicals, reagents and solvents were purchased from Aldrich or purified by standard techniques.

Thin Layer Chromatography
Silica gel plates (Merck Kieselgel 60F254) were used and were developed by the ascending method. After solvent evaporation, compounds were visualised by irradiation with UV light at 254 nm and 366 nm.

Column Chromatography
Glass columns were dry packed in the appropriate eluent under gravity, with Woelm silica (32-63 mm). Samples were applied as a concentrated solution in the same eluent. Fractions containing the product were identified by TLC, combined and the solvent removed in vacuo.

NMR Spectroscopy
1H, 13C, NMR spectra were recorded on a Bruker AVANCE 500 spectrometer (500 MHz and 75 MHz respectively) and auto calibrated to the deuterated solvent reference peak. Chemical shifts are given in δ relative to tetramethylsilane (TMS); the coupling constants (J) are given in Hertz. TMS was used as an internal standard (δ = 0 ppm) for 1H NMR and CDCl$_3$ served as an internal standard (δ = 77.0 ppm) for 13C NMR.

6.1.1 Molecular Modelling

All molecular modelling studies were performed on a MAC pro 2.66 GHz Quad-Core Intel Xeon, running Ubuntu.
Molecular Operating Environment (MOE) 2010.10 and Maestro (Schrodinger version 9.0) were used as molecular modelling softwares. All minimisations were performed with MOE until RMSD gradient of 0.001 Kcal mol$^{-1}$ Å$^{-1}$ with the AMBER99 force field. Partial charges were automatically calculated. Conformational analyses were performed with MOE 2010.10; conformers with a strain
energy >4 kcal/mol were discarded, and the maximum number of conformations per ligand was set to 500. In every step MOE default settings were applied. Pharmacophoric filters were created within MOE 2010.10 choosing the PCH (polar-charged-hydrophobic) scheme.

Docking experiments were carried out using LEadIT-FlexX version 2.1.0, Plants version 1.1 and GlideSP module in Maestro with the default options.

Outputs of all docking experiments were refined with Glide SP refine-do not dock tool. All refined docking results were rescored using Plants ChemPLP, FlexX and Glide SP scoring functions.

Selection of the best docked poses was made by building a consensus scoring function as follows: in each docking study, for each scoring function applied the first quartile value, fquart, was evaluated to determine the threshold limit under which relies the best 25% of the scoring results (negative energy values). The mathematical function Sign was then applied for each scoring value of each docked pose, in order to determine whether it belongs to the best 25% (sign +1) or not (sign -1). Finally, the three sign values, each one corresponding to the performance according to one scoring function, for a given docked pose were summed and only the ones with a sign sum equal to +3 (or +2, meaning that one of the assigned scoring values was equal to the fquart value) were chosen.

Referring to the three scoring functions Glide SP, Plants ChemPLP and FlexX as A, B and C respectively, the consensus scoring function equation for a given docked pose X was the following:

$$\text{Sign sum}(X) = \text{sign}(\text{fquart}_A - X_A) + \text{sign}(\text{fquart}_B - X_B) + \text{sign}(\text{fquart}_C - X_C)$$

Shape-comparison screening was performed with vROCS version 3.1.2. Both shape and colour screen criteria were applied to the query. Output conformations were ranked by the Tanimoto Combo score and the Shape Tanimoto score.
6.2 Synthesis of piperazine structures

6.2.1 General procedures 1-11

General procedure 1: synthesis of N-(3-bromopropyl)arylsulfonamides

Arylsulfonyl chloride (4 mmol) and 3-bromopropylamine hydrobromide (21) (1.0 g, 4.6 mmol) were suspended in anhydrous DCM (14 mL) under nitrogen atmosphere. The reaction mixture was cooled to 0°C in an ice-bath and then treated dropwise with triethylamine (1.34 mL, 9.6 mmol) over a period of 10 min.

The reaction mixture was stirred for 10 min under ice-cooling, then diluted with DCM (50 mL) and washed with 2M hydrochloric acid solution (2 x 60 mL) and brine (2 x 60 mL). The organic solvent was evaporated at reduced pressure after drying over MgSO₄ to give the pure N-(3-bromopropyl)arylsulfonamides.

General procedure 2: N-(2-bromoethyl)arylsulfonamides

Arylsulfonyl chloride (4.2 mmol), and 2-bromoethylamine hydrobromide (37) (1.0 g, 4.8 mmol) were suspended in anhydrous DCM (14 mL) under nitrogen atmosphere. The reaction mixture was cooled to 0°C in an ice-bath and then treated dropwise with triethylamine (1.4 mL, 10 mmol) over a period of 10 min.

The reaction mixture was stirred for ten min under ice-cooling, then diluted with DCM (50 mL) and washed with 2M hydrochloric acid solution (2 x 60 mL) and brine (2 x 60 mL). The organic solvent was evaporated at reduced pressure after drying over MgSO₄ to give pure N-(2-bromoethyl)arylsulfonamides.
General procedure 3: synthesis of arylsulfonylamino propionic acids

To partially dissolved β-alanine (54) (0.6 g, 6.8 mmol) in distilled water (4 mL) was added a solution of aqueous NaOH 2M (3.4 mL), followed by the portionwise addition of arylsulfonyl chloride (9.6 mmol). The reaction mixture was stirred at 35°C and a solution of 1 M aqueous NaOH was added portionwise to maintain a pH of approximately 9. After complete consumption of alkali, stirring was continued at 35°C for an additional 1 h. Unreacted arylsulfonyl chloride was removed by filtration, and the reaction mixture was acidified with 5M aqueous HCl at 0°C to pH 2. The aqueous solution with solid precipitate was stored at 4°C o.n. The crystals formed were collected by filtration, washed with cold water and dried at reduced pressure to afford pure 3-arylsulfonylamino propionic acids.

General procedure 4: synthesis of N,N’-(3,3’-(piperazine-1,4-diyl)bis(propane-3,1-diyl))diarylsulfonamides

Piperazine (0.050 g, 0.6 mmol) and NaHCO₃ (0.109 g, 1.3 mmol) were suspended in absolute ethanol (9 mL). N-(3-Bromopropyl)arylsulfonamide (1.3 mmol), was then added portionwise to the suspension and the reaction mixture was stirred under reflux for 24 h. The solvent was evaporated under reduced pressure and the crude residue was purified by flash column chromatography to afford pure N,N’-(3,3’-(piperazine-1,4-diyl)bis(propane-3,1-diyl))diarylsulfonamides.
General procedure 5: synthesis of \(N,N'(2,2'-(\text{piperazine}-1,4\text{-diyl})\text{bis}(\text{ethane}-2,1\text{-diyl})) \) diarylsulfonamides

Piperazine (0.050 g, 0.6 mmol) and NaHCO\(_3\) (0.109 g, 1.3 mmol) were suspended in absolute ethanol (9 mL). \(N\)-(2-Bromoethyl)arylsulfonamide (1.3 mmol), was then added portionwise to the suspension and the reaction mixture was stirred under reflux for 24 h. The solvent was evaporated under reduced pressure and the crude residue was purified by flash column chromatography to afford pure \(N,N'(2,2'-(\text{piperazine}-1,4\text{-diyl})\text{bis}(\text{ethane}-2,1\text{-diyl})) \) diaryl sulfonamides.

General procedure 6: \(N,N'(3,3'-(\text{piperazine}-1,4\text{-diyl})\text{bis}(3\text{-oxopropane}-3,1\text{-diyl})) \) diarylsulfonamides

3-Arylsulfonylamino propionic acid (1.3 mmol), TBTU (0.45 g, 1.4 mmol) and HOBt (0.19 g, 1.4 mmol) were suspended in anhydrous THF (9 mL) at r.t. DIPEA (0.7 mL, 4.2 mmol) was then added to the reaction mixture, followed by piperazine (41) (0.05 g, 0.6 mmol). The reaction mixture was left stirring at r.t. for 4 h. The organic solvent was then removed at reduced pressure and the residue was suspended in EtOAc (100 mL). The organic layer was washed with saturated NaHCO\(_3\) solution (2 x 70 mL), then with saturated NH\(_4\)Cl solution (2 x 70 mL) and finally with brine (70 mL). The organic solvent was removed under vacuum after drying over MgSO\(_4\). The crude residue was purified by flash column chromatography to afford pure \(N,N'(3,3'-(\text{piperazine}-1,4\text{-diyl})\text{bis}(3\text{-oxopropane}-3,1\text{-diyl})) \) diarylsulfonamides.
General procedure 7: synthesis of N-(3-(piperidin-1-yl)propyl)arylsulfonamides

Piperidine (0.1 mL, 1.2 mmol) and NaHCO₃ (0.109 g, 1.3 mmol) were suspended in absolute ethanol (9 mL). N-(3-Bromopropyl)arylsulfonamide (1.3 mmol), was then added portionwise to the suspension and the reaction mixture was stirred under reflux for 24 h. The solvent was evaporated under reduced pressure and the crude residue was purified by flash column chromatography to afford pure N-(3-(piperidin-1-yl)propyl)aryl sulfonamides.

General procedure 8: synthesis of N-(3-piperazin-1-yl-propyl)-arylsulfonamides

Piperazine (2.00 g, 23.2 mmol) and NaHCO₃ (3.25 g, 38.7 mmol) were suspended in absolute ethanol (21 mL). N-(3-Bromopropyl)arylsulfonamide (7.7 mmol) was then added portionwise to the suspension and the reaction mixture was stirred under reflux for 24 h. The reaction mixture was then concentrated under reduced pressure. The residue was diluted with EtOAc (30 mL), washed with water (3 x 30 mL) and the organic solvent was removed under vacuum after drying over MgSO₄. The crude residue was purified by flash column chromatography to afford pure N,N’-(3,3’-(piperazine-1,4-diyl)bis(propane-3,1-diyl))diaryl sulfonamides.
General procedure 9: synthesis of \(N\{3\{4\{3\{arylsulfonylamino\}-propyl\}\}-piperazin-1-yl\}-propyl\)-arylsulfonamides

A mixture of \(N\{3\{piperazin-1-yl\}-propyl\}\)-arylsulfonamide (1.0 mmol), \(N\{3\{bromopropyl\}\}arylsulfonamide (1.5 mmol) and NaHCO\(_3\) (0.16 g, 2 mmol) in absolute ethanol (7 mL) was stirred under reflux for 24 h. The solvent was then evaporated under reduced pressure and the crude residue was purified by flash column chromatography to afford pure \(N,N'\{3,3'\{(piperazine-1,4-diyl)bis(propane-3,1-diyl)\}diarylsulfonamides\).

General procedure 10: synthesis of \(N\{3\{4\{2\{arylsulfonyamido\}ethyl\}\}piperazin-1-yl\}propyl\)arylsulfonamides

A mixture of \(N\{3\{piperazin-1-yl\}-propyl\}\)-arylsulfonamide (1.0 mmol), \(N\{2\{bromoethyl\}\}arylsulfonamide (1.5 mmol) and NaHCO\(_3\) (0.16 g, 2 mmol) in absolute ethanol (7 mL) was stirred under reflux for 24 h. The solvent was evaporated under reduced pressure and the crude residue was purified by flash column chromatography to afford pure \(N\{3\{4\{2\{arylsulfonyamido\}ethyl\}\}piperazin-1-yl\}propyl\)arylsulfonamides.
General procedure 11: synthesis of \(N\)-(3-(4-(3-(arylsulfonamido)propanoyl)piperazin-1-yl)-3-oxopropyl)aryl sulfonamides

3-Arylsulfonylamino propionic acid (1.1 mmol) and TBTU (0.38 g, 1.2 mmol) were suspended in anhydrous THF (6 mL) at r.t. DIPEA (0.4 mL, 2.4 mmol) was then added to the reaction mixture, followed by \(N\)-(3-piperazin-1-yl-propyl)-arylsulfonamide (1 mmol). The reaction mixture was left stirring at r.t. for 4 h. The organic solvent was then removed at reduced pressure and the residue was diluted with EtOAc (30 mL). The organic layer was washed with saturated NaHCO\(_3\) solution (2 x 30 mL) and brine (30 mL). The organic solvent was removed under vacuum after drying over MgSO\(_4\). The crude residue was purified by flash column chromatography to afford pure \(N\)-(3-(4-(3-(arylsulfonamido)propanoyl)piperazin-1-yl)propyl) arylsulfonamides.
6.2.2 Arylsulfonyl chlorides (89, 90)

Pyridine-3-sulfonyl chloride (89)

(C$_5$H$_4$ClNO$_2$S; M.W. = 177.6)

A mixture of pyridine-3-sulfonic acid (109) (2 g, 12.6 mmol), phosphorous pentachloride (3.91 g, 18.8 mmol) and phosphorous oxychloride (10 mL) was heated at 120°C o.n. Excess phosphorous oxychloride was then evaporated under reduced pressure and the residue was quenched with ice and partitioned between water (50 mL) and diethyl ether (50 mL). The pH of the aqueous phase was adjusted by addition of solid sodium bicarbonate to pH 8, then the organic layer was separated and washed successively with saturated sodium bicarbonate solution (40 mL), water (40 mL) and brine (40 mL). The organic phase was dried over Na$_2$SO$_4$ and concentrated under reduced pressure to give pure pyridine-3-sulfonyl chloride (89) as a yellow oil.

Yield: 1.45 g (65%)

1H-NMR (CDCl$_3$), δ: 7.62 (m, 1H, H-aromatic), 8.34 (m, 1H, H-aromatic), 8.99 (m, 1H, H-aromatic), 9.28 (s, 1H, H-2).

13C-NMR (CDCl$_3$), δ: 124.23, 134.60 (CH, C-aromatic), 141.15 (C, C-1), 147.62, 155.46 (CH, C-aromatic).

4-Chlorosulfonyl-benzoic acid ethyl ester (90)

(C$_9$H$_9$ClO$_4$S; M.W. = 248.6)

4-Chlorosulfonylbenoic acid (110) (1 g, 4.5 mmol) was suspended in thionyl chloride (8 mL) and DCM (4 mL) and the reaction was heated at reflux for 2 h. The solvent was
removed in vacuo and ice-cold ethanol (4 mL) was added to the residue. The mixture was stirred for 10 min. in an ice-bath before the addition of 7 mL of ice-cold water. The resulting precipitate was collected by filtration, washed with cold water and dried under vacuum to afford pure 4-chlorosulfonyl-benzoic acid ethyl ester (90) as a white solid.

Yield: 0.64 g (57%)

^1H-NMR (CDCl₃), δ: 1.45 (t, J= 7.1 Hz, 3H, H-3’), 4.47 (q, J= 7.1 Hz, 2H, H-2’), 8.13 (d, J= 8.8 Hz, 2H, H-aromatic), 8.29 (d, J=8.8, 2H, H-aromatic).

^13C-NMR (CDCl₃), δ: 14.22 (CH₃, C-3’), 62.14 (CH₂, C-2’), 127.02, 130.81 (CH, C-aromatic), 136.45, 147.36 (C, C-1, 4), 164.44 (C, C-1’).
6.2.3 \(N-(3\text{-Bromopropyl})\text{arylsulfonamides} \ (22-29, 91-99) \)

\(N-(3\text{-Bromo-propyl})\text{-4-chloro-benzenesulfonamide} \ (22)^3 \)

\((C_9H_{11}BrClNO_2S; \text{ M.W.}=312.6) \)

\[
\begin{align*}
\text{Cl} & \quad \text{O} \\
\text{Cl} & \quad \text{O} \\
\text{H} & \quad \text{N} \\
\text{H} & \quad \text{N} \\
\text{Br} & \quad \text{Br}
\end{align*}
\]

General procedure 1;
Pale yellow wax;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.35.
Yield: 1.16 g (94%)

\(^1\text{H-NMR} \ (\text{CDCl}_3), \delta: 2.03-2.09 \ (m, 2H, H-2'), 3.12-3.18 \ (m, 2H, H-1'), 3.45 \ (t, J=6.2 \\
Hz, 2H, H-3'), 4.86 \ (t, J=6.2 \ Hz, 1H, NH), 7.53 \ (d, J=8.6 \ Hz, 2H, H-aromatic), 7.84 \\
(d, J=8.6 \ Hz, 2H, H-aromatic). \)

\(^{13}\text{C-NMR} \ (\text{CDCl}_3), \delta: 29.99, 32.26, 41.47 \ (CH_2, C-2', 1', 3'), 128.54, 129.54 \ (CH, C- \)
aromatic), 138.29, 139.39 \ (C, C-1, 4). \)

\(N-(3\text{-Bromo-propyl})\text{-benzenesulfonamide} \ (23)^4 \)

\((C_9H_{12}BrNO_2S; \text{ M.W.}=278.1) \)

\[
\begin{align*}
\text{Cl} & \quad \text{O} \\
\text{Cl} & \quad \text{O} \\
\text{H} & \quad \text{N} \\
\text{H} & \quad \text{N} \\
\text{Br} & \quad \text{Br}
\end{align*}
\]

General procedure 1;
Pale yellow oil;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.31.
Yield: 1.06 g (97%)

\(^1\text{H-NMR} \ (\text{CDCl}_3), \delta: 2.03-2.07 \ (m, 2H, H-2'), 3.12-3.16 \ (m, 2H, H-1'), 3.43 \ (t, J=6.2, \\
2H, H-3'), 5.05 \ (t, J=6.2, 1H, NH), 7.52-7.58 \ (m, 2H, H-3), 7.61 \ (tt, J_1 = 7.4, J_2 = 1.4, \\
1H, H-4), 7.88-7.92 \ (m, 2H, H-2). \)

\(^{13}\text{C-NMR} \ (\text{CDCl}_3), \delta: 30.11, 32.34, 41.46 \ (CH_2, C-2', 1', 3'), 126.94, 129.24, 132.83 \)
(CH, C-3, 4, 2), 139.73(C, C-1).

\[N-(3\text{-Bromo-propyl})-4\text{-methyl-benzenesulfonamide (24)} \]
\((C_{10}H_{14}BrNO_2S; M.W.= 292.1) \)

\[
\begin{array}{c}
\text{15} \\
\begin{array}{c}
\text{SO}_3H \\
\text{Cl}
\end{array}
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
\text{24} \\
\begin{array}{c}
\text{Br} \\
\text{N}
\end{array}
\end{array}
\]

General procedure 1;
White solid;
T.L.C. System: DCM 100%, Rf: 0.51
Yield: 1.02 g (89%)

\[^1H\text{-NMR (CDCl}_3\text{), } \delta: 2.02-2.07 \text{ (m, 2H, H-2’)}, 2.45 \text{ (s, 3H, H-4’)}, 3.11-3.15 \text{ (m, 2H, H-1’)},
3.44 \text{ (t, J= 6.4 Hz, 2H, H-3’)}, 4.77 \text{ (t, J= 6.4 Hz, 1H, NH)}, 7.34 \text{ (d, J= 8.3 Hz, 2H, H-aromatic)}, 7.78 \text{ (d, J= 8.3 Hz, 2H, H-aromatic)}. \]

\[^13C\text{-NMR (CDCl}_3\text{), } \delta: 21.54 \text{ (CH, C-4’)}, 30.17, 32.33, 41.43 \text{ (CH}, \text{ C-2’, 1’, 3’}),
127.11, 129.83 \text{ (CH, C-aromatic)}, 136.74, 143.64 \text{ (C, C-4, 1)}. \]

\[\]

\[N-(3\text{-Bromo-propyl})-4\text{-methoxy-benzenesulfonamide (25)} \]
\((C_{10}H_{14}BrNO_2S; M.W.= 308.1) \)

\[
\begin{array}{c}
\text{16} \\
\begin{array}{c}
\text{SO}_3H \\
\text{O}
\end{array}
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
\text{25} \\
\begin{array}{c}
\text{Br} \\
\text{N}
\end{array}
\end{array}
\]

General procedure 1;
Pale yellow oil;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.25
Yield: 1.04 g (86%)

\[^1H\text{-NMR (CDCl}_3\text{), } \delta: 2.04 \text{ (m, 2H, H-2’)}, 3.12 \text{ (q, J= 6.4 Hz, 2H, H-1’)}, 3.44 \text{ (t, J= 6.4 Hz, 2H, H-3’)},
3.89 \text{ (s, 3H, H-4’)}, 4.77 \text{ (t, J= 6.4 Hz, 1H, NH)}, 7.01 \text{ (d, J= 8.8 Hz, 2H, H-aromatic)}, 7.83 \text{ (d, J= 8.8 Hz, 2H, H-aromatic)}. \]

\[^13C\text{-NMR (CDCl}_3\text{), } \delta: 30.49, 32.53, 41.87 \text{ (CH}, \text{ C-2’, 1’, 3’)}, 56.01 \text{ (CH}, \text{ C-5’)},
\]
114.30, 125.36 (CH, C-aromatic), 130.87 (C, C-1), 165.56 (C, C-4).

N-(3-Bromo-propyl)-4-nitro-benzenesulfonamide (26)
(C$_9$H$_{11}$BrN$_2$O$_4$S; M.W.= 323.1)

![Chemical structure](image)

General procedure 1;
Pale yellow solid;
T.L.C. System: DCM 100%, Rf: 0.44
Yield: 0.94 g (73%)

1H-NMR (CDCl$_3$), δ: 2.09 (m, 2H, H-2'), 3.22 (q, J= 6.3 Hz, 2H, H-1'), 3.45 (t, J= 6.3 Hz, 2H, H-3'), 5.03 (t, J= 6.3 Hz, 1H, NH), 8.09 (d, J= 8.7 Hz, 2H, H-aromatic), 8.40 (d, J= 8.7 Hz, 2H, H-aromatic).

13C-NMR (CDCl$_3$), δ: 29.81, 32.25, 41.62 (CH$_2$, C-2', 1', 3'), 124.53, 128.35 (CH, C-aromatic), 145.67, 150.21 (C, C-1, 4).

N-(3-Bromo-propyl)-3,4-dimethoxy-benzenesulfonamide (27)
(C$_{11}$H$_{16}$BrNO$_4$S; M.W.= 338.2)

![Chemical structure](image)

General procedure 1;
Pale yellow oil;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.33
Yield: 0.82 g (61%)

1H-NMR (CDCl$_3$), δ: 2.04 (m, 2H, H-2'), 3.12 (q, J= 6.4 Hz, 2H, H-1'), 3.44 (t, J= 6.4 Hz, 2H, H-3'), 3.94 (s, 3H, OCH$_3$), 3.96 (s, 3H, OCH$_3$), 4.88 (t, J= 6.4 Hz, 1H, NH), 6.96 (d, J= 8.5 Hz, 1H, H-5), 7.37 (d, J= 2.1 Hz, 1H, H-2), 7.51 (dd, J$_1$= 8.5 Hz, J$_2$= 2.1 Hz, 1H, H-6).
\[^1\text{H-NMR (CDCl}_3\text{)}, \delta: 2.15 (m, 2H, H-2'), 3.17 (q, J= 6.4 \text{ Hz}, 2H, H-1'), 3.56 (t, J= 6.4 \text{ Hz}, 2H, H-3'), 3.79 (s, 3H, OCH}_3\text{), 3.93 (s, 3H, OCH}_3\text{), 5.21 (t, J= 6.4 \text{ Hz}, 1H, NH), 6.97 (d, J= 8.9 \text{ Hz}, 2H, H-3), 7.11 (dd, J_1= 8.9 \text{ Hz}, J_2= 3.1 \text{ Hz}, 2H, H-4), 7.53 (d, J= 3.1, 2H, H-6). \]
\[^{13}\text{C-NMR (CDCl}_3\text{)}, \delta: 30.12, 32.29, 41.37 (\text{CH}_2\text{, C-2'}, 1', 3'), 56.14, 57.21 (\text{CH}_3\text{, C-5'}, 6'), 113.93, 114.56, 120.22 (\text{CH, C-3, 4, 6}), 131.94 (\text{C, C-1}), 150.16, 153.31 (\text{C, C-3, 4}). \]

Naphthalene-2-sulfonic acid (3-bromo-propyl)-amide (29)

\[(\text{C}_13\text{H}_14\text{BrNO}_2\text{S}; \text{M.W.}= 328.2) \]

General procedure 1;
White solid;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.43
Yield: 1.16 g (89%)
1H-NMR (CDCl₃), δ: 2.07 (m, 2H, H-2’), 3.20 (q, J = 6.4 Hz, 2H, H-1’), 3.45 (t, J = 6.4 Hz, 2H, H-3’), 4.85 (t, J = 6.4 Hz, 1H, NH), 7.67 (m, 2H, H-aromatic), 7.87 (dd, J₁ = 8.6 Hz, J₂ = 1.8 Hz, 1H, H-aromatic), 7.95 (d, J = 7.9 Hz, 1H, H-aromatic), 8.00 (m, 2H, H-aromatic), 8.48 (s, 1H, H-1).

13C-NMR (CDCl₃), δ: 30.03, 32.31, 41.38 (CH₂, C-2’, 1’, 3’), 123.97, 127.53, 127.80, 128.41, 129.14, 129.36, 129.70 (CH, C-1, 3, 4, 6, 7, 8, 9), 129.14, 129.36, 129.70 (C, C-2, 5, 10).

N-(3-Bromo-propyl)-3-chloro-benzenesulfonamide (91)

(C₉H₁₁BrClNO₂S; M.W. = 312.6)

![Diagram 82](#)

![Diagram 91](#)

General procedure 1;

Pale yellow oil;

T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.32

Yield: 0.92 g (75%)

1H-NMR (CDCl₃), δ: 2.08 (m, 2H, H-2’), 3.18 (q, J = 6.4 Hz, 2H, H-1’), 3.45 (t, J = 6.4 Hz, 2H, H-3’), 4.85 (t, J = 6.4 Hz, 1H, NH), 7.50 (t, J = 7.8 Hz, 1H, H-5), 7.59 (dt, J₁ = 7.8 Hz, J₂ = 1.4 Hz, 1H, H-aromatic), 7.79 (dt, J₁ = 7.8 Hz, J₂ = 1.4 Hz, 1H, H-aromatic), 7.89 (t, J = 1.4 Hz, 1H, H-2).

13C-NMR (CDCl₃), δ: 29.94, 32.31, 41.53 (CH₂, C-2’, 1’, 3’), 125.13, 127.18, 130.55, 135.46, 141.54 (C, C-1, 3).

N-(3-Bromo-propyl)-4-tert-butyl-benzenesulfonamide (92)

(C₁₃H₂₀BrNO₂S; M.W. = 334.2)

![Diagram 83](#)

![Diagram 92](#)
General procedure 1;
White solid;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.52
Yield: 1.02 g (77%)

\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 1.36 (s, 9H, H-5‘), 2.05-2.09 (m, 2H, H-2‘), 3.12-3.17 (m, 2H, H-1‘), 3.44 (t, J= 6.4 Hz, 2H, H-3‘), 4.93 (t, J= 6.4 Hz, 1H, NH), 7.55 (d, J= 8.6 Hz, 2H, H-aromatic), 7.82 (d, J= 8.6 Hz, 2H, H-aromatic).

\(^{13}\)C-NMR (CDCl\(_3\)), \(\delta\): 30.17 (CH\(_2\), C-2‘), 31.09 (CH\(_3\), C-5‘), 32.42 (CH\(_2\), C-1‘), 35.17 (C, C-4‘), 41.44 (CH\(_2\), C-3‘), 126.20, 126.93 (CH, C-aromatic), 136.63 (C, C-4), 156.63 (C, C-1).

\(N\)-(3-Bromo-propyl)-4-trifluoromethyl-benzenesulfonamide (93)\(^7\)
(C\(_{10}\)H\(_{11}\)BrF\(_3\)NO\(_2\)S; M.W.= 346.1)

\[
\begin{align*}
\text{84} & \quad \rightarrow \quad \text{93}
\end{align*}
\]

General procedure 1;
White solid;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.38
Yield: 1.10 g (80%)

\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 2.06-2.10 (m, 2H, H-2‘), 3.17-3.21 (m, 2H, H-1‘), 3.45 (t, J= 6.4 Hz, 2H, H-3‘), 4.98 (t, J= 6.4 Hz, 1H, NH), 7.82 (d, J= 8.4 Hz, 2H, H-aromatic), 8.04 (d, J= 8.4 Hz, 2H, H-aromatic).

\(^{13}\)C-NMR (CDCl\(_3\)), \(\delta\): 29.86, 32.29, 41.55 (CH\(_2\), C-2‘, 1’, 3‘), 126.42, 127.59 (CH, C-aromatic), 134.48, 134.74, 143.43 (C, C-1, 4, 4‘).
Biphenyl-4-sulfonic acid (3-bromo-propyl)-amide (94)
(C_{15}H_{16}BrNO_2S; M.W. 354.2)

General procedure 1;
Colourless oil;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.26
Yield: 0.95 g (67%)
^{1}H-NMR (CDCl_3), \delta: 2.07-2.12 (m, 2H, H-2'), 3.18-3.23 (m, 2H, H-1'), 3.47 (t, J= 6.3 Hz, 2H, H-3'), 4.87 (t, J= 6.3 Hz, 1H, NH), 7.45 (t, J= 7.1 Hz, 1H, H-7'), 7.48-7.53 (m, 2H, H-aromatic), 7.62-7.65 (m, 2H, H-aromatic), 7.76 (d, J= 8.5 Hz, 2H, H-aromatic), 7.97 (d, J= 8.5 Hz, 2H, H-aromatic).

^{13}C-NMR (CDCl_3), \delta: 30.14, 32.39, 41.52 (CH_2, C-2', 1', 3'), 127.34, 127.60, 127.85, 128.55, 129.08 (CH, C-aromatic), 138.30, 139.25, 145.80 (C, C-aromatic).

Naphthalene-1-sulfonic acid (3-bromo-propyl)-amide (95)9
(C_{13}H_{14}BrNO_2S; M.W. 328.2)

General procedure 1;
Colourless oil;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.39
Yield: 1.44 g (95%)
^{1}H-NMR (CDCl_3), \delta: 1.91 (m, 2H, H-2'), 3.08 (q, J= 6.3 Hz, 2H, H-1'), 3.26 (t, J= 6.3 Hz, 2H, H-3'), 5.68 (t, J= 6.3 Hz, 1H, NH), 7.52 (t, J= 7.7 Hz, 1H, H-aromatic), 7.58 (m, 1H, H-aromatic), 7.64 (m, 1H, H-aromatic), 7.93 (d, J= 8.1 Hz, 1H, H-aromatic), 8.06 (d, J= 8.2 Hz, 1H, H-aromatic), 8.28 (dd, J_1= 7.3 Hz, J_2= 1.1 Hz, 1H, H-aromatic),
8.72 (d, J= 8.5 Hz, 1H, H-aromatic).

\(^{13}\)C-NMR (CDCl\(_3\)), \(\delta\): 30.32, 32.36, 41.45 (CH\(_2\), C-2’, 1’, 3’), 124.24, 124.59, 127.20 (CH, C-aromatic), 128.51 (C, C-aromatic), 128.83, 129.52, 129.92 (CH, C-aromatic), 134.41, 134.47 (C, C-aromatic), 134.61 (CH, C-aromatic).

Quinoline-8-sulfonic acid (3-bromo-propyl)-amide (96)

\((C_{12}H_{13}BrN_{2}O_{2}S; M.W.= 329.2)\)

![Diagram of quinoline-8-sulfonic acid (3-bromo-propyl)-amide](image)

General procedure 1;
White crystals;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.48
Yield: 0.96 g (73%)
\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 2.05 (m, 2H, H-2’), 3.03 (q, J= 6.4 Hz, 2H, H-1’), 3.45 (t, J= 6.1 Hz, 2H, H-3’), 6.52 (t, J= 6.4 Hz, 1H, NH), 7.59 (dd, J\(_1\)= 8.3 Hz, J\(_2\)= 4.3 Hz, 1H, H-aromatic), 7.68 (t, J= 7.7 Hz, 1H, H-aromatic), 8.09 (dd, J\(_1\)= 8.3 Hz, J\(_2\)= 1.4 Hz, 1H, H-aromatic), 8.31 (dd, J\(_1\)= 8.3 Hz, J\(_2\)= 1.7 Hz, 1H, H-aromatic), 8.45 (dd, J\(_1\)= 7.7 Hz, J\(_2\)= 1.4 Hz, 1H, H-aromatic), 9.05 (dd, J\(_1\)= 4.3 Hz, J\(_2\)= 1.7 Hz, 1H, H-aromatic).
\(^{13}\)C-NMR (CDCl\(_3\)), \(\delta\): 30.40, 32.49, 41.56 (CH\(_2\), C-2’, 1’, 3’), 122.36, 125.77, 128.83 (C, C-aromatic), 131.24, 133.44 (CH, C-aromatic), 135.69 (C, C-aromatic), 137.17 (CH, C-aromatic), 143.18 (C, C-aromatic), 151.37 (CH, C-aromatic).

Thiophene-2-sulfonic acid (3-bromo-propyl)-amide (97)

\((C_7H_{10}BrNO_2S_2; M.W.= 284.1)\)

![Diagram of thiophene-2-sulfonic acid (3-bromo-propyl)-amide](image)

General procedure 1;
Pale yellow oil;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.52
Yield: 1.01 g (89%)

1H-NMR (CDCl$_3$), δ: 2.09 (m, 2H, H-2'), 3.24 (q, J= 6.1 Hz, 2H, H-1’), 3.46 (t, J= 6.1 Hz, 2H, H-3’), 4.94 (bs, 1H, NH), 7.12 (m, 1H, H-aromatic), 7.64 (m, 2H, H-aromatic).

13C-NMR (CDCl$_3$), δ: 30.10, 32.22, 41.73 (CH$_2$, C-2’, 1’, 3’), 127.51, 132.09, 132.37 (CH, C-aromatic), 140.63 (C, C-1).

Pyridine-3-sulfonic acid (3-bromo-propyl)-amide (98)
(CsH$_{11}$BrN$_2$O$_2$S; M.W.= 279.1)

General procedure 1;
Yellow oil;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.36.
Purification: flash column chromatography (DCM- nhexane 50:50 v/v increasing to DCM- nhexane 100:0 v/v).
Yield: 0.62 g (56%)

1H-NMR (CDCl$_3$), δ: 1.97 (m, 2H, H-2’), 3.08 (q, J= 6.3, 2H, H-1’), 3.34 (t, J=6.3, 2H, H-3’), 6.56 (t, J= 6.3, 1H, NH), 7.44 (dd, J$_1$= 8.1 Hz, J$_2$= 4.9 Hz, 1H, H-4), 8.11 (dt, J$_1$= 8.1 Hz, J$_2$= 1.9 Hz, 1H, H-5), 8.71 (dd, J$_1$= 4.9 Hz, J$_2$= 1.4 Hz, 1H, H-3), 8.97 (d, J= 1.9 Hz, 1H, H-2).

13C-NMR (CDCl$_3$), δ: 30.35, 32.26, 41.29 (CH$_2$, C-2’, 1’, 3’), 124.19, 135.04 (CH, C-4, 5), 136. 74 (C, C-1), 147.58, 153.01 (CH, C-3, 2).

4-(3-Bromo-propylsulfamoyl)-benzoic acid ethyl ester (99)
(C$_{12}$H$_{16}$BrNO$_4$S; M.W.= 350.2)
General procedure 1;
Yellow oil;
T.L.C. System: DCM-\textit{n}hexane 4:1 v/v, Rf: 0.32.
Yield: 0.92 g (66%)

1H-NMR (CDCl$_3$), δ: 1.34 (t, $J = 7.1$ Hz, 3H, H-6'), 1.97 (m, 2H, H-2'), 3.07 (q, $J = 6.3$, 2H, H-1'), 3.35 (t, $J=6.3$, 2H, H-3'), 4.34 (q, $J = 7.1$ Hz, 2H, H-5'), 5.73 (t, $J = 6.3$, 1H, NH), 7.89 (d, $J = 8.3$ Hz, 2H, H-aromatic), 8.10 (d, $J = 8.3$ Hz, 2H, H-aromatic).

13C-NMR (CDCl$_3$), δ: 14.21 (CH$_3$, C-6'), 30.05, 32.45, 41.49, 61.63 (CH$_2$, C-2', 1', 3', 5'), 127.64, 130.52 (CH, C-aromatic), 134.14, 143.62 (C, C-1, 4), 165.24 (C, C-4').

N-(3-Bromo-propyl)-2-chloro-benzenesulfonamide (115)8
(C$_9$H$_{11}$BrClNO$_2$S; M.W. = 312.6)

A mixture of 2-chlorobenzenesulfonamide (112) (1 g, 5.2 mmol) and NaH (0.2088 g, 5.2 mmol) in anhydrous DMF (7 mL) was stirred under nitrogen atmosphere for 1 h at r.t. The reaction mixture was then cooled to 0°C with an ice bath and added of 1,3-dibromopropane (113) (3.2 mL, 31.3 mmol) before being stirred for 10 min. under ice-cooling. The organic solvent and the excess 113 were removed under high vacuum. The crude residue was suspended in DCM (25 mL), washed with water (2 x 50 mL) and with brine (50 mL). The organic layer was then dried over MgSO$_4$ and dried under vacuum. The crude residue was purified by flash column chromatography (DCM-\textit{n}hexane 50:50 v/v increasing to DCM-\textit{n}hexane 80:20 v/v) to give pure N-(3-bromo-propyl)-2-chloro-benzenesulfonamide (115) as a colourless oil.

T.L.C. System: DCM-\textit{n}hexane 4:1 v/v, Rf: 0.51.
Yield: 0.6382 g (39%)

1H-NMR (CDCl$_3$), δ: 2.01 (m, 2H, H-2'), 3.08 (q, $J = 6.4$ Hz, 2H, H-1'), 3.40 (t, $J = 6.4$ Hz, 2H, H-3'), 5.47 (t, $J = 6.4$ Hz, 1H, NH), 7.41 (m, 1H, H-aromatic), 7.51 (d, $J = 4.4$ Hz, 2H, H-aromatic), 8.07 (d, $J = 7.8$ Hz, 1H, H-aromatic).

13C-NMR (CDCl$_3$), δ: 30.30, 32.35, 41.48 (CH$_2$, C-2', 1', 3'), 127.41, 131.01 (CH, C-...
aromatic), 131.38 (C, C-aromatic), 132.07, 134.05 (CH, C-aromatic), 136.87 (C, C-aromatic).
6.2.4 \(N\)-(2-Bromoethyl)arylsulfonamides (85-87)

\(N\)-(2-Bromo-ethyl)-4-chloro-benzenesulfonamide (38)\(^\text{10}\)
(C\(_8\)H\(_9\)BrClNO\(_2\)S; M.W. = 298.5)

General procedure 2;
White solid;
T.L.C. System: DCM-nhexane 4:1 v/v, R\(_f\): 0.25.
Yield: 1.08 g (87%)
\(^1\text{H}-\text{NMR (CDCl}_3\)), \(\delta\): 3.39-3.46 (m, 4H, H-1’, 2’), 5.04 (bs, 1H, NH), 7.53 (d, \(J= 8.6\) Hz, 2H, H-aromatic), 7.84 (d, \(J= 8.6\) Hz, 2H, H-aromatic).
\(^{13}\text{C}-\text{NMR (CDCl}_3\)), \(\delta\): 31.56, 44.56 (CH\(_2\), C-1’, 2’), 128.48, 129.59 (CH, C-aromatic), 138.47, 139.56 (C, C-1, 4).

\(N\)-(2-Bromo-ethyl)-benzenesulfonamide (39)\(^\text{11}\)
(C\(_8\)H\(_{10}\)BrNO\(_2\)S; M.W. = 264.1)

General procedure 2;
White solid;
T.L.C. System: DCM-nhexane 4:1 v/v, R\(_f\): 0.52.
Yield: 0.88 g (80%)
\(^1\text{H}-\text{NMR (CDCl}_3\)), \(\delta\): 3.39-3.43 (m, 4H, H-1’, 2’), 5.11 (bs, 1H, NH), 7.54-7.58 (m, 2H, H-3), 7.60-7.64 (m, 1H, H-4), 7.90 (d, \(J= 8.0\), 2H, H-2).
\(^{13}\text{C}-\text{NMR (CDCl}_3\)), \(\delta\): 31.48, 44.58 (CH\(_2\), C-1’, 2’), 126.98, 129.31, 132.99 (CH, C-3, 4, 2), 139.89 (C, C-1).
\[\text{N-(2-Bromo-ethyl)-4-methyl-benzenesulfonamide (40)}^{12}\]
\[(C_{9}H_{12}BrNO_{2}; \text{M.W.}=278.1)\]

General procedure 3;
White solid;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.59.
Yield: 0.96 g (83%)

\[^1H\text{-NMR (CDCl}_3\text{), }\delta: 2.46 (s, 3H, H-3'), 3.40 (m, 4H, H-1', 2'), 4.96 (bs, 1H, NH), 7.34 (d, J= 8.2 Hz, 2H, H-aromatic), 7.78 d, J= 8.2 Hz, 2H, H-aromatic).\]

\[^{13}C\text{-NMR (CDCl}_3\text{), }\delta: 21.54 (CH_3, C-3'), 31.70, 44.55 (CH_2, C-1', 2'), 127.05, 129.89 (CH, C-aromatic), 136.93, 143.86 (C, C-4, 1).\]

\[\text{N-(2-Bromo-ethyl)-4-methoxy-benzenesulfonamide (41)}\]
\[(C_{9}H_{15}BrNO_{3}; \text{M.W.}=294.1)\]

General procedure 2;
White solid;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.28.
Yield: 0.92 g (75%)

\[^1H\text{-NMR (CDCl}_3\text{), }\delta: 3.40 (m, 4H, H-1', 2'), 3.90 (s, 3H, H-3'), 4.92 (bs, 1H, NH), 7.01 (d, J= 8.8 Hz, 2H, H-aromatic), 7.83 (d, J= 8.8 Hz, 2H, H-aromatic).\]

\[^{13}C\text{-NMR (CDCl}_3\text{), }\delta: 33.40, 44.50 (CH_2, C-1', 2'), 56.78 (CH_3, C-3'), 117.27, 127.84 (CH, C-aromatic), 131.33, 165.21 (C, C-1, 4).\]
N-(2-Bromo-ethyl)-4-nitro-benzenesulfonamide (42)13
(C_{8}H_{9}BrN_{2}O_{4}S; M.W.= 309.1)

\[
\begin{align*}
\text{17} & \quad \rightarrow \quad \text{42}
\end{align*}
\]

General procedure 2;
White solid;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.33.
Purification: flash column chromatography (DCM-nhexane 50:50 v/v increasing to DCM-nhexane 100:0).
Yield: 0.84 g (65%)
\(^1\)H-NMR (CDCl\textsubscript{3}), \(\delta\): 3.47 (m, 4H, H-1’, 2’), 5.11 (bs, 1H, NH), 8.10 (d, J= 8.9 Hz, 2H, H-aromatic), 8.41 (d, J= 8.9 Hz, 2H, H-aromatic).
\(^{13}\)C-NMR (CDCl\textsubscript{3}), \(\delta\): 31.47, 44.67 (CH\textsubscript{2}, C-1’, 2’), 124.55, 128.29 (CH, C-aromatic), 145.87, 150.26 (C, C-1, 4).

N-(2-Bromo-ethyl)-3,4-dimethoxy-benzenesulfonamide (43)7
(C_{10}H_{14}BrNO_{4}S; M.W.= 324.1)

\[
\begin{align*}
\text{18} & \quad \rightarrow \quad \text{43}
\end{align*}
\]

General procedure 2;
White solid;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.41.
Yield: 0.5649 g (83%)
\(^1\)H-NMR (CDCl\textsubscript{3}), \(\delta\): 3.41 (m, 4H, H-1’, 2’), 3.96 (s, 3H, OCH\textsubscript{3}), 3.97 (s, 3H, OCH\textsubscript{3}), 4.96 (bs, 1H, NH), 6.97 (d, J= 8.4 Hz, 1H, H-5), 7.36 (d, J= 2.2 Hz, 1H, H-2), 7.52 (dd, J\textsubscript{1}= 8.4 Hz, J\textsubscript{2}= 2.2 Hz, 1H, H-6).
\(^{13}\)C-NMR (CDCl\textsubscript{3}), \(\delta\): 32.94, 44.72 (CH\textsubscript{2}, C-1’, 2’), 56.47, 56.75 (CH\textsubscript{3}, C-3’, 4’), 112.60, 115.22, 119.46 (CH, C-5, 2, 6), 132.53 (C, C-1), 147.24, 151.19 (C, C-3, 4).
N-(2-Bromo-ethyl)-2,5-dimethoxy-benzenesulfonamide (44)

(C_{10}H_{14}BrNO_{4}S; M.W.= 324.1)

![Chemical Structure]

General procedure 2;
White solid;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.47.
Yield: 1.1 g (81%)

^{1}H-NMR (CDCl_{3}), \delta: 3.37 (m, 4H, H-1', 2'), 3.82 (s, 3H, OC\textsubscript{H}3), 3.97 (s, 3H, OC\textsubscript{H}3), 5.55 (bs, 1H, NH), 6.99 (d, J= 8.9 Hz, 1H, H-3), 7.10 (dd, J\textsubscript{1}= 8.9 Hz, J\textsubscript{2}= 2.6 Hz, 1H, H-4), 7.44 (d, J= 2.6, Hz, 1H, H-6).

^{13}C-NMR (CDCl_{3}), \delta: 31.65, 45.10 (CH\textsubscript{2}, C-1', 2'), 56.06, 56.87 (CH\textsubscript{3}, C-3', 4'), 113.56, 114.38, 120.59 (CH, C-3, 4, 6), 127.64 (C, C-1), 150.11, 153.27 (C, C-2, 5).

Naphthalene-2-sulfonic acid (2-bromo-ethyl)-amide (45)

(C_{12}H_{12}BrNO_{2}S; M.W.= 314.1)

![Chemical Structure]

General procedure 2;
White solid;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.62.
Yield: 0.57 g (87%)

^{1}H-NMR (CDCl_{3}), \delta: 3.44 (m, 4H, H-1', 2'), 5.16 (bs, 1H, NH), 7.67 (m, 2H, H-aromatic), 7.87 (dd, J\textsubscript{1}= 8.6 Hz, J\textsubscript{2}= 1.8 Hz, 1H, H-aromatic), 7.95 (d, J= 7.9 Hz, 1H, H-aromatic), 8.00 (m, 2H, H-aromatic), 8.48 (s, 1H, H-1).

^{13}C-NMR (CDCl_{3}), \delta: 33.40, 44.56 (CH\textsubscript{2}, C-1', 2'), 122.98, 125.93, 126.07, 126.59, 128.74, 128.96, 129.11 (CH, C-1, 3, 4, 6, 7, 8, 9), 130.14, 130.46, 130.71 (C, C-2, 5,
Quinoline-8-sulfonic acid (2-bromo-ethyl)-amide (117)10
($C_{11}H_{11}BrN_{2}O_{2}S$; M.W.= 315.1)

General procedure 2;
White solid;
T.L.C. System: DCM-nhexane 4:1 v/v, Rf: 0.40.
Yield: 0.43 g (65%)

1H-NMR (CDCl$_3$), δ: 3.30 (q, J= 6.1 Hz, 2H, H-1’), 3.38 (t, J= 6.1, 4H, H-2’), 6.91 (t, J= 6.1 Hz, 1H, NH), 7.67 (m, 2H, H-aromatic), 7.56 (dd, J$_1$= 8.2 Hz, J$_2$= 4.3 Hz, 1H, H-aromatic), 7.64 (t, J= 7.7 Hz, 1H, H-aromatic), 8.07 (dd, J$_1$= 8.2 Hz, J$_2$= 1.2 Hz, 1H, H-aromatic), 8.29 (dd, J$_1$= 8.3 Hz, J$_2$= 1.6 Hz, 1H, H-aromatic), 8.39 (dd, J$_1$= 7.2 Hz, J$_2$= 1.2 Hz, 1H, H-aromatic), 9.03 (dd, J$_1$= 4.3 Hz, J$_2$= 1.6 Hz, 1H, H-aromatic).

13C-NMR (CDCl$_3$), δ: 31.43, 45.31 (CH, C-1’, 2’), 122.47, 125.06 (CH, C-aromatic), 128.53 (C, C-aromatic), 129.44, 131.14 (CH, C-aromatic), 132.79 (C, C-aromatic), 135.05 (CH, C-aromatic), 143.02 (C, C-aromatic), 151.45 (CH, C-aromatic).

N-(2-Bromo-ethyl)-4-tert-butyl-benzenesulfonamide (147)7
($C_{9}H_{12}BrNO_{2}S$; M.W.= 320.25)

General procedure 2;
White solid;
T.L.C. System: DCM- nhexane 4:1 v/v, Rf: 0.60.
Yield: 1.04 g (78%)
1H-NMR (CDCl$_3$), δ: 1.36 (s, 9H, H-4’), 3.37-3.45 (m, 4H, H-1’, 2’), 5.13 (t, J= 6.1 Hz, 1H, NH), 7.55 (d, J= 8.7 Hz, 2H, H-aromatic), 7.81 (d, J= 8.7 Hz, 2H, H-aromatic).

13C-NMR (CDCl$_3$), δ: 31.07 (CH$_3$, C-4’), 31.07 (CH$_2$), 35.18 (C, C-3’), 44.57 (CH$_2$), 126.26, 126.58 (CH, C-aromatic), 136.77, 156.83 (C, C-4, 1).
6.2.5 3-Arylsulfonylamino propionic acids (55-61, 57a, 153, 154)

3-(4-Chloro-benzenesulfonylamino)-propionic acid (55)14
(C\textsubscript{9}H\textsubscript{10}ClNO\textsubscript{4}S; M.W. = 263.6)

\begin{center}
\includegraphics[width=0.5\textwidth]{chemical_structure}
\end{center}

General procedure 3;
White solid;
Yield: 1.14 g (64%)
\textbf{1H-NMR (DMSO-d\textsubscript{6}), \(\delta\):} 2.36 (t, J = 6.9 Hz, 2H, H-2’), 2.92-2.98 (m, 2H, H-3’), 7.68 (d, J = 8.4 Hz, 2H, H-aromatic), 7.75 (bs, 1H, NH), 7.80 (d, J = 8.4 Hz, 2H, H-aromatic).
\textbf{13C-NMR (DMSO-d\textsubscript{6}), \(\delta\):} 34.10, 38.52 (CH\textsubscript{2}, C-2’, 1’), 128.46, 129.34 (CH, C-aromatic), 137.26, 139.12 (C, C-1, 4), 172.15 (C, C-1’).

3-Benzencesulfonlamino-propionic acid (56)15
(C\textsubscript{9}H\textsubscript{11}NO\textsubscript{4}S; M.W. = 229.2)

\begin{center}
\includegraphics[width=0.5\textwidth]{chemical_structure}
\end{center}

General procedure 3;
White solid;
Yield: 0.81 g (52%)
\textbf{1H-NMR (DMSO-d\textsubscript{6}), \(\delta\):} 2.36 (t, J = 7.0 Hz, 2H, H-2’), 2.92-2.96 (m, 2H, H-3’), 7.62-7.68 (m, 3H, H-aromatic), 7.61 (bs, 1H, NH), 7.78-7.82 (m, 2H, H-aromatic).
\textbf{13C-NMR (DMSO-d\textsubscript{6}), \(\delta\):} 34.12, 38.54 (CH\textsubscript{2}, C-2’, 1’), 126.47, 129.20, 132.41 (CH, C-2, 3, 4), 140.17 (C, C-1), 172.20 (C, C-1’).
3-(4-Methoxy-benzenesulfonylamino)-propionic acid (57)14
\((C_{10}H_{13}NO_5S; \text{M.W.}=259.2)\)

![Diagram](image1)

General procedure 3;
White solid;
Yield: 1.26 g (72%)
\(^1\text{H}-\text{NMR (CDCl}_3\), \(\delta:\) 2.64 (t, J=5.8 Hz, 2H, H-2’), 3.21 (m, 2H, H-3’), 3.90 (s, 3H, H-4’), 5.72 (bs, 1H, NH), 7.01 (d, J=8.7 Hz, 2H, H-aromatic), 7.83 (d, J=8.7 Hz, 2H, H-aromatic), 12.31 (s, 1H, COOH).

\(^{13}\text{C}-\text{NMR (DMSO-\textit{d}_6), }\delta:\) 34.02, 38.47 (CH\textsubscript{2}, C-2’, 1’), 55.56 (CH\textsubscript{3}, C-4’), 114.33, 131.49 (CH, C-aromatic), 131.49, 162.16 (C, C-1, 4), 172.47 (C, C-1’).

3-(4-Nitro-benzenesulfonylamino)-propionic acid (58)14
\((C_{9}H_{10}N_2O_6S; \text{M.W.}=274.2)\)

![Diagram](image2)

General procedure 3;
Pale yellow solid;
Yield: 0.94 g (51%)
\(^1\text{H}-\text{NMR (DMSO-\textit{d}_6), }\delta:\) 2.38 (t, J=6.9 Hz, 2H, H-2’), 3.02 (m, 2H, H-3’), 8.05 (d, J=8.9 Hz, 2H, H-aromatic), 8.08 (bs, 1H, NH), 8.42 (d, J=8.9, 2H, H-aromatic), 12.39 (s, 1H, COOH).

\(^{13}\text{C}-\text{NMR (DMSO-\textit{d}_6), }\delta:\) 34.12, 38.56 (CH\textsubscript{2}, C-2’, 1’), 124.57, 128.09 (CH, C-aromatic), 145.88, 149.57 (C, C-1, 4), 172.08 (C, C-1’).
3-(3,4-Dimethoxy-benzenesulfonylamino)-propionic acid (59)16
(C\textsubscript{11}H\textsubscript{15}NO\textsubscript{6}S; M.W. = 289.3)

General procedure 3;
White solid;
Yield: 1.14 g (58%)
1H-NMR (DMSO-d\textsubscript{6}), \(\delta\): 2.35 (t, \(J = 7.0\) Hz, 2H, H-2’), 2.91 (m, 2H, H-3’), 3.82 (s, 3H, OCH\textsubscript{3}), 3.84 (s, 3H, OCH\textsubscript{3}), 7.13 (d, \(J = 8.5\) Hz, 1H, H-5), 7.30 (d, \(J = 2.1\) Hz, 1H, H-2), 7.37 (dd, \(J_1 = 8.5\) Hz, \(J_2 = 2.1\) Hz, 1H, H-6), 7.49 (t, \(J = 5.7\) Hz, 1H, NH), 12.25 (s, 1H, COOH).

13C-NMR (DMSO-d\textsubscript{6}), \(\delta\): 34.06, 38.55 (CH\textsubscript{2}, C-2’, 1’), 55.71, 55.78 (CH\textsubscript{3}, C-4’, 5’), 109.37, 111.11, 120.23 (CH, C-5, 2, 6), 131.68, 148.68, 151.86 (C, C-1, 3, 4), 172.29 (C, C-1’).

3-(2,5-Dimethoxy-benzenesulfonylamino)-propionic acid (60)16
(C\textsubscript{11}H\textsubscript{15}NO\textsubscript{6}S; M.W. = 289.3)

General procedure 3;
White solid;
Yield: 1.22 g (64%)
1H-NMR (CDCl\textsubscript{3}), \(\delta\): 2.61 (t, \(J = 5.9\) Hz, 2H, H-2’), 3.21 (m, 2H, H-3’), 3.84 (s, 3H, OCH\textsubscript{3}), 3.95 (s, 3H, OCH\textsubscript{3}), 5.78 (t, \(J = 6.6\) Hz, 1H, NH), 7.00 (d, \(J = 8.9\) Hz, 1H, H-3), 7.11 (dd, \(J_1 = 8.9\) Hz, \(J_2 = 3.0\) Hz, 1H, H-4), 7.47 (d, \(J = 3.0\) Hz, 1H, H-6), 11.89 (s, 1H, COOH).

13C-NMR (DMSO-d\textsubscript{6}), \(\delta\): 33.88, 38.65 (CH\textsubscript{2}, C-1’, 2’), 55.73, 56.43 (CH\textsubscript{3}, C-4’, 5’),
114.21, 114.24, 119.49 (CH, C-3, 4, 6), 128.16, 150.21, 152.28 (C, C-1, 2, 5), 172.42 (C, C-1’).

3-(Naphthalene-2-sulfonylamino)-propionic acid (61)\(^{17}\)
\(\text{C}_{13}\text{H}_{13}\text{NO}_{4}\text{S}; \text{M.W.}=279.3\)

General procedure 3;
White solid;
Yield: 1.16 g (61%)

\(^1\text{H}-\text{NMR (CDCl}_3\), } \delta: 2.38 (t, J= 7.1 Hz, 2H, H-2’), 2.99 (m, 2H, H-3’), 7.69 (m, 3H, H-aromatic, NH), 7.82 (m, 2H, H-aromatic), 8.05 (d, J= 8.1 Hz, 1H, H-aromatic), 8.15 (m, 2H, H-aromatic), 8.45 (s, 1H, H-1), 12.22 (bs, 1H, COOH).

\(^{13}\text{C}-\text{NMR (DMSO-d}_6\), } \delta: 34.16, 38.59 (\text{CH}_2, \text{C-1’}, 2’), 123.97, 127.53, 127.80, 128.41, 129.14, 129.36, 129.70 (CH, C-aromatic), 131.70, 134.12, 137.20 (C, C-2, 5, 10), 172.21 (C, C-1’).

3-(Toluene-4-sulfonylamino)-propionic acid (57a)\(^{14}\)
\(\text{C}_{10}\text{H}_{13}\text{NO}_{4}\text{S}; \text{M.W.}=243.2\)

General procedure 3;
White solid;
Yield: 0.95 g (58%)

\(^1\text{H}-\text{NMR (CDCl}_3\), } \delta: 2.35 (t, J= 7.1 Hz, 2H, H-2’), 2.39 (s, 3H, H-4’), 2.89-2.94 (m, 2H, H-3’), 7.40 (d, J= 8.1 Hz, 2H, H-aromatic), 7.57 (t, J= 5.7 Hz, 1H, NH), 7.68 (d, J= 8.1 Hz, 2H, H-aromatic), 12.25 (s, 1H, COOH).

\(^{13}\text{C}-\text{NMR (DMSO-d}_6\), } \delta: 20.92 (\text{CH}_3, \text{C-4’}), 34.10, 38.53 (\text{CH}_2, \text{C-2’}, 1’), 126.54,
129.61 (CH, C-aromatic), 137.30, 142.64 (C, C-1, 4), 172.22 (C, C-1').

3-(4-tert-Butyl-benzenesulfonylamino)-propionic acid (153)
(C_{13}H_{19}NO_4S; M.W. = 285.36)

General procedure 3;
White solid;
Yield: 1.04 g (54%)

^{1}H-NMR (CDCl_3), \(\delta \): 1.31 (s, 9H, H-5'), 2.38 (t, J= 7.1 Hz, 2H, H-2'), 2.90-2.94 (m, 2H, H-1'), 7.59 (t, J= 5.4 Hz, 1H, NH), 7.62 (d, J= 8.5 Hz, 2H, H-aromatic), 7.72 (d, J= 8.5 Hz, 2H, H-aromatic), 12.26 (s, 1H, COOH).

^{13}C-NMR (DMSO-d_6), \(\delta \): 30.78 (CH_3, C-5'), 34.16 (CH_2), 34.69 (C, C-4'), 38.57 (CH_2), 126.01, 126.40 (CH, C-aromatic), 137.27, 155.35 (C, C-1, 4), 172.25 (C, C-1').

3-(Biphenyl-4-sulfonylamino)-propionic acid (154)
(C_{15}H_{15}NO_4S; M.W. = 305.3)

General procedure 3;
White solid;
Yield: 0.93 g (45%)

^{1}H-NMR (CDCl_3), \(\delta \): 2.40 (t, J= 7.0 Hz, 2H, H-2'), 2.96-3.00 (m, 2H, H-1'), 7.45 (t, J= 7.4 Hz, 1H, H-7'), 7.50-7.54 (m, 2H, H-aromatic), 7.70-7.70 (m, 3H, 2H-aromatic, NH), 7.87 (d, J= 8.5 Hz, 2H, H-aromatic), 7.90 (d, J= 8.5 Hz, 2H, H-aromatic), 12.28 (bs, 1H, COOH).

^{13}C-NMR (DMSO-d_6), \(\delta \): 34.18, 38.60 (CH_2, C-1', 2'), 127.05, 127.19, 127.40, 128.45,
129.09 (CH, C-aromatic), 138.53, 138.94, 143.92 (C, C-1, 4, 4’), 172.23 (C, C-1’).
6.2.6 \(N,N'-(3,3'-(\text{Piperazine-1,4-diyl})\text{bis(propane-3,1-diyl)})\text{diaryl sulfonamides}\)

\((12, 30-36, 100-108, 111)\)

\(N,N'-(3,3'-(\text{Piperazine-1,4-diyl})\text{bis(propane-3,1-diyl)})\text{bis(4-chlorobenzene-sulfonamide)}\) (12)

\((C_{22}H_{30}Cl_2N_4O_4S_2; \text{M.W.}=549.5)\)

![Image of molecule 12]

General procedure 4;
Pale yellow solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.61.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.21 g (64%)
Melting Point: 168-170°C
MS (ESI)\(^+\): 549.0, 551.0 [M+H]\(^+\)
\(^1\)H-NMR (CDCl\(_3\)), \(^\delta\): 1.65-1.71 (m, 4H, H-2'), 2.41-2.54 (m, 12H, H-3', 4'), 3.09 (t, J= 5.6 Hz, 4H, H-1'), 7.34 (bs, 2H, NH), 7.51 (d, J= 8.6 Hz, 4H, H-aromatic), 7.80 (d, J= 8.6 Hz, 4H, H-aromatic).
\(^{13}\)C-NMR (DMSO-\(d_6\)), \(^\delta\): 26.02, 40.84, 52.58, 54.74 (CH\(_2\), C-1', 2', 3', 4'), 128.42, 129.31 (CH, C-aromatic), 137.13, 139.39 (C, C-1, 4).

\(N,N'-(3,3'-(\text{Piperazine-1,4-diyl})\text{bis(propane-3,1-diyl)})\text{dibenzenesulfonamide}\) (23)

\((C_{22}H_{32}N_4O_4S_2; \text{M.W.}=480.6)\)

![Image of molecule 23]

General procedure 4;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.46.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.18 g (64%)
Melting Point: 136-138°C
MS (ESI)^+: 481.1 [M+H]^+

1H-NMR (CDCl3), δ: 1.60 (m, 4H, H-2'), 2.38 (m, 12H, H-3', 4'), 3.04 (t, J= 5.8 Hz, 4H, H-1'), 7.10 (bs, 2H, NH), 7.50 (m, 4H, H-3), 7.56 (m, 2H, H-4), 7.83 (m, 4H, H-2).

13C-NMR (CDCl3), δ: 24.09, 44.04, 53.00, 57.95 (CH2, C-1', 2', 3', 4'), 126.88, 129.03, 132.65 (CH, C-3, 4, 2), 140.16 (C, C-1).

N,N’-(3,3’-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))bis(4-methylbenzene-sulfonamide) (31)18
(C24H36N4O4S2; M.W. = 508.6)

\begin{center}
\begin{tikzpicture}
\end{tikzpicture}
\end{center}

General procedure 4;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.67.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 95:5 v/v).
Yield: 0.20 g (68%)
Melting Point: 176-178°C (lit. 181-183°C)18
MS (ESI)^+: 509.1 [M+H]^+

1H-NMR (CDCl3), δ: 1.65 (m, 4H, H-2'), 2.46 (bs, 18H, H-3’, 4’, 5’), 3.07 (t, J= 5.6 Hz, 4H, H-1’), 7.12 (bs, 2H, NH), 7.32 (d, J= 8.2 Hz, 4H, H-aromatic), 7.74 (d, J= 8.2 Hz, 4H, H-aromatic).

13C-NMR (DMSO-d6), δ: 20.91 (CH3, C-5’), 26.02, 40.91, 52.60, 54.88 (CH2, C-1’, 2’, 3’, 4’), 126.50, 129.56 (CH, C-aromatic), 137.80 (C, C-4), 142.47 (C, C-1).
N,N’-(3,3’-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))bis(4-methoxybenzene-sulfonamide) (32)

\[
\text{(C}_{24}\text{H}_{36}\text{N}_{4}\text{O}_{6}\text{S}_{2}; \text{M.W.}= 540.6)
\]

General procedure 4;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.72.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 91:9 v/v).
Yield: 0.19 g (60%)
Melting Point: 172-174°C
MS (ESI)^+ : 541.1 [M+H]^+

1H-NMR (DMSO-d6), δ: 1.47 (m, 4H, H-2’), 2.18 (bs, 12H, H-3’, 4’), 2.72 (m, 4H, H-1’), 3.83 (s, 6H, H-5’), 7.11 (d, J= 8.3 Hz, 4H, H-aromatic), 7.41 (t, J= 5.6 Hz, 2H, NH), 7.70 (d, J= 8.3 Hz, 4H, H-aromatic).

13C-NMR (DMSO-d6), δ: 25.63, 39.78, 51.90, 54.38 (CH₂, C-1’, 2’, 3’, 4’), 56.01 (CH₃, C-5’), 114.44, 126.56 (CH, C-aromatic), 131.80 (C, C-1), 165.27 (C, C-4).

N,N’-(3,3’-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))bis(4-nitrobenzene-sulfonamide) (33)

\[
\text{(C}_{22}\text{H}_{30}\text{N}_{6}\text{O}_{8}\text{S}_{2}; \text{M.W.}= 570.6)
\]

General procedure 4;
Pale yellow solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.59.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 91:9
Yield: 0.14 g (43%)

Melting Point: 226-228°C

MS (ESI)$^+$: 571.1 [M+H]$^+$

1H-NMR (DMSO-d$_6$), δ: 1.49 (m, 4H, H-2'), 2.18 (m, 12H, H-3', 4'), 2.82 (t, J= 6.8 Hz, 4H, H-1'), 7.98 (bs, 2H, NH), 8.03 (d, J= 8.7 Hz, 4H, H-aromatic), 8.42 (d, J= 8.7 Hz, 4H, H-aromatic).

13C-NMR (DMSO-d$_6$), δ: 26.11, 40.87, 52.58, 54.66 (CH$_2$, C-1', 2', 3', 4'), 124.57, 128.02 (CH, C-aromatic), 146.14, 149.50 (C, C-1, 4).

N,N'-[(3,3'-((Piperazine-1,4-diyl)bis(propane-3,1-diyl)))bis(3,4-dimethoxybenzene-sulfonamide) (34)

(C$_{26}$H$_{40}$N$_4$O$_8$S$_2$; M.W.= 600.7)

General procedure 4;

Yellow solid;

T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.70.

Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 95:5 v/v).

Yield: 0.23 g (65%)

Melting Point: 152-154°C

MS (ESI)$^+$: 601.1 [M+H]$^+$

1H-NMR (CDCl$_3$), δ: 1.66 (m, 4H, H-2'), 2.47 (m, 12H, H-3', 4'), 3.06 (t, J= 5.7 Hz, 4H, H-1'), 3.93 (s, 6H, OCH$_3$), 3.96 (s, 6H, OCH$_3$), 6.53 (bs, 2H, NH), 6.95 (d, J= 8.4 Hz, 2H, H-5), 7.33 (d, J= 2.1, 2H, H-2), 7.46 (dd, J$_1$= 8.4 Hz, J$_2$= 2.1 Hz, 2H, H-6).

13C-NMR (CDCl$_3$), δ: 24.14, 44.09, 53.06, (CH$_2$, C-2', 3', 4'), 56.18, 56.25 (CH$_3$, C-5', 6'), 57.79 (CH$_2$, C-1'), 109.76, 110.59, 120.77 (CH, C-5, 2, 6), 131.93 (C, C-1), 149.09, 152.37 (C, C-3, 4).
N,N’-(3,3’-(Piperazine-1,4-diy)/bis(propane-3,1-diy))bis(2,5-dimethoxybenzene-sulfonamide) (35)

(C_{26}H_{40}N_{4}O_{8}S_{2}; M.W. = 600.7)

General procedure 4;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.73.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 95:5 v/v).
Yield: 0.25 g (71%)
Melting Point: 170-172°C
MS (ESI)^+: 601.1 [M+H]^+

^1H-NMR (CDCl_3), δ: 1.71 (m, 4H, H-2’), 2.55 (bs, 12H, H-5’, 6’), 3.00 (t, J= 6.2 Hz, 4H, H-1’), 3.83 (s, 6H, OCH_3), 3.95 (s, 6H, OCH_3), 6.22 (bs, 2H, NH), 7.00 (d, J= 8.9 Hz, 2H, H-3), 7.08 (dd, J_1= 8.9 Hz, J_2= 3.1 Hz, 2H, H-4), 7.47 (d, J= 3.1, 2H, H-6).

^13C-NMR (CDCl_3), δ: 25.35, 44.4, 52.56, 55.45 (CH_2, C-2’, 3’, 4’, 1’), 56.04, 57.27 (CH_3, C-5’, 6’), 114.16, 114.89, 120.22 (CH, C-3, 4, 6), 132.02 (C, C-1), 150.41, 153.37 (C, C-3, 4).

N,N’-(3,3’-(Piperazine-1,4-diy)/bis(propane-3,1-diy))dinaphthalene-2-sulfonamide (36)

(C_{30}H_{36}N_{4}O_{4}S_{2}; M.W. = 580.7)

General procedure 4;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.62.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.27 g (79%)
Melting Point: 186-188°C
MS (ESI)$^+$: 581.1 [M+H]$^+$
1H-NMR (CDCl$_3$), δ: 1.66 (m, 4H, H-2'), 2.46 (bs, 12H, H-3', 4'), 3.13 (t, J= 5.5 Hz, 4H, H-1'), 7.32 (bs, 2H, NH), 7.66 (m, 4H, H-aromatic), 7.83 (dd, J$_1$= 8.7 Hz, J$_2$= 1.8 Hz, 2H, H-aromatic), 7.95 (d, J= 7.9, 2H, H-aromatic), 7.99 (m, 4H, H-aromatic), 8.44 (s, 2H, H-1).
13C-NMR (DMSO-d$_6$), δ: 25.97, 40.88, 52.43, 54.72 (CH$_2$, C-2', 3', 4', 1'), 122.24, 127.33, 127.51, 127.77, 128.60, 129.11, 129.33 (CH, C-aromatic), 131.70, 134.08, 137.41 (C, C-2, 5, 10).

N,N'-(3,3'-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))bis(3-chlorobenzene-sulfonamide) (100)
(C$_{21}$H$_{36}$Cl$_2$N$_4$O$_4$S$_2$; M.W.= 549.5)

![Chemical Structure]

General procedure 4;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.66.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.26 g (79%)
Melting Point: 156-158°C
MS (ESI)$^+$: 549.0, 551.0 [M+H]$^+$
1H-NMR (DMSO-d$_6$), δ: 1.48 (m, 4H, H-2'), 2.20 (m, 12H, H-3', 4'), 2.79 (m, 4H, H-1'), 7.64 (t, J= 7.8 Hz, 2H, H-aromatic), 7.74 (m, 6H, 4x H-aromatic, 2 x NH), 7.78 (t, J= 1.8 Hz, 2H, H-2).
13C-NMR (DMSO-d$_6$), δ: 26.03, 40.86, 52.57, 54.70 (CH$_2$, C-2’, 3’, 4’, 1’), 125.17, 126.04, 131.30, 132.29, 133.79 (CH, C-aromatic), 133.79, 142.46 (C, C-1, 3).

N,N’-(3,3’-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))bis(4-tertbutylbenzenesulfonamide) (101)

(C$_{30}$H$_{48}$N$_4$O$_4$S$_2$; M.W. = 592.8)

General procedure 4;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.59.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.29 g (82%)
Melting Point: 188-190°C
MS (ESI)$^+$: 593.3 [M+H]$^+$

1H-NMR (DMSO-d$_6$), δ: 1.31 (s, 18H, H-6’), 1.46 (m, 4H, H-2’), 2.16 (m, 12H, H-3’, 4’), 2.75 (m, 4H, H-1’), 7.49 (t, J = 5.8 Hz, 2H, NH), 7.60 (d, J = 8.4 Hz, 4H, H-aromatic), 7.70 (d, J = 8.4 Hz, 4H, H-aromatic).

13C-NMR (DMSO-d$_6$), δ: 26.03 (CH$_2$, C-2’), 30.79 (CH$_3$, C-6’), 34.77 (C, C-5’), 40.87, 52.55, 54.82 (CH$_2$, C-3’, 4’, 1’), 125.93, 126.35 (CH, C-aromatic), 137.68, 155.19 (C, C-4, 1).

N,N’-(3,3’-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))bis(4-(trifluoromethyl)benzenesulfonamide) (102)

(C$_{24}$H$_{30}$F$_6$N$_4$O$_4$S$_2$; M.W. = 616.6)
General procedure 4;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.65.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.22 g (61%)
Melting Point: 184-186°C
MS (ESI)$^+$: 617.1 [M+H]$^+$
1H-NMR (DMSO-d$_6$), δ: 1.48 (m, 4H, H-2’), 2.16 (bs, 12H, H-3’, 4’), 2.81 (m, 4H, H-1’), 7.49 (bs, 2H, NH), 7.99 (m, 8H, H-aromatic).
13C-NMR (DMSO-d$_6$), δ: 26.02, 40.80, 52.52, 54.61 (CH$_2$, C-2’, 3’, 4’, 1’), 122.41 (C, C-5’), 126.40, 127.44 (CH, C-aromatic), 132.20, 144.50 (C, C-4,1).

$N,N'-(3,3'-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))bis(biphenyl-sulfonamide)$
(103)
(C$_{34}$H$_{40}$N$_4$O$_4$S$_2$; M.W.= 632.8)

General procedure 4;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.59.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.76 g (87%)
Melting Point: 183-185°C
MS (ESI)$^+$: 633.2 [M+H]$^+$
1H-NMR (DMSO-d$_6$), δ: 1.46-1.50 (m, 4H, H-2’), 2.12-2.22 (m, 12H, CH$_2$), 3.51-3.56 (m, 4H, CH$_2$), 7.41-7.44 (m, 2H, H-4’’), 7.49-7.53 (m, 4H, H-aromatic), 7.62 (bs, 2H, NH), 7.71-7.75 (m, 4H, H-aromatic), 7.84-7.89 (m, 8H, H-aromatic).
13C-NMR (DMSO-d$_6$), δ: 26.04, 40.91, 52.58, 54.81 (CH$_2$, C-1’, 2’, 3’, 4’), 127.01,
127.15, 127.33, 128.42, 129.08 (CH, C-aromatic), 138.53, 139.25, 143.80 (C, C-1, 4, 1’’).

\textit{N,N’-(3,3’-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))dinaphthalene-2-sulfonamide (104)}
\[(\text{C}_{36}\text{H}_{36}\text{N}_4\text{O}_4\text{S}_2; \text{M.W}._= 580.7)\]

\begin{align*}
\text{General procedure 4;} \\
\text{White solid;} \\
\text{T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.67.} \\
\text{Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).} \\
\text{Yield: 0.31 g (91%)} \\
\text{Melting Point: 216-218°C} \\
\text{MS (ESI)}^+ : 581.2 [M+H]^+ \\
\textbf{\textit{1H-NMR}} \text{ (DMSO-d}_6\text{), } \delta : \text{ 1.36 (m, 4H, H-2’), 1.93 (bs, 8H, H-4’), 1.99 (t, J= 6.8 Hz, 4H, H-3’), 2.79 (m, 4H, H-1’), 7.67 (m, 6H, H-aromatic), 7.91 (bs, 2H, NH), 8.10 (m, 4H, H-aromatic), 8.22 (d, J= 8.2 Hz, 2H, H-aromatic), 8.64 (d, J= 8.4 Hz, 2H, H-aromatic).} \\
\textbf{\textit{13C-NMR}} \text{ (DMSO-d}_6\text{), } \delta : \text{ 25.88, 40.73, 52.33, 54.65 (CH}_2\text{, C-2’, 3’, 4’, 1’), 124.45, 124.64, 126.77 (CH, C-aromatic), 127.56 (C, C-aromatic), 127.73, 128.54, 128.91, 133.62 (CH, C-aromatic), 133.87, 135.49 (C, C-aromatic).}
\end{align*}
N,N’-(3,3’-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))diquinoline-8-sulfonamide (105)
(C_{28}H_{34}N_{6}O_{4}S_{2}; M.W.= 582.7)

General procedure 4;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.73.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.26 g (76%)
Melting Point: 200-202°C
MS (ESI)^+: 583.2 [M+H]^+

^1H-NMR (CDCl3), δ: 1.67 (m, 4H, H-2’), 2.37 (bs, 12H, H-3’, 4’), 2.95 (m, 4H, H-1’),
6.79 (bs, 2H, NH), 7.59 (dd, J_1= 8.4, J_2= 4.2, 2H, H-aromatic), 7.68 (t, J= 7.6 Hz, 2H,
H-aromatic), 8.08 (d, J=8.0 Hz, 2H, H-aromatic), 8.31 (d, J= 8.0 Hz, 2H, H-aromatic),
8.46 (d, J= 7.1 Hz, 2H, H-aromatic), 9.04 (m, 2H, H-aromatic).

^13C-NMR (CDCl3), δ: 26.13, 42.47, 52.92, 56.08 (CH₂, C-2’, 3’, 4’, 1’), 122.22, 125.75
(CH, C-aromatic), 128.80 (C, C-aromatic), 131.44, 133.19 (CH, C-aromatic), 136.09
(C, C-aromatic), 136.99 (CH, C-aromatic), 143.46 (C, C-8), 151.16 (CH, C-aromatic).

N,N’-(3,3’-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))dithiophene-2-sulfonamide (106)
(C_{18}H_{28}N_{4}O_{4}S_{4}; M.W.= 492.6)

General procedure 4;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.45.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.24 g (83%)
Melting Point: 138-140°C
MS (ESI)$^+$: 493.0 [M+H]$^+$
1H-NMR (DMSO-d$_6$), δ: 1.52 (m, 4H, H-2’), 2.24 (m, 12H, H-3’, 4’), 2.86 (m, 4H, H-1’), 7.18 (dd, J$_1$= 5.1, J$_2$= 3.7, 2H, H-3), 7.57 (dd, J$_1$= 3.7, J$_2$= 1.3, 2H, H-aromatic), 7.79 (bs, 2H, NH), 7.92 (dd, J$_1$= 5.1, J$_2$= 1.3, 2H, H-aromatic).
13C-NMR (DMSO-d$_6$), δ: 25.88, 41.22, 52.62, 54.92 (CH$_2$, C-2’, 3’, 4’, 1’), 127.61, 131.38, 132.29 (CH, C-2, 3, 4), 141.44 (C, C-1).

N,N'(3,3’-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))dipyridine-3-sulfonamide (107)
(C$_{20}$H$_{30}$N$_6$O$_4$S$_2$; M.W. = 482.6)

![Diagram](image)

General procedure 4;
Pale yellow solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.52.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 91:9 v/v).
Yield: 0.18 g (63%)
Melting Point: 140-142°C
MS (ESI)$^+$: 483.1 [M+H]$^+$
1H-NMR (DMSO-d$_6$), δ: 1.50 (m, 4H, H-2’), 2.20 (bs, 12H, H-3’, 4’), 2.82 (bs, 4H, H-1’), 7.65 (dd, J$_1$= 8.0 Hz, J$_2$= 4.9 Hz, 2H, H-4), 7.85 (bs, 2H, NH), 8.16 (dt, J$_1$= 8.0 Hz, J$_2$= 1.9 Hz, 2H, H-5), 8.82 (dd, J$_1$= 4.9 Hz, J$_2$= 1.9 Hz, 2H, H-3), 8.94 (d, J= 2.2 Hz, 2H, H-2).
13C-NMR (DMSO-d$_6$), δ: 26.05, 40.80, 52.50, 54.65 (CH$_2$, C-2’, 3’, 4’, 1’), 124.26,
134.46 (CH, C-4, 5), 136.88 (C, C-1), 146.99, 152.93 (CH, C-3, 2).

Ethyl 3-(N-(3-(4-(3-(4-carboxyphenylsulfonamido)propyl) piperazin-1-yl)propyl) sulfamoyl)benzoate (108)

(C_{28}H_{40}N_{4}O_{8}S_{2}; M.W. = 624.7)

General procedure 4;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.56.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.15 g (41%)
Melting Point: 170-172°C
MS (ESI)^+: 625.2 [M+H]^+

^1^H-NMR (CDCl$_3$), δ: 1.44 (t, J = 7.1 Hz, 6H, H-7'), 1.67 (m, 4H, H-2'), 2.47 (m, 12H, H-3', 4'), 3.11 (t, J = 5.6 Hz, 4H, H-1'), 4.44 (q, J = 7.1 Hz, 4H, H-6'), 7.45 (bs, 2H, NH), 7.92 (d, J = 8.5 Hz, 4H, H-aromatic), 8.19 (d, J = 8.5 Hz, 4H, H-aromatic).

^1^3^C-NMR (CDCl$_3$), δ: 14.27 (CH$_3$, C-7'), 23.81, 44.39, 53.05, 57.97, 61.68 (CH$_2$, C-2', 3', 4', 1', 6'), 126.88, 130.21 (CH, C-aromatic), 133.99, 144.15 (C, C-4, 1), 165.22 (C, C-6').
3-(N-(3-(4-(4-(Carboxyphenylensulfonamido)propyl)piperazin-1-yl)-propyl)-
sulfamoyl)benzoic acid (111)
(C_{24}H_{32}N_{4}O_{8}S_{2}; M.W. = 568.6)

Compound 108 (0.15 g, 0.25 mmol) was dissolved 3 mL of THF. LiOH monohydrate
(0.07 g, 1.7 mmol) was dissolved in 4 mL of distilled water and added to the THF
solution. The reaction was stirred o.n. at 80°C. The organic solvent was then removed at
reduced pressure and the water residue was acidified to pH 5 with 1M HCl solution.
The resulting precipitate was filtered, washed with water and dried under vacuum to
afford pure 3-(N-(3-(4-(4-(carboxyphenylensulfonamido)propyl)piperazin-1-yl)-
propyl)sulfamoyl)benzoic acid 111 as a white solid.
Yield: 0.07 g (51%)
Melting Point: > 260°C
MS (ESI)\(^+\): 591.1 [M+Na]\(^+\)

Sodium salt \(^1\)H-NMR (D\(_2\)O), \(\delta\): 1.48 (m, 4H, H-2’), 2.15 (t, J= 7.8 Hz, 4H, H-3’), 2.31
(bs, 8H, H-4’), 2.69 (t, J= 7.1 Hz, 4H, H-1’), 7.72 (d, J= 8.1 Hz, 4H, H-aromatic), 7.88
(d, J= 8.1 Hz, 4H, H-aromatic).

Sodium salt \(^1\)C-NMR (D\(_2\)O), \(\delta\): 27.83, 43.54, 51.57, 55.62 (CH\(_2\), C-2’, 3’, 4’, 1’),
126.20, 129.17 (CH, C-aromatic), 138.69, 145.22 (C, C-4, 1), 174.53 (C, C-6’).

\(N,N’-(3,3’-(Piperazine-1,4-diyl)bis(propane-3,1-diyl))bis(2-chlorobenzene-
sulfonamide)\) (116)
(C\(_{21}\)H\(_{36}\)Cl\(_2\)N\(_4\)O\(_4\)S\(_2\); M.W. = 549.5)
General procedure 4;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.79.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 98:2 v/v).
Yield: 0.26 g (80%)
Melting Point: 162-164°C
MS (ESI)^+: 549.1, 551.1 [M+H]^+
^{1}H-NMR (DMSO-d_6), δ: 1.49 (m, 4H, H-2'), 2.17 (m, 12H, H-3’, 4’), 2.85 (m, 4H, H-1’), 7.54 (td, J_1= 7.4 Hz, J_2= 1.5 Hz, 2H, H-aromatic), 7.65 (m, 4H, H-aromatic), 7.88 (t, J= 5.1 Hz, 2H, NH), 7.96 (dd, J_1= 7.9 Hz, J_2= 1.3 Hz, 2H, H-aromatic).
^{13}C-NMR (DMSO-d_6), δ: 25.78, 41.02, 52.52, 54.93 (CH_2, C-2’, 3’, 4’, 1’), 127.63, 130.51 (CH, C-aromatic), 130.59 (C, C-aromatic), 131.71, 133.90 (CH, C-aromatic), 137.83 (C, C-aromatic).
6.2.7 \(N,N'-(2,2'-(\text{Piperazine}-1,4\text{-diyl})\text{bis(ethane-2,1-diyl)}) \) diarylsulfonamides (46-53, 118)

\(N,N'-(2,2'-(\text{Piperazine}-1,4\text{-diyl})\text{bis(ethane-2,1-diyl)})\text{bis(4-chlorobenzene sulfonamide}) \) (46)

\((C_{20}H_{26}Cl_{2}N_{4}O_{4}S_{2}; \text{M.W.}= 521.4) \)

General procedure 5;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.66.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 95:5 v/v).
Yield: 0.14 g (45%)
Melting Point: 218-220°C
MS (ESI)\(^{+}\): 521.0, 523.0 [M+H]\(^{+}\)
\(^{1}\text{H-NMR (CDCl}_{3}\), \(\delta\): 2.17, (bs, 8H, H-3’), 2.43 (t, \(J=5.5\), 4H, H-2’), 3.08 (m, 4H, H-1’), 5.14 (bs, 2H, NH), 7.51 (d, \(J=8.5\ Hz\), 4H, H-aromatic), 7.82 (d, \(J=8.5\ Hz\), 4H, H-aromatic).
\(^{13}\text{C-NMR (DMSO-\text{d}_{6})}, \(\delta\): 40.97, 52.84, 54.95 (CH\(_{2}\), C-1’, 2’, 3’), 128.67, 129.75 (CH, C-aromatic), 137.95, 139.82 (C, C-1, 4).

\(N,N'-(2,2'-(\text{Piperazine}-1,4\text{-diyl})\text{bis(ethane-2,1-diyl)})\text{dibenzenesulfonamide} \) (47)

\((C_{20}H_{28}N_{4}O_{4}S_{2}; \text{M.W.}= 452.5) \)

General procedure 5;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.40.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.12 g (52%)
Melting Point: 158-160°C
MS (ESI)\(^+\): 453.1 [M+H]\(^+\)
\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 2.17, (s, 8H, H-3’), 2.39 (t, J= 5.8, 4H, H-2’), 3.00 (m, 4H, H-1’), 5.13 (bs, 2H, NH), 7.53 (m, 4H, H-3), 7.60 (tt, J\(_1\)= 7.3 Hz, J\(_2\)= 2.1 Hz, 2H, H-4), 7.88 (m, 4H, H-2).
\(^13\)C-NMR (CDCl\(_3\)), \(\delta\): 39.16, 52.27, 55.44 (CH\(_2\), C-1’, 2’, 3’), 127.07, 129.06, 132.64 (CH, C-3, 4, 2’), 139.64 (C, C-1).

\(N,N’-(2,2’-(\text{Piperazine-1,4-diyl})\text{bis(ethane-2,1-diyl)})\text{bis(4-methylbenzene-sulfonamide)}}\) (48)\(^{19}\)
(C\(_{22}\)H\(_{32}\)N\(_4\)O\(_4\)S\(_2\); M.W. = 480.6)

General procedure 5;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.59.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 98:2 v/v).
Yield: 0.25 g (89%)
Melting Point: 182-184°C (lit. 185-187°C)\(^{19}\)
MS (ESI)\(^+\): 481.1 [M+H]\(^+\)
\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 2.24, (bs, 8H, H-3’), 2.39 (t, J= 5.7, 4H, H-2’), 2.45 (s, 6H, H-4’), 2.98 (m, 4H, H-1’), 5.10 (bs, 2H, NH), 7.32 (d, J= 8.2 Hz, 4H, H-aromatic), 7.57 (d, J= 8.2 Hz).
\(^13\)C-NMR (DMSO-d\(_6\)), \(\delta\): 20.91 (CH\(_3\), C-4’), 40.05, 52.43, 56.74 (CH\(_2\), C-1’, 2’, 3’), 126.49, 129.52 (CH, C-aromatic), 137.68, 142.46 (C, C-4, 1).
N,N’-(2,2’-(Piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis(4-methoxy-benzenesulfonamide) (49)
(C_{22}H_{32}N_{4}O_{6}S_{2}; M.W.= 512.6)

General procedure 5;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.45.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.23 g (78%)
Melting Point: 170-172°C
MS (ESI)^+: 513.1 [M+H]^+
^1H-NMR (CDCl_3), δ: 2.24, (bs, 8H, H-3’), 2.40 (t, J= 5.4, 4H, H-2’), 2.97 (m, 4H, H-1’), 3.89 (s, 6H, H-4’), 5.07 (bs, 2H, NH), 6.99 (d, J= 8.8 Hz, 4H, H-aromatic), 7.81 (d, J= 8.8 Hz, 4H, H-aromatic).
^13C-NMR (CDCl_3), δ: 39.12, 52.32, 55.49 (CH_2, C-1’, 2’, 3’), 55.63 (CH_3, C-4’), 114.19, 129.23 (CH, C-aromatic), 131.19, 162.89 (C, C-1, 4).

N,N’-(2,2’-(Piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis(4-nitrobenzenesulfonamide) (50)
(C_{20}H_{26}N_{4}O_{6}S_{2}; M.W.= 542.5)

General procedure 5;
Pale yellow solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.68.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3
v/v).
Yield: 0.20 g (63%)
Melting Point: 212-214°C
MS (ESI)$^+$: 543.0 [M+H]$^+$

1H-NMR (DMSO-d$_6$), δ: 2.18, (bs, 8H, H-3'), 2.55 (t, J = 6.6, 4H, H-2'), 2.98 (t, J = 6.6 Hz, 4H, H-1'), 7.92 (bs, 2H, NH), 8.05 (d, J = 8.8 Hz, 4H, H-aromatic), 8.40 (d, J = 8.8 Hz).

13C-NMR (DMSO-d$_6$), δ: 40.06, 52.33, 56.83 (CH$_2$, C-1', 2', 3'), 124.47, 127.98 (CH, C-aromatic), 146.45, 149.44 (C, C-1, 4).

N,N'-(2,2'-((Piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis(3,4-dimethoxy-benzenesulfonamide) (51)
(C$_{24}$H$_{36}$N$_4$O$_8$S$_2$; M.W. = 572.6)

General procedure 5;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.53.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.25 g (74%)
Melting Point: 152-154°C
MS (ESI)$^+$: 573.1 [M+H]$^+$

1H-NMR (CDCl$_3$), δ: 2.26, (bs, 8H, H-3'), 2.40 (t, J = 5.6, 4H, H-2'), 2.99 (m, 4H, H-1'), 3.94 (s, 6H, OCH$_3$), 3.96 (s, 6H, OCH$_3$), 5.11 (bs, 2H, NH), 6.94 (m, 2H, H-aromatic), 7.34 (m, 2H, H-aromatic), 7.49 (m, 2H, H-aromatic).

13C-NMR (CDCl$_3$), δ: 39.19, 52.35, 56.21 (CH$_2$, C-1', 2', 3'), 56.28, 56.30 (CH$_3$, C-4', 5'), 109.66, 110.51, 121.03 (CH, C-2, 5, 6), 131.27, 149.19, 152.58 (C, C-1, 3, 4).
N,N’-(2,2’-(Piperazine-1,4-diyl)bis(ethane-2,1-diyl))bis(2,5-dimethoxybenzenesulfonamide) (52)
(C_{24}H_{36}N_{4}O_{8}S_{2}; M.W.= 572.6)

General procedure 5;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.47.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 95:5 v/v).
Yield: 0.26 g (77%)
Melting Point: 176-178°C
MS (ESI)^+: 573.1 [M+H]^+
^1H-NMR (CDCl_3), δ: 2.31, (bs, 8H, H-3’), 2.42 (t, J= 5.6, 4H, H-2’), 2.98 (m, 4H, H-1’), 3.83 (s, 6H, OCH3), 3.92 (s, 6H, OCH3), 5.58 (t, J= 4.9 Hz, 2H, NH), 6.96 (d, J= 9.1 Hz, 2H, H-3), 7.08 (dd, J_1=9.1 Hz, J_2= 3.1 Hz, 2H, H-4), 7.47 (d, J= 3.1 Hz, 2H, H-6).
^13C-NMR (CDCl_3), δ: 39.85, 52.64, 56.04 (CH_2, C-3’, 2’, 1’), 56.05, 57.08 (CH_3, C-4’, 5’), 113.74, 114.86, 120.35 (CH, C-3, 4, 6), 127.83, 150.25, 153.35 (C, C-1, 2, 5).

N,N’-(2,2’-(Piperazine-1,4-diyl)bis(ethane-2,1-diyl))dinaphthalene-2-sulfonamide (53)
(C_{28}H_{32}N_{4}O_{4}S_{2}; M.W.= 552.7)

General procedure 5;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.56.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.27 g (82%)
Melting Point: 176-178°C
MS (ESI)^+: 553.1 [M+H]^+

^1^H-NMR (CDCl_3), δ: 2.18, (bs, 8H, H-3’), 2.37 (t, J= 5.8, 4H, H-2’), 3.01 (m, 4H, H-1’), 5.22 (bs, 2H, NH), 7.66 (m, 4H, H-aromatic), 7.82 (dd, J_1= 8.8 Hz, J_2= 1.8 Hz, 2H, H-aromatic), 7.92 (d, J= 8.1 Hz, 2H, H-aromatic), 7.97 (m, 4H, H-aromatic), 8.45 (s, 2H, H-1).

^13^C-NMR (CDCl_3), δ: 39.17, 52.26, 55.46 (CH_2, C-3’, 2’, 1’), 122.22, 127.65, 127.91, 128.56, 128.84, 129.18, 129.42 (CH, C-aromatic), 131.98, 134.66, 137.32 (C, C-2, 5, 10).

N,N’-(2,2’-(Piperazine-1,4-diyl)bis(ethane-2,1-diyl))diquinoline-8-sulfonamide (118)
(C_{26}H_{30}N_{6}O_{4}S_{2}; M.W.= 554.6)

General procedure 5;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.52.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.17 g (52%)
Melting Point: charring > 220°C
MS (ESI)^+: 555.1 [M+H]^+

^1^H-NMR (CDCl_3), δ: 1.89, (bs, 8H, H-3’), 2.29 (t, J= 5.8, 4H, H-2’), 2.97 (q, J= 5.8 Hz, 4H, H-1’), 5.22 (t, J= 5.8 Hz, 2H, NH), 7.55 (dd, J_1= 8.6 Hz, J_2= 4.2 Hz, 2H, H-aromatic), 7.68 (t, J= 7.8 Hz, 2H, H-aromatic), 8.07 (dd, J_1= 8.1 Hz, J_2= 1.2 Hz, 2H, H-aromatic), 8.28 (dd, J_1= 8.4 Hz, J_2= 1.6 Hz, 2H, H-aromatic), 8.45 (dd, J_1= 7.2 Hz, J_2
1.4 Hz, 2H, H-aromatic), 9.02 (dd, J₁= 4.3 Hz, J₂= 1.7 Hz, 2H, H-aromatic).

13C-NMR (CDCl₃), δ: 38.97, 51.86, 55.10 (CH₂, C-3’, 2’, 1’), 121.78, 124.95 (CH, C-aromatic), 127.70 (C, C-aromatic), 130.94, 132.87 (CH, C-aromatic), 135.59 (C, C-aromatic), 136.39 (CH, C-aromatic), 142.76 (C, C-8), 150.66 (CH, C-aromatic).
6.2.8 \(N,N'\)-(3,3'-(Piperazine-1,4-diyl)bis(3-oxopropane-3,1-diyl))diaryl sulfonamides (62-68)

\(N,N'\)-(3,3'-(Piperazine-1,4-diyl)bis(3-oxopropane-3,1-diyl))bis(4-chlorobenzene-sulfonamide) (62)

\((C_{22}H_{26}ClN_4O_6S_2; \text{M.W.}= 576.1)\)

\[\text{General procedure 6; White solid; T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.76. Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 98:2 v/v). Yield: 0.14 g (41%) Melting Point: 206-208^\circ C MS (ESI)\): 598.9, 600.9 [M+Na]^+\]

\[^1^H\text{-NMR (CDCl}_3\text{), 8: 2.62 (t, J= 5.2 Hz, 4H, H-2'), 3.33 (m, 4H, H-1'), 3.43 (m, 4H, CH}_2\text{), 3.56 (m, 4H, CH}_2\text{), 7.1 (bs, 2H, NH), 7.52 (d, J= 8.5 Hz, 4H, H-aromatic), 7.83 (d, J= 8.5 Hz, 4H, H-aromatic).}\]

\[^{13}^C\text{-NMR (DMSO-d}_6\text{, 8: 32.58, 32.60, 38.85, 40.62, 40.94, 44.33, 44.60 (CH}_2\text{, C-2', 1', 4', 4'')}, 128.48, 129.32 (CH, C-aromatic), 137.22, 139.21 (C, C-1, 4), 168.60 (C, C-3').}\]

\(N,N'\)-(3,3'-(Piperazine-1,4-diyl)bis(3-oxopropane-3,1-diyl))dibenzenesulfonamide (63)

\((C_{22}H_{28}N_4O_6S_2; \text{M.W.}= 508.1)\)
General procedure 6;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.57.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.17 g (57%)
Melting Point: 194-196°C
MS (ESI)^+ : 531.0 [M+Na]^+

1H-NMR (CDCl₃), δ: 2.59 (bs, 4H, H-2’), 3.26 (m, 4H, H-1’), 3.40 (m, 4H, CH₂), 3.60 (m, 4H, CH₂), 5.55 (bs, 2H, NH), 7.54 (m, 4H, H-aromatic), 7.59 (m, 2H, H-4), 7.89 (m, 4H, H-aromatic).

13C-NMR (DMSO-d₆), δ: 32.56, 32.62, 38.89, 40.61, 40.92, 44.32, 44.61 (CH₂, C-1’, 2’, 4’, 4’’), 126.46, 129.20, 132.38 (CH, C-aromatic), 140.28 (C, C-1), 168.64 (C, C-3’).

N,N’-(3,3’-(Piperazine-1,4-diyl)bis(3-oxopropane-3,1-diyl))bis(4-methoxybenzenesulfonamide) (64)
(C₂₄H₃₂N₄O₈S₂; M.W.= 568.2)

![Diagram of molecule 64]

General procedure 6;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.65.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 98:2 v/v).
Yield: 0.15 g (46%)
Melting Point: 178-180°C
MS (ESI)^+ : 591.1 [M+Na]^+

1H-NMR (CDCl₃), δ: 2.59 (t, J= 5.6 Hz, 4H, H-2’), 3.23 (m, 4H, H-1’), 3.42 (m, 4H, CH₂), 3.60 (m, 4H, CH₂), 3.89 (s, 6H, H-5’), 5.42 (bs, 2H, NH), 7.00 (d, J= 8.8 Hz, 4H, H-aromatic), 7.82 (d, J= 8.8 Hz, 4H, H-aromatic).
13C-NMR (CDCl$_3$), δ: 33.03, 33.16, 39.01, 39.07, 41.22, 44.79, 44.96 (CH$_2$, C-2’, 1’, 4’, 4‘’), 55.64 (CH$_3$, C-5’), 114.32, 129.10 (CH, C-aromatic), 131.72, 162.89 (C, C-1, 4), 168.88 (C, C-3’).

$N,N'-(3,3'-(Piperazine-1,4-diyl)bis(3-oxopropane-3,1-diyl))bis(4-nitrobenzenesulfonamide)$ (65)
(C$_{22}$H$_{26}$N$_4$O$_{10}$S$_2$; M.W.= 598.1)

General procedure 6;
Pale yellow solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.70.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 95:5 v/v).
Yield: 0.12 g (35%)
Melting Point: charring > 270°C
MS (ESI)$^+$: 621.0 [M+Na]$^+$

1H-NMR (CDCl$_3$), δ: 2.66 (t, J= 5.3 Hz, 4H, H-2’), 3.29 (m, 4H, H-1’), 3.46 (m, 4H, CH$_2$), 3.65 (m, 4H, CH$_2$), 5.76 (bs, 2H, NH), 8.08 (d, J= 8.9 Hz, 4H, H-aromatic), 8.39 (d, J= 8.9 Hz, 4H, H-aromatic).

13C-NMR (DMSO-d$_6$), δ: 32.18, 32.34, 38.85, 40.02, 40.44, 44.31, 44.58 (CH$_2$, C-2’, 1’, 4’, 4’’), 124.57, 128.08 (CH, C-aromatic), 145.95, 149.56 (C, C-1, 4), 168.70 (C, C-3’).

$N,N'-(3,3'-(Piperazine-1,4-diyl)bis(3-oxopropane-3,1-diyl))bis(3,4-dimethoxybenzenesulfonamide)$ (66)
(C$_{26}$H$_{36}$N$_4$O$_{10}$S$_2$; M.W.= 628.2)
General procedure 6;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.65.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 98:2 v/v).
Yield: 0.17 g (47%)
Melting Point: 102-104°C
MS (ESI)\(^{+}\): 651.1 [M+Na]\(^{+}\)

\(^{1}\text{H-NMR (CDCl}_3\)}, \delta: 2.80 (bs, 4H, CH\(_2\)), 3.21 (m, 4H, CH\(_2\)), 3.55 (m, 4H, CH\(_2\)), 3.95 (m, 12H, OCH\(_3\)), 4.04 (bs, 4H, CH\(_2\)), 5.25 (bs, 1H, NH), 5.54 (bs, 1H, NH), 6.97 (m, 2H, H-aromatic), 7.33 (m, 2H, H-aromatic), 7.49 (m, 2H, H-aromatic).

\(^{13}\text{C-NMR (CDCl}_3\)}, \delta: 33.05, 33.27, 38.81, 39.08, 41.19, 41.34, 44.95, 45.09 (CH\(_2\), C-1', 2', 4', 4''), 56.20, 56.27, 56.36, 56.49 (CH\(_3\), C-5', 6'), 109.57, 109.70, 110.62, 110.68, 120.85, 120.93 (CH, C-aromatic), 129.96, 131.59, 149.25, 149.52, 152.00, 152.76 (C, C-1, 3, 4), 169.84, 171.89 (C, C-3').

\(N,N'-(3,3'-(Piperazine-1,4-diy1)bis(3-oxopropane-3,1-diy1))bis(2,5-dimethoxybenzenesulfonamide)\) (67)
(C\(_{26}\)H\(_{36}\)N\(_4\)O\(_{10}\)S\(_2\); M.W.= 628.2)

General procedure 6;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.63.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.19 g (52%)
Melting Point: 90-92°C
MS (ESI)\(^{+}\): 651.1 [M+Na]\(^{+}\)
1H-NMR (CDCl₃), δ: 2.55 (t, J= 6.0 Hz, 4H, H-2’), 3.22 (m, 4H, H-1’), 3.37 (m, 4H, H-4’, 4’’), 3.60 (m, 4H, CH₂), 3.84 (s, 6H, OCH₃), 3.97 (s, 6H, OCH₃), 5.92 (t, J= 6.1 Hz, 2H, NH), 7.00 (d, J= 9.0 Hz, 2H, H-3), 7.09 (dd, J₁= 9.0 Hz, J₂= 3.0 Hz, 2H, H-4), 7.46 (d, J= 3.0 Hz, H-6).

13C-NMR (DMSO-d₆), δ: 32.21, 32.51, 38.90, 40.52, 40.79, 44.23, 44.47 (CH₂, C-1’, 2’, 4’, 4’’), 55.76, 56.53 (CH₃, C-5’, 6’), 114.15, 114.26, 119.50 (CH, C-3, 4, 6), 128.22, 150.17, 152.34 (C, C-1, 2, 5), 168.92 (C, C-3’).

N,N’-(3,3’-(Piperazine-1,4-diyl)bis(3-oxopropane-3,1-diyl))dinaphthalene-2-sulfonamide (68)

(C₃₀H₃₂N₄O₆S₂; M.W. = 608.2)

General procedure 6;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.79.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.19 g (54%)
Melting Point: 228-230°C
MS (ESI⁺): 631.0 [M+Na]⁺

1H-NMR (CDCl₃), δ: 2.55 (m, 4H, CH₂), 3.28 (m, 8H, CH₂), 3.52 (4H, m, CH₂), 5.61 (bs, 2H, NH), 7.66 (m, 4H, H-aromatic), 7.86 (dd, J₁= 8.7 Hz, J₂= 1.7 Hz, 2H, H-aromatic), 7.93 (d, J= 7.9 Hz, 2H, H-aromatic), 7.99 (m, 4H, H-aromatic), 8.45 (s, 2H, H-1).

13C-NMR (DMSO-d₆), δ: 32.59, 32.63, 38.90, 40.54, 40.83, 44.25, 44.49 (CH₂, C-1’, 2’, 4’, 4’’), 122.27, 127.36, 127.55, 127.79, 128.67, 129.13, 129.36 (CH, C-aromatic), 131.69, 134.11, 137.32 (C, C-2, 5, 10), 168.58 (C, C-3’).
6.2.9 N-(3-(Piperidin-1-yl)propyl)arylsulphonamides (69, 70)

4-Chloro-N-(3-piperidin-1-yl-propyl)-benzenesulphonamide (69)
(C_{14}H_{21}ClN_{2}O_{2}S; M.W. = 316.8)

![Chemical Structure]

General procedure 7;
Pale yellow oil;
T.L.C. System: DCM-MeOH 95:5 v/v, Rf: 0.30.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 93:7 v/v).
Yield: 0.28 g (75%)
MS (ESI)\(^+\): 317.1, 319.1 [M+H]\(^+\)
\(^1\)H-NMR (CDCl\(_3\)), 8: 1.50 (bs, 2H, CH\(_2\)), 1.67 (m, 6H, CH\(_2\)), 2.43 (m, 6H, CH\(_2\)), 3.09 (t, J= 5.3 Hz, 2H, H-1'), 7.50 (d, J= 8.5 Hz, 2H, H-aromatic), 7.82 (d, J= 8.5 Hz, 2H, H-aromatic), 8.03 (bs, 1H, NH).
\(^1\)C-NMR (CDCl\(_3\)), 8: 23.60, 24.00, 25.70, 44.32, 54.39, 58.71 (CH\(_2\), C-1’, 2’, 3’, 4’, 5’, 6’), 128.42, 129.21 (CH, C-aromatic), 138.61, 138.98 (C, C-1, 4).

N-(3-Piperidin-1-yl-propyl)-naphthalene-2-sulphonamide (70)
(C_{18}H_{24}N_{2}O_{2}S; M.W. = 332.5)

![Chemical Structure]

General procedure 7;
Brownish oil;
T.L.C. System: DCM-MeOH 95:5 v/v, Rf: 0.37.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 95:5 v/v).

276
Yield: 0.28 g (71%)

MS (ESI)$^+$: 333.1 [M+H]$^+$

1H-NMR (CDCl$_3$), δ: 1.48 (bs, 2H, CH$_2$), 1.63 (m, 6H, CH$_2$), 2.34 (m, 6H, CH$_2$), 3.11 (t, J = 5.7 Hz, 2H, H-1’), 7.64 (m, 2H, H-aromatic), 7.86 (dd, J_1 = 8.6 Hz, J_2 = 1.8 Hz, 1H, H-aromatic), 7.93 (d, J = 7.9 Hz, 1H, H-aromatic), 7.98 (m, 3H, 2 x H-aromatic, NH), 8.45 (s, 1H, H-1).

13C-NMR (CDCl$_3$), δ: 23.61, 24.20, 26.03, 44.73, 54.47, 59.00 (CH$_2$, C-1’, 2’, 3’, 4’, 5’, 6’), 122.43, 127.43, 127.89, 128.16, 128.50, 129.13, 129.25 (CH, C-aromatic), 132.23, 134.67, 137.16 (C, C-1, 5, 10).
6.2.10 \(N,N'(4,4'-(\text{Piperazine-1,4-diyl}) \text{bis(butane-4,1-diyl)}) \text{bis(4-chlorobenzene-sulfonamide})\) (73)

(4-Hydroxy-butyl)-carbamic acid tert-butyl ester (78)\(^{20}\)
\((\text{C}_9\text{H}_{19}\text{NO}_3; \text{M.W.} \approx 189.3)\)

Di-tert-butyl dicarbonate (77) (2.69 g, 12.3 mmol) was dissolved at °C in 3 mL of anhydrous DCM and added dropwise to a stirred solution of 4-amino-1-butanol (71) (1 g, 11.2 mmol) and triethylamine (1.7 mL, 12.3 mmol), in 6 mL of anhydrous DCM. The resulting mixture was stirred at r.t. for 7 h. The reaction mixture was then diluted with DCM and washed with saturated \(\text{NH}_4\text{Cl}\) solution (2 x 25 mL) and brine (25 mL). The organic extract was dried over MgSO\(_4\) and the solvent was removed at reduced pressure to afford pure 4-hydroxy-butyl-carbamic acid tert-butyl ester (78) as a pale yellow oil.

Yield: 1.97 g (93%)

\(^1\text{H}-\text{NMR (CDCl}_3\), \(\delta\): 1.44 (s, 9H, H-3', 4', 5'), 1.58 (m, 4H, H-2, 3), 2.05 (bs, 1H, OH), 3.15 (m, 2H, CH\(_2\)), 3.66 (m, 2H, CH\(_2\)), 4.70 (bs, 1H, NH).

\(^{13}\text{C}-\text{NMR (CDCl}_3\), \(\delta\): 26.60 (CH\(_2\), C-aliphatic), 28.41 (CH\(_3\), C-3', 4', 5'), 29.71, 40.29, 62.34 (CH\(_2\), C-aliphatic), 79.17 (C, C-2'), 156.15 (C, C-1').

Methanesulfonic acid 4-tert-butoxycarbonylamino-butyl ester (79)\(^{21}\)
\((\text{C}_{10}\text{H}_{21}\text{NO}_5\text{S}; \text{M.W.} \approx 267.3)\)

To a solution of Boc-4-aminobutanol (78) (1 g, 5.3 mmol) and triethylamine (1.5 mL, 10.6 mmol) in 7 mL of anhydrous DCM was added dropwise methan sulfonyl chloride (0.66 g, 5.8 mmol) over a period of 10 min at 0°C. The mixture was then stirred for an additional 1 h at 0°C and 1 h at r.t. The reaction mixture was diluted with DCM (20 mL)
and washed with cold saturated NaHCO$_3$ solution (2 x 30 mL). The organic layer was
dried over MgSO$_4$ and the solvent was removed under vacuum to give pure
methanesulfonic acid 4-tert-butoxycarbonylamino-butyl ester (79) as a yellow oil.
Yield: 1.21 g (86%)

1H-NMR (CDCl$_3$), δ: 1.44 (s, 9H, H-3’), 1.61 (m, 2H, CH$_2$), 1.79 (m, 2H, CH$_2$), 3.01
(s, 3H, H-6’), 3.16 (m, 2H, CH$_2$), 4.25 (t, J= 6.4 Hz, 2H, H-4), 4.64 (bs, 1H, NH).

13C-NMR (CDCl$_3$), δ: 26.26, 26.40 (CH$_2$, C-2, 3), 28.38 (CH$_3$, C-3’), 39.75 (CH$_3$, C-6’),
42.54, 69.62 (CH$_2$, C-1, 4), 79.24 (C, C-2’), 155.99 (C, C-1’).

{4-[4-(4-tert-Butoxycarbonylamino-butyl)-piperazin-1-yl]-butyl}-carbamic acid
tert-butyl ester (80)

(C$_{22}$H$_{44}$N$_4$O$_4$; M.W. = 428.6)

Piperazine (0.17 g, 2.1 mmol) and NaHCO$_3$ (0.38, 4.5 mmol) were suspended in 3 mL
of absolute ethanol and added dropwise of 79 (1.21 g, 4.5 mmol) diluted in 5 mL of
ethanol. The reaction mixture was stirred under reflux for 24 h. The solvent was
evaporated under vacuum, and the residue was suspended in DCM (30 mL) and washed
with saturated NaHCO$_3$ solution (2 x 30 mL) and brine (30 mL). The organic phase was
evaporated at reduced pressure after drying over MgSO$_4$ to give {4-[4-(4-tert-
Butoxycarbonylamino-butyl)-piperazin-1-yl]-butyl}-carbamic acid tert-butyl ester 80 as
a yellow waxy solid.
Yield: 0.63 g (70%)

1H-NMR (CDCl$_3$), δ: 1.37 (m, 18 H, H-3’), 1.63 (m, 8H, CH$_2$), 2.32 (bs, 4H, CH$_2$),
2.56 (bs, 8H, CH$_2$), 3.33 (t, J= 5.3 Hz, 4H, H-1), 5.56 (bs, 2H, NH).

13C-NMR (CDCl$_3$), δ: 24.40, 25.74 (CH$_2$, C-aliphatic), 28.48, 28.56 (CH$_3$, C-3’),
40.53, 53.05, 58.05 (CH$_2$, C-aliphatic), 78.86 (C, C-2’), 156.05 (C, C-1’).
\(N,N'(4,4'-(\text{piperazine-1,4-diyl})\text{bis}(\text{butane-4,1-diyl}))\text{bis}(4\text{-chlorobenzene-sulfonamide})\) (73)

\((C_{24}H_{34}N_4O_4S_2;\text{M.W.}=577.6)\)

Compound 80 (0.63 g, 1.5 mmol) was dissolved at 0°C in a mixture of 2 mL of TFA and 0.2 mL of distilled water. The reaction mixture was left stirring at r.t for 30 min., then the volume was reduced under vacuum and the remaining suspension was poured dropwise into 5 mL of ice-cooled diethyl ether. The resulting white precipitate was left in the fridge o.n. before being filtered and washed with cold diethyl ether.

The white solid was suspended with 4-chlorobenzenesulfonyl chloride (13) (0.63 g, 3.0 mmol) in 7 mL of anhydrous DCM; the resulting mixture was treated dropwise with triethylamine (1.3 mL, 9.5 mmol) under ice-cooling and stirred for 1 h at r.t.

The reaction mixture was then diluted with DCM and washed with water (2 x 30 mL) and brine (30 mL). The organic solvent was removed under vacuum after drying over MgSO\(_4\) and the crude residue was purified by flash column chromatography (DCM:MeOH 100:0 v/v increasing to 91:9 v/v) to afford pure \(N,N'(4,4'-(\text{piperazine-1,4-diyl})\text{bis}(\text{butane-4,1-diyl}))\text{bis}(4\text{-chlorobenzene-sulfonamide})\) (73) as a white solid.

T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.64.

Yield: 0.12 g (15%)

Melting Point: 182-184°C

MS (ESI): 577.1, 579.1 [M+H]\(^+\)

\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 1.63 (m, 8H, C\(\text{H}_2\)), 2.50 (bs, 4H, C\(\text{H}_2\)), 2.77 (bs, 8H, C\(\text{H}_2\)), 2.96 (t, J= 5.3 Hz, 4H, H-1’), 7.49 (d, J= 8.6 Hz, 4H, H-aromatic), 7.81 (d, J= 8.6 Hz, 4H, H-aromatic).

\(^{13}\)C-NMR (CDCl\(_3\)), \(\delta\): 24.17, 28.29, 42.88, 51.81, 57.72 (CH\(_2\), C-1’, 2’, 3’, 4’, 5’), 128.43, 129.29 (CH, C-aromatic), 138.66, 139.28 (C, C-1, 4).
6.2.11 \(N,N'-(3,3'-(\text{Piperazine-1,4-diyl})\text{bis(propane-3,1-diyl)})\text{bis(4-chlorobenzamide)}\) (122)

\(N-(3\text{-Bromopropyl})-4\text{-chlorobenzamide} \) (120)
\((C_{10}H_{11}BrClNO; M.W. = 276.6)\)

\begin{align*}
\text{4-Chlorobenzoyl chloride (119)} & \quad (0.5 \text{ g, 2.9 mmol}) \quad \text{and} \quad 3\text{-bromopropylamine hydrobromide (32)} & \quad (0.69 \text{ g, 3.2 mmol}) \\
\text{were suspended in anhydrous DCM (8 mL)} & \quad \text{under a nitrogen atmosphere. Triethylamine (0.9 mL, 6.6 mmol) was then added} \\
\text{dropwise under ice-cooling and the reaction mixture was left stirring at 0°C for 10 min.} & \quad \text{and then at r.t. for 20 min. The reaction mixture was then diluted with DCM (20 mL)} \\
\text{and washed with a 2M hydrochloric acid solution (2 x 30 mL) and brine (30 mL).} & \quad \text{The organic layer was dried over MgSO}_4 \quad \text{and the solvent was removed under vacuum to} \\
\text{afford pure } N-(3\text{-bromopropyl})-4\text{-chlorobenzamide (120) as a white solid.} & \quad \text{afford pure } N-(3\text{-bromopropyl})-4\text{-chlorobenzamide (120) as a white solid.} \\
\text{T.L.C. System: DCM- } n\text{hexane 4:1 v/v, Rf: 0.53.} & \quad \text{Yield: 0.63 g (78%)} \\
\text{1H-NMR (CDCl}_3\text{), } \delta: & \quad 2.23 \text{ (m, 2H, H-3'), 3.51 (t, J= 6.4 Hz, 2H, H-4'), 3.64 (m, 2H, H-2'), 6.38 (bs, 1H, NH), 7.43 (d, J= 8.6 Hz, 2H, H-aromatic), 7.73 (d, J= 8.6 Hz, 2H, H-aromatic).} \\
\text{13C-NMR (CDCl}_3\text{), } \delta: & \quad 30.97, 32.01, 38.81 \text{ (CH, C-3', 4', 2'), 128.31, 128.89 (CH, C-aromatic), 132.71, 137.87 (C, C-1, 4), 166.65 (C, C-1').} \\
\end{align*}

\(N,N'-(3,3'-(\text{Piperazine-1,4-diyl})\text{bis(propane-3,1-diyl)})\text{bis(4-chlorobenzamide)} \) (122)
\((C_{24}H_{30}Cl_2N_4O_2; M.W. = 477.4)\)

\begin{align*}
\text{A mixture of compound 120 (0.5 g, 1.8 mmol), piperazine (0.07 g, 0.8 mmol) and} & \quad \text{and} \\
\end{align*}
triethylamine (0.24 mL, 1.7 mmol) in 7 mL of anhydrous THF was stirred under nitrogen atmosphere for 48 h. at r.t. The reaction mixture was then diluted with DCM (20 mL), washed with saturated NaHCO$_3$ solution (2 x 30 mL) and brine (30 mL) and dried over MgSO$_4$. The organic solvent was removed under vacuum and the crude residue was purified by flash column chromatography (DCM-MeOH 100:0 v/v increasing to DCM-MeOH 91:9 v/v) to afford pure N,N'-(3,3''-(piperazine-1,4-diyl)bis(propane-3,1-diyl))bis(4-chlorobenzamide) (122) as a white solid.

T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.63.

Yield: 0.1375 g (36%)

Melting Point: 180-182°C

MS (ESI$^+$): 477.1, 479.1 [M+H]$^+$

1H-NMR (CDCl$_3$), δ: 1.82 (m, 4H, H-3’), 2.56 (m, 12H, H-4’, 5’), 3.59 (m, 4H, H-2’), 7.42 (d, J= 8.5 Hz, 4H, H-aromatic), 7.78 (d, J= 8.5 Hz, 4H, H-aromatic), 8.05 (bs, 2H, NH).

13C-NMR (DMSO-d$_6$), δ: 26.10, 37.92, 52.75, 55.64 (CH$_2$, C-2’, 3’, 4’, 5’), 128.28, 129.02 (CH, C-aromatic), 133.37, 135.79 (C, C-1, 4), 164.99 (C, C-1’).
6.2.12 \(N,N'-(2,2'-(1,4\text{-Phenylenebis(azanediyl)}))\text{bis(ethane-2,1-diyl)})\text{bis(4-chlorobenzene-sulfonamide)} \) (125)

\[\text{C}_{22}\text{H}_{24}\text{Cl}_{2}\text{N}_{4}\text{O}_{4}\text{S}_{2}; \text{M.W.}=543.5 \]

A mixture of compound 38 (1.05 g, 3.5 mmol), 4-phenylendiamine (123) (0.16 g, 1.5 mmol) and triethylamine (0.47 mL, 3.4 mmol) in 13 mL of anhydrous THF was stirred under nitrogen atmosphere for 72 h at r.t. The reaction mixture was then diluted with DCM (35 mL), washed with saturated NaHCO\(_3\) solution (2 x 30 mL) and brine (30 mL) and dried over MgSO\(_4\). The organic solvent was removed under vacuum and the crude residue was purified by flash column chromatography (n-hexane-EtOAc 100:0 v/v increasing to n-hexane-EtOAc 20:80 v/v) to afford pure \(N,N'-(2,2'-(1,4\text{-phenylenebis(azanediyl)})\text{bis(ethane-2,1-diyl)})\text{bis(4-chlorobenzene-sulfonamide)} \) (125) as a light brown solid.

T.L.C. System: EtOAc-n-hexane 8:2 v/v, Rf: 0.46.

Yield: 0.13 g (17%)

Melting Point: 162-164°C

MS (ESI)^+: 543.0, 545.0 [M+H]^+

\(^{1}\text{H-NMR (DMSO-d}_6\), \delta: 2.87 (t, J= 6.5 Hz, 4H, CH\(_2\)), 2.97 (m, 4H, CH\(_2\)), 4.70 (t, J= 6.1 Hz, 2H, N\text{H}), 6.32 (s, 4H, H-4’), 7.65 (d, J= 8.6 Hz, 4H, H-aromatic), 7.79 (d, J= 8.6 Hz, 4H, H-aromatic), 7.81 (bs, 2H, NH).}

\(^{13}\text{C-NMR (DMSO-d}_6\), \delta: 41.84, 43.63 (CH\(_2\), C-1’, 2’), 113.74 (CH, C-4’), 128.39, 129.31 (CH, C-aromatic), 137.20, 139.33, 139.64 (C, C-1, 4, 3’).\)
6.2.13 N-(3-Piperazin-1-yl-propyl)-arylsulfonamides (139-143)

4-Chloro-N-(3-piperazin-1-yl-propyl)-benzensulfonamide (139)
(C_{13}H_{20}ClN_{3}O_{2}S; M.W. = 317.1)

\[
\begin{align*}
\text{Cl} & \quad \longrightarrow \quad \text{O} \\
22 & \quad \longrightarrow \quad 139
\end{align*}
\]

General procedure 8;
Pale yellow solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.73.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 1.37 g (56%)

\(^1\)H-NMR (CDCl$_3$), 8: 1.61-1.67 (m, 2H, H-2’), 2.35-2.46 (m, 6H, CH$_2$), 2.91 (t, J= 4.8 Hz, 4H, CH$_2$), 3.07 (t, J= 5.8 Hz, 2H, CH$_2$), 7.48 (d, J= 8.7 Hz, 2H, H-aromatic), 7.79 (d, J= 8.7 Hz, 2H, H-aromatic).

\(^13\)C-NMR (CDCl$_3$), 8: 23.70, 44.25, 44.41, 45.88, 46.09, 54.18, 58.58 (CH$_2$, C-1’, 2’, 3’, 4’, 5’), 128.40, 129.25 (CH, C-aromatic), 138.70, 138.94 (C, C-1, 4).

N-(3-Piperazin-1-yl-propyl)-benzenesulfonamide (140)22
(C_{13}H_{21}N_{3}O_{2}S; M.W. = 283.3)

\[
\begin{align*}
\text{O} & \quad \longrightarrow \quad \text{N} \\
23 & \quad \longrightarrow \quad 140
\end{align*}
\]

General procedure 8;
Pale yellow oil;
Purification: flash column chromatography (DCM:MeOH:NEt$_3$ 100:0:0 v/v increasing to DCM:MeOH:NEt$_3$ 90:9:1 v/v).
Yield: 1.55 g (71%)
\[^1H-NMR \ (CDCl_3), \delta: \ 1.60-1.66 \ (m, \ 2H, \ H-2'), \ 2.37-2.43 \ (m, \ 6H, \ CH_2), \ 2.92 \ (t, \ J=3.48 \ Hz, \ 4H, \ CH_2), \ 3.08 \ (t, \ J= 5.7 \ Hz, \ 2H, \ CH_2), \ 7.50-7.54 \ (m, \ 2H, \ H-aromatic), \ 7.57 \ (tt, \ J_1= 7.3 \ Hz, \ J_2= 1.2 \ Hz, \ 1H, \ H-4), \ 7.87 \ (d, \ J= 7.2 \ Hz, \ 2H, \ H-2, \ 6). \]

\[^{13}C-NMR \ (CDCl_3), \delta: \ 23.85, \ 44.16, \ 45.80, \ 45.98, \ 53.43, \ 54.00, \ 58.46 \ (CH_2, \ C-1', \ 2', \ 3', \ 4', \ 5'), \ 126.91, \ 128.98, \ 132.32 \ (CH, \ C-aromatic), \ 140.30 \ (C, \ C-1). \]

4-Methyl-N-(3-Piperazin-1-yl-propyl)benzenesulfonamide (141)
\((C_{14}H_{23}N_3O_2S; \ M.W. = 297.4) \)

\[\text{General procedure 8;} \]
\[\text{Pale yellow waxy solid;} \]
\[\text{T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.23.} \]
\[\text{Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 90:9:1 v/v).} \]
\[\text{Yield: 1.35 g (59\%)} \]

\[^1H-NMR \ (CDCl_3), \delta: \ 1.49-1.54 \ (m, \ 2H, \ H-2'), \ 2.24-2.30 \ (m, \ 6H, \ CH_2), \ 2.32 \ (s, \ 3H, \ H-6'), \ 2.80 \ (t, \ J= 4.7 \ Hz, \ 4H, \ CH_2), \ 2.92 \ (t, \ J= 6.1 \ Hz, \ 2H, \ CH_2), \ 7.21 \ (d, \ J= 8.1 \ Hz, \ 2H, \ H-aromatic), \ 7.64 \ (d, \ J= 8.1 \ Hz, \ 2H, \ H-aromatic). \]

\[^{13}C-NMR \ (CDCl_3), \delta: \ 21.39 \ (CH_3, \ C-6'), \ 24.21, \ 43.56, \ 45.80, \ 53.91, \ 57.94 \ (CH_2, \ C-1', \ 2', \ 3', \ 4', \ 5'), \ 126.86, \ 129.52 \ (CH, \ C-aromatic), \ 137.25, \ 142.93 \ (C, \ C-1, \ 4). \]

4-tert-Butyl-N-(3-piperazin-1-yl-propyl)benzenesulfonamide (142)
\((C_{17}H_{29}N_3O_2S; \ M.W. = 339.5) \)

\[\text{General procedure 8;} \]
\[\text{Yellow oil;} \]

Purification: flash column chromatography (DCM:MeOH:NEt₃ 100:0:0 v/v increasing to 90:9:1 v/v).

Yield: 2.61 g (71%)

¹H-NMR (CDCl₃), δ: 1.36 (s, 9H, H-7’), 1.62-1.67 (m, 2H, H-2’), 2.37-2.56 (m, 6H, CH₂), 2.91 (t, J= 4.8 Hz, 4H, CH₂), 3.09 (t, J=5.8 Hz, 2H, CH₂), 7.52 (d, J= 8.5 Hz, 2H, H-aromatic), 7.78 (d, J= 8.5 Hz, 2H, H-aromatic).

¹³C-NMR (CDCl₃), δ: 23.88 (CH₂, C-2’), 31.12 (CH₃, C-7’), 35.09 (C, C-6’), 44.18, 46.16, 54.29, 58.58 (CH₂, C-3’, 4’, 1’, 5’), 125.91, 126.80 (CH, C-aromatic), 137.27, 156.02 (C, C-4,1).

Biphenyl-4-sulfonic acid (3-piperazin-1-yl-propyl)-amide (143)

(C₁₉H₂₅N₃O₂S; M.W = 359.5)

![Structure](image)

General procedure 8;

Colourless oil;

T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.33.

Purification: flash column chromatography (DCM:MeOH:NEt₃ 100:0:0 v/v increasing to 90:9:1 v/v).

Yield: 1.13g (41%)

¹H-NMR (CDCl₃), δ: 1.62-1.67 (m, 2H, H-2’), 2.35-2.43 (m, 6H, CH₂), 2.91 (t, J= 4.7 Hz, 4H, CH₂), 3.10 (t, J= 5.8 Hz, 2H, CH₂), 7.40 (tt, J₁= 7.3 Hz, J₂= 2.1 Hz, 1H, H-4’’), 7.45-7.49 (m, 2H, H-aromatic), 7.60 (d, J= 7.2 Hz, 2H, H-aromatic), 7.71 (d, J= 8.5 Hz, 2H, H-aromatic), 7.91 (d, J= 8.5 Hz, 2H, H-aromatic).

¹³C-NMR (CDCl₃), δ: 24.05, 44.00, 45.97, 54.09, 58.31 (CH₂, C-2’, 3’, 4’, 1’, 5’), 126.99, 127.59, 127.91, 128.41, 129.04 (CH, C-aromatic), 138.92, 139.33, 145.20 (C, C-aromatic).
6.2.14 \(N-(3-(4-(3-Arylsulfonylamino-propyl)-piperazin-1-yl)-propyl)-aryl \\
sulfonamides (126-138) \\

\(N-(3-[4-(3-Benzenesulfonylamino-propyl)-piperazin-1-yl]-propyl)-4-chloro-
benzenesulfonamide (126) \\
(C_{22}H_{31}ClN_{4}O_{4}S_{2}; \text{M.W.}=515.1) \\

General procedure 9; \\
White solid; \\
T.L.C. System: DCM-MeOH \(9:1 \text{ v/v}, \text{Rf: } 0.59\). \\
Purification: flash column chromatography (DCM:MeOH \(100:0 \text{ v/v increasing to 97:3} \text{ v/v}). \\
Yield: 0.35 g (68\%) \\
Melting Point: 128-130°C \\
MS (ESI)^+: 515.1, 517.1 [M+H]^+ \\
\(^1\text{H}-\text{NMR (DMSO-d}_6\), \(\delta\): 1.44-1.51 (m, 4H, H-2', 7'), 2.11-2.26 (m, 12H, CH$_2$), 2.74-
2.79 (m, 4H, CH$_2$), 7.56-7.62 (m, 3H, 2H-aromatic, NH), 7.61-7.64 (m, 1H, H-
aromatic), 7.66-7.70 (m, 3H, 2H-aromatic, NH), 7.78 (d, J= 8.3 Hz, 2H, H-aromatic). \\
\(^1\text{C}-\text{NMR (DMSO-d}_6\), \(\delta\): 26.02, 26.05, 40.85, 40.93, 52.59, 54.74, 54.86 (CH$_2$), \\
126.41, 128.42, 129.15, 129.31, 132.26 (CH, C-aromatic), 137.13, 139.39, 140.50 (C, C-1, 4, 4’’). \\

4-Chloro-\(N-(3-(4-(3-(4-methylbenzenesulfonylamido)propyl)-piperazin-1-yl)-propyl\)benzenesulfonamide (127) \\
(C_{23}H_{33}ClN_{4}O_{4}S_{2}; \text{M.W.}=529.1) \\

General procedure 9;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.57.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.45 g (86%)
Melting Point: 172-174°C
MS (ESI)$^+$: 529.1, 531.1 [M+H]$^+$

1H-NMR (DMSO-d$_6$, δ: 1.43-1.51 (m, 4H, H-2', 7'), 2.10-2.28 (m, 12H, CH$_2$), 2.38 (s, 3H, H-7''), 2.69-2.81 (m, 4H, CH$_2$), 7.39 (d, J= 8.1 Hz, 2H, H-aromatic),7.48 (t, J= 5.6 Hz, 1H, NH), 7.64-7.71 (m, 5H, 4H-aromatic, NH), 7.79 (d, J= 8.7 Hz, 2H, H-aromatic).

13C-NMR (DMSO-d$_6$, δ: 20.91 (CH$_3$, C-7''), 26.02, 40.85, 40.92, 52.59, 54.75, 54.89 (CH$_2$), 126.50, 128.42, 129.30, 129.55 (CH, C-aromatic), 137.13, 137.62, 139.40, 142.46 (C, C-aromatic).

4-tert-Butyl-N-(3-(4-(3-(4-chlorophenylsulfonlamido)propyl)-piperazin-1-yl)-propyl)benzenesulfonamide (128)
(C$_{26}$H$_{39}$ClN$_4$O$_4$S$_2$; M.W.= 571.2)

General procedure 9;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.44.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.34 g (60%)
Melting Point: 130-132°C
MS (ESI)$^+$: 571.2, 573.2 [M+H]$^+$
Microanalysis: Calculated for C$_{26}$H$_{39}$ClN$_4$O$_4$S$_2$ (571.2); Theoretical: %C = 54.67, %H =
6.88, %N = 9.80; Found: %C = 54.51, %H = 6.41, %N = 9.61.

1H-NMR (DMSO-d6), δ: 1.30 (s, 9H, H-8''), 1.41-1.53 (m, 4H, H-2', 7''), 2.11-2.35 (m, 12H, CH2), 2.72-2.80 (m, 4H, CH2), 7.49 (t, J= 5.5 Hz, 1H, NH), 7.60 (d, J= 8.5 Hz, 2H, H-aromatic), 7.65-7.72 (m, 5H, 4H-aromatic, NH), 7.78 (d, J= 8.5 Hz, 2H, H-aromatic).

13C-NMR (DMSO-d6), δ: 26.03 (CH2), 30.79 (CH3, C-8''), 34.77 (C, C-7''), 40.84, 40.88, 52.55, 52.60, 54.75, 54.82 (CH2), 125.93, 126.35, 128.42, 129.31 (CH, C-aromatic), 137.13, 137.68, 139.40, 155.19 (C, C-aromatic).

4-Chloro-N-(3-(4-(3-(4-trifluoromethyl)phenylsulfonylamido)propyl)piperazin-1-yl)-propyl)benzenesulfonamide (129)

(C23H30ClF3N4O4S2; M.W.= 583.1)

![Chemical structure of 4-Chloro-N-(3-(4-(3-(4-trifluoromethyl)phenylsulfonylamido)propyl)piperazin-1-yl)-propyl)benzenesulfonamide](image)

General procedure 9;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.61.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.49 g (85%)
Melting Point: 158-160°C
MS (ESI)^+ : 583.1, 585.1 [M+H]^+

1H-NMR (DMSO-d6), δ: 1.44-1.51 (m, 4H, H-2', 7''), 2.11-2.27 (m, 12H, CH2), 2.74-2.83 (m, 4H, CH2), 7.67 (d, J= 8.5 Hz, 2H, H-aromatic), 7.69 (bs, 1H, NH), 7.78 (d, J= 8.5 Hz, 2H, H-aromatic), 7.86 (bs, NH), 7.94-8.03 (m, 4H, H-aromatic).

13C-NMR (DMSO-d6), δ: 26.02, 40.84, 52.56, 54.65, 54.72 (CH2), 126.38, 126.41, 126.44 (CH, C-3', 6''), 127.44, 128.41, 129.29 (CH, C-aromatic), 131.95, 131.98, 137.13, 139.40, 144.50 (C, C-aromatic).
Chapter 6: Experimental

\[N-(3-(4-(3-(4-Chlorophenylsulfonylamido)propyl)-piperazin-1-yl)-propyl)biphenyl-4-sulfonamide (130)\]

\[\text{C}_{28}\text{H}_{35}\text{ClN}_{6}\text{O}_{8}\text{S}_{2}; \text{M.W.}=591.2\]

General procedure 9;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.63.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.42 g (71%)
Melting Point: 138-140°C
MS (ESI)^+: 591.1, 593.1 [M+H]^+

\[^{1}\text{H-NMR (DMSO-d}_{6}\], \(\delta: \] 1.42-1.54 (m, 4H, H-2', 7'), 2.15-2.31 (m, 12H, CH₂), 2.72-2.81 (m, 4H, CH₂), 7.44 (t, J= 5.7 Hz, 1H, NH), 7.50-7.54 (m, 2H, H-aromatic), 7.62 (t, J= 5.7 Hz, NH), 7.65-7.79 (m, 3H, H-aromatic), 7.74 (d, J= 7.1 Hz, 2H, H-aromatic), 7.78 (d, J= 8.6 Hz, 2H, H-aromatic), 7.85 (d, J= 8.6 Hz, 2H, H-aromatic), 7.89 (d, J= 8.6 Hz, 2H, H-aromatic).

\[^{13}\text{C-NMR (DMSO-d}_{6}\], \(\delta: \] 26.01, 26.07, 40.84, 40.92, 52.58, 54.73, 54.82 (CH₂), 127.02, 127.15, 127.35, 128.42, 129.08, 129.30 (CH, C-aromatic), 137.13, 138.54, 139.26, 139.39, 143.80 (C, C-aromatic).

\[4\text{-}tert\text{-Butyl-N-(3-(4-(3-(phenylsulfonylamido)propyl)-piperazin-1-yl)-propyl)benzenesulfonamide (131)\]

\[\text{C}_{26}\text{H}_{40}\text{N}_{4}\text{O}_{8}\text{S}_{2}; \text{M.W.}=536.7\]
General procedure 9;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.55.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.29 g (54%)
Melting Point: 134-136°C
MS (ESI)⁺: 537.2 [M+H]⁺

1H-NMR (DMSO-d₆), δ: 1.30 (s, 9H, H-8), 1.43-1.49 (m, 4H, H-2’, 7’), 2.11-2.26 (m, 12H, CH₂), 2.72-2.78 (m, 4H, CH₂), 7.49 (t, J= 5.6 Hz, 1H, NH), 7.58-7.62 (m, 5H, 4H-aromatic, NH), 7.66-7.69 (m, 1H, H-aromatic), 7.70 (d, J= 8.5 Hz, 2H, H-aromatic), 7.78 (d, J= 7.8 Hz, 2H, H-aromatic).

13C-NMR (DMSO-d₆), δ: 26.03, 26.06 (CH₂, C-2’, 7’), 30.79 (CH₃, C-8), 34.77 (C, C-7), 40.88, 40.92, 52.56, 52.60, 54.82, 54.86 (CH₂), 125.93, 126.35, 126.41, 129.15, 132.26 (CH, C-aromatic), 137.68, 140.51, 155.20 (C, C-aromatic).

4-tert-Butyl-N-(3-(4-(3-(4-methylphenylsulfamido)propyl)-piperazin-1-yl)-propyl)benzenesulfonamide (132)
(C₂₆H₄₄N₄O₄S₂; M.W.= 550.7)

![Chemical Structure](image)

General procedure 9;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.64.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.46 g (83%)
Melting Point: 155-157°C
MS (ESI)⁺: 573.2 [M+H]⁺

1H-NMR (DMSO-d₆), δ: 1.30 (s, 9H, H-8), 1.43-1.49 (m, 4H, H-2’, 7’), 2.09-2.24 (m,
12H, CH\textsubscript{2}), 2.38 (CH\textsubscript{3}, C-7’’), 2.70-2.78 (m, 4H, CH\textsubscript{2}), 7.39 (d, J= 8.1 Hz, 2H, H-aromatic), 7.49 (bs, 2H, NH\textsubscript{2}), 7.60 (d, J= 8.5 Hz, 2H, H-aromatic), 7.66 (d, J= 8.1 Hz, 2H, H-aromatic), 7.70 (d, J= 8.5 Hz, 2H, H-aromatic).

13C-NMR (DMSO-d\textsubscript{6}), \textdelta{}: 20.91 (CH\textsubscript{3}, C-7’’), 26.04 (CH\textsubscript{2}), 30.79 (CH\textsubscript{3}, C-8), 34.77 (C, C-7), 40.89, 40.92, 52.56, 52.61, 54.84, 54.90 (CH\textsubscript{2}), 125.93, 126.35, 126.50, 129.55 (CH, C-aromatic), 137.63, 137.69, 142.44, 155.18 (C, C-aromatic).

\textbf{4-tert-Butyl-N-(3-(4-(3-(4-(trifluoromethyl)phenylsulfonylamido)propyl)-piperazin-1-yl)-propyl)benzenesulfonamide (133)}

(C\textsubscript{27}H\textsubscript{39}F\textsubscript{3}N\textsubscript{4}O\textsubscript{4}S\textsubscript{2}; M.W. = 604.7)

![Chemical Structure]

General procedure 9;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.76.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 95:5 v/v).
Yield: 0.42 g (70%)
Melting Point: 156-158\textdegree{}C
MS (ESI): 605.2 [M+H]+

\textbf{1H-NMR (DMSO-d\textsubscript{6}), \textdelta{}}: 1.30 (s, 9H, H-8), 1.42-1.51 (m, 4H, H-2’, 7’), 2.09-2.26 (m, 12H, CH\textsubscript{2}), 2.73-2.77 (m, 2H, CH\textsubscript{2}), 2.78-2.82 (m, 2H, CH\textsubscript{2}), 7.49 (t, J= 5.5 Hz, 1H, NH\textsubscript{2}), 7.60 (d, J= 8.4 Hz, 2H, H-aromatic), 7.70 (d, J= 8.4 Hz, 2H, H-aromatic), 7.86 (bs, 1H, NH\textsubscript{2}), 7.97-9.01 (m, 4H, H-aromatic).

\textbf{13C-NMR (DMSO-d\textsubscript{6}), \textdelta{}}: 26.02 (CH\textsubscript{2}), 30.78 (CH\textsubscript{3}, C-8), 34.76 (C, C-7), 40.81, 40.87, 52.53, 52.56, 54.64, 54.80 (CH\textsubscript{2}), 125.92, 126.35 (CH, C-aromatic), 126.41, 126.44 (CH, C-3’’, 6’’), 127.44 (CH, C-aromatic), 132.20, 137.68, 144.50, 155.19 (C, C-7’’, C-aromatic).
N-(3-(4-(3-(4-tert-Butylphenylsulfonylamido)propyl)-piperazin-1-yl)-propyl)
biphenyl-4-sulfonamide (134)
(C_{34}H_{44}N_{4}O_{4}S_{2}; M.W.= 612.8)

General procedure 9;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.62.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.36 g (58%)
Melting Point: 146-148°C
MS (ESI)^+: 613.2 [M+H]^+

^{1}H-NMR (DMSO-d_{6}), \delta: 1.29 (s, 9H, H-8), 1.41-1.53 (m, 4H, H-2', 7'), 2.07-2.25 (m, 12H, CH_{2}), 2.71-2.83 (m, 4H, CH_{2}), 7.44 (t, J= 7.5 Hz, 1H, H-10''), 7.47-7.53 (m, 3H, 2H-aromatic, NH), 7.58-7.64 (m, 3H, 2H-aromatic, NH), 7.70 (d, J= 8.5 Hz, 2H, H-aromatic), 7.74 (d, J= 7.2 Hz, 2H, H-aromatic), 7.85 (d, J= 8.5 Hz, 2H, H-aromatic), 7.89 (d, J= 8.5 Hz, 2H, H-aromatic).

^{13}C-NMR (DMSO-d_{6}), \delta: 26.01, 26.07 (CH_{2}, C-2', 7'), 30.78 (CH_{3}, C-8), 34.76 (C, C-7), 40.87, 40.92, 52.55, 52.59, 54.82 (CH_{2}), 125.92, 126.35, 127.01, 127.15, 127.34, 128.42, 129.08 (CH, C-aromatic), 137.68, 138.53, 139.26, 143.79, 155.19 (C, C-aromatic).

4-Methyl-N-(3-(4-(3-(phenylsulfonylamido)propyl)-piperazin-1-yl)-propyl)benzene sulfonamide (135)
(C_{23}H_{34}N_{4}O_{4}S_{2}; M.W.= 494.6)
General procedure 5;

White solid;

T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.65.

Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 95:5 v/v).

Yield: 0.26 g (52%)

Melting Point: 137-139°C

MS (ESI)^+: 495.2 [M+H]^+

\(^1\)H-NMR (DMSO-d_6), \(\delta\): 1.43-1.51 (m, 4H, H-2’, 7’), 2.13-2.26 (m, 12H, CH_2), 2.38 (s, 3H, H-7), 2.70-2.79 (m, 4H, CH_2), 7.39 (d, J= 8.1 Hz, 2H, H-aromatic), 7.48 (t, J= 5.4 Hz, 1H, NH), 7.56-7.62 (m, 3H, 2H-aromatic, NH), 7.66 (d, J= 8.1 Hz, 2H, H-aromatic), 7.61-7.64 (m, 1H, H-aromatic), 7.78 (d, J= 7.5 Hz, 2H, H-aromatic).

\(^1^3\)C-NMR (DMSO-d_6), \(\delta\): 20.91 (CH_3, C-7), 26.01, 26.05 (CH_2, C-2’, 7’), 40.93, 52.58, 54.87 (CH_2), 126.41, 126.50, 129.15, 129.55, 132.26 (CH, C-aromatic), 137.62, 140.51, 142.46 (C, C-aromatic).

N-(3-(4-(3-(4-Methylphenylsulfonylamido)propyl)-piperazin-1-yl)-propyl)biphenyl-4-sulfonamide (136)

(C_{29}H_{38}N_{4}O_{4}S_{2}; M.W.= 570.77)

General procedure 9;

White solid;

T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.58.

Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).

Yield: 0.38 g (67%)

Melting Point: 134-136°C

MS (ESI)^+: 571.2 [M+H]^+

\(^1\)H-NMR (DMSO-d_6), \(\delta\): 1.42-1.54 (m, 4H, H-2’, 7’), 2.13-2.25 (m, 12H, CH_2), 2.37
Experimental

1H-NMR (DMSO-d6), δ: 1.42-1.54 (m, 4H, H-2', 7'), 2.11-2.25 (m, 12H, CH2), 2.73-2.77 (m, 2H, CH2), 2.78-2.82 (m, 2H, CH2), 7.44 (t, J= 7.3 Hz, 1H, H-aromatic), 7.50-7.53 (m, 2H, H-aromatic, NH), 7.56-7.61 (m, 3H, 2H-aromatic, NH), 7.61-7.66 (m, 2H, H-aromatic), 7.70 (d, J= 7.4 Hz, 2H, H-aromatic), 7.77-7.79 (m, 2H, H-aromatic), 7.85 (d, J= 8.5 Hz, 2H, H-aromatic), 7.89 (d, J= 8.5 Hz, 2H, H-aromatic).

13C-NMR (DMSO-d6), δ: 20.91 (CH3, C-7), 26.00, 26.06 (CH2, C-2’, 7’), 40.91, 52.58, 54.82, 54.87 (CH2), 126.50, 127.01, 127.16, 127.34, 128.43, 129.08, 129.55 (CH, C-aromatic), 137.61, 138.53, 139.26, 142.46, 143.80 (C, C-aromatic).

N-(3-(4-(3-(Phenylsulfonamido)propyl)piperazin-1-yl)-propyl)biphenyl-4-sulfonamide (137)

C_{28}H_{36}N_{4}O_{4}S_{2}; M.W. = 556.7

General procedure 9;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.47.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.39 g (71%)
Melting Point: 124-126°C
MS (ESI)^+: 557.2 [M+H]^+
N-(3-(4-(3-(Phenylsulfonamido)propyl)-piperazin-1-yl)-propyl)-4-(trifluoromethyl)benzenesulfonamide (138)
(C23H31F3N6O4S2; M.W.= 548.6)

General procedure 9;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.72.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 94:6 v/v).
Yield: 0.27 g (50%)
Melting Point: 119-121°C
MS (ESI)^+: 549.2 [M+H]^+

1H-NMR (DMSO-d6), δ: 1.43-1.51 (m, 4H, H-2', 7'), 2.11-2.23 (m, 12H, CH₂), 2.73-2.77 (m, 2H, CH₂), 2.78-2.82 (m, 2H, CH₂), 7.58-7.61 (m, 4H, 3H-aromatic, NH), 7.62-7.66 (m, 2H, 2H-aromatic), 7.77-7.79 (m, 2H, H-aromatic), 7.88 (bs, 1H, NH), 8.00 (s, 4H, H-aromatic).

13C-NMR (DMSO-d6), δ: 26.03, 40.81, 40.91, 52.53, 54.63, 54.82 (CH₂), 126.41, 126.45, 127.44, 129.14, 132.26 (CH, C-aromatic), 132.20, 137.68, 144.50 (C, C-7'', C-aromatic).
6.2.15 \(N-(3-(4-(2-(Arylsulfonamido)ethyl)piperazin-1-yl)propyl)arylsulfonamides \) (144-146)

4-Chloro-\(N-(3-(4-(2-(4-chlorophenylsulfonamido)ethyl)-piperazin-1-yl)-propyl) \) benzenesulfonamide (144)
\((C_{21}H_{28}ClN_{4}O_{4}S_{2}; \text{M.W.}=535.5)\)

General procedure 10;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.46.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.38 g (72%)
Melting Point: 133-135°C
MS (ESI): 535.1, 537.1 [M+H]⁺

\(^{1}H\)-NMR (DMSO-\(d_6\)), \(\delta\): 1.43-1.51 (m, 2H, H-2'), 2.07-2.27 (m, 12H, CH₂), 2.73-2.80 (m, 2H, CH₂), 2.82-2.87 (m, 2H, CH₂), 7.58-7.73 (m, 6H, 4H-aromatic, 2NH), 7.76-7.83 (m, 4H, H-aromatic).

\(^{13}C\)-NMR (DMSO-\(d_6\)), \(\delta\): 26.00, 40.05, 40.82, 52.40, 52.56, 54.72, 56.78 (CH₂), 128.40, 128.42, 129.24, 129.30 (CH, C-aromatic), 137.07, 137.13, 139.38, 139.60 (C, C-1, 4, 4'').

\(N-(3-(4-(2-(Phenylsulfonamido)ethyl)-piperazin-1-yl)-propyl) \) benzenesulfonamide (145)
\((C_{21}H_{30}N_{4}O_{4}S_{2}; \text{M.W.}=466.6)\)
General procedure 10;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.69.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.22 g (47%)
Melting Point: 135-137°C
MS (ESI)^+: 467.1 [M+H]^+

1H-NMR (DMSO-d6), δ: 1.43-1.49 (m, 2H, H-2’), 2.14-2.28 (m, 12H, CH₂), 2.73-2.78 (m, 2H, CH₂), 2.81-2.86 (m, 2H, CH₂), 7.49 (bs, 1H, NH), 7.55-7.62 (m, 5H, 4H-aromatic, NH), 7.61-7.66 (m, 2H, H-aromatic), 7.76-7.82 (m, 4H, H-aromatic).

13C-NMR (DMSO-d6), δ: 26.04, 40.07, 40.91, 52.43, 52.58, 54.84, 56.75 (CH₂), 126.41, 129.12, 129.15, 132.27 (CH, C-aromatic), 140.49, 140.59 (C, C-4, 4’’).

4-tert-Butyl-N-(3-(4-(2-(4-tert-butylphenylsulfonylamido)ethyl)-piperazin-1-yl)-propyl) benzenesulfonamide (145)
(C₂₉H₄₆NaO₄S₂; M.W. = 578.8)

General procedure 10;
Pale yellow solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.55.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 96:4 v/v).
Yield: 0.31 g (53%)
Melting Point: 86-88°C
MS (ESI)^+: 579.2 [M+H]^+

1H-NMR (DMSO-d6), δ: 1.30 (s, 9H, H-tBu), 1.31 (s, 9H, H-tBu), 1.41-1.49 (m, 2H, H-2’), 2.05-2.21 (m, 12H, CH₂), 2.71-2.77 (m, 2H, CH₂), 2.78-2.84 (m, 2H, CH₂), 7.40 (bs, 1H, NH), 7.49 (t, J= 5.2 Hz, 1H, NH), 7.58-7.62 (m, 4H, H-aromatic), 7.68-7.73
(m, 4H, H-aromatic).

13C-NMR (DMSO-d$_6$), δ: 26.01 (CH$_2$, H-2’), 30.79 (CH$_3$, C-8, 8’’), 39.02 (C, C-7, 7’’), 40.08, 40.86, 52.41, 52.59, 54.81, 56.74 (CH$_2$), 125.90, 125.91, 125.92, 126.34 (CH, C-aromatic), 137.68, 137.74, 155.18 (C, C-aromatic).
6.2.16 \(N-(3-(4-(3-(\text{Aril sulfonamido})propanoyl)piperazin-1-yl)-3-\text{o}xopropyl)\)
aryl sulfonamides (148-152)

4-Chloro-\(N-(3-(4-(3-(4-\text{chlorophenyl sulfonamido})propanoyl)piperazin-1-yl)-3-\text{oxopropyl})\)benzenesulfonamide (148)
\(\text{C}_{22}\text{H}_{28}\text{Cl}_{2}\text{N}_{4}\text{O}_{5}\text{S}_{2}; \text{M.W.}=563.5\)

![Chemical structure](image)

General procedure 11;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.48.

Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).

Yield: 0.26 g (46%)
Melting Point: 72-74°C
MS (ESI): 563.1, 565.1 [M+H]^+
\(^1\text{H-NMR (CDCl}_3\), \(\delta\): 1.64-1.70 (m, 2H, H-2’), 2.37-2.34 (m, 6H, CH\(_2\)), 2.54 (t, J= 5.2 Hz, 2H, CH\(_2\)), 3.07 (t, J= 5.7 Hz, 2H, CH\(_2\)), 3.18-3.24 (m, 2H, CH\(_2\)), 3.37-3.41 (m, 2H, CH\(_2\)), 3.54-3.60 (m, 2H, CH\(_2\)), 5.84 (bs, 1H, NH), 6.63 (bs, 1H, NH), 7.47-7.51 (m, 4H, H-aromatic), 7.78-7.82 (m, 4H, H-aromatic).
\(^13\text{C-NMR (CDCl}_3\), \(\delta\): 24.74, 32.80, 39.22, 41.50, 43.32, 45.09, 52.61, 52.75, 57.08 (CH\(_2\)), 128.41, 128.45, 129.39, 129.43 (CH, C-aromatic), 138.72, 138.74, 138.96, 138.98 (C, C-aromatic), 169.41 (C, C-6’).
N-(3-(4-(3-(Phenylsulfonyl)propanoyl)piperazin-1-yl)-3-oxopropyl)benzene sulfonamide (149)

\((C_{22}H_{30}N_{4}O_{5}S_{2}; \text{M.W.}=494.6)\)

General procedure 11;
Colourless oil;
T.L.C. System: DCM-MeOH 9:1 \(v/v\), Rf: 0.54.
Purification: flash column chromatography (DCM:MeOH 100:0 \(v/v\) increasing to 97:3 \(v/v\)).
Yield: 0.18 g (37%)
MS (ESI)\(^+\): 495.1 [M+H]\(^+\)

\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 1.59-1.64 (m, 2H, H-2'), 2.29 (t, \(J=4.7\) Hz, 2H, CH\(_2\)), 2.32 (t, \(J=4.7\) Hz, 2H, CH\(_2\)), 2.37 (t, \(J=6.0\) Hz, 2H, CH\(_2\)), 2.49 (t, \(J=5.6\) Hz, 2H, CH\(_2\)), 3.04 (t, \(J=6.0\) Hz, 2H, CH\(_2\)), 3.17-3.21 (m, 2H, CH\(_2\)), 3.33 (t, \(J=4.7\) Hz, 2H, CH\(_2\)), 3.50-3.54 (m, 2H, CH\(_2\)), 5.80 (t, \(J=6.2\) Hz, 1H, NH), 6.66 (bs, 1H, NH), 7.48-7.52 (m, 4H, H-aromatic), 7.54-7.58 (m, 2H, H-aromatic), 7.82-7.86 (m, 4H, H-aromatic).

\(^{13}\)C-NMR (CDCl\(_3\)), \(\delta\): 24.80, 32.76, 39.22, 41.44, 43.16, 45.05, 52.54, 52.74, 56.87 (CH\(_2\)), 126.68, 126.89, 129.11, 129.16, 132.55, 132.59 (CH, C-aromatic), 140.11, 140.21 (C, C-aromatic), 169.43 (C, C-6').

4-Methyl-N-(3-(4-(3-(4-methylphenylsulfonyl)propanoyl)piperazin-1-yl)-3-oxopropyl)benzenesulfonamide (150)

\((C_{24}H_{34}N_{4}O_{5}S_{2}; \text{M.W.}=522.6)\)

General procedure 11;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.64.

Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).

Yield: 0.17 g (34%)

Melting Point: 149-151°C

MS (ESI)⁺: 523.2 [M+H]⁺

¹H-NMR (CDCl₃), δ: 1.65-1.70 (m, 2H, H-2'), 2.36-2.42 (m, 6H, CH₂), 2.44 (s, 3H, CH₃), 2.45 (s, 3H, CH₃), 2.54 (t, J= 5.5 Hz, 2H, CH₂), 3.10 (t, J= 5.8 Hz, 2H, CH₂), 3.20-3.24 (m, 2H, CH₂), 3.40 (t, J= 4.7 Hz, 2H, CH₂), 3.59 (t, J= 4.7 Hz, 2H, CH₂), 5.52 (t, J= 6.7 Hz, 1H, NH), 6.40 (bs, 1H, NH), 7.31-7.35 (m, 4H, H-aromatic), 7.75 (d, J= 8.3 Hz, 2H, H-aromatic). 7.77 (d, J= 8.3 Hz, 2H, H-aromatic).

¹³C-NMR (CDCl₃), δ: 21.20, 21.46 (CH₃, C-7, 7’’), 24.61, 32.85, 39.16, 41.49, 43.56, 45.07, 52.72, 52.78, 57.42 (CH₂), 126.93, 126.99, 129.67, 129.74 (CH, C-aromatic), 137.10, 137.18, 143.27, 143.28 (C, C-aromatic), 169.45 (C, C-6’).

4-tert-Butyl-N-(3-(4-(4-tert-buty1phenylsulfonamido)propanoyl)piperazin-1-yl)-3-oxopropyl)benzenesulfonamide (151)

(C₃₀H₄₆N₄O₅S₂; M.W.= 606.8)

General procedure 11;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.61.

Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).

Yield: 0.28 g (47%)

Melting Point: 189-191°C

MS (ESI)⁺: 607.3 [M+H]⁺

Microanalysis: Calculated for C₃₀H₄₆N₄O₅S₂ (606.8); Theoretical: %C = 59.38, %H = 7.64, %N = 9.23; Found: %C = 59.22, %H = 8.08, %N = 9.04.
\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 1.36 (s, 9H, H-tBu), 1.37 (s, 9H, H-tBu), 1.66-1.71 (m, 2H, H-2’), 2.37 (t, J= 5.0 Hz, 2H, CH\(_2\)), 2.42 (t, J= 5.0 Hz, 2H, CH\(_2\)), 2.46 (t, J= 5.9 Hz, 2H, CH\(_2\)), 2.57 (t, J= 5.6 Hz, 2H, CH\(_2\)), 3.11 (t, J= 5.9 Hz, 2H, CH\(_2\)), 3.21-3.25 (m, 2H, CH\(_2\)), 3.42 (t, J= 5.0 Hz, 2H, CH\(_2\)), 3.60 (t, J= 5.0 Hz, 2H, CH\(_2\)), 5.54 (t, J= 6.6 Hz, 1H, NH), 6.28 (bs, 1H, NH), 7.51-7.55 (m, 4H, H-aromatic), 7.78 (d, J= 8.5 Hz, 2H, H-aromatic), 7.80 (d, J= 8.5 Hz, 2H, H-aromatic).

\(^13\)C-NMR (CDCl\(_3\)), \(\delta\): 24.76 (CH\(_2\), C-2’), 31.11 (CH\(_3\), C-8, 8’’), 32.97 (CH\(_2\)), 35.12 (C, C-7, 7’’), 39.19, 41.49, 43.43, 45.08, 52.72, 52.82, 57.29 (CH\(_2\)), 126.03, 126.12, 126.80 (CH, C-aromatic), 137.05, 137.12, 156.29, 156.32 (C, C-aromatic), 169.46 (C, C-6’).

N-(3-(4-(Biphenyl-4-ylsulfonamido)propanoyl)piperazin-1-yl)-3-oxopropyl) biphenyl-4-sulphonamide (152)

(C\(_{34}\)H\(_{38}\)N\(_4\)O\(_5\)S\(_2\); M.W.= 646.8)

![Chemical structure of N-(3-(4-(Biphenyl-4-ylsulfonamido)propanoyl)piperazin-1-yl)-3-oxopropyl) biphenyl-4-sulphonamide](image)

General procedure 11;
White solid;
T.L.C. System: DCM-MeOH 9:1 v/v, Rf: 0.54.
Purification: flash column chromatography (DCM:MeOH 100:0 v/v increasing to 97:3 v/v).
Yield: 0.30 g (47%)
Melting Point: 176-178°C
MS (ESI): 647.2 [M+H]⁺

\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 1.65-1.71 (m, 2H, H-2’), 2.35-2.39 (m, 4H, CH\(_2\)), 2.42 (t, J= 5.8 Hz, 2H, CH\(_2\)), 2.56 (t, J= 5.5 Hz, 2H, CH\(_2\)), 3.13 (t, J= 5.8 Hz, 2H, CH\(_2\)), 3.25-3.29 (m, 2H, CH\(_2\)), 3.40 (t, J= 4.6 Hz, 2H, CH\(_2\)), 3.59-3.61 (m, 2H, CH\(_2\)), 5.75 (t, J= 6.3 Hz, 1H, NH), 6.53 (bs, 1H, NH), 7.40-7.46 (m, 2H, H-aromatic), 7.47-7.51 (m, 4H, H-aromatic), 7.60-7.64 (m, 4H, H-aromatic), 7.71-7.75 (m, 4H, H-aromatic), 7.91-7.96 (m, 4H, H-aromatic).

\(^13\)C-NMR (CDCl\(_3\)), \(\delta\): 24.77, 32.85, 39.28, 41.52, 43.42, 45.11, 52.70, 52.75, 57.16
(CH₂), 127.28, 127.31, 127.48, 127.50, 127.68, 128.06, 128.46, 128.53, 129.06, 129.10
(CH, C-aromatic), 138.75, 138.80, 139.24, 139.33, 145.44, 145.46 (C, C-aromatic),
169.46 (C, C-6’).
6.3 Synthesis of \(p \)-phenylenediamine and ethylenediamine structures

6.3.1 General procedures 12-15

General procedure 12: synthesis of \(N-(4\text{-amino-phenyl})\)-arylsulfonamides

Arylsulfonyl chloride (5 mmol) and \(p \)-phenylenediamine (123) (1.62 g, 15 mmol) were suspended in 21 mL of anhydrous DCM under nitrogen atmosphere. The reaction mixture was cooled down to 0°C in an ice-bath and then treated dropwise with \(N,N \)-diisopropylethylamine (4.15 mL, 25 mmol) over a period of 10 min. The reaction was stirred for 30 min. under ice-cooling, then diluted with DCM (100 mL) and washed with water (2 x 100 mL). The organic solvent was removed under vacuum after drying over MgSO\(_4\) and the crude residue was purified by flash column chromatography to give pure \(N-(4\text{-amino-phenyl})\)-arylsulfonamides.

General procedure 13: synthesis of \(N,N'\)-bis-(4-arylsulfonylamino-phenyl)-terephthalamides

\(N-(4\text{-Amino-phenyl})\)-arylsulfonamide (1.5 mmol) was dissolved in 6 mL of anhydrous DCM under \(\text{N}_2 \) atmosphere. Triethylamine (0.2 mL, 1.5 mmol) was added dropwise to the reaction mixture followed by terephthaloyl chloride (167) (0.10 g, 0.5 mmol) dissolved in 4 mL of anhydrous DCM. The reaction mixture was stirred at r.t. for 30 min., then diluted with DCM (25 mL), washed with 2M aqueous HCl solution (2 x 30 mL), saturated NaHCO\(_3\) solution (2 x 30 mL), and finally with brine (30 mL). The organic phase was concentrated at reduced pressure after drying over MgSO\(_4\) and the crude residue was purified by re-crystallisation from MeOH to afford pure \(N,N'\)-bis-(4-arylsulfonylamino-phenyl)-terephthalamides.
General procedure 14: synthesis of \(N,N' \)-bis-(4-arylsulfonylamino-phenyl)-fumaramides

\[
\text{N-(4-Amino-phenyl)-arylsulfonamide (1.5 mmol), was dissolved in 10 mL of anhydrous DCM under } \text{N}_2 \text{ atmosphere. Triethylamine (0.2 mL, 1.5 mmol) was added dropwise to the reaction mixture followed by fumaryl chloride (168) (0.05 mL, 0.5 mmol). The reaction mixture was stirred at r.t. for 30 min, then diluted with DCM (25 mL), washed with 2M aqueous HCl solution (2 x 30 mL), saturated NaHCO}_3 \text{ solution (2 x 30 mL), and finally with brine (30 mL). The organic phase was concentrated at reduced pressure after drying over MgSO}_4 \text{ and the crude residue was purified by re-crystallisation from MeOH to afford pure } N,N' \text{-bis-(4-arylsulfonylamino-phenyl)-fumaramides.}
\]

General procedure 15: synthesis of \(N,N' \)-bis-(4-(arylsulfonamido)phenyl)-succinamides

\[
\text{N-(4-Amino-phenyl)-arylsulfonamide (1.5 mmol) was dissolved in 10 mL of anhydrous DCM under } \text{N}_2 \text{ atmosphere. Triethylamine (0.2 mL, 1.5 mmol) was added dropwise to the reaction mixture followed by succinyl chloride (169) (0.07 mL, 0.5 mmol). The reaction mixture was stirred at r.t. for 30 min, then diluted with DCM (20 mL), washed with 2M aqueous HCl solution (2 x 30 mL), saturated NaHCO}_3 \text{ solution (2 x 30 mL), and finally with brine (30 mL). The organic phase was concentrated at reduced pressure after drying over MgSO}_4 \text{ and the crude residue was purified by re-crystallisation from MeOH to afford pure } N,N' \text{-bis-(4-(arylsulfonamido)phenyl)-succinamides.}
\]
6.3.2 \(N-(4\text{-Amino-phenyl})\text{-arylsulfonamides} \) (164-166, 177-181)

\(N-(4\text{-Amino-phenyl})\text{-4-chloro-benzenesulfonamide} \) (164)

\(\text{(C}_{12}\text{H}_{11}\text{ClN}_{2}\text{O}_{2}\text{S}; \ M.W. = 282.7} \)

General procedure 12;
Pale yellow solid;
T.L.C. System: \text{n}hexane-EtOAc 3:7 v/v, Rf: 0.71.
Yield: 1.06 g (75%)

\(^1\text{H-NMR (CD}_{3}\text{OD), } \delta: 6.58 \text{ (d, J= 8.8 Hz, 2H, H-aromatic), 6.77 \text{ (d, J= 8.8 Hz, 2H, H-aromatic), 7.48 \text{ (d, J= 8.8 Hz, 2H, H-aromatic), 7.63 \text{ (d, J= 8.8 Hz, 2H, H-aromatic).}} \)

\(^{13}\text{C-NMR (CD}_{3}\text{OD), } \delta: 116.66, 126.58 \text{ (CH, C-aromatic), 128.22 \text{ (C, C-aromatic), 130.05 \text{ (CH, C-aromatic), 139.75, 139.82, 147.40 \text{ (C, C-aromatic).}} \)

\(N-(4\text{-Amino-phenyl})\text{-4-methylbenzenesulfonamide} \) (165)

\(\text{(C}_{13}\text{H}_{14}\text{N}_{2}\text{O}_{2}\text{S; \ M.W. = 262.3} \)

General procedure 12;
Yellow solid;
T.L.C. System: \text{n}hexane-EtOAc 4:6 v/v, Rf: 0.52.
Yield: 0.96 g (73%)

\(^1\text{H-NMR (CD}_{3}\text{OD), } \delta: 2.38 \text{ (s, 3H, H-7), 6.56 \text{ (d, J= 8.7 Hz, 2H, H-aromatic), 6.77 \text{ (d, J= 8.7 Hz, 2H, H-aromatic), 7.26 \text{ (d, J= 8.3 Hz, 2H, H-aromatic), 7.54 \text{ (d, J= 8.3 Hz, 2H, H-aromatic).}} \)

\(^{13}\text{C-NMR (CD}_{3}\text{OD), } \delta: 21.43 \text{ (CH}_{3}, \text{ C-7), 116.66, 126.41, 128.40 \text{ (CH, C-aromatic),} \)

307
128.72 (C, C-aromatic), 130.36 (CH, C-aromatic), 138.07, 144.66, 147.05 (C, C-aromatic).

\[\text{N-(4-Amino-phenyl)-benzenesulfonamide (166)}^{24} \]
\[(\text{C}_{12}\text{H}_{12}\text{N}_{2}\text{O}_{2}\text{S}; \text{M.W.} = 248.3)\]

General procedure 12;
Pale pink solid;
T.L.C. System: nhexane -EtOAc 5:5 v/v, Rf: 0.35.
Yield: 0.95 g (77%)
\[\text{1H-NMR (CD}_{3}\text{OD), } \delta: 6.56 (d, J= 8.7 Hz, 2H, H-aromatic), 6.77 (d, J= 8.7 Hz, 2H, H-aromatic), 7.43-7.48 (m, 2H, H-aromatic), 7.56 (tt, J\textsubscript{1}= 7.4 Hz, J\textsubscript{2}= 1.2 Hz, 1H, H-4), 7.65-7.69 (m, 2H, H-aromatic).
\]
\[\text{13C-NMR (CD}_{3}\text{OD), } \delta: 116.65, 126.59, 128.34 (CH, C-aromatic), 128.55 (C, C-aromatic), 129.84, 133.62 (CH, C-aromatic), 141.02, 147.17 (C, C-aromatic).
\]

\[\text{N-(4-Amino-phenyl)-4-\textit{tert}-butylbenzenesulfonamide (177)} \]
\[(\text{C}_{16}\text{H}_{20}\text{N}_{2}\text{O}_{2}\text{S}; \text{M.W.} = 304.4)\]

General procedure 12;
Yellow solid;
T.L.C. System: nhexane -EtOAc 3:7 v/v, Rf: 0.66.
Yield: 1.25 g (82%)
\[\text{1H-NMR (CD}_{3}\text{OD), } \delta: 1.33 (s, 9H, H-8), 6.57 (d, J= 8.6 Hz, 2H, H-aromatic), 6.79 (d, J= 8.6 Hz, 2H, H-aromatic), 7.50 (d, J= 8.6 Hz, 2H, H-aromatic), 7.60 (d, J= 8.6 Hz,}
2H, H-aromatic).

\[^{13}\text{C-NMR (CD}_3\text{OD)}\), \(\delta\): 31.47 (CH\(_3\), C-8), 35.97 (C, C-7), 116.69, 126.28, 126.82, 128.24 (CH, C-aromatic), 128.79, 138.12, 146.99, 157.52 (C, C-aromatic).\]

N-(4-Amino-phenyl)-4-(trifluoromethyl)benzenesulfonamide (178)\(^\text{25}\)
(C\(_{13}\)H\(_{11}\)F\(_3\)N\(_2\)O\(_2\)S; M.W. = 316.3)

![Diagram](image)

General procedure 12;
Yellow solid;
T.L.C. System: nhexane -EtOAc 3:7 v/v, Rf: 0.62.
Yield: 1.47 g (93%)

\[^{1}\text{H-NMR (CD}_3\text{OD)}\), \(\delta\): 6.59 (d, J = 8.6 Hz, 2H, H-aromatic), 6.79 (d, J = 8.6 Hz, 2H, H-aromatic), 7.77 (d, J = 8.3 Hz, 2H, H-aromatic), 7.85 (d, J = 8.3 Hz, 2H, H-aromatic).\]

\[^{13}\text{C-NMR (CD}_3\text{OD)}\), \(\delta\): 116.88, 123.84 (CH, C-aromatic), 126.95, 126.98, 127.01 (CH, C-3, 5), 127.93 (C, C-aromatic), 129.01 (CH, C-aromatic), 134.58, 134.84, 135.10, 135.36 (C, C-7), 144.86, 147.53 (C, C-aromatic).\]

N-(4-Amino-phenyl)biphenyl-4-sulfonamide (179)\(^\text{26}\)
(C\(_{18}\)H\(_{16}\)N\(_2\)O\(_2\)S; M.W. = 324.4)

![Diagram](image)

General procedure 12;
Yellow solid;
T.L.C. System: nhexane -EtOAc 6:4 v/v, Rf: 0.44.
Yield: 1.11 g (69%)

\[^{1}\text{H-NMR (DMSO-d}_6\), \(\delta\): 4.95 (bs, 2H, NH\(_2\)), 6.41 (d, J = 8.6 Hz, 2H, H-aromatic), 6.73\]
(d, J = 8.6 Hz, 2H, H-aromatic), 7.41-7.45 (m, 1H, H-10), 7.47-7.51 (m, 2H, H-aromatic), 7.71-7.74 (m, 4H, H-aromatic), 8.83 (d, J = 8.4 Hz, 2H, H-aromatic), 9.53 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 113.99, 124.55 (CH, C-aromatic), 125.28 (C, C-aromatic), 126.99, 127.04, 127.40, 128.45, 129.06 (CH, C-aromatic), 138.37, 138.63, 143.75, 146.53 (C, C-aromatic).

N-(4-Aminophenyl)naphthalene-1-sulfonamide (180)$_{27}$

(C$_{16}$H$_{14}$N$_2$O$_2$S; M.W. = 298.3)

General procedure 12;

Yellow solid;

T.L.C. System: nhexane-EtOAc 6:4 v/v, Rf: 0.63.

Yield: 1.25 g (84%)

1H-NMR (CD$_3$OD), δ: 6.43 (d, J = 8.7 Hz, 2H, H-aromatic), 6.64 (d, J = 8.7 Hz, 2H, H-aromatic), 7.43 (t, J = 7.8 Hz, 1H, H-aromatic), 7.59-7.63 (m, 1H, H-aromatic), 7.65-7.70 (m, 1H, H-aromatic), 7.97 (d, J = 8.1 Hz, 1H, H-aromatic), 8.02-8.06 (m, 2H, H-aromatic), 8.75 (d, J = 8.4 Hz, 1H, H-aromatic).

13C-NMR (CD$_3$OD), δ: 116.55, 125.11, 125.98, 126.39, 127.83 (CH, C-aromatic), 128.29 (C, C-aromatic), 128.97 (CH, C-aromatic), 129.68 (C, C-aromatic), 130.06, 131.30, 135.21 (CH, C-aromatic), 135.62, 136.04, 147.03 (C, C-aromatic).
N-(4-**Aminophenyl)**quinoline-8-sulfonamide (181)**28

(C\textsubscript{15}H\textsubscript{13}N\textsubscript{3}O\textsubscript{2}S; M.W. = 299.3)

![Reaction Diagram](image)

General procedure 12;

Yellow solid;

T.L.C. System: nhexane -EtOAc 6:4 v/v, Rf: 0.39.

Yield: 79 g (53%)

\textbf{1H-NMR (DMSO-\textit{d}_6)}, \textit{\delta}: 4.83 (s, 2H, \textit{NH}_2), 6.25 (d, \textit{J} = 8.7 Hz, 2H, H-aromatic), 6.57 (d, \textit{J} = 8.7 Hz, 2H, H-aromatic), 7.65 (t, \textit{J} = 7.7 Hz, 1H, H-aromatic), 7.74 (dd, \textit{J}_1 = 8.4 Hz, \textit{J}_2 = 4.2 Hz, 1H, H-aromatic), 8.18 (dd, \textit{J}_1 = 7.3 Hz, \textit{J}_2 = 1.3 Hz, 1H, H-aromatic), 8.24 (dd, \textit{J}_1 = 8.2 Hz, \textit{J}_2 = 1.3 Hz, 1H, H-aromatic), 8.53 (dd, \textit{J}_1 = 8.4 Hz, \textit{J}_2 = 1.7 Hz, 1H, H-aromatic), 9.13 (bs, 1H, \textit{NH}), 9.17 (dd, \textit{J}_1 = 4.2 Hz, \textit{J}_2 = 1.7 Hz, 1H, H-aromatic).

\textbf{13C-NMR (DMSO-\textit{d}_6)}, \textit{\delta}: 113.73, 122.54, 124.12 (CH, C-aromatic), 125.45 (C, C-aromatic), 125.59 (CH, C-aromatic), 128.27 (C, C-aromatic), 131.63, 133.74 (CH, C-aromatic), 135.49 (C, C-aromatic), 137.01 (CH, C-aromatic), 142.74, 146.33 (C, C-aromatic), 151.32 (CH, C-aromatic).
6.3.3 *N*-(2-Aminoethyl)-4-chlorobenzenesulfonamide (176)\(^{29}\)

(CsH\(_{11}\)ClN\(_\)\(_\)O\(_\)S; M.W.= 234.7)

Ethylenediamine (175) (0.63 mL, 9.5 mmol) and triethylamine (3.27 mL, 23.7 mmol) were dissolved in 15 mL of anhydrous DCM under nitrogen atmosphere. A solution of 4-chlorobenzenesulfonyl chloride (13) (1g, 4.7 mmol) in 7 mL of anhydrous DCM was added dropwise under ice-cooling over a period of 10 min. The reaction mixture was stirred at 0°C for 1 h and then at r.t. for further 2 h. The reaction system was diluted with DCM (70 mL) and washed with water (2 x 100 mL) and brine (100 mL). The organic solvent was removed under vacuum after drying over MgSO\(_4\) to give the title compound as a yellow solid.

Yield: 0.65 g (59%)

\(^1\)H-NMR (CD\(_3\)OD), \(\delta\): 2.29 (d, J= 6.2 HZ, 2H, CH\(_2\)), 2.93 (d, J= 6.2 HZ, 2H, CH\(_2\)), 7.61 (d, J= 8.7 Hz, 2H, H-aromatic), 7.85 (d, J= 8.7 Hz, 2H, H-aromatic).

\(^{13}\)C-NMR (CD\(_3\)OD), \(\delta\): 42.23, 46.48 (CH\(_2\), C-1’, 2’), 129.74, 130.48 (CH, C-aromatic), 139.84, 140.73 (C, C-1, 4).
6.3.4 N,N'-Bis-(4-arylsulfonylamino-phenyl)-terephthalamides (158, 170)

N,N'-Bis-[4-(4-chloro-benzenesulfonylamino)-phenyl]-terephthalamide (158)
($C_{32}H_{24}Cl_{2}N_{4}O_{6}S_{2}$; M.W. = 695.5)

General procedure 13;
White solid;
Yield: 0.13 g (36%)
Melting Point: >360°C
MS (ESI)$^+$: 695.0, 697.0 [M+H]$^+$
1H-NMR (DMSO-$_d_6$), δ: 7.07 (d, J= 8.9 Hz, 4H, H-aromatic), 7.62-7.67 (m, 8H, H-aromatic), 7.73 (d, J= 8.6 Hz, 4H, H-aromatic), 8.03 (s, 4H, H-9), 10.23 (bs, 2H, NH), 10.37 (bs, 2H, NH).

13C-NMR (DMSO-$_d_6$), δ: 121.23, 121.54, 127.62, 128.62, 129.36 (CH, C-aromatic), 132.84, 135.83, 137.28, 137.70, 138.18 (C, C-aromatic), 164.58 (C, C-9).

N,N'-Bis-[4-(4-methylbenzenesulfonylamino)-phenyl]-terephthalamide (170)
($C_{34}H_{30}N_{4}O_{6}S_{2}$; M.W. = 654.7)

General procedure 12;
Pale yellow solid;
Yield: 0.21 g (69%)
Melting Point: >360°C
MS (ESI)$^+$: 677.1 [M+Na]$^+$

1H-NMR (DMSO-d$_6$), δ: 2.34 (s, 6H, H-1’), 7.07 (d, J= 8.9 Hz, 4H, H-aromatic), 7.34 (d, J= 7.5 Hz, 4H, H-aromatic), 7.61-7.65 (m, 8H, H-aromatic), 8.03 (s, 4H, H-9), 10.10 (bs, 2H, NH), 10.30 (bs, 2H, NH).

13C-NMR (DMSO-d$_6$), δ: 20-92 (CH$_3$, C-1’), 120.98, 121.23, 126.71, 127.58, 129.59 (CH, C-aromatic), 133.43, 135.37, 136.59, 137.27, 143.10 (C, C-aromatic), 164.52 (C, C-9).
6.3.5 \(N,N'\)-Bis-(4-arylsulfonylamino-phenyl)-fumaramides (160, 171-172)

\(N,N'\)-Bis-[4-(4-chloro-benzenesulfonylamino)-phenyl]-fumaramide (160)
\((C_{28}H_{22}Cl_{2}N_{4}O_{6}S_{2}; \text{M.W.}=645.5)\)

![Image of chemical structure](image1)

General procedure 14;
Yellow solid;
Yield: 0.19 g (61%)
Melting Point: >360°C
MS (ESI)\(^+\): 667.0, 669.0 [M+Na]\(^+\)
\(^1\)H-NMR (DMSO-\(d_6\), \(\delta\)): 7.05 (d, \(J=8.7\) Hz, 4H, H-aromatic), 7.11 (s, 2H, H-10), 7.56 (d, \(J=8.7\) Hz, 4H, H-aromatic), 7.62 (d, \(J=8.5\) Hz, 4H, H-aromatic), 7.71 (d, \(J=8.5\) Hz, 4H, H-aromatic), 10.19 (bs, 2H, NH), 10.42 (bs, 2H, NH).
\(^{13}\)C-NMR (DMSO-\(d_6\), \(\delta\)): 120.16, 121.75, 128.58, 129.36 (CH, C-aromatic, C-10), 132.88 (C, C-aromatic), 133.83 (CH, C-aromatic), 135.62, 137.69, 138.22 (C, C-aromatic), 161.82 (C, C-9).

\(N,N'\)-Bis-[4-(4-methylbenzenesulfonylamino)-phenyl]-fumaramide (171)
\((C_{30}H_{28}N_{4}O_{6}S_{2}; \text{M.W.}=604.6)\)

![Image of chemical structure](image2)

General procedure 14;
Light brown solid;
Yield: 0.14 g (47%)
Melting Point: >360°C
MS (ESI)\(^+\): 605.3 [M+H]\(^+\)
\(^1\)H-NMR (DMSO-\(d_6\), \(\delta\)): 2.33 (s, 6H, H-1’), 7.05 (d, \(J=8.3\) Hz, 4H, H-aromatic), 7.10
(s, 2H, H-10), 7.33 (d, J= 7.7 Hz, 4H, H-aromatic), 7.53 (d, J= 8.3 Hz, 4H, H-aromatic), 7.61 (d, J= 7.7 Hz, 4H, H-aromatic), 10.08 (bs, 2H, NH), 10.42 (bs, 2H, NH).

\[^{13}C-NMR \text{ (DMSO-d}_6\text{), } \delta: \] 20.91 (CH\text{ }_3, \text{ C-1'}), 120.13, 121.18, 126.69, 129.59 (CH, C-aromatic, C-10), 133.44 (C, C-aromatic), 133.79 (CH, C-aromatic), 135.19, 136.57, 143.12 (C, C-aromatic), 161.78 (C, C-9).

\[N,N'-\text{Bis-(4-phenylsulfonylamido)-phenyl-fumaramide (172)} \]
(C\text{ }_{28}H\text{ }_{24}N\text{ }_{4}O\text{ }_{6}S\text{ }_{2}; \text{ M.W.} = 576.6)

\begin{center}

\[\text{General procedure 10;} \]
\[\text{Pale yellow solid;} \]
\[\text{Yield: 0.11 g (39%)} \]
\[\text{Melting Point: 294-296°C} \]
\[\text{MS (ESI)}^+ \text{: 599.0 [M+Na]}^+ \]

\[^{1}H-NMR \text{ (DMSO-d}_6\text{), } \delta: \] 7.05 (d, J= 8.9 Hz, 4H, H-aromatic), 7.09 (s, 2H, H-10), 7.52-7.56 (m, 8H, H-aromatic), 7.60 (tt, J\text{ }_1= 7.3 Hz, J\text{ }_2= 2.1 Hz, 2H, H-4), 7.73 (d, J= 8.0 Hz, 4H, H-aromatic), 10.15 (bs, 2H, NH), 10.43 (bs, 2H, NH).

\[^{13}C-NMR \text{ (DMSO-d}_6\text{), } \delta: \] 120.11, 121.37, 126.62, 129.16, 132.79 (CH, C-aromatic, C-10), 133.28 (C, C-aromatic), 133.80 (CH, C-aromatic), 135.32, 139.42 (C, C-aromatic), 161.78 (C, C-9).
6.3.6 \(N,N'\)-Bis-(4-(arylsulfonamido)phenyl)-succinamides (162, 173-174, 182-186)

\(N,N'\)-Bis-(4-(4-chlorophenylsulfonamido)phenyl)succinamide (162)
\(C_{28}H_{24}Cl_2N_4O_6S_2;\ M.W. = 647.5 \)

General procedure 15;
Brown solid;
Yield: 0.16 g (48%)
Melting Point: 284-286°C
MS (ESI\(^+\)): 669.0, 671.0 [M+Na]\(^+\)
\(^1\)H-NMR (DMSO-d\(_6\)), \(\delta \): 2.54 (s, 4H, H-10), 6.97 (d, J= 8.8 Hz, 4H, H-aromatic), 7.44 (d, J= 8.8 Hz, 4H, H-aromatic), 7.61 (d, J= 8.6 Hz, 4H, H-aromatic), 7.68 (d, J= 8.6 Hz, 4H, H-aromatic), 9.92 (bs, 2H, NH), 10.08 (bs, 2H, NH).
\(^13\)C-NMR (DMSO-d\(_6\)), \(\delta \): 31.00 (CH\(_2\), C-10), 119.59, 122.04, 128.56, 129.30 (CH, C-aromatic), 131.02, 131.86, 137.62, 138.21 (C, C-aromatic), 170.11 (C, C-9).

\(N,N'\)-Bis-(4-(4-methylphenylsulfonamido)phenyl)succinamide (173)
\(C_{30}H_{30}N_4O_6S_2;\ M.W. = 606.7 \)

General procedure 15;
White solid;
Yield: 0.11 g (36%)
Melting Point: 284-286°C
MS (ESI\(^+\)): 629.1 [M+Na]\(^+\)
\(^1\)H-NMR (DMSO-d\(_6\)), \(\delta \): 2.33 (6H, H-1’), 2.56 (s, 4H, H-10), 6.97 (d, J= 8.3 Hz, 4H, H-aromatic), 7.32 (d, J= 7.7 Hz, 4H, H-aromatic), 7.41 (d, J= 8.3 Hz, 4H, H-aromatic),
7.58 (d, J= 8.6 Hz, 4H, H-aromatic), 9.88 (bs, 2H, NH), 9.95 (bs, 2H, NH).

13C-NMR (DMSO-d_6), δ: 20.91 (CH$_3$, C-1’), 30.99 (CH$_2$, C-10), 119.56, 121.47, 126.67, 129.53 (CH, C-aromatic), 132.43, 135.94, 136.57, 143.01 (C, C-aromatic), 170.07 (C, C-9).

N,N'-Bis-(4-(phenylsulfonamido)phenyl)succinamide (174)

(C$_{28}$H$_{26}$N$_4$O$_6$S$_2$; M.W. = 578.6)

General procedure 15;
White solid;
Yield: 0.18 g (64%)
Melting Point: 270-272°C
MS (ESI$^+$): 601.1 [M+Na]$^+$

1H-NMR (DMSO-d_6), δ: 2.56 (s, 4H, H-10), 6.97 (d, J= 8.8 Hz, 4H, H-aromatic), 7.41 (d, J= 8.8 Hz, 4H, H-aromatic), 7.50-7.55 (m, 4H, H-aromatic), 7.57-7.61 (m, 2H, H-4), 7.71-7.78 (m, 4H, H-aromatic), 9.89 (bs, 2H, NH), 10.02 (bs, 2H, NH).

13C-NMR (DMSO-d_6), δ: 31.00 (CH$_2$, C-10), 119.54, 121.67, 126.61, 129.11 (CH, C-aromatic), 132.24 (C, C-aromatic), 132.71 (CH, C-aromatic), 136.08, 139.40 (C, C-aromatic), 170.08 (C, C-9).

N,N'-Bis-(4-(4-tert-butylphenylsulfonamido)phenyl)succinamide (182)

(C$_{36}$H$_{42}$N$_4$O$_6$S$_2$; M.W. = 690.8)

General procedure 15;
Yellow solid;
Yield: 0.13 g (39%)
Melting Point: 260-262°C
MS (ESI)$^+$: 713.2 [M+Na]$^+$

1H-NMR (DMSO-d$_6$), δ: 1.26 (18H, H-2’), 2.56 (s, 4H, H-10), 7.01 (d, J= 8.6 Hz, 4H, H-aromatic), 7.42 (d, J= 8.6 Hz, 4H, H-aromatic), 7.55 (d, J= 8.4 Hz, 4H, H-aromatic), 7.65 (d, J= 8.4 Hz, 4H, H-aromatic), 9.89 (bs, 2H, NH), 10.03 (bs, 2H, NH).

13C-NMR (DMSO-d$_6$), δ: 30.71 (CH$_3$), 30.99 (CH$_2$, C-10), 34.80 (C, C-1’), 119.60, 121.06, 125.98, 126.49 (CH, C-aromatic), 132.51, 135.81, 136.81, 155.68 (C, C-aromatic), 170.07 (C, C-9).

N,N'-Bis-(4-(4-trifluoromethylphenylsulfonamido)phenyl)succinamide (183)
(C$_{30}$H$_{24}$F$_6$N$_4$O$_6$S$_2$; M.W. = 714.1)

General procedure 15;
Grey solid;
Yield: 0.15 g (42%)
Melting Point: 306-308°C
MS (ESI)$^+$: 737.1 [M+Na]$^+$

1H-NMR (DMSO-d$_6$), δ: 2.57 (s, 4H, H-10), 6.99 (d, J= 8.8 Hz, 4H, H-aromatic), 7.45 (d, J= 8.8 Hz, 4H, H-aromatic), 7.89 (d, J= 8.3 Hz, 4H, H-aromatic), 7.94 (d, J= 8.3 Hz, 4H, H-aromatic), 9.94 (bs, 2H, NH), 10.26 (bs, 2H, NH).

13C-NMR (DMSO-d$_6$), δ: 30.98 (CH$_2$, C-10), 119.62, 122.18 (CH, C-aromatic), 124.43 (C, C-aromatic), 126.40, 126.43 (CH, C-3, 6), 127.62 (CH, C-aromatic), 131.57 (C, C-aromatic), 132.03, 132.29, 132.55, 132.80 (C, C-1’), 136.54, 143.28 (C, C-aromatic), 170.17 (C, C-9).
N,N’-Bis-(4-(4-biphenyl-4-ylsulfonamido)phenyl)succinamide (184)
(C_{40}H_{34}N_{4}O_{6}S_{2}; M.W.= 730.8)

General procedure 15;
Brown solid;
Yield: 0.16 g (44%)
Melting Point: 290-292°C
MS (ESI)^+: 753.2 [M+Na]^+

^1H-NMR (DMSO-d_{6}), δ: 2.56 (s, 4H, H-10), 7.03 (d, J= 8.8 Hz, 4H, H-aromatic), 7.41-7.49 (m, 10H, H-aromatic), 7.70 (d, J= 7.3 Hz, 4H, H-aromatic), 7.77 (d, J= 8.5 Hz, 4H, H-aromatic), 7.83 (d, J= 8.5 Hz, 4H, H-aromatic), 9.90 (bs, 2H, NH), 10.10 (bs, 2H, NH).

^13C-NMR (DMSO-d_{6}), δ: 31.01 (CH_{2}, C-10), 119.61, 121.54, 127.02, 127.27, 127.30, 128.50, 129.05 (CH, C-aromatic), 132.29, 136.07, 138.27, 144.11 (C, C-aromatic), 170.10 (C, C-9).

N,N’-Bis-(4-(4-naphtalene-1-sulfonamido)phenyl)succinamide (185)
(C_{36}H_{30}N_{4}O_{6}S_{2}; M.W.= 678.7)

General procedure 15;
Brown solid;
Yield: 0.18 g (53%)
Melting Point: 270-272°C
MS (ESI)^+: 701.1 [M+Na]^+

^1H-NMR (DMSO-d_{6}), δ: 2.48 (s, 4H, H-4’), 6.90 (d, J= 8.4 Hz, 4H, H-aromatic), 7.32
(d, J= 8.4 Hz, 4H, H-aromatic), 7.57 (t, J= 7.8 Hz, 2H, H-aromatic), 7.66 (t, J= 7.3 Hz, 2H, H-aromatic), 7.71-7.75 (m, 2H, H-aromatic), 8.06 (d, J= 7.8 Hz, 2H, H-aromatic), 8.13 (d, J= 7.0 Hz, 2H, H-aromatic), 8.18 (d, J= 7.9 Hz, 2H, H-aromatic), 8.73 (d, J= 8.5 Hz, 2H, H-aromatic), 9.81 (bs, 2H, NH), 10.43 (bs, 2H, NH).

13C-NMR (DMSO-d_6), δ: 30.99 (CH$_2$, C-10), 119.55, 120.66, 124.35, 124.38 (CH, C-aromatic), 126.88 (C, C-aromatic), 127.46, 128.00, 129.00 (CH, C-aromatic), 129.79, 132.13 (C, C-aromatic), 133.68 (CH, C-aromatic), 134.37, 135.66 (C, C-aromatic), 169.99 (C, C-9).

N,N'-Bis-(4-(4-quinoline-8-sulfonamido)phenyl)succinamide (186)

(C$_{34}$H$_{28}$N$_4$O$_6$S$_2$; M.W. = 680.7)

General procedure 15;
Brown solid;
Yield: 0.12 g (35%)
Melting Point: 296-298°C
MS (ESI$^+$): 681.2 [M+Na]$^+$

1H-NMR (DMSO-d_6), δ: 2.45 (s, 4H, H-4'), 6.90 (d, J= 8.9 Hz, 4H, H-aromatic), 7.23 (d, J= 8.9 Hz, 4H, H-aromatic), 7.67 (t, J= 7.8 Hz, 2H, H-aromatic), 7.72 (dd, J$_1$= 8.3 Hz, J$_2$= 4.3 Hz, 2H, H-aromatic), 8.24 (d, J= 8.3 Hz, 2H, H-aromatic), 8.28 (d, J= 7.2 Hz, 2H, H-aromatic), 8.51 (dd, J$_1$= 8.4 Hz, J$_2$= 1.4 Hz, 2H, H-aromatic), 9.15 (dd, J$_1$= 4.3 Hz, J$_2$= 1.4 Hz, 2H, H-aromatic), 9.74 (bs, 2H, NH), 9.79 (bs, 2H, NH).

13C-NMR (DMSO-d_6), δ: 30.95 (CH$_2$, C-10), 119.32, 121.10, 122.58, 125.57 (CH, C-aromatic), 134.08 (CH, C-aromatic), 135.11, 135.65 (C, C-aromatic), 136.96 (CH, C-aromatic), 142.65 (C, C-aromatic), 151.39 (CH, C-aromatic), 169.93 (C, C-9).
6.3.7 \(N,N'\)-Bis-(2-(4-chlorophenylsulfonamido)ethyl)-succinamide (155)
\((C_{20}H_{24}Cl_2N_4O_6S_2; M.W. = 551.4)\)

\(N\)-(2-Aminoethyl)-4-chlorobenzenesulfonamide (176) (0.35 g, 1.5 mmol) was dissolved in 9 mL of anhydrous DCM under N\(_2\) atmosphere. Triethylamine (0.2 mL, 1.5 mmol) was added dropwise to the reaction mixture followed by succinyl chloride (169) (0.07 mL, 0.5 mmol). The reaction was stirred at r.t. for 1 h, then diluted with DCM (20 mL), washed with 2M aqueous HCl solution (2 \times 30 mL), saturated NaHCO\(_3\) solution (2 \times 30 mL), and finally with brine (30 mL). The organic phase was concentrated at reduced pressure after drying over MgSO\(_4\) and the crude residue was purified by recrystallisation from MeOH to afford the title compound as a brown solid.

Yield: 0.16 g (48%)

Melting Point: 182-184°C

MS (ESI\(^+\)): 573.0, 575.0 [M+Na]\(^+\)

\(^1\)H-NMR (DMSO-\(d_6\), \(\delta\)): 2.23 (s, 4H, H-10), 2.74-2.79 (m, 4H, CH\(_2\)), 3.03-3.08 (m, 4H, CH\(_2\)), 7.68 (d, J= 8.7 Hz, 4H, H-aromatic), 7.75 (t, J= 5.9 Hz, 2H, NH), 7.79 (d, J= 8.7 Hz, 4H, H-aromatic), 7.83 (t, J= 5.6 Hz, 2H, NH).

\(^{13}\)C-NMR (DMSO-\(d_6\), \(\delta\)): 31.00 (CH\(_2\), C-10), 38.42, 41.95 (CH\(_2\), C-7, 8), 128.40, 129.35 (CH, C-aromatic), 137.25, 139.24 (C, C-aromatic), 171.54 (C, C-9).
6.4 Synthesis of thienopyrimidine structures

6.4.1 General procedures 16-23

General procedure 16: synthesis of ethyl 2-amino-thiophene-3-carboxylates

To a mixture of ketone (1 eq.), ethyl cyanoacetate (189) (1 eq.), and elemental sulfur (1 eq.) in absolute ethanol (1.7 mL/mmol eq.) was added triethylamine (1.5 eq.), and the mixture was refluxed for 24 h. The reaction mixture was then concentrated and the residue was partitioned between water (10 mL/mmol eq.) and ethyl acetate (10 mL/mmol eq.). The organic layer was separated, dried over MgSO₄, and concentrated, and the crude product was purified by recrystallization or flash column chromatography.

General procedure 17: synthesis of thieno[2,3-d]pyrimidin-4-ones

Intermediate ethyl 2-amino-thiophene-3-carboxylate (1 eq.) and formamide (3.2 mL/mmol eq.) were refluxed for 8 h. The reaction mixture was then cooled in an ice-bath and added of cold water. The precipitate formed was collected by filtration, washed thoroughly with cold water and purified by re-crystallisation.

General procedure 17a: synthesis of thieno[2,3-d]pyrimidin-4-ones

A mixture of intermediate ethyl 2-amino-thiophene-3-carboxylate (1 eq.) and formamidine acetate salt (1.5 eq.) in DMF (2 mL/mmol eq.) was heated at 100°C for 16
h. The reaction mixture was then cooled to r.t., DMF removed under vacuum, and the solid residue obtained washed thoroughly with water and n-hexane.

General procedure 18: synthesis of 4-chloro-thieno[2,3-d]pyrimidines

![Reaction scheme for synthesis of 4-chloro-thieno[2,3-d]pyrimidines](image)

Intermediate thieno[2,3-d]pyrimidin-4-one (1 eq.) and phosphoryl chloride (2.9 mL/mmol eq.) were refluxed for 8 h. The reaction mixture was then cooled in an ice-bath and carefully neutralised by the addition of aqueous saturated NaHCO₃ solution. The resulting mixture was extracted with ethyl acetate (15 mL/mmol eq.), the organic layer was separated, dried over MgSO₄ and concentrated. The crude residue was purified by flash column chromatography.

General procedure 19: synthesis of (thieno[2,3-d]pyrimidin-4-yl)-hydrazines

![Reaction scheme for synthesis of (thieno[2,3-d]pyrimidin-4-yl)-hydrazines](image)

Intermediate 4-chloro-thieno[2,3-d]pyrimidine (1 eq.) was suspended in MeOH (5.1 mL/mmol eq.) and hydrazine hydrate 80% in water (2 eq.) and the mixture was refluxed for 5 h. Immediately after, hydrazine hydrate (2 eq.) was added to complete the reaction and the mixture was allowed to reflux for further 3 h. The reaction mixture was then cooled to r.t and placed in a fridge o.n. The resulting precipitate was filtered and recrystallised from a solution of 40% EtOH in water.

General procedure 20: synthesis of N-(1-aryl-ethyldene)-N'-(thieno[2,3-d]pyrimidin-4-yl)-hydrazines

![Reaction scheme for synthesis of N-(1-aryl-ethyldene)-N'-(thieno[2,3-d]pyrimidin-4-yl)-hydrazines](image)
Intermediate (thieno[2,3-d]pyrimidin-4-yl)-hydrazine (1 eq.) and arylketone or aldehyde (1.2) were dissolved in EtOH (12 mL/mmol eq.), and the mixture was refluxed for 24 h. The reaction mixture was then cooled to r.t and placed in a fridge o.n. The resulting precipitate was filtered, washed with a cold solution of 80% EtOH in water and recrystallised from EtOH.

General procedure 21: synthesis of arylsulfonyl acid N’-(5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazides

![Chemical structure](image)

Compound 193 (0.20 g, 0.9 mmol) was suspended in pyridine (7 mL) under N\textsubscript{2} atmosphere. Arylsulfonyl chloride (0.7 mmol) dissolved in pyridine (3 mL) was then added dropwise to the reaction mixture under ice-cooling. The reaction mixture was stirred at 0°C for 1 h and then at r.t. for 20 h. The reaction mixture was then diluted with EtOAc (40 mL) and washed with 0.5 M HCl solution (2 x 50 mL). The water phase was then extracted with EtOAc (2 x 50 mL) and the organic layers were collected, dried over MgSO\textsubscript{4} and concentrated under vacuum. The crude residue was purified by flash column chromatography to give pure sulfonic acid N’-(5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazides.

General procedure 22: synthesis of N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-arylcarbohydrazides

![Chemical structure](image)

Aryl carboxylic acid (1.1 eq.) and TBTU (1.2) were suspended in anhydrous THF (11 mL/mmol eq.) at r.t. under N\textsubscript{2} atmosphere. DIPEA (2.4 eq.) was then added dropwise to the reaction mixture, followed by intermediate (thieno[2,3-d]pyrimidin-4-yl)-hydrazine.
(1 eq.) dissolved in anhydrous THF (11 mL/mmol eq.). The mixture was stirred at r.t. for 4 h, then concentrated under vacuum. The residue was dissolved in EtOAc (30 mL/mmol eq.), washed with water (30 mL/mmol eq.), saturated NaHCO₃ solution (30 mL/mmol eq.), and finally with brine (30 mL/mmol eq.). The organic phase was concentrated under vacuum after drying over MgSO₄. The crude residue was purified by re-crystallisation or flash column chromatography.

General procedure 22a: synthesis of N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-arylcarbohydrazides

Compound 193 (0.20 g, 0.9 mmol) was suspended in pyridine (7 mL) under N₂ atmosphere. Acyl chloride (0.7 mmol) dissolved in pyridine (3 mL) was then added dropwise to the reaction mixture under ice-cooling. The reaction mixture was stirred at 0°C for 1 h and then at r.t. for 20 h. The reaction mixture was diluted with EtOAc (40 mL) and washed with 0.5 M HCl solution (2 x 50 mL). The water phase was then extracted with EtOAc (2 x 50 mL) and the organic layers were collected, dried over MgSO₄ and concentrated under vacuum. The crude residue was purified by flash column chromatography to give pure N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-arylcarbohydrazides.

General procedure 23: synthesis of N-aryl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amines

Compound 192 (0.20 g, 0.9 mmol), arylamine (1.8 mmol) and NaHCO₃ (0.15 g, 1.8 mmol) were heated under reflux in iPrOH (8 mL) for 96 h. The reaction mixture was then cooled to r.t. and concentrated under vacuum. The crude residue was purified by
flash column chromatography to give pure N-aryl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-\textit{d}]pyrimidin-4-amines.
6.4.2 Tetrahydrobenzo[b]thienopyrimidines

Ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate (190)\(^{30}\)
\((C_{11}H_{15}NO_2S; M.W. = 225.3)\)

\[
\begin{align*}
188 & \rightarrow 190
\end{align*}
\]

General procedure 16;
Reagent: cyclohexanone 188 (1g, 10.2 mmol);
Purification: re-crystallisation from 60% EtOH/H\(_2\)O;
Light brown solid;
Yield: 1.95 g (85%)

\(^1\)H-NMR (CDCl\(_3\), \(\delta\): 1.35 (t, J= 7.1 Hz, 3H, H-3’), 1.77 (m, 4H, H-6, 7), 2.51 (m, 2H, CH\(_2\)), 2.72 (m, 2H, CH\(_2\)), 4.27 (q, J= 7.1 Hz, 2H, H-2’), 5.98 (bs, 2H, NH\(_2\)).

\(^{13}\)C-NMR (CDCl\(_3\), \(\delta\): 14.47 (CH\(_3\), C-3’), 22.85, 23.27, 24.54, 26.96 (CH\(_2\), C-5, 6, 7, 8), 59.36 (CH\(_2\), C-2’), 105.73, 117.61, 132.46, 161.77 (C, C-1, 2, 3, 4), 166.14 (C, C-1’).

5,6,7,8-Tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one (191)\(^{30}\)
\((C_{10}H_{10}N_2OS; M.W. = 206.3)\)

\[
\begin{align*}
190 & \rightarrow 191
\end{align*}
\]

General procedure 17;
Reagent: ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate 190 (2g, 8.8 mmol);
Purification: re-crystallisation from 40% EtOH/H\(_2\)O;
Light brown solid;
Yield: 1.69 g (93%)

\(^1\)H-NMR (DMSO-d\(_6\), \(\delta\): 1.78 (m, 4H, H-6, 7), 2.73 (t, J= 6.1 Hz, 2H, CH\(_2\)), 2.87 (t, J=...
6.1 Hz, 2H, CH₂), 7.98 (s, 1H, H-2), 12.28 (bs, 1H, NH).

13C-NMR (DMSO-d₆), δ: 21.73, 22.42, 24.40, 25.30 (CH₂, C-5, 6, 7, 8), 122.67, 130.79, 132.08 (C, C-aromatic), 144.81 (CH, C-2), 157.64 (C, C-aromatic), 162.39 (C, C-1).

4-Chloro-5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidine (192)³⁰

(C₁₀H₉ClN₂S; M.W. = 224.7)

![Chemical Structure](attachment:structure192)

General procedure 18;
Reagent: 5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one 191 (1.5 g, 7.4 mmol);
T.L.C. System: n-hexane-EtOAc 1:1 v/v, Rf: 0.85;
Purification: flash column chromatography (n-hexane:EtOAc 100:0 v/v increasing to n-hexane:EtOAc 85:15 v/v);
White solid;
Yield: 1.31 g (79%)

1H-NMR (CDCl₃), δ: 1.85 (m, 4H, H-6, 7), 2.89 (m, 2H, CH₂), 3.00 (m, 2H, CH₂), 8.79 (s, 1H, H-2).

13C-NMR (CDCl₃), δ: 21.59, 21.85, 25.39, 25.78 (CH₂, C-5, 6, 7, 8), 126.60, 127.92, 139.62 (C, C-aromatic), 151.77 (CH, C-2), 152.25, 168.02 (C, C-aromatic).

(5,6,7,8-Tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193)³¹

(C₁₀H₁₂N₄S; M.W. = 220.3)

![Chemical Structure](attachment:structure193)

General procedure 19;
Reagent: 4-chloro-5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidine 192 (1.30 g,
5.8 mmol);
Purification: recrystallization from 40 % EtOH/H$_2$O;
Yellow solid;
Yield: 1.14 g (89%)
1H-NMR (DMSO-d$_6$), δ: 1.79 (m, 4H, H-6, 7), 2.75 (m, 2H, CH$_2$), 2.92 (m, 2H, CH$_2$), 4.56 (bs, 2H, NH$_2$), 7.87 (bs, 1H, NH), 8.33 (s, 1H, H-2).
13C-NMR (DMSO-d$_6$), δ: 22.00, 22.13, 24.84, 25.38 (CH$_2$, C-5, 6, 7, 8), 114.79, 126.77, 131.44 (C, C-aromatic), 152.46 (CH, C-2), 158.27, 163.90 (C, C-aromatic).
6.4.1.1 Aryl-ethanones (235, 236)

1-(1H-Indol-2-yl)-ethanone (235)\(^{32}\)
(C\(_{10}\)H\(_9\)NO; M.W. = 159.1)

\[
\begin{align*}
\text{MeLi} & \quad \text{Et}_2\text{O, reflux, 8h} \\
\text{238} & \quad \text{235}
\end{align*}
\]

A methyllithium 1.6 M solution in Et\(_2\)O (15 mL, 24 mmol) was slowly added to a solution of indole-2-carboxylic acid (238) (2 g, 12.4 mmol) in 100 mL of anhydrous Et\(_2\)O cooled at 0°C and the mixture was refluxed for 1 h. Additional methyllithium 1.6 M in Et\(_2\)O (15 mL, 24 mmol) was added at r.t., and the reaction mixture was refluxed for additional 7 h. The reaction was then quenched by the addition of saturated aqueous NH\(_4\)Cl solution (50 mL), diluted with Et\(_2\)O (30 mL), and extracted with Et\(_2\)O (2 x 50 mL). The organic extracts were washed with water, dried over MgSO\(_4\), and evaporated under vacuum. The crude residue was purified by flash column chromatography (100 % DCM) to give pure 1-(1H-indol-2-yl)-ethanone (235) as a pink solid.

T.L.C. System: 100 % DCM, RF: 0.71.
Yield: 1.37 g (69%)

\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 2.65 (s, 3H, H-1), 7.17-7.21 (m, 1H, H-aromatic), 7.24 (dd, \(J_1 = 2.2\) Hz, \(J_2 = 0.9\) Hz, 1H, H-aromatic), 7.37-7.40 (m, 1H, H-aromatic), 7.49 (dd, \(J_1 = 8.2\) Hz, \(J_2 = 0.9\) Hz, 1H, H-aromatic), 7.75 (dd, \(J_1 = 8.2\) Hz, \(J_2 = 0.9\) Hz, 1H, H-aromatic), (9.62 (bs, 1H, NH)).

\(^{13}\)C-NMR (CDCl\(_3\)), \(\delta\): 25.88 (CH\(_3\), C-1), 109.99, 112.35, 120.93, 123.04, 126.36 (CH, C-aromatic), 127.58, 135.43, 137.57 (C, C-aromatic), 190.71 (C, C-2).

1-(1H-Benzimidazol-2-yl)-ethanol (240)\(^{33}\)
(C\(_9\)H\(_{10}\)N\(_2\)O; M.W. = 162.1)
A mixture of o-phenylenediamine (239) (2g, 18.5 mmol) and DL-lactic acid (2.1 mL, 27.7 mmol) in 6N HCl (18.5 mL) was refluxed for 24 h. The reaction mixture was then cooled down in an ice-bath and neutralised with a 4N NaOH solution. The precipitate formed was collected, washed with water and dried under vacuum. The crude residue was purified by re-crystallisation from EtOH to give pure 1-(1H-benzoimidazol-2-yl)-ethanol (240) as a white solid.

Yield: 1.46 g (49%)

\[^1\text{H-NMR (DMSO-}d_6, \delta: 1.52 \text{(d, J= 6.6 Hz, 3H, H-1), 4.92-4.98 (m, 1H, H-2), 5.75 (d, J= 4.8 Hz, 1H, OH), 7.10-7.16 (m, 2H, H-aromatic), 7.41-7.58 (m, 2H, H-aromatic), 12.22 (bs, 1H, NH).} \]

\[^{13}\text{C-NMR (DMSO-}d_6, \delta: 22.94 \text{(CH}_3, \text{ C-1), 63.66 \text{(CH, C-2), 111.20, 118.39, 120.83, 121.53 (CH, C-aromatic), 158.83 (C, C-3, 4, 9).} \]

1-(1H-Benzoimidazol-2-yl)-ethanone (236)

(C₉H₈N₂O; M.W. = 160.1)

A mixture of 1-(1H-benzoimidazol-2-yl)-ethanol (240) (0.9 g, 5.4 mmol) in 5% HSO₄ (11 mL) was treated dropwise with a K₂Cr₂O₇ solution (2.2 g, 7.5 mmol) in water (8 mL) and concentrated H₂SO₄ (5 mL) and stirred for 3 h. The formed solid was filtered, washed thoroughly with water and re-crystallised from EtOH to give pure 1-(1H-benzoimidazol-2-yl)-ethanone (236) as a light brown solid.

Yield: 0.31 g (36%)

\[^1\text{H-NMR (DMSO-}d_6, \delta: 2.71 \text{(s, 3H, H-1), 7.26-7.43 (m, 2H, H-aromatic), 7.53-7.59 (m, 1H, H-aromatic), 7.80-7.87 (m, 1H, H-aromatic), 13.28 (bs, 1H, NH).} \]

\[^{13}\text{C-NMR (DMSO-}d_6, \delta: 26.00 \text{(CH}_3, \text{ C-1), 112.83, 121.06, 122.96, 125.54 (CH, C-aromatic), 148.17 (C, C-3, 4, 9), 191.50 (C, C-2).} \]

332
Methyl quinaldate (283)34
(C_{11}H_{9}NO_{2}; M.W. = 187.19)

To a suspension of quinaldic acid (282) (2.0 g, 11.6 mmol) in MeOH (21 mL) was added a 1.25M HCl solution in MeOH (21 mL). The resulting mixture was refluxed for 15 h, then cooled to r.t. and concentrated in vacuo. The residue was partitioned between saturated aqueous NaHCO\textsubscript{3} solution (30 mL) and EtOAC (3 x 25 mL). The combined organic extracts were washed with saturated aqueous NaHCO\textsubscript{3} (10 mL) and water (10 mL), dried over MgSO\textsubscript{4} and dried under vacuum to give methyl quinaldate (283) as a white solid.
Yield: 2.16 g (76%)
1H-NMR (CDCl\textsubscript{3}), \(\delta \): 4.10 (s, 3H, H-2'), 7.64-7.68 (m, 1H, H-aromatic), 7.78-7.82 (m, 1H, H-aromatic), 7.89 (dd, \(J_1 = 8.1 \) Hz, \(J_2 = 1.1 \) Hz, 1H, H-aromatic), 8.21 (d, \(J = 8.5 \) Hz, 1H, H-aromatic), 8.30-8.33 (m, 2H, H-aromatic).
13C-NMR (CDCl\textsubscript{3}), \(\delta \): 53.18 (CH\textsubscript{3}, C-2'), 121.03, 127.55, 128.63 (CH, C-aromatic), 129.36 (C, C-aromatic), 130.30, 130.71, 137.31 (CH, C-aromatic), 147.55, 147.92 (C, C-aromatic), 165.96 (C, C-1').

Ethyl 3-oxo-3-(quinolin-2-yl)propanoate (284)34
(C_{14}H_{13}NO_{3}; M.W. = 243.26)

Solid nBuOK (1.32 g, 11.8 mmol) was slowly added to a solution of methyl quinaldate (283) (1.64 g, 8.8 mmol) in EtOAc (33 mL). The resulting mixture was stirred for 15 min. at r.t., then quenched with water (10 mL). The organic layer was separated and the aqueous phase was extracted with EtOAc (3 x 25 mL). The combined organic extracts were washed with water (25 mL) and brine (25 mL), dried over MgSO\textsubscript{4} and
concentrated under vacuum. The crude residue was purified by flash column chromatography (n-hexane:EtOAc 100:0 v/v increasing to n-hexane-EtOAc 90:10 v/v) to give pure ethyl 3-oxo-3-(quinolin-2-yl)propanoate (284) as an off-white paste.

T.L.C. System: n-hexane-EtOAc 8:2 v/v, Rf: 0.59.

Yield: 0.68 g (29%)

1H-NMR (CDCl3), δ: 1.25 (t, J = 7.1 Hz, 3H, H-5’), 4.23 (q, J = 7.1 Hz, 2H, H-4’), 4.37 (s, 2H, H-2’), 7.66-7.70 (m, 1H, H-aromatic), 7.79-7.82 (m, 1H, H-aromatic), 7.90 (d, J = 8.2 Hz, 1H, H-aromatic), 8.16 (d, J = 8.4 Hz, 1H, H-aromatic), 8.17-8.20 (m, 1H, H-aromatic), 8.30 (d, J = 8.4 Hz, 1H, H-aromatic).

13C-NMR (CDCl3), δ: 14.12 (CH3, C-5’), 44.74 (CH2, C-4’), 61.13 (CH2, C-2’), 118.08, 127.68, 128.88 (CH, C-aromatic), 129.77 (C, C-aromatic), 130.15, 130.59, 137.13 (CH, C-aromatic), 147.10, 151.95 (C, C-aromatic), 168.38, 194.96 (C, C-1’, 3’).

2-Acetylquinoline (285)
(C11H9NO; M.W. = 171.20)

A solution of ethyl 3-oxo-3-(quinolin-2-yl)propanoate (284) (0.62 g, 2.5 mmol) in 1,4-dioxane (7 mL) containing 1M aqueous HCl solution (7 mL) was stirred at 100°C for 15 h, then cooled to r.t. and concentrated in vacuo. The residue was diluted with water (20 mL) and extracted with EtOAc (3 x 25 mL). The combined organic extracts were washed with saturated aqueous NaHCO3 solution (20 mL) and brine (20 mL), dried over MgSO4 and concentrated under vacuum. The crude residue was filtered on a bed of silica gel (n-hexane:DCM 1:4 v/v) to give pure 2-acetylquinoline (285) as a white solid.

T.L.C. System: n-hexane-DCM 1:4 v/v, Rf: 0.69.

Yield: 0.27 g (62%)

1H-NMR (CDCl3), δ: 2.89 (s, 3H, H-2’), 7.65-7.68 (m, 1H, H-aromatic), 7.78-7.82 (m, 1H, H-aromatic), 7.88-7.90 (m, 1H, H-aromatic), 8.15 (d, J = 8.5 Hz, 1H, H-aromatic), 8.21-8.23 (m, 1H, H-aromatic), 8.28 (d, J = 8.5 Hz, 1H, H-aromatic).

13C-NMR (CDCl3), δ: 25.52 (CH3, C-2’), 117.96, 127.63, 128.53 (CH, C-aromatic),
129.58 (C, C-aromatic), 129.96, 130.59, 136.83 (CH, C-aromatic), 147.26, 153.28 (C, C-aromatic), 200.62 (C, C-1').
6.4.1.2 \(N^\prime-(1\text{-Aryl-ethyldene})-N^\prime-(5,6,7,8\text{-tetrahydro-benzo}[4,5]\text{thieno}[2,3-d]\) pyrimidin-4-yl)-hydrazines (187, 215-223, 252, 254-265) and \(N\text{-arylidene}-N^\prime-(5,6,7,8\text{-tetrahydro-benzo}[4,5]\text{thieno}[2,3-d]\text{pyrimidin-4-yl})\)-hydrazines (225-234, 253, 457)

2-{1-{(5,6,7,8-Tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)}hydrazono]-ethyl}-benzene-1,4-diol (187)

\(\text{C}_{18}\text{H}_{19}\text{N}_4\text{O}_2\text{S}; \text{M.W.}=354.4 \)

![Chemical structure](image)

General procedure 20;

Reagent: \((5,6,7,8\text{-tetrahydro-benzo}[4,5]\text{thieno}[2,3-d]\text{pyrimidin-4-yl})\)-hydrazine \(\text{(193)} \)

(0.10 g, 0.4 mmol);

Yellow solid;

T.L.C. System: \(\text{nhexane-EtOAc 1:1 v/v, Rf: 0.48} \)

Yield: 0.08 g (66%)

Melting Point: > 300 °C

MS (ESI\(^+\)): 377.0 [M+Na]\(^+\)

Two species observed. Major/minor species ratio: 2/1.

\(^1\text{H-NMR (DMSO-d}_6\), \(\delta \): (major species) 1.79 (bs, 4H, H-6, 7), 2.44 (s, 3H, H-2’), 2.74 (bs, 2H, CH\(_2\)), 3.04 (bs, 2H, CH\(_2\)), 6.75 (bs, 2H, H-aromatic), 6.99 (bs, 1H, H-aromatic), 7.73 (bs, 1H, NH), 8.88 (bs, 1H, H-2), 11.35 (bs, 1H, OH), 11.79 (bs, 1H, OH).

\(^1\text{H-NMR (DMSO-d}_6\), \(\delta \): (minor species) 1.79 (bs, 4H, H-6, 7), 2.44 (s, 3H, H-2’), 2.74 (bs, 2H, CH\(_2\)), 3.07 (bs, 2H, CH\(_2\)), 6.75 (bs, 2H, H-aromatic), 6.99 (bs, 1H, H-aromatic), 8.51 (bs, 1H, NH), 8.88 (bs, 1H, H-2), 9.27 (bs, 1H, OH), 12.56 (bs, 1H, OH).

\(^1\text{C-NMR (DMSO-d}_6\), \(\delta \): (major and minor species) 12.95, 13.33 (CH\(_3\), C-2’), 22.06, 22.28, 24.71, 26.48 (CH\(_2\), C-5, 6, 7, 8), 113.42, 114.18, 116.92, 117.64, 118.11 (CH, C-3’, 4’, 6’), 119.42, 121.00, 126.23, 130.75, 132.52, 133.84 (C, C-aromatic), 143.96 (CH, C-2), 145.28, 149.23, 150.97, 152.58 (CH, C-2), 153.82, 154.47, 156.57, 162.96, 165.74
(C, C-aromatic).

\(N\text{-}(1\text{-Phenyl-ethylidene})\text{-}N'\text{-}(5,6,7,8\text{-tetrahydro-benzo[4,5]thieno[2,3-}d\text{]pyrimidin-4-yl)}\text{-hydrazine (215)} \)

\((C_{18}H_{18}N_4S; \text{M.W.}=322.4) \)

General procedure 20;
Reagent: \((5,6,7,8\text{-tetrahydro-benzo[4,5]thieno[2,3-}d\text{]pyrimidin-4-yl)}\text{-hydrazine (193)} \) (0.10 g, 0.4 mmol);
Yellow crystals;
Yield: 0.09 g (62%)
Melting Point: 190-192°C
MS (ESI\(^+\)): 345.1 [M+Na]\(^+\)
Two species observed. Major/minor species ratio: 2/1.

\(^1\text{H-NMR (CDCl}_3\), \(\delta \): (major species) 1.85-1.91 (m, 4H, \(\text{CH}_2 \)), 2.55 (s, 3H, H-2'), 2.79-2.82 (m, 2H, \(\text{CH}_2 \)), 3.10-3.14 (m, 2H, \(\text{CH}_2 \)), 7.38-7.43 (m, 5H, H-aromatic), 7.66 (s, 1H, H-2), 10.36 (bs, 1H, NH).

\(^1\text{H-NMR (CDCl}_3\), \(\delta \): (minor species) 1.94-2.06 (m, 4H, \(\text{CH}_2 \)), 2.38 (s, 3H, H-2'), 2.86-2.90 (m, 2H, \(\text{CH}_2 \)), 3.04-3.07 (m, 2H, \(\text{CH}_2 \)), 7.83-7.87 (m, 5H, H-aromatic), 8.50 (bs, 1H, NH), 8.64 (s, 1H, H-2).

\(^13\text{C-NMR (CDCl}_3\), \(\delta \): (major and minor species) 13.52, 15.12 (CH\(_3\), C-2’), 22.22, 22.38, 22.68, 22.76, 25.35, 25.47, 26.62, 26.72 (CH\(_2\)), 120.56, 124.58 (C, C-aromatic), 126.50, 126.74, 128.44, 129.11, 129.28, 129.54 (CH, C-aromatic), 129.87, 131.43, 133.71, 134.41, 135.18, 135.31, 137.94 (C, C-aromatic), 139.34 (CH, C-aromatic), 141.35, 148.05, 149.29 (C, C-aromatic), 153.45 (CH, C-aromatic), 156.79, 159.50 (C, C-aromatic).
N-[1-(4-Methoxy-phenyl)-ethyldene]-N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (216)

(C_{19}H_{20}N_{4}O_{3}; M.W. = 352.4)

![Chemical Structure](image)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Yellow crystals;
Yield: 0.04 g (28%)
Melting Point: 178-180°C
MS (ESI\(^{+}\)): 353.1 [M+H\(^{+}\)]
Single species observed.

\[^{1}H\text{-NMR (DMSO-d}_{6}, \delta: \]
1.75-1.84 (m, 4H, CH_2), 2.41 (s, 3H, H-2’), 2.71-2.78 (m, 2H, CH_2), 3.00-3.04 (m, 2H, CH_2), 3.81 (s, 3H, H-9’), 6.96 (d, J= 8.5 Hz, 2H, H-aromatic), 7.75 (s, 1H, H-2), 8.00 (d, J= 8.5 Hz, 2H, H-aromatic), 11.53 (bs, 1H, NH).

\[^{13}C\text{-NMR (DMSO-d}_{6}, \delta: \]
14.08 (CH_3, C-2’), 22.15, 22.39, 24.65, 26.38 (CH_2), 55.17 (CH_3, C-7’), 113.42 (CH, C-aromatic), 119.66 (C, C-aromatic), 128.03 (CH, C-aromatic), 130.84, 131.26, 132.05 (C, C-aromatic), 144.00 (CH, C-aromatic), 146.94, 156.47, 157.14, 160.09 (C, C-aromatic).

N-(5,6,7,8-Tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-N’-[1-(3,4,5-trimethoxy-phenyl)-ethyldene]-hydrazine (217)

(C_{21}H_{24}N_{4}O_{3}S; M.W. = 412.5)
Chapter 6: Experimental

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.14 g (74%)
Melting Point: 224-226°C
MS (ESI⁺): 413.1 [M+H]⁺
Two species observed. Major/minor species ratio: 5/2.

1H-NMR (CDCl$_3$), δ: (major species) 1.84-1.91 (m, 4H, CH$_2$), 2.51 (s, 3H, H-2’), 2.79-2.83 (m, 2H, CH$_2$), 3.09-3.13 (m, 2H, CH$_2$), 3.94 (s, 3H, OCH$_3$), 3.96 (s, 3H, OCH$_3$), 3.98 (s, 3H, OCH$_3$), 7.07 (s, 2H, H-4’, 6’), 7.67 (s, 1H, H-2), 10.25 (bs, 1H, NH).

1H-NMR (CDCl$_3$), δ: (minor species) 1.95-2.05 (m, 4H, CH$_2$), 2.35 (s, 3H, H-2’), 2.87-2.91 (m, 2H, CH$_2$), 3.04-3.08 (m, 2H, CH$_2$), 3.93 (s, 3H, OCH$_3$), 3.97 (s, 3H, OCH$_3$), 3.99 (s, 3H, OCH$_3$), 7.07 (s, 2H, H-4’, 6’), 8.42 (bs, 1H, NH), 8.61 (s, 1H, H-2).

13C-NMR (CDCl$_3$), δ: (major and minor species) 13.91, 15.57 (CH$_3$, C-2’), 22.42, 22.68, 22.77, 22.93, 25.35, 25.60, 26.64, 26.78 (CH$_2$), 56.38, 60.94 (CH$_3$, C-9’, 10’), 104.24 (CH, C-aromatic), 131.42, 133.80, 135.08, 135.20 (C, C-aromatic), 141.27 (CH, C-aromatic), 147.63, 153.07 (C, C-aromatic), 153.23 (CH, C-aromatic), 156.71, 159.61 (C, C-aromatic).

N-[1-(3-Fluoro-4-methoxy-phenyl)-ethyldiene]-N'-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (218)
(C$_{19}$H$_{19}$FN$_4$O$_2$; M.W. = 370.4)

\[\text{General procedure 20; Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193)} \]

Yellow solid;
Yield: 0.13 g (75%)
Melting Point: 192-194°C
MS (ESI+): 371.1 [M+H]+
Two species observed. Major/minor species ratio: 5/2.

\textbf{1H-NMR (DCl\textsubscript{3})}, \delta: (major species) 1.85-1.92 (m, 4H, CH\textsubscript{2}), 2.50 (s, 3H, H-2'), 2.78-2.82 (m, 2H, CH\textsubscript{2}), 3.08-3.13 (m, 2H, CH\textsubscript{2}), 3.94 (s, 3H, H-9'), 6.92-6.99 (m, 1H, H-aromatic), 7.49-7.53 (m, 1H, H-aromatic), 7.63-7.70 (m, 2H, H-aromatic), 10.33 (bs, 1H, NH).

\textbf{1H-NMR (DCl\textsubscript{3})}, \delta: (minor species) 1.93-2.03 (m, 4H, CH\textsubscript{2}), 2.32 (s, 3H, H-2'), 2.86-2.90 (m, 2H, CH\textsubscript{2}), 3.02-3.06 (m, 2H, CH\textsubscript{2}), 3.93 (s, 3H, H-9'), 6.92-6.99 (m, 1H, H-aromatic), 7.54-7.58 (m, 1H, H-aromatic), 7.63-7.70 (m, 1H, H-aromatic), 8.45 (bs, 1H, NH), 8.63 (s, 1H, H-aromatic).

\textbf{13C-NMR (DCl\textsubscript{3})}, \delta: (major and minor species) 13.24, 14.75 (CH\textsubscript{3}, C-2'), 22.36, 22.67, 22.93, 25.34, 25.57, 26.62 (CH\textsubscript{2}), 56.27 (CH\textsubscript{3}, C-9', 10'), 112.63, 112.78, 113.79, 113.94, 114.34, 122.64, 122.66 (CH, C-aromatic), 131.40, 132.62, 133.74, 135.74 (C, C-aromatic), 141.35 (CH, C-aromatic), 147.38, 151.23, 153.18 (C, C-aromatic), 153.28 (CH, C-aromatic), 157.03, 159.41 (C, C-aromatic).

\textit{N-[(1-Benzol[1,3]dioxol-5-yl-ethylidene)-N'-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimdin-4-yl)-hydrazine (219)}
(C\textsubscript{19}H\textsubscript{18}N\textsubscript{4}O\textsubscript{2}S; M.W. = 366.4)

\begin{center}
\includegraphics[width=0.5\textwidth]{reactionDiagram.png}
\end{center}

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimdin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.04 g (27%)
Melting Point: 215-217°C
MS (ESI⁺): 389.0 [M+Na]⁺

Two species observed. Major/minor species ratio: 2/1.

^1H-NMR (CDCl₃), δ: (major species) 1.84-1.92 (m, 4H, CH₂), 2.50 (s, 3H, H-2’), 2.78-2.82 (m, 2H, CH₂), 3.09-3.12 (m, 2H, CH₂), 6.01 (s, 2H, H-9’), 6.82-6.85 (m, 1H, H-aromatic), 7.29-7.32 (m, 1H, H-aromatic), 7.45 (d, J= 1.6 Hz, 1H, H-8’), 7.67 (s, 1H, H-2), 10.30 (bs, 1H, NH).

^1H-NMR (CDCl₃), δ: (minor species) 1.94-2.04 (m, 4H, CH₂), 2.33 (s, 3H, H-2’), 2.86-2.90 (m, 2H, CH₂), 3.03-3.07 (m, 2H, CH₂), 6.02 (s, 2H, H-9’), 6.82-6.85 (m, 1H, H-aromatic), 7.29-7.32 (m, 1H, H-aromatic), 7.47 (d, J= 1.6 Hz, 1H, H-8’), 8.45 (bs, 1H, NH), 8.63 (s, 1H, H-2).

^13C-NMR (CDCl₃), δ: (major and minor species) 13.64, 15.10 (CH₃, C-2’), 22.38, 22.68, 22.75, 22.94, 25.35, 25.57, 26.62, 26.69 (CH₂), 106.42, 106.89, 107.86, 107.90 (CH, C-aromatic), 119.99 (C, C-aromatic), 120.88, 121.06 (CH, C-aromatic), 125.40, 131.40, 133.67, 134.25, 135.08 (C, C-aromatic), 141.36 (CH, C-aromatic), 147.69, 147.81, 148.61, 150.75 (C, C-aromatic), 153.39 (CH, C-aromatic), 153.95, 157.44, 158.81 (C, C-aromatic).

N-[1-(4-Nitro-phenyl)-ethyldene]-N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (220)
(C₁₈H₁₇N₅O₂S; M.W. = 367.4)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Orange solid;
Yield: 0.13 g (76%)
Melting Point: 289-291°C
MS (ESI+): 390.0 [M+Na]+

Single species observed.

\textbf{1H-NMR (DMSO-\textit{d}_6), }\delta: 1.76-1.86 (m, 4H, CH\textsubscript{2}), 2.38 (s, 3H, H-2'), 2.74-2.82 (m, 2H, CH\textsubscript{2}), 3.00-3.08 (m, 2H, CH\textsubscript{2}), 7.87 (s, 1H, H-2), 8.25 (d, J= 7.8 Hz, 2H, -aromatic), 8.32 (d, J= 7.8 Hz, 2H, H-aromatic), 11.87 (bs, 1H, NH).

\textbf{13C-NMR (DMSO-\textit{d}_6), }\delta: 14.11 (CH\textsubscript{3}, C-2'), 22.11, 22.34, 24.71, 26.41 (CH\textsubscript{2}), 119.63 (C, C-aromatic), 123.20, 127.41 (CH, C-aromatic), 130.81, 132.82 (C, C-aromatic), 143.91 (CH, C-aromatic), 144.76, 147.17, 148.25, 155.43, 157.83 (C, C-aromatic).

\textit{N-[1-(4-Cyclohexyl-phenyl)-ethyldene]-N'-[(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-\textit{d}]-pyrimidin-4-yl)-hydrazine (221)\(\hspace{1cm}\text{(C}_{24}\text{H}_{28}\text{N}_{4}\text{S; M.W.= 404.6)}\)}}

\begin{center}
\includegraphics[width=0.5\textwidth]{image.png}
\end{center}

General procedure 20;
Reagent: \((5,6,7,8\text{-tetrahydro-benzo}[4,5]\text{-thieno[2,3-\textit{d}]}\text{-pyrimidin-4-yl)-hydrazine (193)}\) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.14 g (76%)
Melting Point: 258-260\degree C
MS (ESI+): 405.1 [M+Na]+

Two species observed. Major/minor species ratio: 2/1.

\textbf{1H-NMR (CDCl\textsubscript{3}), }\delta: major specis- 1.38-1.52 (m, 6H, CH\textsubscript{2}), 1.76-1.82 (m, 2H, CH\textsubscript{2}), 1.85-1.98(m, 6H, CH\textsubscript{2}), 2.52-2.59 (m, 4H, H-2', 9'), 2.79-2.82 (m, 2H, CH\textsubscript{2}), 3.11-3.14 (m, 2H, CH\textsubscript{2}), 7.24-7.27 (m, 2H, H-aromatic), 7.65 (s, 1H, H-2), 7.76-7.80 (m, 2H, H-aromatic), 10.34 (bs, 1H, NH).

\textbf{1H-NMR (CDCl\textsubscript{3}), }\delta: (minor species) 1.38-1.52 (m, 14H, CH\textsubscript{2}), 2.37 (s, 3H, H-2'), 2.73-2.76 (m, 1H, H-9'), 2.87-2.90 (m, 2H, CH\textsubscript{2}), 3.06-3.09 (m, 2H, CH\textsubscript{2}), 7.24-7.27
(m, 2H, H-aromatic), 7.76-7.80 (m, 2H, H-aromatic), 8.49 (bs, 1H, NH), 8.64(s, 1H, H-2).

13C-NMR (CDCl$_3$), δ: (major and minor species) 13.52, 15.11 (CH$_3$, C-2’), 22.41, 22.69, 22.77, 22.95, 25.35, 26.13, 26.62, 26.74, 26.78, 26.86, 34.30, 34.35, 34.49 (CH$_2$), 44.43 (CH, C-9’), 119.78, 126.51 (C, C-aromatic), 126.72, 126.76, 126.91, 128.21 (CH, C-aromatic), 131.42, 133.63, 134.30, 135.24, 136.98 (C, C-aromatic), 141.36 (CH, C-aromatic), 147.81, 149.43, 149.57 (C, C-aromatic), 153.44 (CH, C-aromatic), 153.93, 156.65, 159.63 (C, C-aromatic).

2-{1-[(5,6,7,8-Tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazono]-ethyl}-phenol (222)
(C$_{18}$H$_{18}$N$_4$O$_2$; M.W. = 338.4)

![Chemical Structure]

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Pale yellow solid;
Yield: 0.15 g (98%)
Melting Point: 250-252°C
MS (ESI$^+$): 339.1 [M+H]$^+$
Two species observed. Major/minor species ratio: 2/1.

1H-NMR (DMSO-d$_6$), δ: (major species) 1.76-1.91 (m, 4H, CH$_2$), 2.52 (s, 3H, H-1’), 2.73-2.85 (m, 2H, CH$_2$), 2.97-3.19 (m, 2H, CH$_2$), 6.89-6.93 (m, 2H, H-aromatic), 7.27-7.31 (m, 1H, H-aromatic), 7.60-7.63 (m, 1H, H-aromatic), 7.75 (s, 1H, H-2), 11.40 (bs, 1H, NH), 12.52 (bs, 1H, OH).

1H-NMR (DMSO-d$_6$), δ: (minor species) 1.76-1.91 (m, 4H, CH$_2$), 2.52 (s, 3H, H-1’), 2.73-2.85 (m, 2H, CH$_2$), 2.97-3.19 (m, 2H, CH$_2$), 6.89-6.93 (m, 2H, H-aromatic), 7.27-7.31 (m, 1H, H-aromatic), 7.64-7.67 (m, 1H, H-aromatic), 8.54 (s, 1H, H-2), 9.38 (bs,
1H, NH), 13.33 (bs, 1H, OH).

13C-NMR (DMSO-d_6), δ: (major and minor species) 12.97, 14.83 (CH$_3$, C-1’), 22.08, 22.32, 24.69, 25.00, 26.50 (CH$_2$), 116.51, 117.28, 118.64 (CH, C-aromatic), 119.40, 120.96, 126.34 (C, C-aromatic), 128.03, 128.71, 130.69 (CH, C-aromatic), 132.61, 133.96 (C, C-aromatic), 144.02 (CH, C-aromatic), 145.33 (C, C-aromatic), 152.65 (CH, C-2), 153.91, 156.62, 158.22, 163.29 (C, C-aromatic).

3-{1-[(5,6,7,8-Tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-y1)-hydrazono]-ethyl}-phenol (223)

(C$_{18}$H$_{18}$N$_4$OS; M.W. = 338.4)

![Chemical structure](image-url)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-y1)-hydrazine (193) (0.10 g, 0.4 mmol);
Pale orange solid;
Yield: 0.15 g (99%)
Melting Point: 307-309°C
MS (ESI$^+$): 339.1 [M+H$^+$]
Single species observed.

1H-NMR (DMSO-d_6), δ: 1.76-1.84 (m, 4H, CH$_2$), 2.40 (s, 3H, H-1’), 2.73-2.76 (m, 2H, CH$_2$), 3.01-3.05 (m, 2H, CH$_2$), 6.79-6.83 (m, 1H, H-aromatic), 7.19-7.22(m, 1H, H-aromatic), 7.37-7.39 (m, 1H, H-aromatic), 7.49 (d, J= 7.9 Hz, 1H, H-aromatic), 7.76 (s, 1H, H-2), 9.39 (bs, 1H, OH), 11.54 (bs, 1H, NH),

13C-NMR (DMSO-d_6), δ: 14.47 (CH$_3$, C-1’), 22.14, 22.39, 24.66, 26.40 (CH$_2$), 113.54, 115.92, 117.51 (CH, C-aromatic), 119.61 (C, C-aromatic), 128.87 (CH, C-aromatic), 130.84, 132.20, 140.15 (C, C-aromatic), 144.01 (CH, C-aromatic), 147.25, 156.71, 157.16, 157.71 (C, C-aromatic).
N-Benzylidene-N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (224)31

\((C_{17}H_{16}N_{4}S; M.W. = 308.4)\)

General procedure 20:

Reagent: \((5,6,7,8\text{-}\text{tetrahydro}\text{-}\text{benzo}[4,5]\text{thieno}[2,3\text{-}d]\text{pyrimidin-4-yl})\text{-}\text{hydrazine} \ (193)\)

(0.10 g, 0.4 mmol);

Pale yellow solid;

Yield: 0.06 g (46%)

Melting Point: 162-164°C (lit. 163°C)31

MS (ESI+): 309.1 [M+H+]

Two species observed. Major/minor species ratio: 3/2.

\(^{1}\text{H-NMR (CDCl}_3\), δ: (major species) 1.85-1.91 (m, 4H, CH\textsubscript{2}), 2.78-2.83 (m, 2H, CH\textsubscript{2}),

3.04-3.12 (m, 2H, CH\textsubscript{2}), 7.38-7.44 (m, 5H, H-aromatic), 7.70 (s, 1H, H-2), 8.50 (s, 1H, H-1’), 10.44 (bs, 1H, NH).

\(^{1}\text{H-NMR (CDCl}_3\), δ: (minor species) 1.94-2.02 (m, 4H, CH\textsubscript{2}), 2.86-2.89 (m, 2H, CH\textsubscript{2}),

3.04-3.12 (m, 2H, CH\textsubscript{2}), 7.75-7.82 (m, 5H, H-aromatic), 8.02 (s, 1H, H-1’), 8.61 (bs, 1H, NH), 8.65 (s, 1H, H-2).

\(^{13}\text{C-NMR (CDCl}_3\), δ: (major and minor species) 22.42, 22.54, 22.91, 25.35, 25.60, 26.73, 26.93 (CH\textsubscript{2}), 119.79, 124.25 (C, C-aromatic), 127.50, 127.64, 128.67, 129.93, 130.13 (CH, C-aromatic), 131.43, 132.55, 133.27, 134.18, 135.69 (C, C-aromatic), 141.17, 145.15, (CH, C-aromatic), 149.57 (C, C-aromatic), 153.17 (CH, C-aromatic), 153.79 (C, C-aromatic), 154.27 (CH, C-aromatic), 157.48 (C, C-aromatic).
N-(4-Methoxy-benzylidene)-N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (225)\(^{31}\)

\((\text{C}_{18}\text{H}_{18}\text{N}_{4}\text{OS}; \text{M.W.}=338.4)\)

General procedure 20;
Reagent: \((5,6,7,8\text{-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl})\)-hydrazine \((193)\) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.11 g (75%)
Melting Point: 193-195°C (lit. 184-185 °C)\(^{31}\)
MS (ESI\(^+\)): 361.1 [M+Na]\(^+\)

Two species observed. Major/minor species ratio: 5/4.

\(^1\text{H-NMR (CDCl}_3\), \(\delta\):\) (major species) 1.82-1.91 (m, 4H, \(\text{CH}_2\)), 2.78-2.83 (m, 2H, \(\text{CH}_2\)), 3.04-3.11 (m, 2H, \(\text{CH}_2\)), 3.86 (s, 3H, H-8’), 6.94 (d, \(\text{J}=8.8 \text{ Hz}, 2\text{H}, \text{H-aromatic}\)), 7.66-7.75 (m, 3H, H-aromatic), 8.44 (s, 1H, CH), 10.40 (bs, 1H, NH).

\(^1\text{H-NMR (CDCl}_3\), \(\delta\):\) (minor species) 1.93-2.03 (m, 4H, \(\text{CH}_2\)), 2.84-2.88 (m, 2H, \(\text{CH}_2\)), 3.04-3.11 (m, 2H, \(\text{CH}_2\)), 3.86 (s, 3H, H-8’), 6.94 (d, \(\text{J}=8.8 \text{ Hz}, 2\text{H}, \text{H-aromatic}\)), 7.66-7.75 (m, 2H, H-aromatic), 7.96 (s, 1H, CH), 8.53 (s, 1H, CH), 8.63 (s, 1H, NH).

\(^{13}\text{C-NMR (CDCl}_3\), \(\delta\):\) (major and minor species) 22.57, 22.90, 25.44, 26.79 (\(\text{CH}_2\)), 55.37 (\(\text{CH}_3\), C-8’), 114.50 (CH, C-aromatic), 119.82 (C, C-aromatic), 129.47 (CH, C-aromatic), 124.15 (C, C-aromatic), 131.55, 135.92 (C, C-aromatic), 141.20 (CH, C-aromatic), 149.51 (C, C-aromatic), 154.00 (CH, C-aromatic), 157.34, 166.56 (C, C-aromatic).
Chapter 6: Experimental

N-(2-Methoxy-benzylidene)-N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (226)

(C$_{18}$H$_{18}$N$_4$O; M.W. = 338.4)

![Chemical Structure](image)

General procedure 16;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193)
(0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.11 g (75%)
Melting Point: 216-218°C
MS (ESI$^+$): 361.1 [M+Na]$^+$
Two species observed. Major/minor species ratio: 3/2.

1H-NMR (CDCl$_3$), δ: (major species) 1.92-2.02 (m, 4H, CH$_2$), 2.84-2.89 (m, 2H, CH$_2$), 3.04-3.12 (m, 2H, CH$_2$), 3.90 (s, 3H, H-8’), 6.90-6.94 (m, 1H, H-aromatic), 6.95-7.03 (m, 1H, H-aromatic), 7.34-7.39 (m, 1H, H-aromatic, H-2), 8.16 (d, J= 7.6 Hz, 1H, H-aromatic), 8.41 (s, 1H, H-2), 8.62-8.66 (m, 2H, CH, NH).

1H-NMR (CDCl$_3$), δ: (minor species) 1.82-21.91 (m, 4H, CH$_2$), 2.77-2.81 (m, 2H, CH$_2$), 3.04-3.12 (m, 2H, CH$_2$), 3.90 (s, 3H, H-8’), 6.90-6.94 (m, 1H, H-aromatic), 6.95-7.03 (m, 1H, H-aromatic), 7.34-7.39 (m, 1H, H-aromatic, H-2), 7.67 (s, 1H, H-1’), 8.00 (d, J= 7.6 Hz, 1H, H-aromatic), 8.88 (s, 1H, H-2), 10.47 (bs, 1H, NH).

13C-NMR (CDCl$_3$), δ: (major and minor species) 22.42, 22.59, 22.93, 25.35, 25.58, 26.73, 26.86 (CH$_2$), 55.54 (CH$_3$, C-8’), 110.80, 111.21 (CH, C-aromatic), 119.79 (C, C-aromatic), 120.60, 120.96 (CH, C-aromatic), 124.10, 124.25, 124.79 (C, C-aromatic), 126.59, 127.21, 131.16, 131.38 (CH, C-aromatic), 131.47, 132.59, 133.34, 134.89, 135.39 (C, C-aromatic), 141.10, 141.32 (CH, C-aromatic), 149.37 (C, C-aromatic), 150.20, 153.30 (CH, C-aromatic), 154.04, 157.65, 166.83 (C, C-aromatic).
General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.09 g (57%)
Melting Point: 199-201°C
MS (ESI⁺): 361.0 [M+Na]⁺
Two species observed. Major/minor species ratio: 4/3.

1H-NMR (CDCl₃), δ: (major species) 1.84-1.92 (m, 4H, CH₂), 2.79-2.83 (m, 2H, CH₂), 3.06-3.11 (m, 2H, CH₂), 3.88 (s, 3H, H-8’), 6.95-6.99 (m, 1H, H-aromatic), 7.32-7.35 (m, 3H, H-aromatic, H-2), 7.71 (d, J= 2.8 Hz, 1H, H-aromatic), 8.47 (s, 1H, H-1’), 10.40 (bs, 1H, NH) .

1H-NMR (CDCl₃), δ: (minor species) 1.94-2.04 (m, 4H, CH₂), 2.87-2.91 (m, 2H, CH₂), 3.06-3.11 (m, 2H, CH₂), 3.89 (s, 3H, H-8’), 6.95-6.99 (m, 1H, H-aromatic), 7.32-7.35 (m, 2H, H-aromatic), 7.37-7.39 (m, 1H, H-aromatic), 8.01 (s, 1H, H-1’), 8.62 (bs, 1H, NH), 8.64 (s, 1H, H-2).

13C-NMR (CDCl₃), δ: (major and minor species) 22.43, 22.52, 22.61, 22.90, 25.35, 25.62, 26.72, 26.96 (CH₂), 55.38, 55.47 (CH₃, C-8’), 111.45, 112.20, 115.82, 116.77 (CH, C-aromatic), 119.28 (C, C-aromatic), 120.67, 120.76 (CH, C-aromatic), 124.33, 124.44, 124.99 (C, C-aromatic), 129.70 (CH, C-aromatic), 131.43, 132.39, 133.74, 134.89, 136.60 (C, C-aromatic), 141.14, 145.22 (CH, C-aromatic), 149.73 (C, C-aromatic), 153.14, 154.21 (CH, C-aromatic), 154.00, 157.46, 166.23 (C, C-aromatic).
N-(5,6,7,8-Tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-N’-(3,4,5-trimethoxy-benzylidene)-hydrazine (228)\(^{31}\)
(C\(_{20}\)H\(_{22}\)N\(_4\)O\(_3\)S; M.W. = 398.4)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.16 g (91%)
Melting Point: 224-226°C (lit. 200°C)\(^{31}\)
MS (ESI\(^+\)): 399.1 [M+H]\(^+\)
Two species observed. Major/minor species ratio: 4/3.
\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): (major species) 1.83-1.92 (m, 4H, CH\(_2\)), 2.78-2.82 (m, 2H, CH\(_2\)), 3.06-3.11 (m, 2H, CH\(_2\)), 3.91 (s, 3H, OCH\(_3\)), 3.92 (s, 3H, OCH\(_3\)), 3.95 (s, 3H, OCH\(_3\)), 7.00-7.02 (m, 2H, H-aromatic), 7.68 (s, 1H, H-2), 8.44 (s, 1H, H-1’), 10.43 (bs, 1H, NH).
\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): (minor species) 1.93-2.03 (m, 4H, CH\(_2\)), 2.86-2.90 (m, 2H, CH\(_2\)), 3.06-3.11 (m, 2H, CH\(_2\)), 3.90 (s, 3H, OCH\(_3\)), 3.93 (s, 3H, OCH\(_3\)), 3.94 (s, 3H, OCH\(_3\)), 7.00-7.02 (m, 2H, H-aromatic), 7.98 (s, 1H, H-1’), 8.59 (bs, 1H, NH), 8.62 (s, 1H, H-2).
\(^13\)C-NMR (CDCl\(_3\)), \(\delta\): (major and minor species) 22.43, 22.53, 22.62, 22.90, 25.35, 25.61, 26.75, 26.97 (CH\(_2\)), 56.22, 56.32, 60.99 (CH\(_3\), C-8’, 9’), 104.66, 104.75 (CH, C-aromatic), 119.40, 124.37, 124.54, 124.89, 128.99, 130.57, 131.41, 133.91, 135.27, 136.75 (C, C-aromatic), 141.17, 145.39 (CH, C-aromatic), 148.99 (C, C-aromatic), 153.06 (CH, C-aromatic), 153.50 (C, C-aromatic), 154.55 (CH, C-aromatic), 154.13, 157.65, 166.12 (C, C-aromatic).
N-(3,4-Diethoxy-benzylidene)-N'-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (229)

(C₂₁H₂₄N₄O₂S; M.W. = 396.5)

![Chemical structure](image)

General procedure 20;

Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);

Yellow solid;

Yield: 0.13 g (77%)

Melting Point: 237-239°C

MS (ESI⁺): 397.1 [M+H]⁺

Single species observed.

¹H-NMR (DMSO-d₆), δ: 1.33-1.39 (m, 6H, H-9’, 11’), 1.74-1.85 (m, 4H, CH₂), 2.73-2.78 (m, 2H, CH₂), 2.96-3.01 (m, 2H, CH₂), 4.06-4.15 (m, 4H, H-8’, 10’), 7.00 (d, J= 8.3 Hz, 1H, H-aromatic), 7.35 (d, J= 8.3 Hz, 1H, H-aromatic), 7.62 (s, 1H, H-aromatic), 7.78 (s, 1H, H-aromatic), 8.31 (s, 1H, H-2), 8.44 (s, 1H, H-1’), 11.69 (bs, 1H, NH).

¹³C-NMR (DMSO-d₆), δ: 14.66, 14.78 (CH₃, C-9’, 11’), 22.00, 22.39, 24.64, 26.55 (CH₂), 63.76, 64.05 (CH₂, C-8’, 11’), 111.76, 112.73 (CH, C-aromatic), 118.89 (C, C-aromatic), 122.27 (CH, C-aromatic), 128.15, 130.85, 132.05 (C, C-aromatic), 143.90 (CH, C-aromatic), 148.25, 150.08 (C, C-aromatic), 153.15 (CH, C-aromatic), 156.80 (C, C-aromatic).
4-[(5,6,7,8-Tetrahydro-benzo[4,5]thieno[2,3-\textit{d}]pyrimidin-4-\textit{y})-hydrazonomethyl]-phenol (230)31

\((C_{17}H_{16}N_{4}OS; \text{M.W.}=324.4)\)

\[
\text{General procedure 20;}
\]
\text{Reagent: } (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-\textit{d}]pyrimidin-4-\textit{y})-hydrazine (193) (0.10 g, 0.4 mmol);

\text{Pale yellow solid;}

\text{Yield: 0.05 g (34%)}

\text{Melting Point: 255-257°C}

\text{MS (ESI+): 325.1 [M+H]+}

\text{Single species observed.}

\text{1H-NMR (DMSO-\textit{d}_6), } \delta: 1.74-1.84 \text{ (m, } 4\text{H, CH}_2\text{), 2.70-2.77 \text{ (m, } 2\text{H, CH}_2\text{), 2.95-3.02 \text{ (m, } 2\text{H, CH}_2\text{), 6.83 \text{ (d, J= 8.3 Hz, } 1\text{H, H-aromatic), 7.72-7.80 \text{ (m, } 3\text{H, H-aromatic, 1'), 8.29 \text{ (s, } 1\text{H, H-2), 9.83 \text{ (bs, } 1\text{H, O}\text{H), 11.67 \text{ (bs, } 1\text{H, NH).}}\]

\text{13C-NMR (DMSO-\textit{d}_6), } \delta: 22.00, 22.37, 24.64, 26.51 \text{ (CH}_2\text{), 115.39 \text{ (CH, C-aromatic), 118.89, 126.53 \text{ (C, C-aromatic), 129.45 \text{ (CH, C-aromatic), 131.90, 132.25 \text{ (C, C-aromatic), 143.93 \text{ (CH, C-aromatic), 148.99 \text{ (C, C-aromatic), 152.95 \text{ (CH, C-aromatic), 156.87, 159.16 \text{ (C, C-aromatic).}}\]

\[
\text{Diagram}
\]
N-(4-Bromo-benzylidene)-N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (231)

(C_{17}H_{15}BrN_{4}S; M.W. = 387.3)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.06 g (36%)
Melting Point: 180-182°C
MS (ESI^+): 387.0, 389.0 [M+H]^+
Two species observed. Major/minor species ratio: 3/2.

^1H-NMR (CDCl_3), δ: major species- 1.84-1.92 (m, 4H, CH_2), 2.79-2.84 (m, 2H, CH_2), 3.04-3.10 (m, 2H, CH_2), 7.53-7.57 (m, 2H, H-aromatic), 7.63 (d, J= 8.3 Hz, 2H, H-aromatic), 7.73 (s, 1H, H-2), 8.43 (s, 1H, H-1’), 10.39 (bs, 1H, NH).

^1H-NMR (CDCl_3), δ: (minor species) 1.94-2.03 (m, 4H, CH_2), 2.87-2.91 (m, 2H, CH_2), 3.04-3.10 (m, 2H, CH_2), 7.53-7.57 (m, 2H, H-aromatic), 7.66 (d, J= 8.3 Hz, 2H, H-aromatic), 7.98 (s, 1H, H-1’), 8.64 (s, 1H, H-2), 8.65 (bs, 1H, NH).

^13C-NMR (CDCl_3), δ: (major and minor species) 22.30, 22.53, 22.88, 25.37, 25.57, 26.74 (CH_2), 119.80, 124.02, 124.30, 124.59 (C, C-aromatic), 128.87, 129.39 (CH, C-aromatic), 131.39 (C, C-aromatic), 132.03, 132.11 (CH, C-aromatic), 132.49, 133.05, 134.02, 134.18, 135.49 (C, C-aromatic), 141.14, 143.78 (CH, C-aromatic), 149.57 (C, C-aromatic), 153.03 (CH, C-aromatic), 153.86, 157.53 (C, C-aromatic), 161.14 (CH, C-aromatic).
N-(3-Bromo-benzylidene)-N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (232)

(C_{17}H_{15}BrN_{4}S; M.W. = 387.3)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.11 g (65%)
Melting Point: 222-224°C
MS (ESI⁺): 387.0, 389.0 [M+H]^+

Two species observed. Major/minor species ratio: 2/1.

1H-NMR (CDCl₃), δ: (major species) 1.83-1.92 (m, 4H, CH₂), 2.77-2.83 (m, 2H, CH₂), 3.04-3.12 (m, 2H, CH₂), 7.26-7.30 (m, 1H, H-aromatic), 7.49-7.54 (m, 1H, H-aromatic), 7.75 (d, J= 2.6 Hz, 1H, H-3’), 7.97-7.99 (m, 2H, H-aromatic), 8.41 (s, 1H, H-aromatic), 10.40 (bs, 1H, NH).

1H-NMR (CDCl₃), δ: (minor species) 1.94-2.05 (m, 4H, CH₂), 2.86-2.96 (m, 2H, CH₂), 3.04-3.12 (m, 2H, CH₂), 7.26-7.30 (m, 1H, H-aromatic), 7.49-7.54 (m, 1H, H-aromatic), 7.58-7.61 (m, 2H, H-aromatic), 7.66-7.69 (m, 1H, H-aromatic), 8.65-8.67 (m, 2H, H-aromatic, NH).

13C-NMR (CDCl₃), δ: (major and minor species) 22.30, 22.53, 22.88, 25.37, 25.57, 26.74 (CH₂), 119.87, 124.07, 124.41, 124.79 (C, C-aromatic), 126.08, 126.69, 129.68, 129.94, 130.19, 132.60 (CH, C-aromatic), 132.77 (C, C-aromatic), 132.95 (CH, C-aromatic), 133.11, 134.23, 134.38, 135.09 (C, C-aromatic), 137.39, 141.06, 143.23 (CH, C-aromatic), 149.66 (C, C-aromatic), 152.34 (CH, C-aromatic), 153.75, 157.41 (C, C-aromatic), 161.07 (CH, C-aromatic).
Chapter 6: Experimental

\[\text{N-(4-tert-Butyl-benzylidene)}-N'-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine 233}^{31} \]

\[(\text{C}_{21}\text{H}_{24}\text{N}_{4}\text{S}; \text{M.W.}= 364.5)\]

General procedure

Reagent: \((5,6,7,8\text{-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl})\)-hydrazine \((193)\) (0.10 g, 0.4 mmol);

Yellow solid;

Yield: 0.10 g (61%)

Melting Point: 221-223°C

MS (ESI\(^+\)): 365.1 [M+H]\(^+\)

Two species observed. Major/minor species ratio: 3/2.

\(^{1}\text{H-NMR (CDCl}_{3}\), \(\delta\): (major species) 1.36 (s, 9 H, H-9’), 1.85-1.90 (m, 4H, CH\(_2\)), 2.78-2.81 (m, 2H, CH\(_2\)), 3.05-3.12 (m, 2H, CH\(_2\)), 7.42-7.45 (m, 2H, H-aromatic), 7.63 (s, 1H, CH), 7.69 (d, J= 8.4 Hz, 2H, H-aromatic), 8.48 (s, 1H, CH), 10.48 (bs, 1H, NH).

\(^{1}\text{H-NMR (CDCl}_{3}\), \(\delta\): (minor species) 1.36 (s, 9 H, H-9’), 1.93-2.02 (m, 4H, CH\(_2\)), 2.85-2.89 (m, 2H, CH\(_2\)), 3.05-3.12 (m, 2H, CH\(_2\)), 7.42-7.45 (m, 2H, H-aromatic), 7.71 (d, J= 8.4 Hz, 2H, H-aromatic), 7.99 (s, 1H, CH), 8.58 (bs, 1H, NH), 8.64 (s, 1H, CH).

\(^{13}\text{C-NMR (CDCl}_{3}\), \(\delta\): (major and minor species) 22.43, 22.54, 22.62, 22.92, 25.46, 25.60, 26.73, 26.95 (CH\(_2\)), 31.22 (CH\(_3\), C-9’), 34.89, 34.91 (C, C-8’), 115.29, 119.83, 124.83 (C, C-aromatic), 125.63, 126.45, 127.34, 127.57 (CH, C-aromatic), 130.75, 131.42, 132.49, 133.69, 135.01 (C, C-aromatic), 141.28, 145.31 (CH, C-aromatic), 149.18 (C, C-aromatic), 152.19 (CH, C-aromatic), 153.38, 153.63, 154.14 (C, C-aromatic), 154.28 (CH, C-aromatic), 157.13, 166.98 (C, C-aromatic).
N-(4-Isopropyl-benzylidene)-N'-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (234)31

(C\textsubscript{20}H\textsubscript{22}N\textsubscript{4}S; M.W.= 350.4)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.06 g (38%)
Melting Point: 195-197\textdegree C
MS (ESI+): 373.1 [M+Na]+
Two species observed. Major/minor species ratio: 3/2.

1H-NMR (CDCl\textsubscript{3}), \delta: (major species) 1.29 (d, J= 5.4 Hz, 6 H, H-9\textprime), 1.84-1.92 (m, 4H, CH\textsubscript{2}), 2.78-2.83 (m, 2H, CH\textsubscript{2}), 2.93-2.99 (m, 1H, H-8\textprime), 3.06-3.12 (m, 2H, CH\textsubscript{2}), 7.27-7.30 (m, 2H, H-aromatic), 7.68-7.74 (m, 3H, H-aromatic), 8.48 (s, 1H, CH), 10.41 (bs, 1H, NH).

1H-NMR (CDCl\textsubscript{3}), \delta: (minor species) 1.29 (d, J= 5.4 Hz, 6 H, H-9\textprime), 1.94-2.03 (m, 4H, CH\textsubscript{2}), 2.86-2.89 (m, 2H, CH\textsubscript{2}), 2.93-2.99 (m, 1H, H-8\textprime), 3.06-3.12 (m, 2H, CH\textsubscript{2}), 7.27-7.30 (m, 2H, H-aromatic), 7.68-7.74 (m, 2H, H-aromatic), 8.00 (s, 1H, CH), 8.57 (bs, 1H, NH), 8.64 (s, 1H, CH).

13C-NMR (CDCl\textsubscript{3}), \delta: (major and minor species) 22.44, 22.54, 22.72, 22.92 (CH\textsubscript{2}), 23.81 (CH\textsubscript{3}, C-9\textprime), 25.35, 25.60, 26.72, 26.93 (CH\textsubscript{2}), 34.13 (CH, C-8\textprime), 115.29, 119.72, 124.81 (C, C-aromatic), 125.99, 126.80, 127.61, 127.72 (CH, C-aromatic), 130.65, 131.32, 132.60, 133.75, 135.06 (C, C-aromatic), 141.20, 145.37 (CH, C-aromatic), 149.10 (C, C-aromatic), 153.21 (CH, C-aromatic), 153.47, 153.60, 154.23 (C, C-aromatic), 154.37 (CH, C-aromatic), 157.02, 166.96 (C, C-aromatic).
4-{{1-[5,6,7,8-Tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl]-hydrazono]-ethyl}-phenol (252)

(C_{18}H_{18}N_{4}OS; M.W. = 338.4)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Orange solid;
Yield: 0.10 g (66%)
Melting Point: 263-265°C
MS (ESI^+): 339.1 [M+H]^+
Single species observed.

^{1}H-NMR (DMSO-d_{6}, \delta): 1.74-1.83 (m, 4H, CH_{2}), 2.39 (s, 3H, H-1’), 2.71-2.75 (m, 2H, CH_{2}), 2.99-3.03 (m, 2H, CH_{2}), 6.80 (d, J= 8.7 Hz, 2H, H-aromatic), 7.74 (s, 1H, H-2), 7.90 (d, J= 8.7 Hz, 2H, H-aromatic), 9.68 (bs, 1H, OH), 11.48 (bs, 1H, NH),

^{13}C-NMR (DMSO-d_{6}, \delta): 14.03 (CH_{3}, C-1’), 22.15, 22.40, 24.65, 26.38 (CH_{2}), 114.84 (CH, C-aromatic), 119.69 (C, C-aromatic), 128.11 (CH, C-aromatic), 129.71, 130.83, 131.97 (C, C-aromatic), 144.02 (CH, C-aromatic), 146.70, 156.31, 157.41, 158.51 (C, C-aromatic).
2-[(5,6,7,8-Tetrahydro-benzo[4,5]thieno[2,3-\textit{d}]pyrimidin-4-yl)-hydrazonomethyl]-benzene-1,4-diol (253)
(C_{17}H_{16}N_{4}O_{2}S; M.W. = 340.4)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-\textit{d}]pyrimidin-4-yl)-hydrazine (193)
(0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.09 g (61%)
Melting Point: 235-237°C
MS (ESI?): 341.1 [M+H]^+
Two species observed. Major/minor species ratio: 2/1.

1H-NMR (DMSO-\textit{d}_6), δ: (major species) 1.75-1.88 (m, 4H, CH$_2$), 2.71-2.86 (m, 2H, CH$_2$), 2.97-3.14 (m, 2H, CH$_2$), 6.71-6.76 (m, 2H, H-aromatic), 7.19 (s, 1H, H-aromatic), 7.76 (s, 1H, CH), 8.54 (s, 1H, H-aromatic), 8.91 (bs, 1H, OH), 9.60 (bs, 1H, NH), 11.48 (bs, 1H, OH).

1H-NMR (DMSO-\textit{d}_6), δ: (minor species) 1.75-1.88 (m, 4H, CH$_2$), 2.71-2.86 (m, 2H, CH$_2$), 2.97-3.14 (m, 2H, CH$_2$), 6.71-6.76 (m, 2H, H-aromatic), 6.92 (s, 1H, aromatic), 8.48 (s, 1H, H-aromatic), 8.54 (s, 1H, H-aromatic), 8.91 (bs, 1H, OH), 10.09 (bs, 1H, NH), 10.75 (bs, 1H, OH).

13C-NMR (DMSO-\textit{d}_6), δ: (major and minor species) 21.98, 22.13, 22.35, 24.67, 25.02, 25.51, 26.59 (CH$_2$), 114.15, 114.47, 116.61, 116.97, 118.30, 118.60 (CH, C-aromatic), 118.81, 119.42, 120.45, 126.46, 130.86, 132.24, 133.13 (C, C-aromatic), 143.93, 146.48 (CH, C-aromatic), 147.54, 149.81, 149.94 (C, C-aromatic), 152.55, 153.36 (CH, C-aromatic), 156.97 (C, C-aromatic).
4-(2-(1-(2,5-dimethoxyphenyl)ethylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (254)

\(\text{C}_{20}\text{H}_{22}\text{N}_{4}\text{O}_{2}\text{S}; \text{M.W.}=382.4 \)

General procedure 20;
Reagent: \((5,6,7,8\text{-tetrahydrobenzo}[4,5]\text{thieno}[2,3-d]\text{pyrimidin-4-yl})\text{-hydrazine} \ (193)\) (0.10 g, 0.4 mmol);
Purification: re-crystallisation from DCM/\text{hexane};
Grey solid;
Yield: 0.07 g (41%)
Melting Point: 143-145°C
MS (ESI\(^+\)): 383.1 [M+H]\(^+\)
Two species observed. Major/minor species ratio: 3/2.

\(^{1}\text{H-NMR (DMSO-d}_6\), \delta: \) (major species) 1.57-1.63 (m, 2H, \text{CH}_2), 1.68-1.77 (m, 2H, \text{CH}_2), 2.10-2.15 (m, 2H, \text{CH}_2), 2.29 (s, 3H, H-1’), 2.69-2.75 (m, 2H, \text{CH}_2), 3.75 (s, 3H, \text{OCH}_3), 3.76 (s, 3H, \text{OCH}_3), 6.91-6.95 (m, 1H, H-aromatic), 7.06-7.12 (m, 1H, H-aromatic), 7.18 (d, \(J = 9.0 \text{ Hz}, 1\text{H}, \text{H-aromatic})\), 8.38 (s, 1H, H-2), 8.40 (bs, 1H, NH).

\(^{1}\text{H-NMR (DMSO-d}_6\), \delta: \) (minor species) 1.45-1.51 (m, 2H, \text{CH}_2), 1.68-1.77 (m, 2H, \text{CH}_2), 2.29 (s, 3H, H-1’), 2.32-2.39 (m, 2H, \text{CH}_2), 2.61-2.65 (m, 2H, \text{CH}_2), 3.65 (s, 3H, \text{OCH}_3), 3.69 (s, 3H, \text{OCH}_3), 6.70-6.73 (m, 1H, H-aromatic), 6.83-6.87 (m, 1H, H-aromatic), 6.91-6.95 (m, 1H, H-aromatic), 7.63 (s, 1H, H-2), 11.43 (bs, 1H, NH).

\(^{13}\text{C-NMR (DMSO-d}_6\), \delta: \) (major and minor species) 21.71, 21.88, 22.34 (\text{CH}_2), 23.86, 23.98 (\text{CH}_3, C-1’), 24.48, 24.74, 24.81, 25.82 (\text{CH}_2), 55.44, 55.68, 55.86, 56.21 (\text{CH}_3, C-9’, 10’), 112.11, 113.48, 113.57 (CH, C-aromatic), 114.30 (C, C-aromatic), 114.37, 114.64, 115.97 (CH, C-aromatic), 119.22, 123.49, 125.00, 129.34, 130.84, 131.56, 133.37 (C, C-aromatic), 143.82 (CH, C-aromatic), 145.63, 148.89, 149.49, 150.40 (C, C-aromatic), 152.58 (CH, C-aromatic), 152.79, 153.28, 153.89, 155.88, 157.89, 165.21
(C, C-aromatic).

\[N-[1-(2-Methoxy-phenyl)-ethylidene]-N'-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine \ (255) \]
\[(C_{19}H_{20}N_{4}OS; \text{M.W.}=352.4) \]

General procedure 20;
Reagent: \((5,6,7,8\text{-tetrahydro-benzo}[4,5]\text{thieno}[2,3-d]\text{pyrimidin-4-yl})\text{-hydrazine} \ (193) \) (0.10 g, 0.4 mmol);
T.L.C. System: \(n\text{hexane}-\text{EtOAc} \ 5:5\text{v/v, Rf: 0.61.} \)
Purification: flash column chromatography \((n\text{hexane:EtOAc} \ 100:0 \text{ v/v increasing to} \ 70:30 \text{ v/v).} \)
Yellow solid;
Yield: 0.08 g (51%)
Melting Point: 61-63°C
MS (ES\(^{+} \)): 353.1 \([\text{M+H}]^{+}\)
Single species observed.

\(^1\text{H-NMR (DMSO-d}_6\), \(\delta \): 1.76-1.83 (m, 4H, CH\(_2\)), 2.35 (s, 3H, H-1’), 2.71-2.76 (m, 2H, CH\(_2\)), 2.99-3.04 (m, 2H, CH\(_2\)), 3.82 (s, 3H, H-9’), 6.96-7.02 (m, 1H, H-aromatic), 7.04-7.10 (m, 1H, aromatic), 7.34-7.41 (m, 1H, H-aromatic), 7.46-7.52 (m, 1H, H-aromatic), 7.67 (s, 1H, H-2), 11.46 (bs, 1H, NH).

\(^{13}\text{C-NMR (DMSO-d}_6\), \(\delta \): 18.60 (CH\(_3\), C-1’), 22.15, 22.42, 25.70, 26.35 (CH\(_2\)), 55.52 (CH\(_3\), C-9’), 111.47 (CH, C-aromatic), 119.52 (C, C-aromatic), 120.25, 129.69, 129.78 (CH, C-aromatic), 129.84, 130.88, 132.01 (C, C-aromatic), 143.95 (CH, C-aromatic), 147.22, 156.58, 157.29, 159.88 (C, C-aromatic).
Chapter 6: Experimental

\[N-[1-(3-Methoxy-phenyl)-ethyldene]-N'-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine \] (256)
\((C_{19}H_{20}N_{4}OS; M.W. = 352.4) \)

![Chemical structure](image)

General procedure 20:

Reagent(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);

Purification: re-crystallisation from EtOH/H\(_2\)O;

Yellow solid;

Yield: 0.05 g (35%)

Melting Point: 137-139° C

MS (ESI\(^+\)): 353.1 [M+H]\(^+\)

Single species observed.

\(^1\)H-NMR (DMSO-d\(_6\)), \(\delta \): 1.76-1.83 (m, 4H, CH\(_2\)), 2.43 (s, 3H, H-1’), 2.73-2.77 (m, 2H, CH\(_2\)), 3.01-3.05 (m, 2H, CH\(_2\)), 3.83 (s, 3H, H-9’), 6.97-7.00 (m, 1H, H-aromatic), 7.32-7.36 (m, 1H, aromatic), 7.56-7.60 (m, 2H, H-aromatic), 7.79 (s, 1H, H-2), 11.58 (bs, 1H, NH).

\(^{13}\)C-NMR (DMSO-d\(_6\)), \(\delta \): 14.41 (CH\(_3\), C-1’), 22.14, 22.37, 24.68, 26.36 (CH\(_2\)), 55.13 (CH\(_3\), C-9’), 112.35, 114.19, 119.11 (CH, C-aromatic), 119.57 (C, C-aromatic), 128.81 (CH, C-aromatic), 130.79, 132.29, 140.13 (C, C-aromatic), 143.98 (CH, C-aromatic), 147.46, 156.89, 157.41, 159.19 (C, C-aromatic).
General procedure 20;
Reagent: \((5,6,7,8\text{-tetrahydro-benzo[4,5]thieno}[2,3-d]\text{pyrimidin-4-yl})\text{-hydrazine}\) (193) (0.10 g, 0.4 mmol);
T.L.C. System: \(n\)hexane-EtOAc 7:3 v/v, Rf: 0.57
Purification: flash column chromatography (\(n\)hexane:EtOAc 100:0 v/v increasing to 70:30 v/v).
Yellow solid;
Yield: 0.08 g (46%)
Melting Point: 82-84°C
MS (ESI\(^+\)): 391.0, 393.0 [M+H]\(^+\)
Single species observed.

\(^1\text{H-NMR (DMSO-d}_6\), \(\delta\): \(1.76-1.84\) (m, 4H, CH\(_2\)), 2.38 (s, 3H, H-1’), 2.74-2.77 (m, 2H, CH\(_2\)), 3.01-3.04 (m, 2H, CH\(_2\)), 7.49 (dd, \(J_1=\ 8.6\ Hz, J_2=\ 2.5\ Hz, 1H, H-6’\)), 7.55 (d, \(J=\ 8.6\ Hz, 1H, H-5’\)), 7.61 (d, \(J=\ 2.5\ Hz, 1H, H-8’\)), 7.71(s, 1H, H-2), 11.58 (bs, 1H, NH).

\(^13\text{C-NMR (DMSO-d}_6\), \(\delta\): \(18.48\) (CH\(_3\), C-1’), 22.13, 22.38, 24.67, 26.35 (CH\(_2\)), 119.27 (C, C-aromatic), 129.48 (CH, C-aromatic), 130.07 (C, C-aromatic), 130.30 (CH, C-aromatic), 130.87 (C, C-aromatic), 131.31 (CH, C-aromatic), 131.69, 132.45, 141.30 (C, C-aromatic), 143.77 (CH, C-aromatic), 148.26, 157.29, 157.65 (C, C-aromatic).
Chapter 6: Experimental

N-[1-(2-Chloro-phenyl)-ethyldene]-N'-[5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-y])$-hydrazine (258)

$(C_{18}H_{17}ClN_4S; M.W. = 356.8)$

![Chemical Structure]

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-y)-hydrazine (193) (0.10 g, 0.4 mmol);
T.L.C. System: n-hexane-EtOAc 7:3 v/v, Rf: 0.52
Purification: flash column chromatography (n-hexane:EtOAc 100:0 v/v increasing to 50:50 v/v).
Yellow solid;
Yield: 0.08 g (51%)
Melting Point: 77-79°C
MS (ESI$^+$): 357.1, 359.1 [M+H]$^+$
Single species observed.

1H-NMR (DMSO-d$_6$), δ: 1.76-1.85 (m, 4H, CH$_2$), 2.39 (s, 3H, H-1$'$), 2.73-2.77 (m, 2H, CH$_2$), 3.02-3.05 (m, 2H, CH$_2$), 7.38-7.44 (m, 2H, H-aromatic), 7.48-7.56 (m, 2H, H-aromatic), 7.68 (s, 1H, H-2), 11.50 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 18.78 (CH$_3$, C-1$'$), 22.14, 22.40, 24.66, 26.36 (CH$_2$), 119.30 (C, C-aromatic), 127.04, 129.55, 129.76 (CH, C-aromatic), 130.72 (C, C-aromatic), 130.88 (CH, C-aromatic), 131.26, 132.29, 139.82 (C, C-aromatic), 143.81 (CH, C-aromatic), 147.93, 157.03, 159.00 (C, C-aromatic).
Chapter 6: Experimental

\[N-[1-(4-Chloro-phenyl)-ethylidene]-N'-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine \ (259) \]
\[(C_{18}H_{16}ClN_{4}S; \text{M.W.}=356.8) \]

![Chemical structure of 259](image)

General procedure 20;
Reagent: \((5,6,7,8\text{-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl})\)-hydrazine \((193)\) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.12 g (77%)
Melting Point: 199-201 °C
MS (ESI\(^{+}\)): 357.1, 359.1 [M+H]\(^{+}\)
Single species observed.

\[^{1}\text{H-NMR (DMSO-d6), 8:}\] 1.74-1.84 (m, 4H, CH\(_2\)), 2.42 (s, 3H, H-1’), 2.72-2.76 (m, 2H, CH\(_2\)), 2.99-3.04 (m, 2H, CH\(_2\)), 7.46 (d, J= 8.3 Hz, 2H, H-aromatic), 7.79 (s, 1H, H-2), 8.06 (d, J= 8.3 Hz, 2H, H-aromatic), 11.65 (bs, 1H, NH).

\[^{13}\text{C-NMR (DMSO-d6), 8:}\] 13.99 (CH\(_3\), C-1’), 22.12, 22.36, 24.67, 26.37 (CH\(_2\)), 119.29 (C, C-aromatic), 128.02, 128.21 (CH, C-aromatic), 130.82, 132.34, 133.55, 137.44 (C, C-aromatic), 143.90 (CH, C-aromatic), 147.74, 156.23, 157.02 (C, C-aromatic).

\[N-[1-(2,5-Difluoro-phenyl)-ethylidene]-N'-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine \ (260) \]
\[(C_{18}H_{17}F_{2}N_{4}S; \text{M.W.}=358.4) \]

![Chemical structure of 260](image)
General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193)
(0.10 g, 0.4 mmol);
Purification: re-crystallisation from EtOH/H₂O;
Yellow solid;
Yield: 0.07 g (45%)
Melting Point: 131-133°C
MS (ESI⁺): 359.1 [M+H]⁺
Single species observed.

¹H-NMR (DMSO-d₆), δ: 1.74-1.83 (m, 4H, CH₂), 2.42 (d, J= 4.1 Hz, 3H, H-1’), 2.72-2.76 (m, 2H, CH₂), 2.99-3.03 (m, 2H, CH₂), 7.24-7.32 (m, 2H, H-aromatic), 7.77 (s, 1H, H-2), 7.82-7.87 (m, 1H, H-aromatic), 11.64 (bs, 1H, NH).
¹³C-NMR (DMSO-d₆), δ: 17.36, 17.42 (CH₃, C-1’), 22.11, 22.35, 24.66, 26.34 (CH₂),
115.71, 115.74, 115.90, 115.94, 116.81, 116.88, 117.01, 117.08, 117.61, 117.68, 117.82, 117.89 (CH, C-5’, 6’, 8’), 119.43, 128.83, 128.89, 130.83, 132.49 (C, C-aromatic), 143.77 (CH, C-2), 148.21, 154.29, 155.62, 157.06, 157.32, 157.55, 158.95 (C, C-aromatic).

N-(1-(2-Fluoro-phenyl)-ethylidene)-N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (261)
(C₁₈H₁₇FN₄S; M.W.= 340.4)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193)
(0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.06 g (42%)
Melting Point: 65-67°C
MS (ESI\(^+\)): 341.1 [M+H]\(^+\)

Single species observed.

\(^1\)H-NMR (DMSO-\(d_6\), \(\delta\)): 1.74-1.85 (m, 4H, CH\(_2\)), 2.42 (d, \(J = 3.4\) Hz, 3H, H-1’), 2.74-2.77 (m, 2H, CH\(_2\)), 3.01-3.04 (m, 2H, CH\(_2\)), 7.23-7.28 (m, 2H, H-aromatic), 7.42-7.47 (m, 1H, H-aromatic), 7.42 (s, 1H, H-2), 7.88-7.92 (m, 1H, H-aromatic), 11.54 (bs, 1H, NH).

\(^13\)C-NMR (DMSO-\(d_6\), \(\delta\)): 17.84, 17.88 (CH\(_3\), C-1’), 22.13, 22.38, 24.66, 26.36 (CH\(_2\)), 115.92, 116.10 (CH, C-aromatic), 119.42 (C, C-aromatic), 124.16, 124.18 (CH, C-aromatic), 127.62, 127.71 (C, C-aromatic), 130.18 (CH, C-aromatic), 130.21 (C, C-aromatic), 130.54, 130.61, 130.86 (CH, C-aromatic), 132.36 (C, C-aromatic), 143.87 (CH, C-2), 147.83, 155.68, 157.03, 159.31, 161.28 (C, C-aromatic).

\(N\)-(1-Pyrazin-2-yl-ethylidene)-\(N'\)-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (262)

\((C_{16}H_{16}N_6S; M.W.= 324.4)\)

General procedure 20;
Reagent: \((5,6,7,8\)-tetrahydro-benzo[4,5]thieno[2,3-\(d\)]pyrimidin-4-yl\)-hydrazine (193) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.08 g (55%)
Melting Point: 201-203°C
MS (ESI\(^+\)): 325.1 [M+H]\(^+\)

Microanalysis: Calculated for \(C_{16}H_{16}N_6S\) (324.4); Theoretical: %C = 59.24, %H = 4.97, %N = 25.89; Found: %C = 59.14, %H = 4.79, %N = 25.95.

Two species observed. Major/minor species ratio: 3/2.

\(^1\)H-NMR (DMSO-\(d_6\), \(\delta\)): (major species) 1.86-191 (m, 4H, CH\(_2\)), 2.59 (s, 3H, H-1’), 2.78-2.82 (m, 2H, CH\(_2\)), 3.10-3.13 (m, 2H, CH\(_2\)), 7.73 (d, \(J = 1.6\) Hz, 1H, H-6’), 8.46 (d,
J = 2.7 Hz, 1H, H-5'), 8.53 (dd, J1 = 2.7 Hz, J2 = 1.6 Hz, 1H, H-5'), 9.32 (s, 1H, H-aromatic), 10.56 (bs, 1H, NH).

1H-NMR (DMSO-d6, δ): (minor species) 1.93-1.98 (m, 2H, CH₂), 1.99-2.05 (m, 2H, CH₂), 2.49 (s, 3H, H-1’), 2.86-2.90 (m, 2H, CH₂), 3.05-3.08 (m, 2H, CH₂), 8.50-8.52 (m, 2H, H-aromatic), 8.66 (s, 1H, H-aromatic), 9.51 (s, 1H, H-aromatic).

13C-NMR (DMSO-d6, δ): (major and minor species) 10.83, 13.43 (CH₃, C-1’), 22.33, 22.63, 22.70, 22.87, 25.38, 25.60, 26.63, 26.67 (CH₂), 116.22, 120.55, 124.38, 131.48, 134.35, 136.00 (C, C-aromatic), 141.18, 142.82, 142.95, 143.22, 143.34, 143.42, 143.82 (CH, C-aromatic), 147.68, 149.07, 150.40, 152.02 (C, C-aromatic), 153.08 (CH, C-aromatic), 153.74, 157.90, 158.35, 167.34 (C, C-aromatic).

N-(1-Pyridin-2-yl-ethylidene)-N'-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (263) (C₁₇H₁₇N₅S; M.W. = 323.4)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Purification: re-crystallisation from EtOH/H₂O;
Orange solid;
Yield: 0.11 g (81%)
Melting Point: 195-197°C
MS (ESI⁺): 324.1 [M+H]⁺
Two species observed. Major/minor species ratio: 5/2.

1H-NMR (DMSO-d6, δ): (major species) 1.75-1.81 (m, 4H, CH₂), 2.54 (s, 3H, H-1’), 2.71-2.74 (m, 2H, CH₂), 2.99-3.03 (m, 2H, CH₂), 7.36 (dd, J1 = 7.5 Hz, J2 = 5.1 Hz, 1H, H-aromatic), 7.79-7.83 (m, 2H, H-aromatic), 8.53 (d, J= 8.0 Hz, 1H, H-aromatic), 8.57-
8.61 (m, 1H, H-aromatic), 11.74 (bs, 1H, NH).

1H-NMR (DMSO-d$_6$), δ: (minor species) 1.82-1.86 (m, 2H, CH$_2$), 1.91-1.97 (m, 2H, CH$_2$), 2.42 (s, 3H, H-1’), 2.75-2.78 (m, 2H, CH$_2$), 3.06-3.09 (m, 2H, CH$_2$), 7.52 (dd, J_1= 7.8 Hz, J_2= 5.1 Hz, 1H, H-aromatic), 7.74 (d, J= 8.0 Hz, 1H, H-aromatic), 8.01-8.03 (m, 1H, H-aromatic), 8.41 (s, 1H, H-aromatic), 8.57-8.61 (m, 1H, H-aromatic), 9.73 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: (major and minor species) 13.17 (CH$_3$, C-1’), 21.87, 22.10, 22.25, 22.35, 24.67, 24.95, 26.13, 26.36 (CH$_2$), 119.62 (C, C-aromatic), 120.86, 123.51, 124.06, 124.37 (CH, C-aromatic), 130.86, 132.47, 132.78 (C, C-aromatic), 135.84, 143.82, 147.15 (CH, C-aromatic), 148.08 (C, C-aromatic), 148.40 (CH, C-aromatic), 156.06, 157.36, 158.65 (C, C-aromatic).

N-$[1$-(1H-Indol-2-yl)-ethyldiene]-N'-$[5$,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl]-$hydrazine$ (264)

$\left(C_{20}H_{19}N_5S; \text{M.W.}=361.4 \right) $

![Chemical structure](image)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.08 g (53%)
Melting Point: 213-215°C
MS (ESI$^+$): 362.1 [M+H]$^+$
Single species observed.

1H-NMR (DMSO-d$_6$), δ: 1.77-1.85 (m, 4H, CH$_2$), 2.41 (s, 3H, H-1’), 2.74-2.78 (m, 2H, CH$_2$), 3.00-3.06 (m, 2H, CH$_2$), 6.87 (s, 1H, H-10’), 7.01-7.03 (m, 1H, H-aromatic), 7.18-7.20 (m, 1H, H-aromatic), 7.44 (d, J= 7.9 Hz, 1H, H-aromatic), 7.96 (d, J= 7.9 Hz,
1H, H-aromatic), 7.96 (s, 1H, H-2), 11.35 (bs, 1H, NH), 11.98 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 13.58 (CH$_3$, C-1'), 22.13, 22.39, 24.67, 26.30 (CH$_2$), 103.33, 110.90, 119.15 (CH, C-aromatic), 119.67 (C, C-aromatic), 120.79, 123.03 (CH, C-aromatic), 128.15, 130.87, 132.41, 136.83, 137.78 (C, C-aromatic), 143.59 (CH, C-aromatic), 147.98, 150.37, 156.95 (C, C-aromatic).

N-[1-(1H-Benzimidazol-2-y1)-ethylidene]-N'-(5,6,7,8-tetrahydro-benzo[4,5]thieno [2,3-d]pyrimidin-4-y1)-hydrazine (265)
(C$_{19}$H$_{18}$N$_6$S; M.W. = 362.4)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-y1)-hydrazine (193) (0.10 g, 0.4 mmol);
Light brown solid;
Yield: 0.06 g (42%)
Melting Point: 287-289°C
MS (ESI$^+$): 363.1 [M+H]$^+$
Two species observed. Major/minor species ratio: 5/1.

1H-NMR (DMSO-d$_6$), δ: 1.74-1.84 (m, 4H, CH$_2$), 2.72-2.81 (m, 2H, CH$_2$), 3.01-3.08 (m, 2H, CH$_2$), 3.18 (s, 3H, H-1'), 7.17-7.23 (m, 1H, H-aromatic), 7.25-7.31 (m, 1H, H-aromatic), 7.54-7.61 (m, 1H, H-aromatic), 7.63-7.73 (m, 1H, H-aromatic), 8.04 (s, 1H, H-2), 12.10 (bs, 1H, NH), 12.57 (bs, 1H, NH).

1H-NMR (DMSO-d$_6$), δ: 1.91-1.96 (m, 2H, CH$_2$), 2.02-2.10 (m, 2H, CH$_2$), 2.83-2.87 (m, 2H, CH$_2$), 3.42-3.46 (m, 2H, CH$_2$), 4.08 (s, 3H, H-1'), 7.36-7.43 (m, 2H, H-aromatic), 7.63-7.73 (m, 2H, H-aromatic), 8.50 (s, 1H, H-2), 13.03 (bs, 1H, NH), 14.31 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 13.10 (CH$_3$, C-1'), 22.08, 22.35, 24.68, 26.29 (CH$_2$), 48.57
(CH₃, C-1’), 111.06, 119.39 (CH, C-aromatic), 119.53 (C, C-aromatic), 121.48, 123.50 (CH, C-aromatic), 130.87, 132.92, 133.52 (C, C-aromatic), 143.46 (CH, C-aromatic), 143.79, 149.20, 149.71, 151.77, 157.94 (C, C-aromatic).

4-(2-(1-(Quinolin-2-yl)ethylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (290)
(C₂₁H₁₉N₅S; M.W.= 373.4)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Purification: re-crystallisation from EtOH/H₂O;
Orange solid;
Yield: 0.11 g (71%)
Melting Point: 121-123°C
MS (ESI⁺): 374.0 [M+H]⁺
Single species observed.

¹H-NMR (DMSO-d₆), δ: 1.79-1.83 (m, 4H, CH₂), 2.62 (s, 3H, H-1’), 2.74-2.78 (m, 2H, CH₂), 3.05-3.09 (m, 2H, CH₂), 7.58-7.61 (m, 1H, H-aromatic), 7.74-7.78 (m, 1H, H-aromatic), 7.89 (s, 1H, H-2), 7.94 (d, J= 8.3 Hz, 1H, H-aromatic), 8.04 (d, J= 8.3 Hz, 1H, H-aromatic), 8.34 (d, J= 8.7 Hz, 1H, H-aromatic), 8.77 (d, J= 8.7 Hz, 1H, H-aromatic), 11.90 (bs, 1H, NH).

¹³C-NMR (DMSO-d₆), δ: 12.97 (CH₃, C-1’), 22.12, 22.35, 24.70, 26.39 (CH₂), 119.25 (CH, C-aromatic), 119.57 (C, C-aromatic), 126.66, 127.67 (CH, C-aromatic), 127.76 (C, C-aromatic), 129.08, 129.46 (CH, C-aromatic), 130.91, 132.71 (C, C-aromatic), 135.23, 143.87 (CH, C-aromatic), 146.97, 148.43, 156.24, 158.04, 159.15 (C, C-aromatic).
4-(2-(1-(Pyridin-3-yl)ethylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (291)
(C_{17}H_{17}N_{5}S; M.W.= 323.4)

General procedure
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Yellow crystals;
Yield: 0.08 g (61%)
Melting Point: 188-191°C
MS (ESI+): 324.1 [M+H]^+
Single species observed.

^{1}H-NMR (DMSO-d6), δ: 1.76-1.83 (m, 4H, CH2), 2.46 (s, 3H, H-1’), 2.73-2.76 (m, 2H, CH2), 3.01-3.05 (m, 2H, CH2), 7.42-7.45 (m, 1H, H-aromatic), 7.80 (d, J= 3.6 Hz, 1H, H-aromatic), 8.33-8.36 (m, 1H, H-aromatic), 8.57 (dd, J1= 4.7 Hz, J2= 1.5 Hz, 1H, H-aromatic), 9.28 (s, 1H, H-2), 11.74 (bs, 1H, NH).

^{13}C-NMR (DMSO-d6), δ: 13.84 (CH3, C-1’), 22.12, 22.36, 24.67, 26.38 (CH2), 119.54 (C, C-aromatic), 123.15 (CH, C-aromatic), 130.83, 132.43 (C, C-aromatic), 133.60 (CH, C-aromatic), 133.98 (C, C-aromatic), 143.90, 147.87 (CH, C-aromatic), 148.03 (C, C-aromatic), 149.44 (CH, C-aromatic), 155.41, 157.20 (C, C-aromatic).
4-(2-(1H-Pyrrol-2-yl)ethylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (292)
(C_{16}H_{17}N_{5}S; M.W.= 311.4)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.08 g (62%)
Melting Point: 84-89°C
MS (ESI\(^+\)): 312.1 [M+H]\(^+\)
Single species observed.

\(^1\)H-NMR (DMSO-d\(_6\)), \(\delta\): 1.76-1.86 (m, 4H, CH\(_2\)), 2.27 (s, 3H, H-1’), 2.71-2.75 (m, 2H, CH\(_2\)), 2.97-3.01 (m, 2H, CH\(_2\)), 6.11-6.14 (m, 1H, H-aromatic), 6.47-6.49 (m, 1H, H-aromatic), 7.00-7.02 (m, 1H, H-aromatic), 7.82 (s, 1H, H-2), 11.31 (bs, 1H, NH), 11.80 (bs, 1H, NH).

\(^{13}\)C-NMR (DMSO-d\(_6\)), \(\delta\): 13.48 (CH\(_3\), C-1’), 22.14, 22.42, 24.63, 26.26 (CH\(_2\)), 108.74, 110.21 (CH, C-aromatic), 119.70 (C, C-aromatic), 120.71 (CH, C-aromatic), 130.83, 131.80, 131.91 (C, C-aromatic), 143.61 (CH, C-aromatic), 146.88, 150.42, 156.13 (C, C-aromatic).
4-(2-(1-(Furan-2-yl)ethyldiene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (293)

\((\text{C}_{16}\text{H}_{16}\text{N}_4\text{O}\text{S}; \text{M.W.}= 312.3)\)

![Image of reaction scheme]

General procedure 16;
Reagent: \((5,6,7,8\text{-tetrahydro-benzo}[4,5]\text{thieno}[2,3-d]\text{pyrimidin-4-yl})\text{-hydrazine } (193)\) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.05 g (36%)
Melting Point: 134-139°C
MS (ESI\(^+\)): 313.1 [M+H]\(^+\)
Single species observed.

\(^1\text{H-NMR (DMSO-d}_6\text{), } \delta: 1.75-1.82 \text{ (m, 4H, CH}_2\text{), 2.33 (s, 3H, H-1'), 2.72-2.75 (m, 2H, CH}_2\text{), 2.98-3.01 (m, 2H, CH}_2\text{), 6.63 (dd, J}_1= 3.4 \text{ Hz, J}_2= 1.7 \text{ Hz, 1H, H-aromatic), 7.08 (d, J= 3.4 Hz, 1H, H-aromatic), 7.76-7.79 (m, 2H, H-aromatic), 11.47 (bs, 1H, NH).}\)

\(^{13}\text{C-NMR (DMSO-d}_6\text{), } \delta: 13.72 (\text{CH}_3, \text{C-1'}), 22.12, 22.37, 24.65, 26.32 (\text{CH}_2\text{), 109.99, 111.96 (CH, C-aromatic), 119.59, 130.81, 132.30 (C, C-aromatic), 143.82, 143.94 (CH, C-aromatic), 147.33, 149.57, 153.31, 156.80 (C, C-aromatic).}\)

4-(2-(1-(Thiophen-2-yl)ethyldene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (294)

\((\text{C}_{16}\text{H}_{16}\text{N}_4\text{S}_2; \text{M.W.}= 328.4)\)

![Image of reaction scheme]
General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)hydrazine (193) (0.10 g, 0.4 mmol);
Yellow crystals;
Yield: 0.06 g (44%)
Melting Point: 129-132°C
MS (ESI$^+$): 329.1 [M+H]$^+$
Single species observed.

1H-NMR (DMSO-d$_6$), δ: 1.76-1.83 (m, 4H, CH$_2$), 2.42 (s, 3H, H-1'), 2.72-2.75 (m, 2H, CH$_2$), 2.98-3.01 (m, 2H, CH$_2$), 7.11 (dd, J$_1$ = 5.2 Hz, J$_2$ = 3.7 Hz, 1H, H-aromatic), 7.51 (dd, J$_1$ = 3.7 Hz, J$_2$ = 0.9 Hz, 1H, H-aromatic), 7.58 (dd, J$_1$ = 5.2 Hz, J$_2$ = 0.9 Hz, 1H, H-aromatic), 7.80 (s, 1H, H-aromatic), 7.51, 7.58 (dd, J$_1$ = 5.2 Hz, J$_2$ = 0.9 Hz, 1H, H-aromatic), 14.96 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 14.96 (CH$_3$, C-1'), 22.13, 22.37, 24.66, 26.36 (CH$_2$), 119.59 (C, C-aromatic), 127.01, 127.50, 127.91 (CH, C-aromatic), 130.80, 132.33 (C, C-aromatic), 144.07 (CH, C-aromatic), 144.43, 146.80, 153.74, 156.73 (C, C-aromatic).

4-(2-(Thiophen-2-yl)methylene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (457)35
(C$_{15}$H$_{14}$N$_4$S$_2$; M.W. = 314.4)

General procedure 20;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)hydrazine (193) (0.10 g, 0.4 mmol);
Yellow solid;
Yield: 0.04 g (34%)
Melting Point: 156-161°C (lit. 179-180°C)
MS (ESI$^+$): 314.9 [M+H]$^+$
Two species observed. Major/minor species ratio: 6/1.
1H-NMR (DMSO-d_6), δ: (major species) 1.73-1.86 (m, 4H, CH$_2$), 2.72-2.75 (m, 2H, CH$_2$), 2.95-2.99 (m, 2H, CH$_2$), 7.13-7.15 (m, 1H, H-aromatic), 7.47-7.48 (m, 1H, H-aromatic), 7.63-7.66 (m, 1H, H-aromatic), 7.78 (d, J= 3.7 Hz, 1H, H-aromatic), 8.57 (s, 1H, H-aromatic), 11.49 (bs, 1H, NH).

1H-NMR (DMSO-d_6), δ: (minor species) 1.73-1.86 (m, 4H, CH$_2$), 2.81-2.84 (m, 2H, CH$_2$), 3.05-3.08 (m, 2H, CH$_2$), 7.13-7.15 (m, 1H, H-aromatic), 7.40 (d, J= 3.1 Hz, 1H, H-aromatic), 7.63-7.66 (m, 1H, H-aromatic), 8.45 (s, 1H, H-aromatic), 8.57 (s, 1H, H-aromatic), 10.22 (bs, 1H, NH).

13C-NMR (DMSO-d_6), δ: (major and minor species) 21.98, 22.19, 22.36, 24.65, 25.19, 26.47, 26.52 (CH$_2$), 118.82 (C, C-aromatic), 127.74, 127.79, 128.19, 128.61, 129.80, 130.48 (CH, C-aromatic), 130.80, 132.27, 132.87, 139.19, 140.10 (C, C-aromatic), 140.58, 144.00, 147.61 (CH, C-aromatic), 148.26 (C, C-aromatic), 152.16 (CH, C-aromatic), 157.13 (C, C-aromatic).
6.4.1.3 2-Pyridinesulfonyl chloride (266)36
(C\textsubscript{5}H\textsubscript{4}ClO\textsubscript{2}S; M.W. = 177.6)

\[
\text{\begin{align*}
\text{\(\text{H}_2\text{SO}_4\text{NaOCl}\) H\textsubscript{2}O, r.t., 2h} \\
270 &\rightarrow 266
\end{align*}}
\]

Under ice-cooling, 2-mercaptopyridine (270) (1 g, 9 mmol) was added to sulphuric acid (25 mL) and the mixture was stirred at r.t. A sodium hypochlorite solution (63 mL, available chlorine 4.00-4.99\%) was then added dropwise to the reaction mixture over a period of 1.5 h, and the mixture was further stirred at r.t. for 30 min. The reaction was then diluted with water (50 mL), and extracted with DCM (2 x 50 mL). The extract was then washed with brine (100 mL), dried over MgSO\textsubscript{4}, and concentrated at reduced pressure to give the title compound as a colourless oil.

Yield: 1.23 g (77\%)

\textbf{\(\text{\(^1\)H-NMR (CDCl}_3\), \(\delta\):}} 7.70-7.74 (m, 1H, H-aromatic), 8.07-8.10 (m, 1H, H-aromatic), 8.12-8.14 (m, 1H, H-aromatic), 8.83-8.85 (m, 1H, H-aromatic).

\textbf{\(\text{\(^{13}\)C-NMR (CDCl}_3\)}, \(\delta\):} 121.94, 129.12, 139.09, 150.71 (CH, C-aromatic), 159.22 (C, C-1).
6.4.1.4 Arylsulfonyl acid \(N'-(5,6,7,8\text{-tetrahydro-benzo}[4,5]\text{thieno}[2,3-\text{d}]\text{pyrimidin}-4-\text{yl})\text{-hydrazides (267-269)} \)

4-tert-Butyl-phenylsulfonyl acid \(N'-(5,6,7,8\text{-tetrahydro-benzo}[4,5]\text{thieno}[2,3-\text{d}]\text{pyrimidin}-4-\text{yl})\text{-hydrazide (267)} \)

\((C_{20}H_{24}N_4O_2S_2; \text{M.W.}= 416.5)\)

![Chemical Structure]

General procedure 21;
T.L.C. System: \(n \text{hexane-EtOAc 4:6 v/v, Rf: 0.66.} \)
Purification: flash column chromatography \((n \text{hexane:EtOAc 100:0 v/v increasing to 70:30 v/v).} \)
White solid;
Yield: 0.11 g (38%)
Melting Point: 171-173°C
MS (ESI\(^+\)): 417.1 [M+H]

\(^1\text{H-NMR (CDCl}_3\), \(\delta\): 1.24 (s, 9H, H-8'), 1.90-2.01 (m, 4H, CH\(_2\)), 2.83 (t, J= 5.9 Hz, 2H, CH\(_2\)), 2.96 (t, J= 5.9 Hz, 2H, CH\(_2\)), 7.16 (bs, 1H, NH), 7.33 (d, J= 8.5 Hz, 2H, H-aromatic), 7.80 (d, J= 8.5 Hz, 2H, H-aromatic), 8.00 (s, 1H, H-2), 8.02 (bs, 1H, NH),

\(^{13}\text{C-NMR (CDCl}_3\), \(\delta\): 22.35, 22.43, 25.46, 26.17 (CH\(_2\)), 30.92 (CH\(_3\), C-8'), 35.14 (C, C-7'), 125.07 (C, C-aromatic), 125.52, 128.60 (CH, C-aromatic), 133.66, 135.81 (C, C-aromatic), 151.18 (CH, C-2), 154.56, 157.62, 158.18, 166.24 (C, C-aromatic).
4-Chlorosulfonyl acid N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazide (268)
(C_{16}H_{15}ClN_{4}O_{2}S_{2}; M.W.= 394.8)

General procedure 21;
T.L.C. System: nhexane-EtOAc 4:6 v/v, Rf: 0.63.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to 50:50 v/v).
Pale yellow solid;
Yield: 0.12 g (46%)
Melting Point: 186-188°C
MS (ESI\(^+\)): 395.0, 397.0 [M+H]\(^+\)
\(^1\)H-NMR (CDCl\(_3\)), δ: 1.91-2.01 (m, 4H, CH\(_2\)), 2.84 (t, J= 5.8 Hz, 2H, CH\(_2\)), 2.95 (t, J= 5.8 Hz, 2H, CH\(_2\)), 7.14 (bs, 1H, NH), 7.34 (d, J= 8.5 Hz, 2H, H-aromatic), 7.85 (d, J= 8.5 Hz, 2H, H-aromatic), 8.08 (bs, 1H, NH), 8.12 (s, 1H, H-2).
\(^13\)C-NMR (DMSO-d\(_6\)), δ: 21.84, 22.07, 24.91, 25.15 (CH\(_2\)), 126.50 (C, C-aromatic), 128.71, 129.70 (CH, C-aromatic), 133.47, 137.70, 138.45 (C, C-aromatic), 151.31 (CH, C-2), 155.98, 161.27, 164.56 (C, C-aromatic).

2-Pyridine sulfonyl acid N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazide (269)
(C_{15}H_{15}N_{5}O_{2}S_{2}; M.W.= 361.4)
General procedure 21;
Purification: re-crystallisation from EtOH.
White solid;
Yield: 0.08 g (34%)
Melting Point: 189-191°C
MS (ESI\(^+\)): 362.1 [M+H\(^+\)]

Two species observed. Major/minor species ratio: 3/1.

\(^1\)H-NMR (DMSO-d\(_6\)), δ: (major species) 1.78-1.84 (m, 4H, CH\(_2\)), 2.75-2.79 (m, 2H, CH\(_2\)), 2.90-2.94 (m, 2H, CH\(_2\)), 7.59-7.62 (m, 1H, H-aromatic), 7.90 (d, J= 7.7 Hz, 1H, H-aromatic), 7.94-8.00 (m, 1H, H-aromatic), 8.02 (s, 1H, H-2), 8.63-8.67 (m, 1H, H-aromatic), 8.83 (bs, 1H, NH), 10.10 (bs, 1H, NH).

\(^1\)H-NMR (DMSO-d\(_6\)), δ: (minor species) 1.50-1.54 (m, 2H, CH\(_2\)), 1.64-1.68 (m, 2H, CH\(_2\)), 2.26-2.30 (m, 2H, CH\(_2\)), 2.62-2.66 (m, 2H, CH\(_2\)), 7.66-7.71 (m, 2H, H-aromatic), 7.94-8.00 (m, 1H, H-aromatic), 8.08-8.12 (m, 1H, H-aromatic), 8.78 (s, 1H, H-2), 8.83 (bs, 1H, NH), 9.44 (bs, 1H, NH), 10.10 (bs, 1H, NH), 11.60 (bs, 1H, NH).

\(^13\)C-NMR (DMSO-d\(_6\)), δ: (major and minor species) 21.86, 22.05, 22.20, 24.49, 24.90, 25.25, 25.98 (CH\(_2\)), 115.43 (C, C-aromatic), 122.78, 124.19 (CH, C-aromatic), 126.34 (C, C-aromatic), 126.98, 127.21 (CH, C-aromatic), 133.38 (C, C-aromatic), 137.69, 138.24, 143.27, 149.62, 149.75, 151.41 (CH, C-aromatic), 156.30, 156.89, 165.29 (C, C-aromatic).
6.4.1.5 Aryl-carboxylic acid N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazides (272-273, 278-281, 302-309)

4-tert-Butyl-benzoic acid N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazide (272)

\[(C_{21}H_{24}N_{4}OS; M.W. = 380.5)\]

General procedure 22a;
T.L.C. System: nhexane-EtOAc 4:6 v/v, Rf: 0.63.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to 40:60 v/v).
White solid;
Yield: 0.23 g (86%)
Melting Point: 137-139°C
MS (ESI\(^{+}\)): 381.2 [M+H]\

\(^{1}\text{H-NMR (CDCl}_{3}\), \(\delta\): 1.31 (s, 9H, H-9’), 1.87-1.94 (m, 4H, CH\(_2\)), 2.81-2.85 (m, 2H, CH\(_2\)), 3.07-3.10 (m, 2H, CH\(_2\)), 7.36 (d, J = 8.4 Hz, 2H, H-aromatic), 7.85 (d, J = 8.4 Hz, 2H, H-aromatic), 8.35 (bs, 1H, NH), 8.40 (s, 1H, H-2), 10.69 (bs, 1H, NH).

\(^{13}\text{C-NMR (CDCl}_{3}\), \(\delta\): 22.37, 22.40, 25.50, 26.19 (CH\(_2\)), 31.07 (CH\(_3\), C-9’), 34.92 (C, C-8’), 116.14 (C, C-aromatic), 125.42 (CH, C-aromatic), 125.67 (C, C-aromatic), 127.12 (CH, C-aromatic), 128.24, 135.23 (C, C-aromatic), 151.59 (CH, C-aromatic), 155.61, 156.23, 165.52 (C, C-aromatic), 166.26 (C, C-1’).
4-Chloro-benzoic acid \(N'-(5,6,7,8\text{-tetrahydro-benzo}[4,5]\text{thieno}[2,3-d]\text{pyrimidin}-4-y1)\)-hydrazide (273)
(\text{C}_{17}\text{H}_{15}\text{ClN}_4\text{OS}; \text{M.W.}=358.8)

General procedure 22a;
T.L.C. System: \text{nhexane}-\text{EtOAc} 4:6 v/v, Rf: 0.50.
Purification: flash column chromatography (\text{nhexane}:\text{EtOAc} 100:0 v/v increasing to 30:70 v/v).
White solid;
Yield: 0.09 g (37%)
Melting Point: 210-212 °C
MS (ESI\(^+\)): 359.0, 361.0 [M+H]\(^+\)
\(^1\text{H-NMR (CDCl}_3\), \(\delta\): 1.90-2.01 (m, 4H, \text{CH}_2), 2.85-2.88 (m, 2H, \text{CH}_2), 3.07-3.11 (m, 2H, \text{CH}_2), 7.42 (d, J= 8.5 Hz, 2H, H-aromatic), 7.68 (d, J= 8.5 Hz, 2H, H-aromatic), 8.28 (bs, 1H, NH), 8.44 (s, 1H, H-2), 10.14 (bs, 1H, NH).
\(^13\text{C-NMR (CDCl}_3\), \(\delta\): 22.38, 22.43, 25.51, 26.14 (CH2), 125.44 (C, C-aromatic), 128.57, 128.99 (CH, C-aromatic), 129.64, 135.71, 138.69 (C, C-aromatic), 151.62 (CH, C-2), 156.67, 161.43, 164.89 (C, C-aromatic), 166.39 (C, C-1').

2,5-Dihydroxy-benzoic acid \(N'-(5,6,7,8\text{-tetrahydro-benzo}[4,5]\text{thieno}[2,3-d]\text{pyrimidin}-4-y1)\)-hydrazide (278)
(\text{C}_{17}\text{H}_{16}\text{N}_4\text{O}_3\text{S}; \text{M.W.}=356.4)
Chapter 6: Experimental

General procedure 22;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.20 g, 0.9 mmol);
Purification: re-crystallisation from EtOH.
Light grey solid;
Yield: 0.08 g (28%)
Melting Point: 261-263°C
MS (ESI’): 357.1 [M+H]^+

1H-NMR (DMSO-d$_6$), δ: 1.81-1.91 (m, 4H, CH$_2$), 2.80-2.86 (m, 2H, CH$_2$), 2.99-3.08 (m, 2H, CH$_2$), 6.82 (d, J= 8.7 Hz, 1H, H-aromatic), 6.91 (dd, J$_1$= 8.7 Hz, J$_2$= 1.6 Hz, 1H, H-aromatic), 7.37 (d, J= 1.6 Hz, 1H, H-aromatic), 8.36 (s, 1H, H-2), 8.77 (bs, 1H, NH), 9.09 (bs, 1H, NH), 10.77 (bs 1H, OH), 11.17 (bs, 1H, OH).

13C-NMR (DMSO-d$_6$), δ: 21.94, 22.11, 24.95, 25.62 (CH$_2$), 114.00 (CH, C-aromatic), 115.19, 115.40 (C, C-aromatic), 117.82, 121.48 (CH, C-aromatic), 126.42, 132.99, 149.61, 151.18 (C, C-aromatic), 152.33 (CH, C-aromatic), 156.42, 165.28 (C, C-aromatic), 166.48 (C, C-1’).

2-Hydroxy-benzoic acid N’-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazide (279)37
(C$_{17}$H$_{16}$N$_4$O$_2$S; M.W. = 340.4)

\[
\begin{array}{c}
\text{193} \\
\text{275} \\
\text{279}
\end{array}
\]

General procedure 22;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.20 g, 0.9 mmol);
Purification: re-crystallisation from EtOH/H$_2$O.
Light orange solid;
Yield: 0.10 g (35%)
Melting Point: 327-329°C

381
MS (ESI\(^+\)): 341.1 [M+H]\(^+\)

\(^1\)H-NMR (DMSO-d\(_6\)), \(\delta\): 1.84-1.88 (m, 4H, CH\(_2\)), 2.79-2.88 (m, 2H, CH\(_2\)), 2.98-3.08 (m, 2H, CH\(_2\)), 6.94-7.01 (m, 2H, H-aromatic), 7.74 (t, J= 7.7 Hz, 1H, H-aromatic), 8.00 (d, J= 7.7 Hz, 1H, H-aromatic), 8.37 (s, 1H, H-2), 8.79 (bs, 1H, NH), 10.85 (bs, 1H, NH), 10.77 (bs 1H, OH), 11.99 (bs, 1H, OH).

\(^13\)C-NMR (DMSO-d\(_6\)), \(\delta\): 21.94, 22.11, 24.95, 25.66 (CH\(_2\)), 114.73 (C, C-aromatic), 117.35, 119.03 (CH, C-aromatic), 126.40, (C, C-aromatic), 128.34 (CH, C-aromatic), 133.06 (C, C-aromatic), 134.04 (CH, C-aromatic), 149.47, 151.23 (C, C-aromatic), 152.33 (CH, C-aromatic), 156.65 (C, C-aromatic), 159.20 (C, C-1').

Pyrazine-2-carboxylic acid
\(N'-(5,6,7,8\text{-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl})-hydrazide\) (280)
(C\(_{15}\)H\(_{14}\)N\(_6\)OS; M.W. = 326.3)

General procedure 22;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.20 g, 0.9 mmol);
Purification: re-crystallisation from DCM/nhexane.
Pale yellow solid;
Yield: 0.08 g (29%)
Melting Point: 200-202°C
MS (ESI\(^+\)): 327.1 [M+H]\(^+\)

\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 1.90-2.00 (m, 4H, CH\(_2\)), 2.84-2.87 (m, 2H, CH\(_2\)), 3.06-3.10 (m, 2H, CH\(_2\)), 8.19 (bs, 1H, NH), 8.51 (s, 1H, H-2), 8.61-8.62 (m, 1H, H-aromatic), 8.81 (d, J= 2.4 Hz, 1H, H-aromatic), 9.39 (d, J= 1.3 Hz, 1H, H-aromatic), 10.68 (bs, 1H, NH).

\(^13\)C-NMR (CDCl\(_3\)), \(\delta\): 22.40, 22.46, 25.49, 26.08 (CH\(_2\)), 115.85, 125.22, 135.57 (C, C-aromatic), 143.07 (CH, C-aromatic), 143.20 (C, C-aromatic), 144.20, 147.91, 152.23 (CH, C-aromatic), 154.39, 159.25 (C, C-aromatic), 166.39 (C, C-1').
Pyridine-2-carboxylic acid N'-(5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazide (281)
(C$_{16}$H$_{15}$N$_{5}$OS; M.W. = 325.3)

![Chemical structure](image)

General procedure 22;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.20 g, 0.9 mmol);
Purification: re-crystallisation from EtOH.
Light green solid;
Yield: 0.19 g (67%)
Melting Point: 232-234°C
MS (ESI$^+$): 326.1 (M+H)$^+$
Microanalysis: Calculated for C$_{16}$H$_{15}$N$_{5}$OS (325.3); Theoretical: %C = 59.06, %H = 4.65, %N = 21.51; Found: %C = 58.99, %H = 4.61, %N = 21.51.

1H-NMR (CDCl$_3$, δ): 1.89-2.00 (m, 4H, CH$_2$), 2.83-2.87 (m, 2H, CH$_2$), 3.07-3.11 (m, 2H, CH$_2$), 7.47-7.51 (m, 1H, H-aromatic), 7.89 (td, J$_1$ = 7.7 Hz, J$_2$ = 1.6 Hz, 1H, H-aromatic), 8.15-8.20 (m, 2H, H-aromatic, NH), 8.52 (s, 1H, H-2), 8.65 (d, J = 4.7 Hz, 1H, H-aromatic), 10.77 (bs, 1H, NH).

13C-NMR (CDCl$_3$, δ): 22.43, 22.49, 25.49, 26.11 (CH$_2$), 115.78 (C, C-aromatic), 122.35 (CH, C-aromatic), 125.31 (C, C-aromatic), 126.74 (CH, C-aromatic), 135.18 (C, C-aromatic), 137.41 (CH, C-aromatic), 148.33 (C, C-aromatic), 148.72, 152.48 (CH, C-aromatic), 154.56, 160.53 (C, C-aromatic), 166.23 (C, C-1').
3-Hydroxy-N’-(5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)benzo hydrazide (302)
(C_{17}H_{16}N_{4}O_{2}S; M.W. = 340.4)

General procedure 22;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.20 g, 0.9 mmol);
Purification: re-crystallisation from EtOH.
White solid;
Yield: 0.09 g (29%)
Melting Point: 241-243°C
MS (ESI⁺): 341.0 [M+H]⁺

¹H-NMR (DMSO-d₆), δ: 1.83-1.87 (m, 4H, CH₂), 2.81-2.84 (m, 2H, CH₂), 3.01-3.04 (m, 2H, CH₂), 6.96-6.99 (m, 1H, H-aromatic), 7.29-7.33 (m, 1H, H-aromatic), 7.34-7.35 (m, 1H, H-aromatic), 7.40 (dt, J₁ = 7.7 Hz, J₂ = 1.2 Hz, 1H, H-aromatic), 8.34 (s, 1H, H-2), 8.58 (bs, 1H, NH), 9.70 (bs, 1H, OH), 10.48 (bs, 1H, NH).

¹³C-NMR (DMSO-d₆), δ: 21.98, 22.12, 24.97, 25.79 (CH₂), 114.52 (CH, C-aromatic), 115.18 (C, C-aromatic), 117.98, 118.63 (CH, C-aromatic), 126.43 (C, C-aromatic), 129.43 (CH, C-aromatic), 132.71, 134.14 (C, C-aromatic), 152.44 (CH, C-aromatic), 157.35, 157.50, 165.30 (C, C-aromatic), 165.94 (C, C-1’).
N'-(5,6,7,8-Tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)nicotinohydrazide (291)
(C$_{16}$H$_{15}$N$_{5}$OS; M.W. = 325.3)

General procedure 22;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.20 g, 0.9 mmol);
Purification: re-crystallisation from EtOH/H$_2$O.
Pale yellow solid;
Yield: 0.07 g (23%)
Melting Point: 137-140 °C
MS (ESI+): 326.0 [M+H$^+$]

1H-NMR (DMSO-d$_6$), δ: 1.84-1.89 (m, 4H, CH$_2$), 2.81-2.85 (m, 2H, CH$_2$), 3.02-3.06 (m, 2H, CH$_2$), 7.58 (dd, J_1 = 8.4 Hz, J_2 = 4.8 Hz, 1H, H-aromatic), 8.28-8.31 (m, 1H, H-aromatic), 8.36 (s, 1H, H-2), 8.69-8.71 (m, 1H, H-aromatic), 8.78-8.80 (m, 1H, H-aromatic), 9.12 (bs, 1H, NH), 10.80 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 21.97, 22.11, 24.97, 25.76 (CH$_2$), 115.22 (C, C-aromatic), 123.67 (CH, C-aromatic), 126.40, 128.38, 132.93 (C, C-aromatic), 135.24, 148.49, 152.43 (CH, C-aromatic), 157.28, 164.56 (C, C-aromatic), 165.40 (C, C-1').
\(N'-(5,6,7,8\text{-Tetrahydrobenzo}[4,5]\text{thieno}[2,3-d]pyrimidin-4-yl)-1H\text{-indole-2-carbohydrazide (304)}\)

\((C_{10}H_{17}N_{5}OS; M.W. = 363.4)\)

General procedure 22;
Reagent: \((5,6,7,8\text{-tetrahydro-benzo}[4,5]\text{thieno}[2,3-d]pyrimidin-4-yl)\text{-hydrazine (193)}\)
(0.20 g, 0.9 mmol);
Purification: re-crystallisation from EtOH.
Pale yellow solid;
Yield: 0.12 g (36%)
Melting Point: 232-235°C
MS (ESI\(^+\)): 364.1 [M+H]\(^+\)

\(^1H\text{-NMR (DMSO-\text{d}_6),} \delta: 1.83-1.89 \text{ (m, 4H, CH}_2\text{), 2.81-2.85 \text{ (m, 2H, CH}_2\text{), 3.03-3.08 \text{ (m, 2H, CH}_2\text{), 7.06-7.09 \text{ (m, 1H, H-aromatic), 7.20-7.24 \text{ (m, 1H, H-aromatic), 7.34 \text{ (s, 1H, H-3’), 7.47 \text{ (d, J= 8.2 Hz, 1H, H-aromatic), 7.68 \text{ (d, J= 8.0 Hz, 1H, H-aromatic), 8.35 \text{ (s, 1H, H-2), 8.70 \text{ (bs, 1H, NH), 10.58 \text{ (bs, 1H, NH), 11.69 \text{ (bs, 1H, NH).}}}}}}\)

\(^{13}C\text{-NMR (DMSO-\text{d}_6),} \delta: 22.00, 22.12, 24.99, 25.80 \text{ (CH}_2\text{), 103.44, 112.34 \text{ (CH, C-aromatic), 115.15 \text{ (C, C-aromatic), 119.87, 121.68, 123.61 \text{ (CH, C-aromatic), 126.47, 127.03, 129.76, 132.79, 136.60 \text{ (C, C-aromatic), 157.50, 160.99 \text{ (C, C-aromatic), 165.37 \text{ (C, C-1’).}}}}\)
N’-(5,6,7,8-Tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazole-2-carboxyhydrazide (305)
(C_{18}H_{16}N_{6}OS; M.W. = 364.4)

General procedure 22;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.20 g, 0.9 mmol);
Purification: re-crystallisation from EtOH.
Yellow solid;
Yield: 0.09 g (26%)
Melting Point: >260°C
MS (ESI⁺): 365.1 [M+H]⁺

^{1}H-NMR (DMSO-d_{6}), δ: 1.83-1.86 (m, 4H, CH₂), 2.80-2.84 (m, 2H, CH₂), 3.00-3.04 (m, 2H, CH₂), 7.31-7.37 (m, 2H, H-aromatic), 7.55-7.61 (m, 1H, H-aromatic), 7.76-7.82 (m, 1H, H-aromatic), 8.34 (s, 1H, H-2), 8.79 (bs, 1H, NH), 10.89 (bs, 1H, NH), 13.40 (bs, 1H, NH).

^{13}C-NMR (DMSO-d_{6}), δ: 21.97, 22.13, 24.96, 25.76 (CH₂), 112.54 (CH, C-aromatic), 115.23 (C, C-aromatic), 120.06, 122.71, 124.35 (CH, C-aromatic), 126.42, 132.83, 134.34, 142.59, 144.36 (C, C-aromatic), 152.33 (CH, C-aromatic), 156.92, 158.43 (C, C-aromatic), 165.37 (C, C-1’).
General procedure 22;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.20 g, 0.9 mmol);
Purification: re-crystallisation from EtOH.
White solid;
Yield: 0.23 g (68%)
Melting Point: 261-263°C
MS (ESI⁺): 376.0 [M+H]⁺

1H-NMR (DMSO-d₆) δ: 1.85-1.89 (m, 4H, CH₂), 2.82-2.86 (m, 2H, CH₂), 3.04-3.08 (m, 2H, CH₂), 7.75-7.78 (m, 1H, H-aromatic), 7.90-7.94 (m, 1H, H-aromatic), 8.12 (d, J= 8.1 Hz, 1H, H-aromatic), 8.17 (d, J= 8.4 Hz, 1H, H-aromatic), 8.20 (d, J= 8.4 Hz, 1H, H-aromatic), 8.34 (s, 1H, H-2), 8.61 (d, J = 8.4 Hz, 1H, H-aromatic), 8.76 (bs, 1H, NH), 10.84 (bs, 1H, NH).

13C-NMR (DMSO-d₆) δ: 21.97, 22.13, 24.96, 25.76 (CH₂), 115.27 (C, C-aromatic), 118.80 (CH, C-aromatic), 122.34, 126.52 (C, C-aromatic), 128.14, 128.32 (CH, C-aromatic), 128.93 (C, C-aromatic), 129.30, 130.65 (CH, C-aromatic), 132.86 (C, C-aromatic), 137.95 (CH, C-aromatic), 146.08, 149.76 (C, C-aromatic), 152.40 (CH, C-aromatic), 158.65 (C, C-aromatic), 164.29 (C, C-1’).
$N'-(5,6,7,8$-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-y]-1H-pyrrole-2-carbohydrazide (307)

$(C_{15}H_{15}N_5OS; M.W. = 313.3$)

General procedure 22;
Reagent: $(5,6,7,8$-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-y]-hydrazine (193) (0.20 g, 0.9 mmol);
Purification: re-crystallisation from MeOH.
Pale yellow solid;
Yield: 0.18 g (65%)
Melting Point: charring $> 300^\circ$C
MS (ESI$^-?): 314.0 [M+H]$^+$

1H-NMR (DMSO-d_6), δ: 1.83-1.87 (m, 4H, CH$_2$), 2.80-2.84 (m, 2H, CH$_2$), 3.00-3.04 (m, 2H, CH$_2$), 6.14-6.17 (m, 1H, H-aromatic), 6.93-6.95 (m, 1H, H-aromatic), 6.98-7.00 (m, 1H, H-aromatic), 8.32 (s, 1H, H-2), 8.52 (bs, 1H, NH), 10.08 (bs, 1H, NH), 11.56 (bs, 1H, NH).

13C-NMR (DMSO-d_6), δ: 22.00, 22.11, 24.97, 25.80 (CH$_2$), 108.75, 110.97 (CH, C-aromatic), 115.07 (C, C-aromatic), 122.04 (CH, C-aromatic), 124.34, 126.47, 132.61 (C, C-aromatic), 152.43 (CH, C-aromatic), 157.42, 160.43 (C, C-aromatic), 165.25 (C, C-1$'$).
N’-(5,6,7,8-Tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)furan-2-carbohydrazide (308)
(C_{15}H_{14}N_{4}O_{2}S; M.W. = 314.3)

General procedure 22;
Reagent: (5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-hydrazine (193) (0.20 g, 0.9 mmol);
Purification: re-crystallisation from MeOH.
White crystals;
Yield: 0.10 g (35%)
Melting Point: 216-219°C
MS (ESI⁺): 314.9 [M+H]⁺

H-NMR (DMSO-d₆), δ: 1.83-1.86 (m, 4H, CH₂), 2.80-2.84 (m, 2H, CH₂), 2.99-3.03 (m, 2H, CH₂), 6.69 (dd, J₁= 3.5 Hz, J₂= 1.7 Hz, 1H, H-aromatic), 7.29 (dd, J₁= 3.5 Hz, J₂= 0.4 Hz, 1H, H-aromatic), 7.92-7.93 (m, 1H, H-aromatic), 8.34 (s, 1H, H-2), 8.59 (bs, 1H, NH), 10.45 (bs, 1H, NH).

C-NMR (DMSO-d₆), δ: 21.97, 22.11, 24.97, 25.76 (CH₂), 111.81, 114.43 (CH, C-aromatic), 115.13, 126.40, 132.81 (C, C-aromatic), 145.66 (CH, C-aromatic), 146.46 (C, C-aromatic), 152.39 (CH, C-aromatic), 157.34, 157.53 (C, C-aromatic), 165.35 (C, C-1’).
Chapter 6: Experimental

\[N'-(5,6,7,8\text{-Tetrahydrobenzo}[4,5]\text{thieno}[2,3-d]\text{pyrimidin}-4-\text{yl})\text{thiophene-2-carbo hydrazide (309)} \]
\[(C_{15}H_{14}N_{4}OS_{2}; \text{M.W.}=330.4)\]

![Chemical Structure](image)

General procedure 22;
Reagent: \((5,6,7,8\text{-tetrahydro-benzo}[4,5]\text{thieno}[2,3-d]\text{pyrimidin-4-yl})\text{-hydrazine (193)}\)
(0.20 g, 0.9 mmol);
Purification: re-crystallisation from MeOH.

White solid;
Yield: 0.04 g (15%)

Melting Point: 219-221°C

MS (ESI\(^+\)): 330.9 [M+H]\(^+\)

\(^1\)H-NMR (DMSO-\(d_6\), \(\delta\)): 1.82-1.89 (m, 4H, \(\text{CH}_2\)), 2.80-2.86 (m, 2H, \(\text{CH}_2\)), 2.99-3.05 (m, 2H, \(\text{CH}_2\)), 7.21-7.25 (m, 1H, H-aromatic), 7.84-7.85 (m, 1H, H-aromatic), 7.94-7.98 (m, 1H, H-aromatic), 8.35 (s, 1H, H-2), 8.64 (bs, 1H, NH), 10.60 (bs, 1H, NH).

\(^{13}\)C-NMR (DMSO-\(d_6\), \(\delta\)): 21.97, 22.10, 24.97, 25.76 (CH\(_2\)), 115.12, 126.41 (c, C-aromatic), 128.12, 128.93, 131.47 (CH, C-aromatic), 132.83, 137.60 (C, C-aromatic), 152.43 (CH, C-aromatic), 157.34, 160.91 (C, C-aromatic), 165.43 (C, C-1’).
6.4.1.6 N-Aryl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amine (310-312)

N-(Naphthalen-1-yl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amine (310)
(C_{20}H_{17}N_{3}S; M.W. = 331.4)

General procedure 23;
T.L.C. System: nhexane-EtOAc 7:3 v/v, Rf: 0.46.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to 70:30 v/v).
Pale yellow solid;
Yield: 0.06 g (21%)
Melting Point: 169-172°C
MS (ESI\(^+\)): 332.1 [M+H]\(^+\)

\(^1\)H-NMR (CDCl\(_3\), \(\delta\)): 1.97-2.02 (m, 2H, CH\(_2\)), 2.03-2.08 (m, 2H, CH\(_2\)), 2.91-2.94 (m, 2H, CH\(_2\)), 3.20-3.23 (m, 2H, CH\(_2\)), 7.38 (bs, 1H, NH), 7.52-7.56 (m, 2H, H-aromatic), 7.57-7.59 (m, 1H, H-aromatic), 7.79 (d, J= 8.1 Hz, 1H, H-aromatic), 7.91-7.95 (m, 2H, H-aromatic), 7.99 (d, J= 7.4 Hz, 1H, H-aromatic), 8.43 (s, 1H, H-2).

\(^{13}\)C-NMR (CDCl\(_3\), \(\delta\)): 22.50, 22.69, 25.60, 26.84 (CH\(_2\)), 116.78 (C, C-aromatic), 121.35, 122.20 (CH, C-aromatic), 125.02 (C, C-aromatic), 125.80, 126.11, 126.14, 126.45 (CH, C-aromatic), 128.70 (C, C-aromatic), 128.88 (CH, C-aromatic), 133.47, 134.49, 134.65 (C, C-aromatic), 152.94 (CH, C-aromatic), 156.36, 166.54 (C, C-aromatic).
Chapter 6: Experimental

\[\text{N-(Quinolin-8-yl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amine} \]
(311)

\[(\text{C}_{19}\text{H}_{16}\text{N}_{4}\text{S}; \text{M.W.}=332.4)\]

![Chemical Structure](image)

General procedure 23:

T.L.C. System: \(n\)hexane -EtOAc 7:3 v/v, Rf: 0.59.

Purification: flash column chromatography \((n\)hexane:EtOAc 100:0 v/v increasing to 85:15 v/v).

Pale yellow solid;

Yield: 0.03 g (14%)

Melting Point: 193-196 °C

MS (ESI\(^+\)): 333.1 [M+H]\(^+\)

\(^1\text{H-NMR} (\text{CDCl}_3), \delta: 1.95-1.99 (m, 2\text{H}, \text{CH}_2), 2.03-2.08 (m, 2\text{H}, \text{CH}_2), 2.86-2.90 (m, 2\text{H}, \text{CH}_2), 3.32-3.37 (m, 2\text{H}, \text{CH}_2), 7.40-7.44 (m, 2\text{H}, \text{H-aromatic}), 7.55-7.59 (m, 1\text{H}, \text{H-aromatic}), 8.14 (d, J= 7.8 Hz, 1\text{H}, \text{H-aromatic}), 8.61 (s, 1\text{H}, \text{H-2}), 8.78-8.81 (m, 1\text{H}, \text{H-aromatic}), 9.16 (d, J= 7.5 Hz, 1\text{H}, \text{H-aromatic}), 10.24 (bs, 1\text{H}, \text{NH}).

\(^{13}\text{C-NMR} (\text{CDCl}_3), \delta: 22.53, 22.84, 25.69, 26.54 (\text{CH}_2), 116.29 (\text{CH}, \text{C-aromatic}), 117.97 (\text{C}, \text{C-aromatic}), 119.93, 121.39 (\text{CH}, \text{C-aromatic}), 125.88 (\text{C}, \text{C-aromatic}), 127.49 (\text{CH}, \text{C-aromatic}), 128.04, 134.13, 135.74 (\text{C}, \text{C-aromatic}), 136.29 (\text{CH}, \text{C-aromatic}), 138.97 (\text{C}, \text{C-aromatic}), 147.85, 152.40 (\text{CH}, \text{C-aromatic}), 154.40, 166.06 (\text{C}, \text{C-aromatic}).
N-(1H-Benzo[d]imidazol-2-yl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amine (312)
(C_{18}H_{15}N_{5}S; M.W.= 321.4)

General procedure 23;
T.L.C. System: EtOAc-MeOH 9:1 v/v, Rf: 0.65.
Purification: flash column chromatography (n-hexane:EtOAc 50:50 v/v increasing to EtOAc:MeOH 95:5 v/v).
Pale yellow solid;
Yield: 0.03 g (12%)
Melting Point: 122-125°C
MS (ESI^+): 322.1 [M+H]^+

\(^1\)H-NMR (CDCl\textsubscript{3}), 8: 1.52-1.60 (m, 1H, CH\textsubscript{2}), 1.61-1.68 (m, 1H, CH\textsubscript{2}), 1.76-1.84 (m, 1H, CH\textsubscript{2}), 1.86-1.93 (m, 1H, CH\textsubscript{2}), 2.01-2.09 (m, 1H, CH\textsubscript{2}), 2.28-2.34 (m, 1H, CH\textsubscript{2}), 2.89-2.93 (m, 2H, CH\textsubscript{2}), 5.54 (bs, 2H, NH), 6.79 (d, J= 7.9 Hz, 1H, H-aromatic), 6.99-7.02 (m, 1H, H-aromatic), 7.16-7.19 (m, 1H, H-aromatic), 7.46 (d, J= 7.9 Hz, 1H, H-aromatic), 9.01 (s, 1H, H-2).

\(^13\)C-NMR (CDCl\textsubscript{3}), 8: 21.98, 22.47, 24.33, 26.13 (CH\textsubscript{2}), 108.85, 116.87, 120.64, 122.82 (CH, C-aromatic), 126.71, 127.18, 134.98, 141.03, 142.04, 148.05 (C, C-aromatic), 152.46 (CH, C-aromatic), 153.25, 171.75 (C, C-aromatic).
6.4.3 Thieno[2,3-\textit{d}]pyrimidines

Ethyl 2-aminothienophene-3-carboxylate (318)38

(C\textsubscript{7}H\textsubscript{9}NO\textsubscript{2}S; M.W. = 171.2)

Triethylamine (1.8 mL, 13.3 mmol) was added dropwise over 10 min. to a mixture of ethyl cyanoacetate (189) (3 g, 26.6 mmol) and 1,4-dithiane-2,5-diol (317) (2 g, 13.3 mmol) in anhydrous DMF (10 mL) at r.t. under N\textsubscript{2} atmosphere. After the addition was complete the reaction mixture was heated at 45°C for 30 min. The reaction mixture was diluted with 0.4 M acetic acid (70 mL) and extracted with EtOAc (4 x 50 mL). The combined extracts were washed with water (2 x 100mL), dried over MgSO\textsubscript{4}, and concentrated in vacuo to give a crude brown oil that was purified by flash column chromatography (n-hexane:EtOAc 100:0 v/v increasing to n-hexane-EtOAc 95: 5 v/v) to give pure ethyl 2-aminothienophene-3-carboxylate 318 as a colourless oil.

T.L.C. System: n-hexane-EtOAc 4:1 v/v, Rf: 0.55.

Yield: 2.93 g (64%)

\textbf{1H-NMR (CDCl\textsubscript{3})}: 1.36 (t, J= 7.1 Hz, 3H, H-7), 4.29 (q, J= 7.1 Hz, 2H, H-6), 5.87 (bs, 2H, NH\textsubscript{2}), 6.19 (d, J= 5.9 Hz, 1H, H-aromatic), 6.99 (d, J= 5.9 Hz, 1H, H-aromatic),

\textbf{13C-NMR (CDCl\textsubscript{3})}: 14.50 (CH\textsubscript{3}, C-7), 59.74 (CH\textsubscript{2}, C-2’), 106.88 (CH, C-aromatic), 107.20 (C, C-aromatic), 125.92 (CH, C-aromatic), 162.97 (C, C-aromatic), 165.47 (C, C-5).

3H-Thieno[2,3-\textit{d}]pyrimidin-4-one (319)39

(C\textsubscript{6}H\textsubscript{10}N\textsubscript{2}OS; M.W. = 206.3)

General procedure 17;
Reagent: ethyl 2-aminothienophene-3-carboxylate 318 (2.93 g, 17.1 mmol);
Purification: re-crystallisation from 40% EtOH/H2O;
Yellow solid;
Yield: 1.15 g (44%)

\[^1H-NMR \text{ (DMSO-d}_6\text{), } \delta: 7.39 \text{ (d, J= 5.8 Hz, 1H, H-aromatic), 7.57 (d, J= 5.8 Hz, 1H, H-aromatic), 8.12 (s, 1H, H-2), 12.47 (bs, 1H, NH).} \]

\[^{13}C-NMR \text{ (DMSO-d}_6\text{), } \delta: 121.58, 123.76 \text{ (CH, C-aromatic), 124.58 (C, C-aromatic), 145.56 (CH, C-2), 157.45 (C, C-aromatic), 164.19 (C, C-1).} \]

4-Chloro-thieno[2,3-d]pyrimidine (320)\(^{39}\)
(CoH\(_3\)ClN\(_2\)S; M.W.= 170.6)

General procedure 18;
Reagent: 3\text{H-thieno[2,3-d]pyrimidin-4-one (319)} (1.15 g, 7.5 mmol);
T.L.C. System: nhexane-EtOAc 8:2 v/v, Rf: 0.45;
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane:EtOAc 90:10 v/v);
Pale yellow solid;
Yield: 1.01 g (79%)

\[^1H-NMR \text{ (CDCl}_3\text{), } \delta: 7.45 \text{ (d, J= 6.0 Hz, 1H, H-aromatic), 7.64 (d, J= 6.0 Hz, 1H, H-aromatic), 8.87 (s, 1H, H-2).} \]

\[^{13}C-NMR \text{ (CDCl}_3\text{), } \delta: 119.90, 128.38 \text{ (CH, C-4, 5), 129.55 (C, C-aromatic), 155.09 (CH, C-2), 168.82 (C, C-aromatic).} \]
Thieno[2,3-d]pyrimidin-4-yl-hydrazine (321)41
(C$_6$H$_6$N$_4$S; M.W. = 166.2)

![Diagram of chemical structure]

General procedure 19;
Reagent: 4-chloro-thieno[2,3-d]pyrimidine 320 (1.01 g, 5.9 mmol);
Purification: recrystallization from 40 % EtOH/H$_2$O;
White crystals;
Yield: 0.63 g (63%)

1H-NMR (DMSO-d$_6$), δ: 4.63 (bs, 2H, NH$_2$), 7.53 (d, $J = 5.7$ Hz, 2H, H-4, 5), 7.61 (bs, 1H, NH), 8.37 (s, 1H, H-2), 9.19 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 114.47 (C, C-aromatic), 122.51 (CH, C-4, 5), 153.61 (CH, C-2), 158.13, 163.77 (C, C-aromatic).
3.4.2.1 \(N-(1\text{-Aryl-ethyldene})-N'-(\text{thieno}[2,3-d]\text{pyrimidin}-4-yI)\text{-hydrazines (322-325)}\)

2-[1-(\text{Thieno}[2,3-d]\text{pyrimidin}-4-yI-hydrazono)-ethyl]-benzene-1,4-diol (322)
\((C_{14}H_{12}N_{4}O_{2}S\); M.W. = 300.3)

General procedure 20;
Reagent: \text{thieno}[2,3-d]\text{pyrimidin}-4-yI-hydrazine (321) (0.15 g, 0.9 mmol);
Yellow solid;
Yield: 0.22 g (81%)
Melting Point: 267-269°C
MS (ESI\(^+\)): 301.1 [M+H]\(^+\)
Single species observed.

\(\text{\textit{H-NMR (DMSO-d6), } } \delta: \) 2.47 (s, 3H, H-2'), 6.75-6.76 (m, 2H, H-aromatic), 6.98-7.00 (m, 1H, H-aromatic), 7.73 (d, J= 5.8 Hz, 1H, H-aromatic), 7.93 (d, J= 5.8 Hz, 1H, H-aromatic), 7.93 (bs, 1H, OH), 8.90 (s, 1H, H-2), 10.74 (bs, 1H, NH), 12.10 (bs, 1H, OH).

\(\text{\textit{C-NMR (DMSO-d6), } } \delta: \) 14.33 (CH\(_3\), C-2'), 113.47 (CH, C-aromatic), 115.35 (C, C-aromatic), 117.53, 118.38, 120.82 (CH, C-aromatic), 121.21 (C, C-aromatic), 123.93 (CH, C-aromatic), 149.20, 150.63, 152.90 (C, C-aromatic), 153.38 (CH, C-aromatic), 154.48, 167.47 (C, C-aromatic).

2-[1-(\text{Thieno}[2,3-d]\text{pyrimidin}-4-yI-hydrazono)-ethyl]-phenol (323)
\((C_{14}H_{12}N_{4}OS\); M.W. = 284.3)
General procedure 20;
Reagent: thieno[2,3-\textit{d}]pyrimidine-4-ylhydrazine (321) (0.15 g, 0.9 mmol);
Pale yellow crystals;
Yield: 0.15 g (61%)
Melting Point: 178-180°C
MS (ESI\(^{+}\)): 285.1 \([\text{M+H]}^{+}\)
Single species observed.

\(^1\text{H-NMR (DMSO-}d_6\text{), } \delta: 2.54 (s, 3H, H-2'), 6.89-6.94 (m, 2H, H-aromatic), 7.27-7.31 (m, 1H, H-aromatic), 7.61 (dd, J\(_1\) = 7.9 Hz, J\(_2\) = 1.3 Hz, 1H, H-aromatic), 7.72-7.76 (m, 1H, H-aromatic), 7.91-7.95 (m, 1H, H-aromatic), 8.60 (s, 1H, H-2), 10.79 (bs, 1H, NH), 12.93 (bs, 1H, OH).

\(^1\text{C-NMR (DMSO-}d_6\text{), } \delta: 14.21 (\text{CH}_3, \text{C-2'}), 115.41 (\text{C, C-aromatic}), 117.08, 118.54, 120.17 (\text{CH, C-aromatic}), 120.58 (\text{C, C-aromatic}), 124.03, 128.23, 130.70, 153.35 (\text{CH, C-aromatic}), 154.24, 154.74, 158.04, 167.38 (\text{C, C-aromatic}).

\(3\text{-}[1\text{-}(\text{Thieno[2,3-}\textit{d}]\text{pyrimidin-4-yl-hydrazono})\text{-ethyl}]\text{-phenol (324)}\)
\(\text{(C}_{14}\text{H}_{12}\text{N}_{4}\text{OS; M.W.= 284.3)}\)

General procedure 20;
Reagent: thieno[2,3-\textit{d}]pyrimidine-4-ylhydrazine (321) (0.15 g, 0.9 mmol);
Yellow solid;
Yield: 0.09 g (37%)
Melting Point: 203-205°C
MS (ESI\(^{+}\)): 285.1 \([\text{M+H]}^{+}\)
Single species observed.

\(^1\text{H-NMR (DMSO-}d_6\text{), } \delta: 2.39 (s, 3H, H-2'), 6.84 (d, J = 7.3 Hz, 1H, H-aromatic), 7.22-7.29 (m, 3H, H-aromatic), 7.68 (d, J = 5.9 Hz, 1H, H-aromatic), 8.08 (d, J = 5.9 Hz, 1H,
H-aromatic), 8.52 (s, 1H, H-2), 9.60 (bs, 1H, NH), 10.73 (bs, 1H, OH).

13C-NMR (DMSO-d$_6$), δ: 13.96 (CH$_3$, C-2'), 112.57 (CH, C-aromatic), 115.01 (C, C-aromatic), 116.19, 117.01, 122.85, 123.16, 129.56 (CH, C-aromatic), 139.78, 150.21 (C, C-aromatic), 152.72 (CH, C-aromatic), 156.29, 157.48, 169.02 (C, C-aromatic).

3-[1-(Thieno[2,3-d]pyrimidin-4-yl-hydrazono)-ethyl]-phenol (325)
(C$_{12}$H$_{10}$N$_6$S; M.W. = 270.3)

General procedure 20;
Reagent: thieno[2,3-d]pyrimidin-4-yl-hydrazine (321) (0.15 g, 0.9 mmol);
White solid;
Yield: 0.23 g (96%)
Melting Point: 239-243°C
MS (ESI$^+$): 271.0 [M+H]$^+$
Two species observed. Major/minor species ratio: 5/1.

1H-NMR (DMSO-d$_6$), δ: (major species) 2.52 (s, 3H, H-2'), 7.79 (d, J= 5.9 Hz, 1H, H-aromatic), 8.08 (d, J= 5.9 Hz, 1H, H-aromatic), 8.60 (s, 1H, H-2), 8.64-8.67 (m, 1H, H-aromatic), 8.69-8.70 (m, 1H, H-aromatic), 9.26 (s, 1H, H-aromatic), 11.21 (bs, 1H, NH).

1H-NMR (DMSO-d$_6$), δ: (minor species) 2.52 (s, 3H, H-2'), 7.47 (d, J= 5.3 Hz, 1H, H-aromatic), 7.62 (d, J= 5.3 Hz, 1H, H-aromatic), 7.98-8.00 (m, 1H, H-aromatic), 8.60 (s, 1H, H-2), 8.64-8.67 (m, 1H, H-aromatic), 9.81 (s, 1H, H-aromatic), 12.06 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: (major and minor species) 11.96, 12.33 (CH$_3$, C-2'), 115.01 (C, C-aromatic), 121.12, 122.33, 124.25, 141.88, 142.16, 143.30, 143.51, 143.65, 143.84, 144.61 (CH, C-aromatic), 144.76, 148.35, 150.71 (C, C-aromatic), 152.69 (CH, C-aromatic), 156.08 (C, C-aromatic).
6.4.2.2 \textit{N'}-(Thieno[2,3-d]pyrimidin-4-yl)arylcarbohydraze (326-329)

2,5-Dihydroxy-\textit{N'}-(thieno[2,3-d]pyrimidin-4-yl)benzohydrazide (326)
(C_{13}H_{10}N_{4}O_{2}S; M.W. = 302.3)

\[\text{326} \]

General procedure 22;
Reagent: thieno[2,3-d]pyrimidin-4-yl-hydrazine (321) (0.15 g, 0.9 mmol);
Purification: re-crystallisation from EtOH.
Light brown solid;
Yield: 0.05 g (15%)
Melting Point: >260°C
MS (ESI+): 303.1 [M+H]^+
\textit{H-NMR} (DMSO-\textit{d}_6), \delta: 6.83 (d, \textit{J}= 8.8 Hz, 1H, H-4'), 6.93 (dd, \textit{J}_1= 8.8 Hz, \textit{J}_2= 2.8Hz, 1H, H-5'), 7.35 (d, \textit{J}= 2.8 Hz, 1H, H-7'), 7.69-7.72 (m, 2H, H-aromatic), 8.43 (s, 1H, H-2), 9.11 (bs, 1H, NH), 10.18 (bs, 1H, OH), 10.73 (bs 1H, NH), 11.07 (bs, 1H, OH).
\textit{C-NMR} (DMSO-\textit{d}_6), \delta: 113.93 (CH, C-aromatic), 114.78, 115.32 (C, C-aromatic), 117.90, 119.02, 121.65, 124.11 (CH, C-aromatic), 128.52, 149.45, 149.61, 151.28 (C, C-aromatic), 153.41 (CH, C-aromatic), 167.26 (C, C-1').

2-Hydroxy-\textit{N'}-(thieno[2,3-d]pyrimidin-4-yl)benzohydrazide (327)
(C_{13}H_{10}N_{4}O_{2}S; M.W. = 286.3)
General procedure 22;
Reagent: thieno[2,3-d]pyrimidin-4-yl-hydrazine (321) (0.15 g, 0.9 mmol);
Purification: re-crystallisation from EtOH.
White solid;
Yield: 0.05 g (19%)
Melting Point: 180-183°C
MS (ESI⁺): 287.0 [M+H]⁺

1H-NMR (DMSO-d₆), δ: 6.96-7.01 (m, 2H, H-aromatic), 7.46-7.50 (m, 1H, H-aromatic), 7.68-7.74 (m, 2H, H-aromatic), 7.97 (dd, J₁= 7.9 Hz, J₂= 1.0 Hz, 1H, H-aromatic), 8.44 (s, 1H, H-2), 10.18 (bs, 1H, NH), 10.85 (bs 1H, NH), 11.85 (bs, 1H, OH).

13C-NMR (DMSO-d₆), δ: 114.77 (C, C-aromatic), 117.37, 118.97, 119.09 (CH, C-aromatic), 120.64 (C, C-aromatic), 128.39, 134.15 (CH, C-aromatic), 134.49 (C, C-aromatic), 153.43 (CH, C-aromatic), 159.12 (C, C-aromatic), 167.99 (C, C-1').

N’-(Thieno[2,3-d]pyrimidin-4-yl)pyrazine-2-carbohydrazide (328)
(C₁₁H₈N₆Oₛ; M.W. = 272.3)

General procedure 22;
Reagent: thieno[2,3-d]pyrimidin-4-yl-hydrazine (321) (0.15 g, 0.9 mmol);
Purification: re-crystallisation from EtOH.
White solid;
Yield: 0.08 g (31%)
Melting Point: 193-197°C
MS (ESI⁺): 272.9 [M+H]⁺

1H-NMR (DMSO-d₆), δ: 7.68-7.72 (m, 2H, H-aromatic), 8.41 (s, 1H, H-2), 8.83 (dd, J₁= 2.5 Hz, J₂= 1.5 Hz, 1H, H-4’), 8.96 (d, J= 2.5 Hz, 1H, H-3’), 9.23 (d, J= 1.5 Hz, 1H, H-5’), 10.14 (bs, 1H, NH), 11.06 (bs 1H, NH).
13C-NMR (DMSO-d$_6$), δ: 114.83 (C, C-aromatic), 119.03, 124.09 (CH, C-aromatic), 123.14 138.47 (C, C-aromatic), 143.67, 143.77 (CH, C-aromatic), 144.18 (C, C-aromatic), 148.10, 153.44 (CH, C-aromatic), 162.66 (C, C-1’).

$N'\text{-}(\text{thieno}[2,3-d]\text{pyridin-}4\text{-yl})\text{picolinohydrazide (329)}$

(C$_{12}$H$_9$N$_5$OS; M.W. = 271.3)

![Chemical Structure]

General procedure 22;
Reagent: thieno[2,3-d]pyridin-4-yl-hydrazine (321) (0.15 g, 0.9 mmol);
Purification: re-crystallisation from EtOH.
White solid;
Yield: 0.08 g (30%)
Melting Point: 191-194°C
MS (ESI$^+$): 271.9 [M+H$^+$]

1H-NMR (DMSO-d$_6$), δ: 7.67-7.71 (m, 3H, H-aromatic), 8.03-8.09 (m, 2H, H-aromatic), 8.40 (s, 1H, H-2), 8.74 (d, J= 4.6 Hz, 1H, H-aromatic), 10.09 (bs, 1H, NH), 10.87 (bs 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 114.79 (C, C-aromatic), 119.12 (CH, C-aromatic), 121.12 (C, C-aromatic), 122.46, 123.90, 127.08, 137.89 (CH, C-aromatic), 138.05 (C, C-aromatic), 148.74 (CH, C-aromatic), 149.20 (C, C-aromatic), 153.44 (CH, C-aromatic), 163.50 (C, C-1’).
6.4.4 Cyclopentane[b]thienopyrimidines

Ethyl 2-amino-5,6-dihydro-4H-cyclopentane[b]thiophene-3-carboxylate (331)
(C_{10}H_{13}NO_2S; M.W. = 211.2)^{42}

General procedure 16;
Reagent: cyclopentanone (330) (1 g, 11.9 mmol);
T.L.C. System: nhexane-EtOAc 8:2 v/v, Rf: 0.55.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane-EtOAc 90:10 v/v);
White solid;
Yield: 1.39 g (55%)

^{1}H-NMR (CDCl_3), \delta: \begin{align*}
1.34 & (t, J= 7.1 \text{ Hz}, 3H, H-3'), 2.29-2.36 (m, 2H, H-6), 2.71-2.75 (m, 2H, CH_2), 2.82-2.86 (m, 2H, CH_2), 4.26 (q, J= 7.1 \text{ Hz}, 2H, H-2'), 5.88 (bs, 2H, NH_2).
\end{align*}

^{13}C-NMR (CDCl_3), \delta: \begin{align*}
14.44 & (CH_3, C-3'), 27.23, 28.87, 30.78 (CH_2, C-5, 6, 7), 59.38 (CH_2, C-2'), 102.89, 121.28, 142.67, 165.78 (C, C-1, 2, 3, 4), 166.39 (C, C-1').
\end{align*}

1,2,3,5-Tetrahydro-8-thia-5,7-diaza-cyclopenta[a]inden-4-one (332)^{43}
(C_{9}H_{8}N_{2}O_{2}S; M.W. = 192.2)

General procedure 17;
Reagent: ethyl 2-amino-5,6-dihydro-4H-cyclopentane[b]thiophene-3-carboxylate (331) (1.39 g, 6.6 mmol);
Purification: re-crystallisation from 40% EtOH/H_2O;
Brown solid;
Yield: 0.98 g (77%)

1H-NMR (DMSO-d$_6$), δ: 2.34-2.41 (m, 2H, H-6), 2.88-2.92 (m, 4H, H-5, 7), 7.99 (s, 1H, H-2), 12.37 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 27.39, 28.63, 28.90 (CH$_2$, C-5, 6, 7), 120.31, 137.46, 139.56 (C, C-aromatic), 144.56 (CH, C-2), 157.32 (C, C-aromatic), 167.67 (C, C-1).

4-Chloro-2,3-dihydro-1H-8-thia-5,7-diaza-cyclopenta[a]indenine (333)
(C$_9$H$_7$ClN$_2$S; M.W. = 210.6)

```
\begin{center}
\includegraphics[width=0.5\textwidth]{image}
\end{center}
```

General procedure 18;
Reagent: 1,2,3,5-tetrahydro-8-thia-5,7-diaza-cyclopenta[a]inden-4-one (332) (0.98 g, 5.1 mmol);
T.L.C. System: nhexane-EtOAc 1:1 v/v, Rf: 0.66.
Purification: flash column chromatography (nhexane-EtOAc 100:0 v/v increasing to nhexane-EtOAc 90:10 v/v);
White solid;
Yield: 0.73 g (68%)

1H-NMR (CDCl$_3$), δ: 2.50-2.58 (m, 2H, H-6), 3.07 (t, J= 7.4 Hz, 2H, CH$_2$), 3.16 (t, J= 7.4 Hz, 2H, CH$_2$), 8.71 (s, 1H, H-2).

13C-NMR (CDCl$_3$), δ: 27.41, 29.42, 30.19 (CH$_2$, C-5, 6, 7), 126.24, 136.32, 144.84 (C, C-aromatic), 151.44 (CH, C-2), 152.98, 173.66 (C, C-aromatic).

2,3-Dihydro-1H-8-thia-5,7-diaza-cyclopenta[a]inden-4-yl-hydrazine (334)
(C$_9$H$_{10}$N$_4$S; M.W. = 206.3)

```
\begin{center}
\includegraphics[width=0.5\textwidth]{image}
\end{center}
```
General procedure 19;
Reagent: 4-chloro-2,3-dihydro-1H-8-thia-5,7-diaza-cyclopenta[a]indene (333) (0.73 g, 3.5 mmol);
Purification: re-crystallisation from 40% EtOH/H₂O;
White solid;
Yield: 0.55 g (78%)

^1H-NMR (DMSO-d₆), δ: 2.36-2.43 (m, 2H, H-6), 2.93 (t, J= 7.2 Hz, 2H, CH₂), 3.06 (t, J= 7.2 Hz, 2H, CH₂), 4.65 (bs, 2H, NH₂), 8.12 (bs, 1H, NH), 8.32 (s, 1H, H-2).

^13C-NMR (DMSO-d₆), δ: 27.39, 28.97, 29.09 (CH₂, C-5, 6, 7), 135.79, 136.94 (C, C-aromatic), 152.47 (CH, C-2), 157.76 (C, C-aromatic).
6.4.3.1 \(N-(2,3\text{-dihydro}\,1\text{H}-8\text{-thia}-5,7\text{-diaza-cyclopenta}[a]\text{-inden-4-yl})-N'-(1\text{-phenyl-}
\text{ethylidene})\text{-hydrazines (335-340)}

\[
2\{1-[\text{(2,3-Dihydro-1H-8-thia-5,7-diaza-cyclopenta}[a]\text{-inden-4-yl})\text{-hydrazono-}
\text{ethyl}]\text{-benzene-1,4-diol (335)}
\]
\(\text{(C}_{17}\text{H}_{16}\text{N}_{4}\text{O}_{2}\text{S}; \text{M.W} = 340.4) \)

\begin{center}
\includegraphics[width=0.5\textwidth]{image}
\end{center}

General procedure 20;
Reagent: (2,3-dihydro-1H-8-thia-5,7-diaza-cyclopenta[a]inden-4-yl)-hydrazine (334) (0.15 g, 0.7 mmol);
Yellow solid;
Yield: 0.18 g (74%)
Melting Point: 308-310°C
MS (ESI+): 341.1 [M+H]+
Two species observed. Major/minor species ratio: 3/2.

\(^1\text{H-NMR (DMSO-d}_6 \text{), } \delta: \) (major species) 2.41 (s, 3H, H-2'), 2.44-2.49 (m, 2H, CH\textsubscript{2}), 2.98-3.02 (m, 2H, CH\textsubscript{2}), 3.17-3.21 (m, 2H, CH\textsubscript{2}), 6.74-6.76 (m, 2H, H-aromatic), 6.98-7.00 (m, 1H, H-aromatic), 8.52 (s, 1H, H-aromatic), 8.88 (bs, 1H, OH), 9.51 (bs, 1H, NH), 12.38 (bs, 1H, OH).

\(^1\text{H-NMR (DMSO-d}_6 \text{), } \delta: \) 2.41 (s, 3H, H-2'), 2.44-2.49 (m, 2H, CH\textsubscript{2}), 2.90-2.94 (m, 2H, CH\textsubscript{2}), 3.17-3.21 (m, 2H, CH\textsubscript{2}), 6.74-6.76 (m, 2H, H-aromatic), 6.98-7.00 (m, 1H, H-aromatic), 7.73 (s, 1H, H-aromatic), 8.88 (bs, 1H, OH), 11.54 (bs, 1H, NH), 11.79 (bs, 1H, OH).

\(^{13}\text{C-NMR (DMSO-d}_6 \text{), } \delta: \) (major and minor species) 13.03, 14.45 (CH\textsubscript{3}, C-2'), 27.32, 28.67, 29.07, 29.33, 29.59 (CH\textsubscript{2}, C-5, 6, 7), 112.96 (C, C-aromatic), 113.56, 114.17, 116.92, 117.61, 118.09, 118.22 (CH, C-aromatic), 119.70, 135.42, 139.20 (C, C-aromatic), 143.83 (CH, C-aromatic), 144.79, 149.18, 151.02 (C, C-aromatic), 152.53 (CH, C-aromatic), 153.56, 154.96, 171.33 (C, C-aromatic).
2-{1-[2,3-Dihydro-1H-8-thia-5,7-diaza-cyclopenta[a]inden-4-yl]-hydrazono]-ethyl}-phenol (336)
(C_{17}H_{16}N_{4}OS; M.W. = 324.4)

General procedure 20;
Reagent: (2,3-dihydro-1H-8-thia-5,7-diaza-cyclopenta[a]inden-4-yl)-hydrazine (334) (0.15 g, 0.7 mmol);
Pale yellow solid;
Yield: 0.17 g (71%)
Melting Point: 267-269°C
MS (ESI'): 325.1 [M+H]^+
Microanalysis: Calculated for C_{17}H_{16}N_{4}OS (324.4): Theoretical: %C = 62.94, %H = 4.97, %N = 17.26; Found: %C = 62.92, %H = 4.83, %N = 17.36.
Two species observed. Major/minor species ratio: 2/1.

^1H-NMR (DMSO-d_6), δ: (major species) 2.37 (s, 3H, H-2'), 2.43-2.48 (m, 2H, CH_2), 2.98-3.07 (m, 2H, CH_2), 3.18-3.25 (m, 2H, CH_2), 6.88-6.92 (m, 2H, H-aromatic), 7.27-7.32 (m, 1H, H-aromatic), 7.59-7.67 (m, 1H, H-aromatic), 8.54 (s, 1H, H-aromatic), 9.59 (bs, 1H, NH), 13.16 (bs, 1H, OH).

^1H-NMR (DMSO-d_6), δ: (minor species) 2.37 (s, 3H, H-2'), 2.43-2.48 (m, 2H, CH_2), 2.90-2.94 (m, 2H, CH_2), 2.98-3.07 (m, 2H, CH_2), 6.88-6.92 (m, 2H, H-aromatic), 7.27-7.32 (m, 1H, H-aromatic), 7.59-7.67 (m, 1H, H-aromatic), 7.75 (s, 1H, H-aromatic), 11.49 (bs, 1H, NH), 12.55 (bs, 1H, OH).

^13C-NMR (DMSO-d_6), δ: (major and minor species) 13.06, 14.48 (CH_3, C-2'), 27.36, 28.69, 29.12, 29.35, 29.57 (CH_2, C-5, 6, 7), 112.92 (C, C-aromatic), 116.50, 117.23, 118.58 (CH, C-aromatic), 119.69, 135.40 (C, C-aromatic), 128.13, 128.72, 130.82 (CH, C-aromatic), 135.47, 139.33 (C, C-aromatic), 143.85, 152.57 (CH, C-aromatic), 153.71, 155.47, 158.31 (C, C-aromatic).
3-{1-[2,3-Dihydro-1H-8-thia-5,7-diaza-cyclopenta[a]inden-4-yl]-hydrazono]-ethyl}-phenol (337)

(C_{17}H_{16}N_{4}OS; M.W. = 324.4)

General procedure 20;
Reagent: (2,3-dihydro-1H-8-thia-5,7-diaza-cyclopenta[a]inden-4-yl)-hydrazine (334) (0.15 g, 0.7 mmol);
Pale pink solid;
Yield: 0.15 g (64%)
Melting Point: 320-322°C
MS (ESI+): 325.1 [M+H]^+
Two species observed. Major/minor species ratio: 5/2.

1H-NMR (DMSO-d$_6$, δ): (major species) 2.41 (s, 3H, H-2'), 2.89-3.02 (m, 6H, CH$_2$), 6.80-6.83 (m, 1H, H-aromatic), 7.17-7.25 (m, 1H, H-aromatic), 7.38-7.40 (m, 1H, H-aromatic), 7.47-7.49 (m, 1H, H-aromatic), 7.75 (s, 1H, H-aromatic), 9.39 (bs, 1H, NH), 11.56 (bs, 1H, OH).

1H-NMR (DMSO-d$_6$, δ): (minor species) 2.24-2.30 (m, 2H, CH$_2$), 2.33-2.36 (m, 4H, CH$_2$), 2.37 (s, 3H, H-2'), 6.80-6.83 (m, 1H, H-aromatic), 7.17-7.25 (m, 3H, H-aromatic), 8.45 (s, 1H, H-aromatic), 9.50 (bs, 1H, NH), 9.80 (bs, 1H, OH).

13C-NMR (DMSO-d$_6$, δ): (major and minor species) 13.99, 14.08 (CH$_3$, C-2'), 27.05, 27.41, 29.07, 29.38, 29.52, 30.98 (CH$_2$, C-5, 6, 7), 112.92 (CH, C-aromatic), 113.03 (C, C-aromatic), 113.50, 115.91, 116.17 (CH, C-aromatic), 117.19 (C, C-aromatic), 117.42, 117.49, 128.86, 129.27 (CH, C-aromatic), 136.89, 137.51, 138.17, 139.40, 139.78, 140.21 (C, C-aromatic), 143.82 (CH, C-aromatic), 146.70, 151.06 (C, C-aromatic), 151.65 (CH, C-aromatic), 157.15, 157.26, 157.65, 161.78 (C, C-aromatic).
4-(2-(1-(Pyrazin-2-yl)ethylidene)hydrazinyl)-6,7-dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidine (338)

(C₁₅H₁₄N₆S; M.W. = 310.3)

General procedure 20;
Reagent: (2,3-dihydro-1H-8-thia-5,7-diaza-cyclopenta[α]inden-4-yl)-hydrazine (334) (0.15 g, 0.7 mmol);
Yellow solid;
Yield: 0.09 g (42%)
Melting Point: 182-185°C
MS (ESI⁺): 311.1 [M+H]⁺
Two species observed. Major/minor species ratio: 4/1.

¹H-NMR (CDCl₃), δ: (major species) 2.48-2.56 (m, 5H, H-2’, CH₂), 3.05-3.09 (m, 2H, CH₂), 3.11-3.17 (m, 2H, CH₂), 8.53-8.56 (m, 3H, H-aromatic, NH), 8.61 (s, 1H, H-2), 9.40 (d, J= 1.4 Hz, 1H, H-aromatic).

¹H-NMR (CDCl₃), δ: (minor species) 2.48-2.56 (m, 2H, CH₂), 2.61 (s, 3H, CH₃), 2.97-3.01 (m, 2H, CH₂), 3.11-3.17 (m, 2H, CH₂), 7.75 (s, 1H, H-aromatic), 8.49 (d, J= 2.5 Hz, 1H, H-aromatic), 8.53-8.56 (m, 1H, H-aromatic), 9.34 (d, J= 1.4 Hz, 1H, H-aromatic), 10.39 (bs, 1H, NH).

¹³C-NMR (CDCl₃), δ: (major and minor species) 10.63, 13.07 (CH₃, C-2’), 27.90, 28.10, 29.70, 29.77, 29.88, 30.95 (CH₂, C-5, 6, 7), 113.57, 134.80 (C, C-aromatic), 140.85 (CH, C-aromatic), 141.18 (C, C-aromatic), 142.95, 143.00, 143.24, 143.34, 143.45, 143.79 (CH, C-aromatic), 147.34, 150.50 (C, C-aromatic), 152.30 (CH, C-aromatic), 153.86, 173.68 (C, C-aromatic).
4-(2-(1-(Pyridin-2-yl)ethylidene)hydrazinyl)-6,7-dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidine (339)
(C_{16}H_{15}N_2S; M.W. = 309.3)

General procedure 20;
Reagent: (2,3-dihydro-1H-8-thia-5,7-diaza-cyclopenta[α]inden-4-yl)-hydrazine (334) (0.15 g, 0.7 mmol);
Orange solid;
Yield: 0.08 g (36%)
Melting Point: 153-157°C
MS (ESI⁺): 310.1 [M+H]⁺
Two species observed. Major/minor species ratio: 5/2.

\[\text{^{1}H-NMR (CDCl₃), δ: (major species)} \]
\[2.59 (s, 3H, H-2'), 2.60-2.65 (m, 2H, CH₂), 3.04-3.08 (m, 2H, CH₂), 3.31-3.35 (m, 2H, CH₂), 7.40-7.43 (m, 1H, H-aromatic), 7.62-7.64 (m, 1H, H-aromatic), 7.91-7.95 (m, 1H, H-aromatic), 8.65 (s, 1H, H-2), 8.68-8.70 (m, 1H, H-aromatic), 15.07 (bs, 1H, NH). \]

\[\text{^{1}H-NMR (CDCl₃), δ: (minor species)} \]
\[2.54 (s, 3H, H-2'), 2.49-2.57 (m, 2H, CH₂), 3.04-3.08 (m, 2H, CH₂), 3.12-3.16 (m, 2H, CH₂), 7.27-7.29 (m, 1H, H-aromatic), 7.71-7.75 (m, 1H, H-aromatic), 8.20-8.22 (m, 1H, H-aromatic), 8.48 (bs, 1H, NH), 8.61 (s, 1H, H-2), 8.62-8.63 (m, 1H, H-aromatic). \]

\[\text{^{13}C-NMR (CDCl₃), δ: (major and minor species)} \]
\[10.91, 22.68 (CH₃, C-2'), 27.91, 27.98, 29.82, 29.87, 30.57 (CH₂, C-5, 6, 7), 113.57 (C, C-aromatic), 121.25, 123.63, 123.73, 123.78 (CH, C-aromatic), 134.91 (C, C-aromatic), 136.24, 137.78 (CH, C-aromatic), 139.42, 139.87, 140.69 (C, C-aromatic), 146.97, 148.58 (CH, C-aromatic), 149.70 (C, C-aromatic), 152.66, 153.45 (CH, C-aromatic), 153.63, 153.94, 155.09, 172.48 (C, C-aromatic). \]
4-(2-(1H-Benzoc[d]imidazol-2-yl)ethylidene)hydrazinyl)-6,7-dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidine (340)

(CH19H14N6S; M.W.= 348.4)

General procedure 20;
Reagent: (2,3-dihydro-1H-8-thia-5,7-diaza-cyclopenta[a]inden-4-yI)-hydrazine (334) (0.15 g, 0.7 mmol);
Light brown solid;
Yield: 0.14 g (58%)
Melting Point: charring > 230°C
MS (ESI+): 349.1 [M+H]+
Two species observed. Major/minor species ratio: 5/1.

1H-NMR (DMSO-d6), δ: (major species) 2.36-2.42 (m, 2H, CH2), 2.52 (s, 3H, H-2'), 2.89-2.94 (m, 2H, CH2), 2.99-3.07 (m, 2H, CH2), 7.16-7.24 (m, 2H, H-aromatic), 7.52-7.60 (m, 1H, H-aromatic), 7.62-7.71 (m, 1H, H-aromatic), 8.04 (s, 1H, H-2), 12.09 (bs, 1H, NH), 12.54 (bs, 1H, NH).

1H-NMR (DMSO-d6), δ: (minor species) 2.29-2.33 (m, 2H, CH2), 2.52 (s, 3H, H-2'), 2.89-2.94 (m, 2H, CH2), 2.99-3.07 (m, 2H, CH2), 7.35-7.41 (m, 2H, H-aromatic), 7.62-7.71 (m, 1H, H-aromatic), 7.73-7.76 (m, 1H, H-aromatic), 8.47 (s, 1H, H-2), 13.00 (bs, 1H, NH), 14.40 (bs, 1H, NH).

13C-NMR (DMSO-d6), δ: (major and minor species) 12.65, 18.52 (CH3, C-2'), 27.11, 27.14, 29.13, 29.39, 29.45, 29.78 (CH2, C-5, 6, 7), 111.06, 111.91, 113.74 (CH, C-aromatic), 117.24, 118.66 (C, C-aromatic), 119.17, 119.38, 121.45, 123.47, 124.56 (CH, C-aromatic), 132.36, 132.92, 134.25, 135.08, 135.47, 136.79, 138.23, 138.95 (C, C-aromatic), 139.74 (CH, C-aromatic), 141.62, 143.32, 144.35, 146.36, 149.58, 151.82, 155.20, 172.74 (C, C-aromatic).
6.4.3.2 \(\text{N'}-(6,7\text{-dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-yl)} \text{arylcarbohydrazides (341-346)\n
\(\text{N'}-(6,7\text{-dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-yl)-2,5-dihydroxybenzohydrazide (341)\n
\(\text{C}_{16}\text{H}_{14}\text{N}_{4}\text{O}_{3}\text{S; M.W.} = 342.3\n
\text{General procedure 22; Reagent: (2,3-dihydro-1H-8-thia-5,7-diaza-cyclopenta[a]inden-4-yl)-hydrazine (334) (0.2 g, 1.0 mmol); Purification: re-crystallisation from EtOH. Light grey solid; Yield: 0.09 g (26%)}\)

\text{Melting Point: charring > 248°C}

\text{MS (ESI\(^+\)): 343.1 [M+H]\(^+\)}\n
\(^1\text{H-NMR (DMSO-d}_{6}\), \(\delta \): 2.42-2.48 (m, 2H, H-6), 2.99 (t, \(J=7.1\text{ Hz}, 2H, \text{CH}_2\)), 3.12 (, J=6.9 Hz, 2H, \text{CH}_2\)), 6.82 (d, \(J= 8.8\text{ Hz, 1H, H-4'}\)), 6.92 (dd, \(J_1 = 8.8\text{ Hz, J}_2 = 2.8\text{ Hz, 1H, H-5'}\)), 7.37 (d, \(J= 2.8\text{ Hz, 1H, H-7'}\)), 8.35 (s, 1H, H-2), 8.98 (bs, 1H, NH), 9.09 (bs, 1H, OH), 10.66 (bs 1H, NH), 11.18 (bs, 1H, OH).\n
\(^{13}\text{C-NMR (DMSO-d}_{6}\), \(\delta \): 27.45, 29.23 (CH$_2$), 111.91 (C, C-aromatic), 113.85 (CH, C-aromatic), 115.22 (C, C-aromatic), 117.89, 121.65 (CH, C-aromatic), 135.33, 138.53, 149.56, 151.47 (C, C-aromatic), 152.26 (CH, C-aromatic), 156.43, 167.37 (C, C-aromatic), 170.94 (C, C-1').
General procedure 22;
Reagent: (2,3-dihydro-1H-8-thia-5,7-diaza-cyclopenta[a]inden-4-yl)-hydrazine (334) (0.2 g, 1.0 mmol);
T.L.C. System: 100% EtOAc, Rf: 0.70.
Purification: flash column chromatography (n-hexane:EtOAc 100:0 v/v increasing to n-hexane:EtOAc 0:100 v/v).
White solid;
Yield: 0.10 g (30%)
Melting Point: charring > 230°C
MS (ESI⁺): 327.1 [M+H]⁺
1H-NMR (DMSO-d$_6$), δ: 2.43-2.49 (m, 2H, H-6), 3.00 (t, J=7.1 Hz, 2H, CH$_2$), 3.13 (, J=7.1 Hz, 2H, CH$_2$), 6.96-7.00 (m, 2H, H-aromatic), 7.46-7.50 (m, 1H, H-aromatic), 7.99 (dd, J₁= 7.9 Hz, J₂= 1.2 Hz, 1H, H-aromatic), 8.36 (s, 1H, H-2), 9.01 (bs, 1H, NH), 10.79 (bs 1H, NH), 11.98 (bs, 1H, NH).
13C-NMR (DMSO-d$_6$), δ: 27.44, 29.20, 29.24 (CH$_2$), 111.92, 114.59 (C, C-aromatic), 117.41, 119.02, 128.21, 134.14 (CH, C-aromatic), 135.31, 138.62 (C, C-aromatic), 152.28 (CH, C-aromatic), 156.52, 159.39, 168.15 (C, C-aromatic), 171.00 (C, C-1').
N’-(6,7-Dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-yl)pyrazine-2-carbohydrazide (343)
(C_{14}H_{12}N_{6}OS; M.W. = 312.3)

N’-(6,7-Dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-yl)picolinohydrazide (344)
(C_{15}H_{13}N_{5}OS; M.W. = 311.3)
General procedure 22;
Reagent: \((2,3\text{-dihydro-}1H\text{-8-thia-5,7-diaza-cyclopenta}\[\alpha]\text{-inden-4-yl})\text{-hydrazine (334)}\)
(0.2 g, 1.0 mmol);
Purification: re-crystallisation from EtOH.
Grey solid;
Yield: 0.09 g (30%)
Melting Point: 219-222°C
MS (ESI\(^+\)): 312.1 [M+H]\(^+
\)
\(^1\text{H-NMR (DMSO-d}_6\), 8\): 2.40-2.46 (m, 2H, H-6), 2.98 (t, J= 7.1 Hz, 2H, CH\(_2\)), 3.12 (, J= 6.9 Hz, 2H, CH\(_2\)), 7.66-7.69 (m, 1H, H-aromatic), 8.02-8.05 (m, 2H, H-aromatic), 8.31 (s, 1H, H-2), 8.72-8.74 (m, 1H, H-aromatic), 8.96 (bs, 1H, NH), 10.72 (bs 1H, NH).
\(^13\text{C-NMR (DMSO-d}_6\), 8\): 27.46, 29.23, 29.36 (CH\(_2\)), 111.93, 114.89 (C, C-aromatic), 122.36, 126.97 (CH, C-aromatic), 135.47 (C, C-aromatic), 137.84 (CH, C-aromatic), 138.27 (C, C-aromatic), 148.69 (CH, C-aromatic), 149.37 (C, C-aromatic), 152.26 (CH, C-aromatic), 156.21 (C, C-aromatic), 169.74 (C, C-1’).

\(\text{N’-(6,7-Dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-yl)-1H-indole-2-carbohydrazide (345)}\)
(C\(_{18}\)H\(_{15}\)N\(_5\)O\(_2\); M.W. = 349.4)

![Chemical structure](image)

General procedure 22;
Reagent: \((2,3\text{-dihydro-}1H\text{-8-thia-5,7-diaza-cyclopenta}\[\alpha]\text{-inden-4-yl})\text{-hydrazine (334)}\)
(0.2 g, 1.0 mmol);
Purification: re-crystallisation from EtOH.
White solid;
Yield: 0.13 g (38%)
Melting Point: 258-260°C
MS (ESI⁺): 350.1 [M+H]⁺

\(^1\)H-NMR (DMSO-d₆), δ: 2.41-2.48 (m, 2H, CH₂), 2.97-3.01 (m, 2H, CH₂), 3.12-3.16 (m, 2H, CH₂), 7.06-7.10 (m, 1H, H-aromatic), 7.20-7.24 (m, 1H, H-aromatic), 7.33 (s, 1H, H-3'), 7.47 (d, J= 8.2 Hz, 1H, H-aromatic), 7.68 (d, J= 7.9 Hz, 1H, H-aromatic), 8.34 (s, 1H, H-2), 8.96 (bs, 1H, NH), 10.59 (bs 1H, NH), 11.70 (bs, 1H, NH).

\(^13\)C-NMR (DMSO-d₆), δ: 27.46, 29.23, 29.36 (CH₂), 111.92, 135.34, 138.46 (C, C-aromatic), 143.67, 143.69 (CH, C-aromatic), 148.01, 152.26 (CH, C-aromatic), 156.60, 162.59 (C, C-1').

\(N'-(6,7\)-Dihydro-5H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-yl)-1H-benzo[d]imidazole-2-carbohydrazide (346)

(C₁₇H₁₄N₆OS; M.W. = 350.4)

General procedure 22;
Reagent: (2,3-dihydro-1H-8-thia-5,7-diaza-cyclopenta[a]inden-4-yl)-hydrazine (334) (0.2 g, 1.0 mmol);
Purification: re-crystallisation from EtOH.
White solid;
Yield: 0.16 g (47%)
Melting Point: 230-234°C
MS (ESI⁺): 373.1 [M+Na]⁺

\(^1\)H-NMR (DMSO-d₆), δ: 2.40-2.47 (m, 2H, CH₂), 2.96-3.00 (m, 2H, CH₂), 3.11-3.14 (m, 2H, CH₂), 7.30-7.38 (m, 2H, H-aromatic), 7.56-7.60 (m, 1H, H-aromatic), 7.78-7.82 (m, 1H, H-aromatic), 8.33 (s, 1H, H-2), 9.04 (bs, 1H, NH), 10.96 (bs 1H, NH), 13.40 (bs, 1H, NH).

\(^13\)C-NMR (DMSO-d₆), δ: 27.47, 29.23, 29.36 (CH₂), 111.88 (C, C-aromatic), 112.57,
120.09, 122.73, 124.39 (CH, C-aromatic), 135.23, 138.40, 142.25, 144.31 (C, C-aromatic), 152.23 (CH, C-aromatic), 156.63, 158.72 (C, C-aromatic), 171.01 (C, C-1').
6.4.5 Benzo[b]thienopyridines

Ethyl 2-aminobenzo[b]thiophene-3-carboxylate (347)

(C_{11}H_{11}NO_{2}S; M.W.= 221.2)

![Chemical structure of ethyl 2-aminobenzo[b]thiophene-3-carboxylate](image)

To a mixture of compound 190 (1.8 g, 7.9 mmol) and 10% Pd/C (1.8 g) in toluene (130 mL) was stirred under reflux for 96 h. The reaction mixture was then cooled to r.t. and filtered over celite. The filtrate was concentrated at reduced pressure to afford a yellow solid residue, which was purified by flash column chromatography (n-hexane:EtOAc 100:0 v/v increasing to n-hexane-EtOAc 90:10 v/v) to give pure ethyl 2-aminobenzo[b]thiophene-3-carboxylate (347) as a white solid.

T.L.C. System: n-hexane-EtOAc 9:1 v/v, Rf: 0.28.

Yield: 0.72 g (41%)

^1^H-NMR (CDCl₃), δ: 1.49 (t, J= 7.1 Hz, 3H, H-3’), 4.44 (q, J= 7.1 Hz, 2H, H-2’), 6.54 (bs, 2H, NH₂), 7.14-7.17 (m, 1H, H-aromatic), 7.32-7.35 (m, 1H, H-aromatic), 7.51-7.53 (m, 1H, H-aromatic), 8.12-8.14 (m, 1H, H-aromatic).

^13^C-NMR (CDCl₃), δ: 14.56 (CH₃, C-3’), 59.89 (CH₂, C-2’), 99.80 (C, C-aromatic), 121.29, 122.37, 122.50, 125.46 (CH, C-aromatic), 128.84, 137.41, 164.35 (C, C-aromatic), 166.31 (C, C-1’).

Benzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (348)

(C_{10}H_{6}N_{2}OS; M.W.= 202.2)

![Chemical structure of benzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one](image)

General procedure 17;

Reagent: ethyl 2-aminobenzo[b]thiophene-3-carboxylate (347) (0.7 g, 3.5 mmol);

Purification: re-crystallisation from 40% EtOH/H₂O.
Brown solid;
Yield: 0.57 g (81%)

1H-NMR (DMSO-d$_6$), δ: 7.49-7.57 (m, 2H, H-aromatic), 8.07 (d, J= 7.7 Hz, 1H, H-aromatic), 8.31 (s, 1H, H-2), 12.86 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 117.75 (C, C-aromatic), 122.82, 123.95, 125.73, 126.16 (CH, C-aromatic), 133.48, 134.69 (C, C-aromatic), 147.76 (CH, C-2), 157.35 (C, C-aromatic), 165.87 (C, C-1).

4-Chlorobenzo[4,5]thieno[2,3-d]pyrimidine (349)46
(C$_{10}$H$_5$ClN$_2$S; M.W.= 220.6)

![Chemical structure](image)

General procedure 18;
Reagent: benzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (348) (0.7 g, 3.5 mmol);
T.L.C. System: nhexane-EtOAc 8:2 v/v, Rf: 0.69.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane-EtOAc 95:5 v/v).
White solid;
Yield: 0.37 g (74%)

1H-NMR (CDCl$_3$), δ: 7.61-7.67 (m, 2H, H-aromatic), 7.94- 7.97 (m, 1H, H-aromatic), 8.76-8.78 (m, 1H, H-aromatic), 8.93 (s, 1H, H-2).

13C-NMR (CDCl$_3$), δ: 123.00 (CH, C-aromatic), 125.10 (C, C-aromatic), 125.96, 126.00, 128.92 (CH, C-aromatic), 130.05, 137.06 (C, C-aromatic), 154.01 (CH, C-aromatic), 154.50, 171.01 (C, C-aromatic).
4-Hydrazinylbenzo[4,5]thieno[2,3-d]pyrimidine (350)\(^47\)
(C\(_{10}\)H\(_8\)N\(_4\)S; M.W. = 216.2)

![Chemical Structure](image)

General procedure 19;
Reagent: 4-chlorobenzo[4,5]thieno[2,3-d]pyrimidine (349) (0.37 g, 1.7 mmol);
Purification: re-crystallisation from 40% EtOH/H\(_2\)O.
Pale yellow solid;
Yield: 0.27 g (74%)

\(^1\)H-NMR (DMSO-d\(_6\), \(\delta\): 4.86 (bs, 2H, NH\(_2\)), 7.49-7.56 (m, 2H, H-aromatic), 8.06-8.08 (m, 1H, H-aromatic), 8.45-8.47 (m, 1H, H-aromatic), 8.56 (s, 1H, H-2), 8.83 (bs, 1H, NH).

\(^13\)C-NMR (DMSO-d\(_6\), \(\delta\): 109.24 (C, C-aromatic), 122.95, 123.97, 125.41, 125.96 (CH, C-aromatic), 131.66, 134.13 (C, C-aromatic), 154.85 (CH, C-2), 157.99, 166.45 (C, C-aromatic).
6.4.4.1 4-(2-(1-Arylethylidene)hydrazinyl)benzo[4,5]thieno[2,3-d]pyrimidines (351-354)

2-(1-(2-(Benzothieno[2,3-d]pyrimidin-4-yl)hydrazono)ethyl)benzene-1,4-diol (351)
(C_{18}H_{14}N_{4}O_{2}S; M.W. = 350.4)

General procedure 20;
Reagent: 4-hydrazinylbenzo[4,5]thieno[2,3-d]pyrimidine (350) (0.15 g, 0.7 mmol);
Yellow solid;
Yield: 0.18 g (73%)
Melting Point: 246-249°C
MS (ESI+): 351.1 [M+H]^+
Two species observed. Major/minor species ratio: 6/1.
{H-NMR (DMSO-d6), δ: (major species) 2.62 (s, 3H, H-2'), 6.77-6.79 (m, 2H, H-aromatic), 7.04-7.07 (m, 1H, H-aromatic), 7.50-7.52 (m, 1H, H-aromatic), 7.57-7.63 (m, 1H, H-aromatic), 8.03-8.08 (m, 2H, H-aromatic), 8.74 (d, J= 7.9 Hz, 1H, H-aromatic), 8.91 (bs, 1H, OH), 11.66 (bs, 1H, NH), 12.06 (bs, 1H, OH).
{H-NMR (DMSO-d6), δ: (minor species) 2.62 (s, 3H, H-2'), 6.77-6.79 (m, 2H, H-aromatic), 7.04-7.07 (m, 1H, H-aromatic), 7.57-7.63 (m, 1H, H-aromatic), 7.66-7.71 (m, 1H, H-aromatic), 8.15-8.19 (m, 1H, H-aromatic), 8.33-8.37 (m, 1H, H-aromatic), 8.74 (d, J= 7.9 Hz, 1H, H-aromatic), 8.91 (bs, 1H, OH), 10.42 (bs, 1H, NH), 12.70 (bs, 1H, OH).
{C-NMR (DMSO-d6), δ: (major and minor species) 15.27 (CH3, C-2'), 114.14 (C, C-aromatic), 114.39, 117.05, 118.30 (CH, C-aromatic), 121.16 (C, C-aromatic), 122.71, 125.21, 125.60, 125.70 (CH, C-aromatic), 133.21, 135.19, 145.01 (C, C-aromatic), 147.01 (CH, C-aromatic), 149.36, 150.84, 160.85, 163.32 (C, C-aromatic).
2-(1-(2-(Benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)hydrazono)ethyl)phenol (352)
(C_{18}H_{14}N_{4}OS; M.W.= 334.4)

General procedure 20;
Reagent: 4-hydrazinylbenzo[4,5]thieno[2,3-d]pyrimidine (350) (0.15 g, 0.7 mmol);
Yellow solid;
Yield: 0.19 g (81%)
Melting Point: 195-199°C
MS (ESI\(^+\)): 335.1 [M+H]\(^+\)
Two species observed. Major/minor species ratio: 6/1.
Microanalysis: Calculated for C_{18}H_{14}N_{4}OS (334.4); Theoretical: %C = 64.65, %H = 4.22, %N = 16.75; Found: %C = 64.74, %H = 4.10, %N = 16.89.

\(^1\)H-NMR (DMSO-d\(_6\)), \(\delta\): (major species) 2.66 (s, 3H, H-2'), 6.92-6.97 (m, 2H, H-aromatic), 7.30-7.34 (m, 1H, H-aromatic), 7.50-7.52 (m, 1H, H-aromatic), 7.58-7.60 (m, 1H, H-aromatic), 7.65-7.70 (m, 1H, H-aromatic), 8.04-8.09 (m, 2H, H-aromatic), 8.73-8.79 (m, 1H, H-aromatic), 12.04 (bs, 1H, NH), 12.39 (bs, 1H, OH).

\(^1\)H-NMR (DMSO-d\(_6\)), \(\delta\): (minor species) 2.66 (s, 3H, H-2'), 6.92-6.97 (m, 2H, H-aromatic), 7.30-7.34 (m, 1H, H-aromatic), 7.50-7.52 (m, 1H, H-aromatic), 7.58-7.60 (m, 1H, H-aromatic), 7.65-7.70 (m, 2H, H-aromatic), 8.15-8.19 (m, 1H, H-aromatic), 8.34-8.38 (m, 1H, H-aromatic), 8.73-8.79 (m, 1H, H-aromatic), 10.46 (bs, 1H, NH), 13.46 (bs, 1H, OH).

\(^{13}\)C-NMR (DMSO-d\(_6\)), \(\delta\): (major and minor species) 15.17 (CH\(_3\), C-2'), 114.16 (C, C-aromatic), 116.60, 118.75 (CH, C-aromatic), 121.10 (C, C-aromatic), 122.71, 125.23, 125.61, 125.71, 128.91, 130.88 (CH, C-aromatic), 133.21, 135.20, 145.11 (C, C-aromatic), 146.94 (CH, C-aromatic), 158.16, 160.93, 163.47 (C, C-aromatic).
4-(2-(1-(Pyrazin-2-yl)ethylidene)hydrazinyl)benzo[4,5]thieno[2,3-d]pyrimidine (353)
(C_{16}H_{12}N_{6}OS; M.W. = 320.4)

General procedure 20;
Reagent: 4-hydrazinylbenzo[4,5]thieno[2,3-d]pyrimidine (350) (0.15 g, 0.7 mmol);
Yellow solid;
Yield: 0.16 g (73%)
Melting Point: 218-221°C
MS (ESI+): 321.1 [M+H]^+

\[
\begin{align*}
\text{H-NMR (DMSO-d_6, } & \delta: 2.62 \text{ (s, 3H, H-2')}, 7.50-7.54 \text{ (m, 1H, H-aromatic), 7.58-7.62} \\
& \text{ (m, 1H, H-aromatic), 8.08 \text{ (d, J= 7.9 Hz, 1H, H-aromatic), 8.15 \text{ (d, J= 3.7 Hz, 1H, H-}} \\
& \text{ aromatic), 8.61 \text{ (s, 1H, H-2), 8.65-8.66 \text{ (m, 1H, H-aromatic), 8.78 \text{ (d, J= 7.9 Hz, 1H, H-}} \\
& \text{ aromatic), 9.87 \text{ (d, J= 1.4 Hz, 1H, H-aromatic), 12.44 \text{ (bs, 1H, NH).}}
\end{align*}
\]

\[
\begin{align*}
\text{C-NMR (DMSO-d_6, } & \delta: 12.82 \text{ (CH_3, C-2'), 114.42 \text{ (C, C-aromatic), 122.71, 125.51,} \\
& 125.65, 125.82 \text{ (CH, C-aromatic), 133.16, 135.26 \text{ (C, C-aromatic), 143.24, 143.43,} \\
& 143.69, 146.65 \text{ (CH, C-aromatic), 148.23, 151.12, 157.56, 161.84 \text{ (C, C-aromatic).}}
\end{align*}
\]

4-(2-(1-(1H-Benzol[d]imidazol-2-yl)ethylidene)hydrazinyl)benzo[4,5]thieno[2,3-d]pyrimidine (354)
(C_{19}H_{14}N_{6}S; M.W. = 358.4)
General procedure 20;
Reagent: 4-hydrazinylbenzo[4,5]thieno[2,3-d]pyrimidine (350) (0.15 g, 0.7 mmol);
Yellow solid;
Yield: 0.16 g (62%)
Melting Point: charring > 250°C
MS (ESI⁺): 359.1 [M+H]⁺
Two species observed. Major/minor species ratio: 5/1.

1H-NMR (DMSO-d$_6$), δ: (major species) 2.67 (s, 3H, H-2’), 7.22-7.32 (m, 2H, H-aromatic), 7.52-7.55 (m, 1H, H-aromatic), 7.61-7.72 (m, 3H, H-aromatic), 8.10 (d, J= 7.9 Hz, 1H, H-aromatic), 8.36 (s, 1H, H-2), 8.80 (d, J= 7.9 Hz, 1H, H-aromatic), 12.60 (bs, 1H, NH), 12.68 (bs, 1H, NH).

1H-NMR (DMSO-d$_6$), δ: (minor species) 2.63 (s, 3H, H-2’), 7.45-7.48 (m, 2H, H-aromatic), 7.61-7.72 (m, 2H, H-aromatic), 7.91-8.00 (m, 2H, H-aromatic), 8.22 (d, J= 7.9 Hz, 1H, H-aromatic), 8.75 (s, 1H, H-2), 9.31 (d, J= 7.9 Hz, 1H, H-aromatic), 13.21 (bs, 1H, NH), 13.49 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: (major and minor species) 13.30 (CH$_3$, C-2’), 114.38 (C, C-aromatic), 121.57, 123.25, 124.85, 125.70, 125.79, 125.87, 126.91 (CH, C-aromatic), 130.40, 133.11, 134.80, 135.26 (C, C-aromatic), 146.36 (CH, C-aromatic), 148.60, 150.42, 151.66 (C, C-aromatic), 155.23 (CH, C-aromatic), 161.81 (C, C-aromatic).
6.4.4.2 N’-(Benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)arylcarbohydrazides (355-358)

N’-(Benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-2,5-dihydroxybenzohydrazide (355)
(C_{17}H_{12}N_{4}O_{3}S; M.W. = 352.4)

General procedure 22;
Reagent: 4-hydrazinylbenzo[4,5]thieno[2,3-d]pyrimidine (350) (0.2 g, 0.9 mmol);
T.L.C. System: 100% EtOAc, Rf: 0.65.
Purification: flash column chromatography (n-hexane:EtOAc 100:0 v/v increasing to
n-hexane:EtOAc 30:700 v/v).
Light grey solid;
Yield: 0.05 g (17%)
Melting Point: 241-244°C
MS (ESI+): 353.0 [M+H]^+

^1H-NMR (DMSO-d_6), δ: 6.84 (d, J = 8.8 Hz, 1H, H-4’), 6.93 (dd, J_1 = 8.8 Hz, J_2 = 2.8 Hz, 1H, H-5’), 7.41 (d, J = 2.8 Hz, 1H, H-7’), 7.58-7.66 (m, 2H, H-aromatic), 8.16 (d, J = 7.6 Hz, 1H, H-aromatic), 8.56-8.61 (m, 2H, H-aromatic), 9.11 (bs, 1H, NH), 9.64 (bs, 1H, OH), 10.92 (bs, 2H, NH, OH).

^13C-NMR (DMSO-d_6), δ: 110.08, 114.69 (C, C-aromatic), 117.42, 119.06, 123.30, 124.52, 125.67, 126.64, 128.34 (CH, C-aromatic), 130.55 (C, C-aromatic), 134.16 (CH, C-aromatic), 134.56 (C, C-aromatic), 154.90 (CH, C-aromatic), 157.41, 159.36 (C, C-aromatic), 167.98 (C, C-1’).
$N'-(\text{Benzo}[4,5]\text{thieno}[2,3-d]\text{pyrimidin-4-yl})-2$-hydroxybenzohydrazide (356)
(C_{17}H_{12}N_{4}O_{2}S; M.W. = 336.4)

General procedure 22;
Reagent: 4-hydrazinylbenzo[4,5]thieno[2,3-d]pyrimidine (350) (0.2 g, 0.9 mmol);
Purification: recrystallization from EtOH.
Pale yellow solid;
Yield: 0.04 g (14%)
Melting Point: >260°C
MS (ESI$^+$): 337.0 [M+H$^+$]

1H-NMR (DMSO-d_6), δ: 6.98-7.03 (m, 2H, H-aromatic), 7.48-7.52 (m, 1H, H-aromatic), 7.59-7.67 (m, 2H, H-aromatic), 8.04 (d, J= 7.5 Hz, 1H, H-aromatic), 8.18 (d, J= 7.3 Hz, 1H, H-aromatic), 8.59-8.63 (m, 2H, H-aromatic), 9.65 (bs, 1H, NH), 11.00 (bs, 1H, OH), 12.00 (bs, 1H, NH).

13C-NMR (DMSO-d_6), δ: 110.07, 114.69 (C, C-aromatic), 117.88, 121.58, 123.25, 124.51, 125.63, 126.65 (CH, C-aromatic), 130.55 (C, C-aromatic), 134.16 (CH, C-aromatic), 134.56 (C, C-aromatic), 154.90 (CH, C-aromatic), 157.41, 159.36 (C, C-aromatic), 167.07 (C, C-1').
N’-(Benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)pyrazine-2-carbohydrazide (357)
(C₁₅H₁₀N₆O₅; M.W.= 322.3)

General procedure 22;
Reagent: 4-hydrazinylbenzo[4,5]thieno[2,3-d]pyrimidine (350) (0.2 g, 0.9 mmol);
Purification: recrystallization from EtOH/H₂O.
Pale yellow solid;
Yield: 0.06 g (21%)
Melting Point: 115-118°C
MS (ESI⁺): 323.0 [M+H]⁺

¹H-NMR (DMSO-d₆), δ: 7.57-7.65 (m, 2H, H-aromatic), 8.15 (d, J= 7.6 Hz, 1H, H-aromatic), 8.56 (s, 1H, H-2), 8.63 (d, J= 7.3 Hz, 1H, H-aromatic), 8.84-8.85 (m, 1H, H-aromatic), 8.96 (d, J= 2.3 Hz, 1H, H-aromatic), 9.26 (d, J= 1.3 Hz, 1H, H-aromatic), 9.64 (bs, 1H, NH), 11.14 (bs, 1H, NH).

¹³C-NMR (DMSO-d₆), δ: 110.12 (C, C-aromatic), 123.23, 124.58, 125.61, 125.95 (CH, C-aromatic), 126.62, 130.70, 134.48 (C, C-aromatic), 143.67, 143.72 (CH, C-aromatic), 144.04, 144.38 (C, C-aromatic), 148.02 (CH, C-aromatic), 167.83 (C, C-1').

N’-(Benzo[4,5]thieno[2,3-d]pyrimidin-4-yl)picolinohydrazide (358)
(C₁₆H₁₁N₅O₅; M.W.= 321.4)

General procedure 22;
Reagent: 4-hydrazinylbenzo[4,5]thieno[2,3-d]pyrimidine (350) (0.2 g, 0.9 mmol); Purification: recrystallization from EtOH.

White solid; Yield: 0.08 g (28%)

Melting Point: 220-223°C

MS (ESI⁺): 322.0 [M+H]+

H-NMR (DMSO-d6), δ: 7.57-7.65 (m, 2H, H-aromatic), 7.68-7.71 (m, 1H, H-aromatic), 8.04-8.08 (m, 1H, H-aromatic), 8.09-8.12 (m, 1H, H-aromatic), 8.15 (d, J= 7.6 Hz, 1H, H-aromatic), 8.56 (s, 1H, H-2), 8.63 (d, J= 6.6 Hz, 1H, H-aromatic), 8.76 (d, J= 4.3 Hz, 1H, H-aromatic), 9.57 (bs, 1H, NH), 10.92 (bs, 1H, NH).

C-NMR (DMSO-d6), δ: 110.05 (C, C-aromatic), 122.39, 123.21, 125.58, 126.60, 126.67, 126.99 (CH, C-aromatic), 130.70, 134.44 (C, C-aromatic), 137.87, 148.70 (CH, C-aromatic), 149.38 (C, C-aromatic), 154.88 (CH, C-aromatic), 157.52, 163.27 (C, C-aromatic), 167.77 (C, C-1').
6.4.6 Dimethyl[b]thienopyrimidines

Ethyl 2-amino-4,5-dimethylthiophene-3-carboxylate (363)48
(C\textsubscript{9}H\textsubscript{13}NO\textsubscript{2}S; M.W.= 180.2)

\begin{center}
\begin{tikzpicture}
\node (A) at (0,0) {361};
\node (B) at (1,0) {363};
\draw[->] (A) -- (B);
\end{tikzpicture}
\end{center}

General procedure 16;
Reagent: 2-butanone (361) (1 g, 13.9 mmol);
T.L.C. System: nhexane - EtOAc 8:2 v/v, Rf: 0.50.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane - EtOAc 85:15 v/v);
Pale yellow solid;
Yield: 1.30 g (47%)
1H-NMR (CDCl\textsubscript{3}), \(\delta\): 1.37 (t, J= 7.1 Hz, 3H, H-3’), 2.17 (s, 3H, CH\textsubscript{3}), 2.19 (s, 3H, CH\textsubscript{3}), 4.30 (q, J= 7.1 Hz, 2H, H-2’), 5.92 (bs, 2H, NH\textsubscript{2}).
13C-NMR (CDCl\textsubscript{3}), \(\delta\): 12.29, 14.37, 14.75 (CH\textsubscript{3}, C-3’, 5, 6), 59.43 (CH\textsubscript{2}, C-2’), 106.98, 113.84, 130.35, 160.94 (C, C-1, 2, 3, 4), 166.08 (C, C-1’).

5,6-Dimethylthieno[2,3-d]pyrimidin-4(3H)-one (365)44
(C\textsubscript{8}H\textsubscript{8}N\textsubscript{2}OS; M.W.= 180.2)

\begin{center}
\begin{tikzpicture}
\node (A) at (0,0) {363};
\node (B) at (1,0) {365};
\draw[->] (A) -- (B);
\end{tikzpicture}
\end{center}

General procedure 17;
Reagent: ethyl 2-amino-4,5-dimethylthiophene-3-carboxylate (363) (1.03 g, 5.2 mmol);
Purification: recrystallization from EtOH/H\textsubscript{2}O;
Pale yellow solid;
Yield: 0.45 g (49%)
1H-NMR (DMSO-d\textsubscript{6}), \(\delta\): 2.35 (s, 3H, CH\textsubscript{3}), 2.38 (s, 3H, CH\textsubscript{3}), 7.98 (s, 1H, H-2), 12.28
13C-NMR (DMSO-d6), δ: 12.51, 12.81 (CH3, C-5, 6), 123.45, 128.68, 129.23 (C, C-aromatic), 144.65 (CH, C-2), 157.90 (C, C-aromatic), 161.62 (C, C-1).

4-Chloro-5,6-dimethylthieno[2,3-d]pyrimidine (367)44
(C8H7ClN2S; M.W. = 198.7)

General procedure 18;
Reagent: 5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one (365) (1.03 g, 5.2 mmol);
T.L.C. System: nhexane-EtOAc 1:1 v/v, Rf: 0.67.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane-EtOAc 90:10 v/v);
White solid;
Yield: 0.34 g (91%)

1H-NMR (CDCl3), δ: 2.54 (s, 3H, CH3), 2.57 (s, 3H, CH3), 8.73 (s, 1H, H-2).

13C-NMR (CDCl3), δ: 14.08, 14.18 (CH3, C-5, 6), 125.15, 129.43, 136.15 (C, C-aromatic), 151.48 (CH, C-2), 153.44, 168.30 (C, C-aromatic).

4-Hydrazinyl-5,6-dimethylthieno[2,3-d]pyrimidine (369)49
(C8H10N4S; M.W. = 194.3)

General procedure 19;
Reagent: 4-chloro-5,6-dimethylthieno[2,3-d]pyrimidine (367) (0.34 g, 1.7 mmol);
Purification: recrystallization from EtOH/H2O;
Yellow solid;
Yield: 0.24 g (73%)

1H-NMR (DMSO-d_6), δ: 2.38 (s, 3H, CH_3), 2.42 (s, 3H, CH_3), 4.59 (bs, 2H, NH$_2$), 8.03 (bs, 1H, NH), 8.33 (s, 1H, H-2).

13C-NMR (DMSO-d_6), δ: 13.00, 13.83 (CH$_3$, C-5), 115.92, 124.65, 128.34 (C, C-aromatic), 152.32 (CH, C-2), 158.30, 166.38 (C, C-aromatic).
6.4.5.1 4-(2-(1-Arylethylidene)hydrazinyl)-5,6-dimethylthieno[2,3-\textit{d}]pyrimidines (371-372)

2-(1-(2-(5,6-Dimethylthieno[2,3-\textit{d}]pyrimidin-4-yl)hydrazono)ethyl)benzene-1,4-diol (371)
(C\textsubscript{16}H\textsubscript{16}N\textsubscript{4}O\textsubscript{2}S; M.W. = 328.4)

![Chemical Structure](image)

General procedure 20;
Reagent: 4-hydrazinyl-5,6-dimethylthieno[2,3-\textit{d}]pyrimidine (369) (0.15 g, 0.8 mmol);
Yellow solid;
Yield: 0.18 g (71%)
Melting Point: >260°C
MS (ESI+): 329.1 [M+H]+
Two species observed. Major/minor species ratio: 3/1.

\textbf{\textit{1H-NMR (DMSO-d\textsubscript{6}), 8:}} (major species) 2.36 (s, 3H, CH\textsubscript{3}), 2.47 (s, 3H, CH\textsubscript{3}), 2.49 (s, 3H, CH\textsubscript{3}), 6.73-6.77 (m, 2H, H-aromatic), 6.97-7.02 (m, 1H, H-aromatic), 7.74 (s, 1H, H-2), 8.87 (bs, 1H, OH), 11.36 (bs, 1H, NH), 11.71 (bs, 1H, OH).

\textbf{\textit{1H-NMR (DMSO-d\textsubscript{6}), 8:}} (minor species) 2.47 (s, 3H, CH\textsubscript{3}), 2.49 (s, 3H, CH\textsubscript{3}), 2.61 (s, 3H, CH\textsubscript{3}), 6.73-6.77 (m, 2H, H-aromatic), 6.97-7.02 (m, 1H, H-aromatic), 8.52 (s, 1H, H-2), 8.87 (bs, 1H, OH), 9.51 (bs, 1H, NH), 12.60 (bs, 1H, OH).

\textbf{\textit{13C-NMR (DMSO-d\textsubscript{6}), 8:}} (major and minor species) 12.86, 14.14, 15.02 (CH\textsubscript{3}, C-5, 6), 112.55 (C, C-aromatic), 114.23, 116.95, 118.10 (CH, C-aromatic), 121.13, 128.80, 129.52 (C, C-aromatic), 143.87 (CH, C-aromatic), 144.63, 149.26, 150.87, 155.13, 163.04 (C, C-aromatic).
2-(1-(2-(5,6-Dimethylthieno[2,3-d]pyrimidin-4-yl)hydrazono)ethyl)phenol (372) (C_{16}H_{16}N_{4}OS; M.W.= 312.4)

General procedure 20;
Reagent: 4-hydrazinyl-5,6-dimethylthieno[2,3-d]pyrimidine (369) (0.15 g, 0.8 mmol);
Pale yellow solid;
Yield: 0.13 g (54%)
Melting Point: 222-226°C
MS (ESI\(^{+}\)): 313.1 [M+H]\(^{+}\)
Two species observed. Major/minor species ratio: 3/1.

\(^{1}\)H-NMR (DMSO-d\(_6\)), \(\delta\): (major species) 2.36 (s, 3H, CH\(_3\)), 2.49 (s, 3H, CH\(_3\)), 2.53 (s, 3H, CH\(_3\)), 6.89-6.93 (m, 2H, H-aromatic), 7.27-7.30 (m, 1H, H-aromatic), 7.61 (d, J= 7.5 Hz, 1H, H-aromatic), 7.75 (s, 1H, H-2), 11.38 (bs, 1H, NH), 12.49 (bs, 1H, OH).

\(^{1}\)H-NMR (DMSO-d\(_6\)), \(\delta\): (minor species) 2.47 (s, 3H, CH\(_3\)), 2.53 (s, 3H, CH\(_3\)), 2.61 (s, 3H, CH\(_3\)), 6.89-6.93 (m, 2H, H-aromatic), 7.27-7.30 (m, 1H, H-aromatic), 7.64-7.67 (m, 1H, H-aromatic), 8.54 (s, 1H, H-2), 9.54 (bs, 1H, NH), 13.37 (bs, 1H, OH).

\(^{13}\)C-NMR (DMSO-d\(_6\)), \(\delta\): (major and minor species) 12.87, 13.05, 13.23, 13.55, 14.16, 14.95 (CH\(_3\), C-5, 6, 2'), 116.52, 117.28, 118.50, 118.67 (CH, C-aromatic), 119.48, 120.10, 121.04, 124.27 (C, C-aromatic), 128.02, 128.74 (CH, C-aromatic), 128.81, 129.57 (C, C-aromatic), 130.69, 143.85 (CH, C-aromatic), 145.45 (C, C-aromatic), 152.51 (CH, C-aromatic), 153.97, 155.36, 155.89, 158.18, 158.48, 163.34, 165.11 (C, C-aromatic).
6.4.5.2 N’-(5,6-Dimethylthieno[2,3-d]pyrimidin-4-yl)pyrazine-2-carboxyhydrazide
(374)
(C_{13}H_{12}N_{6}OS; M.W. = 300.3)

General procedure 22;
Reagent: 4-hydrazinyl-5,6-dimethylthieno[2,3-d]pyrimidine (369) (0.11 g, 0.6 mmol);
Purification: re-crystallisation from EtOH;
White solid;
Yield: 0.06 g (35%)
Melting Point: 194-197°C
MS (ESI⁺): 301.1 [M+H]⁺

¹H-NMR (DMSO-d₆), δ: 2.44 (s, 3H, CH₃), 2.53 (s, 3H, CH₃), 8.31 (s, 1H, H-2), 8.81-8.82 (m, 1H, H-aromatic), 8.94 (d, J= 2.3 Hz, 1H, H-aromatic), 8.96 (bs, 1H, NH), 9.22 (d, J= 1.2 Hz, 1H, H-aromatic), 10.90 (bs 1H, NH).

¹³C-NMR (DMSO-d₆), δ: 13.14, 14.08 (CH₃, C-5, 6), 116.53, 124.60, 127.15, 129.76 (C, C-aromatic), 143.62 (CH, C-aromatic), 144.42, 146.77 (C, C-aromatic), 147.60, 147.91, 151.86 (CH, C-aromatic), 161.95 (C, C-1’).
6.4.7 6-Ethyl-5-methylthieno[2,3-d]pyrimidines

Ethyl 2-amino-5-ethyl-4-methylthiophene-3-carboxylate (364)
(C\textsubscript{10}H\textsubscript{15}NO\textsubscript{2}S; M.W. = 213.3)

![Chemical Structure](image)

General procedure 16;
Reagent: 2-pentanone (362) (1 g, 11.6 mmol);
T.L.C. System: nhexane-EtOAc 8:2 v/v, Rf: 0.52;
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane -EtOAc 95:5 v/v);
Yellow oil;
Yield: 0.83 g (33%)

\[^1\text{H-}NMR\ (CDCl\textsubscript{3}), \delta:\]
1.17 (t, J = 7.5 Hz, 3H, H-6), 1.37 (t, J = 7.1 Hz, 3H, H-3’), 2.20 (s, 3H, H-7), 2.60 (q, J = 7.5 Hz, 2H, H-5), 4.30 (q, J = 7.1 Hz, 2H, H-2’), 5.92 (bs, 2H, NH\textsubscript{2}).

\[^{13}\text{C-}NMR\ (CDCl\textsubscript{3}), \delta:\]
14.44, 14.64, 15.76 (CH\textsubscript{3}, C-3’, 6, 7), 20.50 (CH\textsubscript{2}, C-5), 59.43 (CH\textsubscript{2}, C-2’), 107.03, 121.79, 129.43, 161.05 (C, C-1, 2, 3, 4), 166.16 (C, C-1’).

6-Ethyl-5-methylthieno[2,3-d]pyrimidin-4(3H)-one (366)
(C\textsubscript{9}H\textsubscript{10}N\textsubscript{2}O\textsubscript{S}; M.W. = 194.3)

![Chemical Structure](image)

General procedure 17;
Reagent: ethyl 2-amino-5-ethyl-4-methylthiophene-3-carboxylate (364) (0.83 g, 3.8 mmol);
Purification: recrystallisation from 40% EtOH/H\textsubscript{2}O;
Brown solid;
Yield: 0.61 g (83%)

\[^1\text{H-NMR (DMSO-d}_6\text{), } \delta: 1.20 \text{ (t, } J= 7.5 \text{ Hz, } 3\text{H, H-5)}, 2.40 \text{ (s, } 3\text{H, H-7)}, 2.77 \text{ (q, } J= 7.5 \text{ Hz, } 2\text{H, H-5)}, 7.99 \text{ (s, } 1\text{H, H-2)}, 12.28 \text{ (bs, } 1\text{H, NH}).\]

\[^{13}\text{C-NMR (DMSO-d}_6\text{), } \delta: 12.77, 15.36 \text{ (CH}_3\text{, C-6, 7), 20.33 \text{ (CH}_2\text{, C-5), 123.49, 127.84, 136.67 \text{ (C, C-aromatic), 144.67 \text{ (CH, C-2), 158.03 \text{ (C, C-aromatic), 161.68 \text{ (C, C-1).}}}}\]

4-Chloro-6-ethyl-5-methylthieno[2,3-\text{d}]pyrimidine (368)51
(C\textsubscript{9}H\textsubscript{9}ClN\textsubscript{2}S; M.W.= 212.7)

\begin{equation}
\text{\includegraphics[width=0.5\textwidth]{image.png}}
\end{equation}

General procedure 18;
Reagent: 6-ethyl-5-methylthieno[2,3-\text{d}]pyrimidin-4(3\text{H})-one (366) (0.61 g, 3.1 mmol);
T.L.C. System: \textit{n}hexane-EtOAc 1:1 \text{v/v}, Rf: 0.67.
Purification: flash column chromatography (\textit{n}hexane-EtOAc 100:0 \text{v/v} increasing to \textit{n}hexane-EtOAc 90:10 \text{v/v});
White solid;
Yield: 0.37 g (50%)

\[^1\text{H-NMR (CDCl}_3\text{), } \delta: 1.36 \text{ (t, } J= 7.5 \text{ Hz, } 3\text{H, H-6)}, 2.59 \text{ (s, } 3\text{H, H-7)}, 2.94 \text{ (q, } J= 7.5 \text{ Hz, } 2\text{H, H-5)}, 8.73 \text{ (s, } 1\text{H, H-2}).\]

\[^{13}\text{C-NMR (CDCl}_3\text{), } \delta: 14.16, 15.20 \text{ (CH}_3\text{, C-6, 7), 21.96 \text{ (CH}_2\text{, C-5), 124.16, 129.55, 143.66 \text{ (C, C-aromatic), 151.43 \text{ (CH, C-2), 153.58, 168.31 \text{ (C, C-aromatic).}}}}\]

6-Ethyl-4-hydrazinyl-5-methylthieno[2,3-\text{d}]pyrimidine (370)
(C\textsubscript{9}H\textsubscript{12}N\textsubscript{4}S; M.W.= 208.8)

\begin{equation}
\text{\includegraphics[width=0.5\textwidth]{image.png}}
\end{equation}
General procedure 19;
Reagent: 4-chloro-6-ethyl-5-methylthieno[2,3-\textit{d}]pyrimidine (368) (0.34 g, 1.7 mmol);
Purification: recrystallization from 40% EtOH/H\textsubscript{2}O;
Yellow solid;
Yield: 0.11 g (46%)
\begin{align*}
1\text{H-NMR} \text{ (DMSO-\textit{d}_6)}, \delta: \quad & 1.19 \text{ (t, J= 7.5 Hz, 3H, H-6)}, \quad 2.43 \text{ (s, 3H, H-7)}, \quad 2.79 \text{ (q, J= 7.5 Hz, 2H, H-5)}, \quad 4.59 \text{ (bs, 2H, NH\textsubscript{2})}, \quad 8.07 \text{ (bs, 1H, NH)}, \quad 8.33 \text{ (s, 1H, H-2)}.
\end{align*}
\begin{align*}
13\text{C-NMR} \text{ (DMSO-\textit{d}_6)}, \delta: \quad & 13.77, \quad 15.49 \text{ (CH\textsubscript{3}, C-6, 7)}, \quad 20.65 \text{ (CH\textsubscript{2}, C-5)}, \quad 115.96, \quad 123.80, \quad 135.72 \text{ (C, C-aromatic)}, \quad 152.31 \text{ (CH, C-2)}, \quad 158.48, \quad 163.22 \text{ (C, C-aromatic)}.
\end{align*}
6.4.6.1 2-(1-(2-(6-Ethyl-5-methylthieno[2,3-d]pyrimidin-4-yl)hydrazono)ethyl)benzene-1,4-diol (373)

(C_{17}H_{18}N_{4}O_{2}S; M.W. = 342.4)

General procedure 20;
Reagent: 6-ethyl-4-hydrazinyl-5-methylthieno[2,3-d]pyrimidine (370) (0.09 g, 0.4 mmol);
Yellow solid;
Yield: 0.07 g (53%)
Melting Point: 235-237°C
MS (ESI⁺): 343.1 [M+H]⁺
Two species observed. Major/minor species ratio: 3/1.
Microanalysis: Calculated for C_{17}H_{18}N_{4}O_{2}S (342.4); Theoretical: %C = 59.63, %H = 5.30, %N = 16.35; Found: %C = 59.69, %H = 5.31, %N = 16.51.

^1H-NMR (DMSO-d₆), δ: (major species) 1.22 (t, J= 7.4 Hz, 3H, H-6), 2.46 (s, 3H, CH₃), 2.52 (s, 3H, CH₃), 2.78 (q, J= 7.4 Hz, 2H, H-5), 6.73-6.76 (m, 2H, H-aromatic), 6.97-6.99 (m, 1H, H-aromatic), 7.74 (s, 1H, H-2), 8.87 (bs, 1H, OH), 11.36 (bs, 1H, NH), 11.70 (bs, 1H, OH).

^1H-NMR (DMSO-d₆), δ: (minor species) 1.26 (t, J= 7.4 Hz, 3H, H-6), 2.45 (s, 3H, CH₃), 2.63 (s, 3H, CH₃), 2.89 (q, J= 7.4 Hz, 2H, H-5), 6.73-6.76 (m, 2H, H-aromatic), 7.00-7.02 (m, 1H, H-aromatic), 8.53 (s, 1H, H-2), 8.87 (bs, 1H, OH), 9.53 (bs, 1H, NH), 12.60 (bs, 1H, OH).

^13C-NMR (DMSO-d₆), δ: (major and minor species) 14.08, 15.04, 15.39 (CH₃, C-6, 7), 20.62 (CH₂, C-5), 114.24, 116.95, 118.09 (CH, C-aromatic), 120.75, 121.12, 127.96, 137.06 (C, C-aromatic), 143.89 (CH, C-aromatic), 144.75, 149.28, 150.86, 155.24, 163.07 (C, C-aromatic).
6.4.8 6-Chloro-5-methyl-thieno[2,3-d]pyrimidines

Ethyl 2-amino-4-methylthiophene-3-carboxylate (376)

(CsH11NO2S; M.W. = 199.3)

![Chemical Structure](image)

General procedure 16;
Reagent: acetone (375) (1 g, 17.2 mmol);
Morpholine used instead of NEt3;
T.L.C. System: nhexane-EtOAc 8:2 v/v, Rf: 0.46.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane-EtOAc 85:15 v/v);
Pale yellow solid;
Yield: 1.3 g (41%)

1H-NMR (CDCl3), δ: 1.37 (t, J= 7.1 Hz, 3H, H-3’), 2.29 (d, J= 1.2 Hz, 3H, H-5), 4.30 (q, J= 7.1 Hz, 2H, H-2’), 5.83 (q, J= 1.2 Hz, 1H, H-3), 6.08 (bs, 2H, NH2).

13C-NMR (CDCl3), δ: 14.08, 18.44 (CH3, C-3’), 6), 59.54 (CH2, C-2’), 102.81 (CH, C-3), 106.59, 136.66, 166.13 (C, C-aromatic), 166.63 (C, C-1’).

5-Methylthieno[2,3-d]pyrimidin-4(3H)-one (377)

(CsH6N2OS; M.W. = 166.2)

![Chemical Structure](image)

General procedure 17;
Reagent: ethyl 2-amino-4-methylthiophene-3-carboxylate (376) (1.3 g, 7 mmol);
Purification: recrystallization from EtOH/H2O;
Yellow solid;
Yield: 0.73 g (62%)
\[^1\text{H-NMR (DMSO-d}_6\text{), 8}: 2.47\text{ (s, 3H, H-6), 7.13}\text{ (s, 1H, H-4), 8.04}\text{ (s, 1H, H-2), 12.34 (bs, 1H, NH).} \]

\[^{13}\text{C-NMR (DMSO-d}_6\text{), 8}: 16.10\text{ (CH}_3,\text{ C-6), 118.02}\text{ (CH, C-4), 122.83, 133.66}\text{ (C, C-aromatic), 145.52}\text{ (CH, C-2), 158.72}\text{ (C, C-aromatic), 164.71}\text{ (C, C-1).} \]

6-Chloro-5-methylthieno[2,3-d]pyrimidin-4(3H)-one (378)

(C: H$_7$ClIN$_2$OS; M.W. = 200.6)

5-Methylthieno[2,3-d]pyrimidin-4(3H)-one (377) (0.76 g, 4.4 mmol) and N-chlorosuccinimide (0.7 g, 5.2 mmol) were dissolved in glacial AcOH (23 mL) and heated at 95°C for 1.5 h. The reaction mixture was then concentrated in vacuo. The residue was stirred with H$_2$O (25 mL), filtered, washed with H$_2$O and MeOH and finally dried to give 6-chloro-5-methylthieno[2,3-d]pyrimidin-4(3H)-one (378) as a brown solid.

T.L.C. System: n-hexane-EtOAc 2:3 v/v, Rf: 0.65.

Yield: 0.56 g (63%)

\[^1\text{H-NMR (DMSO-d}_6\text{), 8}: 2.42\text{ (s, 3H, H-6), 8.10}\text{ (s, 1H, H-2), 12.56 (bs, 1H, NH).} \]

\[^{13}\text{C-NMR (DMSO-d}_6\text{), 8}: 12.92\text{ (CH}_3,\text{ C-6), 120.51, 122.55, 130.85}\text{ (C, C-aromatic), 146.38}\text{ (CH, C-2), 157.09}\text{ (C, C-aromatic), 161.55}\text{ (C, C-1).} \]

4,6-Dichloro-5-methylthieno[2,3-d]pyrimidine (379)

(C: H$_5$Cl$_2$N$_2$S; M.W. = 219.1)

General procedure 18;

Reagent: 6-chloro-5-methylthieno[2,3-d]pyrimidin-4(3H)-one (378) (0.56 g, 2.7 mmol);

T.L.C. System: n-hexane-EtOAc 8:2 v/v, Rf: 0.56.
Purification: flash column chromatography (n-hexane:EtOAc 100:0 v/v increasing to n-hexane-EtOAc 92.5:7.5 v/v);
White solid;
Yield: 0.29 g (49%)

1H-NMR (CDCl$_3$), δ: 2.66 (s, 3H, H-6), 8.79 (s, 1H, H-2).

13C-NMR (CDCl$_3$), δ: 14.43 (CH$_3$, C-6), 127.14, 128.29, 129.58 (C, C-aromatic), 152.48 (CH, C-2), 153.83, 167.30 (C, C-aromatic).

6-Chloro-4-hydrazinyl-5-methylthieno[2,3-d]pyrimidine (380)56
(C$_7$H$_7$ClN$_4$S; M.W. = 214.7)

General procedure 19;
Reagent: 4,6-dichloro-5-methylthieno[2,3-d]pyrimidine (379) (0.29 g, 1.3 mmol);
Purification: recrystallization from 40 % EtOH/H$_2$O;
White crystals;
Yield: 0.25 g (87%)

1H-NMR (DMSO-d$_6$), δ: 2.49 (s, 3H, H-6), 4.66 (bs, 2H, NH$_2$), 8.27 (bs, 1H, NH), 8.39 (s, 1H, H-2).

13C-NMR (DMSO-d$_6$), δ: 13.94 (CH$_3$, C-6), 129.96, 130.41, 131.75 (C, C-aromatic), 153.59 (CH, C-2), 159.46, 166.78 (C, C-aromatic).
6.4.8.1 6-Chloro-5-methyl-4-(2-(1-arylethylidene)hydrazinyl)thieno[2,3-d]pyrimidines (381-382)

2-(1-(2-(6-Chloro-5-methylthieno[2,3-d]pyrimidin-4-yl)hydrazono)ethyl)phenol (381)
(C_{15}H_{13}ClN_{4}OS; M.W. = 332.8)

General procedure 20;
Reagent: 6-chloro-4-hydrazinyl-5-methylthieno[2,3-d]pyrimidine (380) (0.05 g, 0.2 mmol);
Light green solid;
Yield: 0.06 g (77%)
Melting Point: 220-223°C
MS (ESI\(^+\)): 332.9 [M+H]\(^+\)
Two species observed. Major/minor species ratio: 5/1.
\(^1\)H-NMR (DMSO-\(d_6\), \(\delta\)): (major species) 2.51 (s, 3H, CH\(_3\)), 2.54 (s, 3H, CH\(_3\)), 6.89-6.94 (m, 2H, H-aromatic), 7.29-7.31 (m, 1H, H-aromatic), 7.60-7.67 (m, 1H, H-aromatic), 7.82 (s, 1H, H-2), 11.61 (bs, 1H, NH), 12.29 (bs, 1H, OH).

\(^1\)H-NMR (DMSO-\(d_6\), \(\delta\)): (minor species) 2.54 (s, 3H, CH\(_3\)), 2.69 (s, 3H, CH\(_3\)), 6.89-6.94 (m, 2H, H-aromatic), 7.29-7.31 (m, 1H, H-aromatic), 7.60-7.67 (m, 1H, H-aromatic), 8.63 (s, 1H, H-2), 9.68 (bs, 1H, NH), 13.26 (bs, 1H, OH).

\(^13\)C-NMR (DMSO-\(d_6\), \(\delta\)): (major and minor species) 14.35, 15.12 (CH\(_3\), C-2’, 6), 116.56, 118.71 (CH, C-aromatic), 119.24, 120.72, 121.02 (C, C-aromatic), 128.89, 130.91 (CH, C-aromatic), 144.52 (C, C-aromatic), 145.54 (CH, C-aromatic), 155.93, 158.14, 164.06 (C, C-aromatic).
6-Chloro-5-methyl-4-((2-(1-(pyrazin-2-yl)ethylidene)hydrazinyl)thieno[2,3-d]pyrimidine (382)
(C_{13}H_{11}ClN_{6}S; M.W. = 318.8)

General procedure 20;
Reagent: 6-chloro-4-hydrazinyl-5-methylthieno[2,3-d]pyrimidine (380) (0.05 g, 0.2 mmol);
Yellow solid;
Yield: 0.07 g (64%)
Melting Point: 234-238°C
MS (ESI\(^{+}\)): 318.9 [M+H]\(^{+}\)

\(^{1}\)H-NMR (DMSO-d\(_6\)), \(\delta\): 2.48 (s, 3H, CH\(_3\)), 2.58 (s, 3H, CH\(_3\)), 7.95 (s, 1H, H-aromatic), 8.61 (d, \(J= 2.4\) Hz, 1H, H-aromatic), 8.64-8.65 (m, 1H, H-aromatic), 9.79 (s, 1H, H-aromatic), 12.09 (bs, 1H, NH).

\(^{13}\)C-NMR (DMSO-d\(_6\)), \(\delta\): 12.77, 14.27 (CH\(_3\), C-6, 2'), 115.78, 120.06 (C, C-aromatic), 143.27, 143.34, 143.72 (CH, C-aromatic), 144.90, 147.44, 148.74 (C, C-aromatic), 150.81 (CH, C-aromatic), 155.02, 164.93(C, C-aromatic).
6.4.8.2 \textit{N'-(6-Chloro-5-methylthieno[2,3-\textit{d}]pyrimidin-4-yl)arylcarbohydrazides} (383-384)

\textit{N'-(6-Ethylthieno[2,3-\textit{d}]pyrimidin-4-yl)-2-hydroxybenzohydrazide} (383)
(C\textsubscript{14}H\textsubscript{11}ClN\textsubscript{4}O\textsubscript{2}; M.W. = 334.8)

\begin{align*}
\text{General procedure 22;} \\
\text{Reagent: 6-chloro-4-hydrazinyl-5-methylthieno[2,3-\textit{d}]pyrimidine (380) (0.07 g, 0.3 mmol);} \\
\text{Purification: re-crystallisation from MeOH;} \\
\text{Light grey solid;} \\
\text{Yield: 0.02 g (19%)} \\
\text{Melting Point: 320-324°C} \\
\text{MS (ESI+): 334.9 [M+H+]} \\
\text{Microanalysis: Calculated for C\textsubscript{14}H\textsubscript{11}ClN\textsubscript{4}O\textsubscript{2} (334.8); Theoretical: %C = 50.23, %H = 3.31, %N = 16.73; Found: %C = 50.12, %H = 4.17, %N = 16.36.}
\end{align*}

\textbf{\textit{H-NMR (DMSO-d\textsubscript{6})}, \delta:} 2.62 (s, 3H, H-6), 6.96-7.00 (m, 2H, H-aromatic), 7.45-7.50 (m, 1H, H-aromatic), 8.00 (d, J= 7.7 Hz, 1H, H-aromatic), 8.45 (s, 1H, H-2), 9.17 (bs, 1H, NH), 10.87 (bs, 1H, NH), 11.93 (bs 1H, OH).

\textbf{\textit{C-NMR (DMSO-d\textsubscript{6})}, \delta:} 14.17 (CH\textsubscript{3}, C-6), 114.78, 114.87 (C, C-aromatic), 117.34, 119.09 (CH, C-aromatic), 123.75, 126.82 (C, C-aromatic), 128.46, 134.09, 153.49 (CH, C-aromatic), 159.08 (C, C-aromatic), 168.13 (C, C-1`).
N’-(6-Chloro-5-methylthieno[2,3-d]pyrimidin-4-yl)picolinohydrazide (384)
(C_{13}H_{10}ClN_{5}OS; M.W. = 319.8)

General procedure 17;
Reagent: 6-chloro-4-hydrazinyl-5-methylthieno[2,3-d]pyrimidine (380) (0.07 g, 0.3 mmol);
Purification: re-crystallisation from MeOH;
Pale yellow solid;
Yield: 0.07 g (61%)
Melting Point: 210-212 °C
MS (ESI⁺): 319.9 [M+H]⁺

1H-NMR (DMSO-d$_6$), δ: 2.60 (s, 3H, H-6), 7.66-7.69 (m, 1H, H-aromatic), 8.03-8.09 (m, 2H, H-aromatic), 8.37 (s, 1H, H-2), 8.72-8.74 (m, 1H, H-aromatic), 9.26 (bs, 1H, NH), 10.77 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 14.22 (CH$_3$, C-6), 115.02, 121.46 (C, C-aromatic), 122.34, 126.98 (CH, C-aromatic), 131.97 (C, C-aromatic), 137.87 (CH, C-aromatic), 144.27 (C, C-aromatic), 148.69 (CH, C-aromatic), 149.30 (C, C-aromatic), 162.79 (C, C-1’).
6.4.9 6-Methoxy-5-methyl-thieno[2,3-d]pyrimidines

Ethyl 2-amino-5-methoxy-4-methylthiophene-3-carboxylate (386)
(C₉H₁₃NO₅S; M.W. = 215.3)

General procedure 16;
Reagent: methoxyacetone (385) (0.5 g, 5.7 mmol);
Reaction stirred under reflux for 72 h;
T.L.C. System: nhexane-EtOAc 8:2 v/v, Rf: 0.40.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to
nhexane-EtOAc 95:5 v/v);
Brown oil;
Yield: 0.61 g (49%)

¹H-NMR (CDCl₃), δ: 1.35 (t, J= 7.1 Hz, 3H, H-3’), 2.14 (s, 3H, H-6), 3.74 (s, 3H, H-5),
4.26 (q, J= 7.1 Hz, 2H, H-2’), 5.93 (bs, 2H, NH₂).

¹³C-NMR (CDCl₃), δ: 12.52, 14.40 (CH₃, C-3’, 6), 59.54 (CH₂, C-2’), 63.50 (CH₃, C-5),
103.10, 118.11, 142.62, 155.55 (C, C-aromatic), 166.31 (C, C-1’).

6-Methoxy-5-methylthieno[2,3-d]pyrimidin-4(3H)-one (387)
(C₈H₈N₂O₂; M.W. = 196.2)

General procedure 17a;
Reagent: ethyl 2-amino-5-methoxy-4-methylthiophene-3-carboxylate (386) (0.61 g, 2.8 mmol);
Brown solid;
Yield: 0.29 g (52%)
\(^1\)H-NMR (DMSO-\(d_6\)), \(8\): 2.28 (s, 3H, H-8), 3.91 (s, 3H, H-7), 7.97 (s, 1H, H-2), 11.05 (bs, 1H, NH).

\(^13\)C-NMR (DMSO-\(d_6\)), \(8\): 10.72 (CH\(_3\), C-8), 62.31 (CH\(_3\), C-7), 112.12, 122.35 (C, C-aromatic), 144.27 (CH, C-2), 154.41, 154.69 (C, C-aromatic), 157.63 (C, C-1).

4-Chloro-6-methoxy-5-methylthieno[2,3-\(d\)]pyrimidine (388)
(C\(_8\)H\(_7\)ClN\(_2\)O; M.W. = 214.7)

\(\begin{align*}
\text{387} &\rightarrow \text{388} \\
\end{align*}\)

General procedure 18;
Reagent: 6-methoxy-5-methylthieno[2,3-\(d\)]pyrimidin-4(3\(H\))-one (387) (0.29 g, 1.5 mmol);
T.L.C. System: \(n\)hexane-EtOAc 8:2 v/v, \(R_f\) 0.59.
Purification: flash column chromatography (\(n\)hexane-EtOAc 100:0 v/v increasing to \(n\)hexane-EtOAc 85:15 v/v);
Light brown solid;
Yield: 0.25 g (79%)

\(^1\)H-NMR (CDCl\(_3\)), \(8\): 2.46 (s, 3H, H-8), 4.06 (s, 3H, H-7), 8.67 (s, 1H, H-2).

\(^13\)C-NMR (CDCl\(_3\)), \(8\): 11.56 (CH\(_3\), C-8), 61.96 (CH\(_3\), C-7), 108.17, 129.31 (C, C-aromatic), 150.55 (CH, C-2), 152.03, 159.30, 162.29 (C, C-aromatic).

4-Hydrazinyl-6-methoxy-5-methylthieno[2,3-\(d\)]pyrimidine (389)
(C\(_8\)H\(_{10}\)N\(_4\)OS; M.W. = 210.3)

\(\begin{align*}
\text{388} &\rightarrow \text{389} \\
\end{align*}\)

General procedure 19;
Reagent: 4-chloro-6-methoxy-5-methylthieno[2,3-\(d\)]pyrimidine (388) (0.25 g, 1.1
mmol);
Purification: recrystallization from 40 % EtOH/H₂O;
Light brown crystals;
Yield: 0.16 g (66%)

¹H-NMR (DMSO-d₆), δ: 2.33 (s, 3H, H-8), 3.91 (s, 3H, H-7), 4.55 (bs, 2H, NH₂), 7.95 (bs, 1H, NH), 8.31 (s, 1H, H-2).

¹³C-NMR (DMSO-d₆), δ: 11.21 (CH₃, C-8), 62.24 (CH₃, C-7), 100.85, 108.27, 114.63 (C, C-aromatic), 151.79 (CH, C-2), 153.91, 158.03 (C, C-aromatic).
6.4.9.1 6-Methoxy-5-methyl-4-(2-(1-arylethylidene)hydrazinyl)thieno[2,3-d]pyrimidines (390-391)

2-(1-(2-(6-Methoxy-5-methylthieno[2,3-d]pyrimidin-4-yl)hydrazono)ethyl)phenol (390)
(C_{16}H_{16}N_{4}O_{2}S; M.W. = 328.4)

General procedure 20;
Reagent: 4-hydrazinyl-6-methoxy-5-methylthieno[2,3-d]pyrimidine (389) (0.04 g, 0.2 mmol);
Yellow crystals;
Yield: 0.03 g (50%)
Melting Point: 192-196°C
MS (ESI^+): 329.0 [M+H]^+
Two species observed. Major/minor species ratio: 3/2.

\[^1H-NMR \ (DMSO-d_6), \delta: \] (major species) 2.41 (s, 3H, CH₃), 2.53 (s, 3H, CH₃), 3.94 (s, 3H, CH₃), 6.89-6.93 (m, 2H, H-aromatic), 7.27-7.31 (m, 1H, H-aromatic), 7.60-7.65 (m, 1H, H-aromatic), 7.74 (s, 1H, H-2), 11.45 (bs, 1H, NH), 12.52 (bs, 1H, OH).

\[^1H-NMR \ (DMSO-d_6), \delta: \] (minor species) 2.41 (s, 3H, CH₃), 2.53 (s, 3H, CH₃), 3.94 (s, 3H, CH₃), 6.89-6.93 (m, 2H, H-aromatic), 7.27-7.31 (m, 1H, H-aromatic), 7.60-7.65 (m, 1H, H-aromatic), 8.52 (s, 1H, H-2), 9.50 (bs, 1H, NH), 13.38 (bs, 1H, OH).

\[^13C-NMR \ (DMSO-d_6), \delta: \] (major and minor species) 11.85, 14.82 (CH₃, C-2'), 7), 62.25 (CH₃, C-8), 116.58, 118.59 (CH, C-aromatic), 120.84, 121.93, 122.32 (C, C-aromatic), 128.05, 130.70 (CH, C-aromatic), 144.96 (C, C-aromatic), 144.87 (CH, C-aromatic), 155.45, 158.28, 163.91 (C, C-aromatic).
6-Methoxy-5-methyl-4-(2-(1-(pyrazin-2-yl)ethyldene)hydrazinyl)thieno[2,3-d]pyrimidine (391)
(C_{14}H_{14}N_{6}OS; M.W. = 314.4)

General procedure 20;
Reagent: 4-hydrazinyl-6-methoxy-5-methylthieno[2,3-d]pyrimidine (389) (0.04 g, 0.2 mmol);
Yellow solid;
Yield: 0.02 g (43%)
Melting Point: 237-240°C
MS (ESI\(^{+}\)): 315.0 [M+H]\(^{+}\)
Single species observed.

\(^{1}\)H-NMR (DMSO-\(d_{6}\), \(\delta\)): 2.43 (s, 3H, CH\(_3\)), 2.46 (s, 3H, CH\(_3\)), 3.93 (s, 3H, H-7), 7.85 (s, 1H, H-aromatic), 8.57-8.62 (m, 2H, H-aromatic), 9.78 (s, 1H, H-aromatic), 11.93 (bs, 1H, NH).

\(^{13}\)C-NMR (DMSO-\(d_{6}\), \(\delta\)): 11.79, 12.63 (CH\(_3\), C-8, 2’), 62.22 (CH\(_3\), C-7), 112.52, 119.19 (C, C-aromatic), 143.22, 143.28, 143.48 (CH, C-aromatic), 148.85, 149.81 (C, C-aromatic), 149.96 (CH, C-aromatic), 151.22, 155.58, 156.79 (C, C-aromatic).
6.4.9.2 \(N'-(6\text{-methoxy-5-methylthieno}[2,3-d]\text{pyrimidin-4-yl})\text{arylh}ydra\text{z}i\text{des} \) (392-393)

2-Hydroxy-\(N'-(6\text{-methoxy-5-methylthieno}[2,3-d]\text{pyrimidin-4-yl})\text{benzohydrazide} \) (392)

\[\text{C}_{15}\text{H}_{14}\text{N}_{4}\text{O}_{3}; \text{M.W.} = 330.4 \]

General procedure 22;

Reagent: 4-hydrazinyl-6-methoxy-5-methylthieno[2,3-\(d \)]pyrimidine (389) (0.08 g, 0.4 mmol);

Purification: re-crystallisation from MeOH/H\(_2\)O;

Light grey solid;

Yield: 0.03 g (26%)

Melting Point: 199-201°C

MS (ESI\(^+\)): 330.9 [M+H]\(^+\)

\(^1\)H-NMR (DMSO-d\(_6\)), \(\delta \): 2.44 (s, 3H, H-7), 3.98 (s, 3H, H-6), 6.95-7.00 (m, 2H, H-aromatic), 7.44-7.49 (m, 1H, H-aromatic), 7.99 (d, J= 7.7 Hz, 1H, H-aromatic), 8.34 (s, 1H, H-2), 8.86 (bs, 1H, NH), 10.91 (bs, 1H, NH), 11.96 (bs 1H, OH).

\(^{13}\)C-NMR (DMSO-d\(_6\)), \(\delta \): 11.42 (CH\(_3\), C-7), 63.36 (CH\(_3\), C-6), 108.13, 114.82, 115.19 (C, C-aromatic), 117.34, 119.01 (CH, C-aromatic), 126.72 (C, C-aromatic), 128.33, 133.99, 151.58 (CH, C-aromatic), 154.93, 156.64, 159.19 (C, C-aromatic), 167.49 (C, C-1').
N'-(6-Methoxy-5-methylthieno[2,3-\textit{d}]pyrimidin-4-\textit{yl})picolinohydrazide (393)
(C$_{14}$H$_{13}$N$_{5}$O$_{2}$S; M.W. = 315.4)

General procedure 22;
Reagent: 4-hydrazinyl-6-methoxy-5-methylthieno[2,3-\textit{d}]pyrimidine (389) (0.08 g, 0.4 mmol);
Purification: re-crystallisation from MeOH;
White solid;
Yield: 0.04 g (38%)
Melting Point: 169-172°C
MS (ESI$^+$): 315.9 [M+H]$^+$
Microanalysis: Calculated for C$_{14}$H$_{13}$N$_{5}$O$_{2}$S (315.4); Theoretical: \%C = 53.32, \%H = 4.15, \%N = 22.20; Found: \%C = 53.41, \%H = 3.78, \%N = 22.23.

1H-NMR (DMSO-\textit{d}_6), \delta: 2.43 (s, 3H, H-7), 3.97 (s, 3H, H-6), 7.65-7.68 (m, 1H, H-aromatic), 8.02-8.08 (m, 2H, H-aromatic), 8.30 (s, 1H, H-2), 8.72-8.73 (m, 1H, H-aromatic), 8.82 (bs, 1H, NH), 10.66 (bs, 1H, NH).

13C-NMR (DMSO-\textit{d}_6), \delta: 11.46 (CH$_3$, C-7), 62.34 (CH$_3$, C-6), 108.25, 115.28, (C, C-aromatic), 122.26, 126.91 (CH, C-aromatic), 132.06 (C, C-aromatic), 137.83, (CH, C-aromatic), 144.27 (C, C-aromatic), 148.67 (CH, C-aromatic), 149.38 (C, C-aromatic), 152.26 (CH, C-aromatic), 154.76 (C, C-aromatic), 163.41 (C, C-1').
6.4.10 Ethyl-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylates

Diethyl 5-amino-3-methylthiophene-2,4-dicarboxylate (395)\(^\text{58}\)
\((C_{11}H_{15}NO_4S; \text{M.W.} = 257.31)\)

\[
\text{O} \quad \text{O}
\]
\[
\text{394} \quad \text{395}
\]

General procedure 16;
Reagent: ethyl acetoacetate (394) (1.5 g, 11.5 mmol);
T.L.C. System: nhexane-EtOAc 7:3 v/v, Rf: 0.55.
Purification: flash column chromatography (nhexane-EtOAc 100:0 v/v increasing to nhexane-EtOAc 85:15 v/v);
Yellow solid;
Yield: 1.79 g (66%)

\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 1.34 (t, \(J= 7.1 \text{ Hz}, 3\text{H}, \text{CH}_3\)), 1.39 (t, \(J= 7.1 \text{ Hz}, 3\text{H}, \text{CH}_3\)), 2.71 (s, 3H, H-8), 4.28 (q, \(J= 7.1 \text{ Hz}, 2\text{H}, \text{CH}_2\)), 4.33 (q, \(J= 7.1 \text{ Hz}, 2\text{H}, \text{CH}_2\)), 6.55 (bs, 2H, NH\(_2\)).

\(^{13}\)C-NMR (CDCl\(_3\)), \(\delta\): 14.35, 14.41, 16.13 (CH\(_3\), C-7, 8, 3’), 60.10, 60.42 (CH\(_2\), C-6, 2’), 108.50, 108.58, 148.05, 162.89 (C, C-aromatic), 166.11, 166.13 (C, C-5, 1’).

Ethyl 5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxylate (396)\(^\text{59}\)
\((C_{10}H_{10}N_2O_3S; \text{M.W.} = 238.3)\)

\[
\text{O} \quad \text{O} \quad \text{NH}_2
\]
\[
\text{395} \quad \text{396}
\]

General procedure 17;
Reagent: diethyl 5-amino-3-methylthiophene-2,4-dicarboxylate (395) (1.86 g, 7.3 mmol);
0.5 mL of AcOH added, reaction stirred at 150°C for 5 days;
Purification: recrystallization from EtOH/H₂O;
Yield: 1.73 g (71%)

H-NMR (DMSO-d₆), δ: 1.31 (t, J= 7.1 Hz, 3H, H-9), 2.28 (s, 3H, H-10), 4.30 (q, J= 7.1 Hz, 2H, H-8), 8.21 (s, 1H, H-2), 12.65 (bs, 1H, NH).

C-NMR (DMSO-d₆), δ: 14.10, 14.85 (CH₃, C-9, 10), 61.11 (CH₂, C-8), 121.41, 123.76, 143.33 (C, C-aromatic), 148.32 (CH, C-2), 158.28 (C, C-aromatic), 161.80, 165.73 (C, C-1,7).

Ethyl 4-chloro-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (397)
(C₁₀H₉ClN₂O₂S; M.W. ≈ 256.7)

To a solution of intermediate ethyl 5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxylate (397) (1.22 g, 5.1 mmol) in toluene (23 mL) were added DIPEA (0.7 mL, 4.1 mmol) and POCl₃ (0.6 mL, 6.1 mmol). The reaction mixture was stirred at 125°C o.n., then cooled to r.t., poured into ice-cold saturated NaHCO₃-H₂O-EtOAc (60 mL-60 mL-150 mL) and stirred to quench excess POCl₃. The organic layer was separated, washed with sat. aq. NaHCO₃, dried over MgSO₄ and concentrated under vacuum. The residue was purified by flash column chromatography (nhexane:EtoAc 100:0 v/v increasing to nhexane-EtoAc 90:10 v/v) to give pure ethyl 4-chloro-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (397) as a yellow solid.

T.L.C. System: nhexane-EtoAc 7:3 v/v, Rf: 0.63.
Yield: 1.05 g (79%)

H-NMR (CDCl₃), δ: 1.44 (t, J= 7.1 Hz, 3H, H-9), 3.07 (s, 3H, H-10), 4.44 (q, J= 7.1 Hz, 2H, H-8), 8.88 (s, 1H, H-2).

C-NMR (CDCl₃), δ: 14.25, 15.87 (CH₃, C-9, 10), 62.13 (CH₂, C-8), 128.51, 129.01, 138.94 (C, C-aromatic), 154.23 (CH, C-2), 157.32, 162.13 (C, C-aromatic), 169.24 (C, C-7).
Ethyl 4-hydrazinyl-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (398)
(C\textsubscript{10}H\textsubscript{12}N\textsubscript{4}O\textsubscript{2}S; M.W. = 252.3)

General procedure 19;
Reagent: ethyl 4-chloro-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (397) (0.25 g, 1.1 mmol);
Purification: recrystallization from 40 % EtOH/H\textsubscript{2}O;
Light orange crystals;
Yield: 0.72 g (69%)

1H-NMR (DMSO-d\textsubscript{6}), \(\delta\): 1.31 (t, J= 7.1 Hz, 3H, H-9), 2.86 (s, 3H, H-10), 4.30 (q, J= 7.1 Hz, 2H, H-8), 4.89 (bs, 2H, NH\textsubscript{2}), 8.40 (s, 1H, H-2), 8.53 (bs, 1H, NH).

13C-NMR (DMSO-d\textsubscript{6}), \(\delta\): 14.21, 15.57 (CH\textsubscript{3}, C-9, 10), 61.05 (CH\textsubscript{2}, C-8), 116.09, 120.11, 131.44, 140.00 (C, C-aromatic), 155.26 (CH, C-2), 160.05 (C, C-aromatic), 162.17 (C, C-7).
6.4.10.1 Ethyl-5-methyl-4-(2-(1-phenylethylidene)hydrazinyl)thieno[2,3-d]pyrimidine-6-carboxylates (399-400)

Ethyl-4-(2-(1-(2-hydroxyphenyl)ethylidene)hydrazinyl)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (399)
(C_{18}H_{18}N_{4}O_{3}S; M.W = 370.4)

General procedure 20;
Reagent: ethyl 4-hydrazinyl-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (398) (0.1 g, 0.25 mmol);
Yellow solid;
Yield: 0.05 g (29%)
Melting Point: 199-201°C
MS (ESI^+): 371.0 [M+H]^+

1H-NMR (DMSO-d$_6$), δ: 1.30 (t, J= 7.1 Hz, 3H, H-9), 2.52 (s, 3H, CH$_3$), 2.92 (s, 3H, CH$_3$), 4.29 (s, 2H, CH$_2$), 6.89-6.93 (m, 2H, H-aromatic), 7.28-7.32 (m, 1H, H-aromatic), 7.63 (d, J= 7.1 Hz, 1H, H-aromatic), 7.88 (s, 1H, H-2), 11.69 (bs, 1H, NH), 12.22 (bs, 1H, OH).

13C-NMR (DMSO-d$_6$), δ: 14.10, 15.27, 16.07 (CH$_3$, C-2’, 9, 10), 60.95 (CH$_3$, C-8), 116.61, 118.72 (CH, C-aromatic), 120.55, 120.98, 121.33 (C, C-aromatic), 128.96, 131.03 (CH, C-aromatic), 143.06, 145.07 (C, C-aromatic), 147.36 (CH, C-aromatic), 158.17, 161.08, 162.23 (C, C-aromatic), 164.59 (C, C-7).
Ethyl-5-methyl-4-(2-(1-(pyrazin-2-yl)ethylidene)hydrazinyl)thieno[2,3-d]pyrimidine-6-carboxylate (400)
(C_{14}H_{14}N_{6}O_{5}; M.W.=314.4)

General procedure 20;
Reagent: ethyl 4-hydrazinyl-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (398) (0.1 g, 0.25 mmol);
Yield: 0.07 g (45%)
Melting Point: 194-197°C
MS (ESI⁺): 357.0 [M+H]^+

1H-NMR (DMSO-d$_6$), δ: 1.28 (t, J= 7.1 Hz, 3H, H-9), 2.42 (s, 3H, CH$_3$), 2.88 (s, 3H, CH$_3$), 4.23 (q, J= 7.1 Hz, 2H, H-8), 7.95 (s, 1H, H-2), 8.58 (d, J= 2.5 Hz, 1H, H-4’), 8.60 (dd, J$_1$= 2.5 Hz, J$_2$= 1.5 Hz, 1H, H-5’), 9.75 (d, J= 1.5 Hz, 1H, H-6’), 12.04 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 12.84, 14.07, 15.97 (CH$_3$, C-9, 10, 2’), 60.93 (CH$_2$, C-8), 120.65, 121.53, 143.20 (C, C-aromatic), 143.22, 143.43, 143.85, 147.04 (CH, C-aromatic), 148.59, 150.81, 158.66, 162.07 (C, C-aromatic), 162.13 (C, C-7).
6.4.10.2 Ethyl 5-methyl-4-(2-picolinoylhydrazinyl)thieno[2,3-d]pyrimidine-6-carboxylate (401)
(C_{16}H_{15}N_{5}O_{3}S; M.W. = 357.4)

General procedure 22;
Reagent: ethyl 4-hydrazinyl-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (398) (0.15 g, 0.6 mmol);
Purification: re-crystallisation from MeOH/H_{2}O;
Yellow solid;
Yield: 0.1 g (46%)
Melting Point: 118-122°C
MS (ESI\(^{+}\)): 358.0 [M+H]\(^{+}\)

\(^{1}\)H-NMR (DMSO-d_{6}, \delta): 1.33 (t, J= 7.1 Hz, 3H, H-9), 2.97 (s, 3H, H-10), 4.33 (q, 2H, H-8), 7.64-7.67 (m, 1H, H-aromatic), 8.02-8.09 (m, 2H, H-aromatic), 8.31 (s, 1H, H-2), 8.70-8.73 (m, 1H, H-aromatic), 10.11 (bs, 1H, NH), 11.05 (bs, 1H, NH).

\(^{13}\)C-NMR (DMSO-d_{6}, \delta): 14.12, 15.86 (CH_{3}, C-79, 10), 61.12 (CH_{2}, C-8), 116.04, 121.56 (C, C-aromatic), 122.18, 126.75 (CH, C-aromatic), 135.24 (C, C-aromatic), 137.85, (CH, C-aromatic), 141.32 (C, C-aromatic), 148.61 (CH, C-aromatic), 149.60 (C, C-aromatic), 151.97 (CH, C-aromatic), 161.91, 162.06 (C, C-1\('\).)
6.4.11 6,7,8,9-Tetrahydro-3H-cyclohepta[4,5]thieno[2,3-d]pyrimidines

Ethyl 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxylate (405)\(^{44}\)
\((C_{12}H_{17}NO_2S; \text{M.W.}= 239.3)\)

![Diagram](image)

General procedure 16;
Reagent: cycloheptanone (402) (1.5 g, 13.4 mmol);
Morpholine used instead of NEt\(_3\);
T.L.C. System: n-hexane-EtOAc 8:2 v/v, Rf: 0.49.
Purification: flash column chromatography (n-hexane-EtOAc 100:0 v/v increasing to n-hexane-EtOAc 95:5 v/v);
Pale yellow solid;
Yield: 1.98 g (62%)

\(^1\)H-NMR (CDCl\(_3\), \(\delta\)): 1.37 (t, J= 7.1 Hz, 3H, H-3'), 1.61-1.68 (m, 4H, CH\(_2\)), 1.80-1.85 (m, 2H, CH\(_2\)), 2.58-2.61 (m, 2H, CH\(_2\)), 2.98-3.01 (m, 2H, CH\(_2\)), 4.30 (q, J= 7.1 Hz, 2H, H-2'), 5.78 (bs, 2H, NH\(_2\)).

\(^{13}\)C-NMR (CDCl\(_3\), \(\delta\)): 14.44 (CH\(_3\), C-3'), 26.91, 27.84, 28.61, 28.69, 32.10 (CH\(_2\), C-5, 6, 7, 8, 9), 59.53 (CH\(_2\), C-2'), 107.62, 121.26, 137.95, 159.85 (C, C-aromatic), 165.97 (C, C-1').

6,7,8,9-Tetrahydro-3H-cyclohepta[4,5]thieno[2,3-d]pyrimidin-4(5H)-one (408)\(^{44}\)
\((C_{11}H_{12}N_2OS; \text{M.W.}= 220.3)\)

![Diagram](image)

General procedure 17;
Reagent: ethyl 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxylate (405) (1.98 g, 8.3 mmol);
Brown solid;
Yield: 1.5 g (82%)

\[^1\text{H}-\text{NMR (DMSO-d}_6\text{)}, \delta:\ 1.54-1.59 (m, 2H, \text{CH}_2), 1.60-1.65 (m, 2H, \text{CH}_2), 1.82-1.87 (m, 2H, \text{CH}_2), 2.81-2.84 (m, 2H, \text{CH}_2), 3.24-3.27 (m, 2H, \text{CH}_2), 7.98 (s, 1H, H-2), 12.27 (bs, 1H, NH).

\[^{13}\text{C}-\text{NMR (DMSO-d}_6\text{)}, \delta:\ 26.82, 27.22, 27.27, 28.98, 31.93 (\text{CH}_2, \text{C-7, 8, 9, 10, 11}), 123.20, 136.41, 136.42 (\text{C, C-aromatic}), 144.46 (\text{CH, C-2}), 158.15 (\text{C, C-aromatic}), 160.82 (\text{C, C-1}).

4-Chloro-6,7,8,9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidine (411)[44]
(C\textsubscript{11}H\textsubscript{11}ClN\textsubscript{2}S; M.W. = 238.7)

General procedure 18;
Reagent: 6,7,8,9-tetrahydro-3H-cyclohepta[4,5]thieno[2,3-d]pyrimidin-4(5H)-one (408) (1.5 g, 6.8 mmol);
T.L.C. System: nhexane-EtOAc 8:2 v/v, Rf: 0.64.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane:EtOAc 95:5 v/v);
Yellow solid;
Yield: 1.1 g (67%)

\[^1\text{H}-\text{NMR (CDCl}_3\text{)}, \delta:\ 1.73-1.83 (m, 4H, \text{CH}_2), 1.94-2.00 (m, 2H, \text{CH}_2), 2.97-3.01 (m, 2H, \text{CH}_2), 3.36-3.39 (m, 2H, \text{CH}_2), 8.72 (s, 1H, H-2).

\[^{13}\text{C}-\text{NMR (CDCl}_3\text{)}, \delta:\ 26.43, 26.93, 28.12, 30.13, 31.83 (\text{CH}_2, \text{C-7, 8, 9, 10, 11}), 129.02, 132.44, 143.90 (\text{C, C-aromatic}), 151.03 (\text{CH, C-2}), 153.11, 167.87 (\text{C, C-aromatic}).
4-Hydrazinyl-6,7,8,9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidine (414)\(^{64}\) (C\(_{11}\)H\(_{14}\)N\(_4\)S; M.W.= 234.3)

\[
\begin{array}{c}
\text{411} \\
\text{414}
\end{array}
\]

General procedure 15;
Reagent: 4-chloro-6,7,8,9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidine (411) (1.1 g, 4.6 mmol);
Purification: recrystallization from 40 % EtOH/H\(_2\)O;
Yellow solid;
Yield: 0.84 g (78%)

\(^1\)H-NMR (DMSO-d\(_6\)), \(\delta\): 1.60-1.69 (m, 4H, CH\(_2\)), 1.80-1.86 (m, 2H, CH\(_2\)), 2.83-2.87 (m, 2H, CH\(_2\)), 3.01-3.05 (m, 2H, CH\(_2\)), 4.59 (bs, 2H, NH\(_2\)), 8.20 (bs, 1H, NH), 8.32 (s, 1H, H-2).

\(^{13}\)C-NMR (DMSO-d\(_6\)), \(\delta\): 26.61, 26.85, 28.62, 28.73, 30.91 (CH\(_2\), C-7, 8, 9 10, 11), 115.02, 126.72, 135.62 (C, C-aromatic), 151.90 (CH, C-2), 155.98, 163.92 (C, C-aromatic).
6.4.11.1 4-(2-(1-Arylethyliodene)hydrazinyl)-6,7,8,9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidines (417-418)

2-(1-(2-(6,7,8,9-Tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidin-4-yl)hydrazono)ethyl)phenol (417)
(C_{19}H_{20}N_{4}OS; M.W.= 352.5)

General procedure 20;
Reagent: 4-hydrazinyl-6,7,8,9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidine (414) (0.15 g, 0.6 mmol);
Yellow solid;
Yield: 0.09 g (39%)
Melting Point: 170-173°C
MS (ESI^+): 353.0 [M+H]^+
Two species observed. Major/minor species ratio: 9:1.

^{1}H-NMR (DMSO-d_{6}), δ: (major species) 1.59-1.68 (m, 4H, CH_{2}), 1.83-1.89 (m, 2H, CH_{2}), 2.49 (s, 3H, H-2’), 2.82-2.85 (m, 2H, CH_{2}), 3.46-3.49 (m, 2H, CH_{2}), 6.89-6.93 (m, 2H, H-aromatic), 7.26-7.30 (m, 1H, H-aromatic), 7.59-7.62 (m, 1H, H-aromatic), 7.74 (s, 1H, H-2), 11.37 (bs, 1H, NH), 12.43 (bs, 1H, OH).

^{1}H-NMR (DMSO-d_{6}), δ: (minor species) 1.73-1.79 (m, 4H, CH_{2}), 1.83-1.89 (m, 2H, CH_{2}), 2.49 (s, 3H, H-2’), 2.93-2.96 (m, 2H, CH_{2}), 3.19-3.23 (m, 2H, CH_{2}), 6.89-6.93 (m, 2H, H-aromatic), 7.26-7.30 (m, 1H, H-aromatic), 7.64-7.67 (m, 1H, H-aromatic), 8.54 (s, 1H, H-2), 9.82 (bs, 1H, NH), 13.44 (bs, 1H, OH).

^{13}C-NMR (DMSO-d_{6}), δ: (major and minor species) 15.00 (CH_{3}, C-2’), 26.70, 27.31, 27.93, 29.03, 31.93 (CH_{2}, C-7, 8, 9, 10, 11), 116.53, 118.66 (CH, C-aromatic), 119.72, 121.09 (C, C-aromatic), 128.73, 130.69 (CH, C-aromatic), 136.58, 136.97 (C, C-aromatic), 143.60 (CH, C-aromatic), 145.66, 155.21, 158.17, 163.28 (C, C-aromatic).
4-(2-(1-(Pyrazin-2-yl)ethylidene)hydrazinyl)-6,7,8,9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidine (418)
(C_{17}H_{18}N_{6}S; M.W.= 338.4)

General procedure 20;
Reagent: 4-hydrazinyl-6,7,8,9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidine (414) (0.15 g, 0.6 mmol);
Yellow solid;
Yield: 0.09 g (43%)
Melting Point: 201-205°C
MS (ESI⁺): 339.0 [M+H]⁺
Microanalysis: Calculated for C_{17}H_{18}N_{6}S (338.4); Theoretical: %C = 60.33, %H = 5.36, %N = 24.82; Found: %C = 60.13, %H = 5.29, %N = 24.31.
Single species observed.

^1H-NMR (DMSO-d₆), δ: 1.59-1.68 (m, 4H, CH₂), 1.83-1.89 (m, 4H, CH₂), 2.46 (s, 3H, H-2’), 2.82-2.86 (m, 2H, CH₂), 3.51-3.54 (m, 2H, CH₂), 7.86 (d, J = 3.6 Hz, 1H, H-aromatic), 8.58-8.63 (m, 2H, H-aromatic), 9.80 (d, J = 1.3 Hz, 1H, H-aromatic), 11.94 (bs, 1H, NH).

^{13}C-NMR (DMSO-d₆), δ: 12.74 (CH₃, C-2’), 26.74, 27.29, 27.86, 29.06, 31.95 (CH₂, C-7, 8, 9, 10, 11), 119.93, 136.69, 137.21 (C, C-aromatic), 143.19, 143.33, 143.41, 143.51 (CH, C-aromatic), 149.22, 151.18, 156.62, 156.87 (C, C-aromatic).
6.4.11.2 \(N'-(6,7,8,9\text{-Tetrahydro-5}H\text{-cyclohepta[4,5]}\text{thieno[2,3-d]}\text{pyrimidin-4-yl})\text{aryl hydrazides (423-424)} \)

2-Hydroxy-\(N'-(6,7,8,9\text{-tetrahydro-5}H\text{-cyclohepta[4,5]}\text{thieno[2,3-d]}\text{pyrimidin-4-yl}) \)benzohydrazide (423)
(C₁₈H₁₈N₄O₂S; M.W = 354.4)

General procedure 22;
Reagent: 4-hydrazinyl-6,7,8,9-tetrahydro-5\(H\)-cyclohepta[4,5]thieno[2,3-\(d\)]pyrimidine (414) (0.2 g, 0.9 mmol);
T.L.C. System: EtOAc 100%, Rf: 0.63.
Purification: flash column chromatography (n-hexane:EtOAc 100:0 v/v increasing to n-hexane-EtOAc 50:50 v/v);
White solid;
Yield: 0.1 g (38%)
Melting Point: charring >260°C
MS (ESI⁺): 355.0 [M+H]⁺
\(^{1}\text{H-NMR (DMSO-d₆), } δ: 1.67-1.76 \text{ (m, } 4\text{H, CH₂}), 1.85-1.92 \text{ (m, } 2\text{H, CH₂}), 2.91-2.96 \text{ (m, } 2\text{H, CH₂}), 3.14-3.19 \text{ (m, } 2\text{H, CH₂}), 6.95-7.01 \text{ (m, } 2\text{H, H-aromatic}), 7.44-7.49 \text{ (m, } 1\text{H, H-aromatic}), 7.97-7.01 \text{ (m, } 1\text{H, H-aromatic}), 8.35 \text{ (s, } 1\text{H, H-2}), 8.12 \text{ (bs, } 1\text{H, NH}), 10.83 \text{ (bs, } 1\text{H, NH}), 11.99 \text{ (bs 1H, OH).}
\(^{13}\text{C-NMR (DMSO-d₆), } δ: 26.64, 26.76, 28.73, 28.81, 29.11 \text{ (CH₂, C-7, 8, 9 10, 11), 114.83, 116.51 (C, C-aromatic), 117.34, 119.03, 129.25 (CH, C-aromatic), 131.81 (C, C-aromatic), 133.99 (CH, C-aromatic), 137.30 (C, C-aromatic), 151.77 (CH, C-aromatic), 156.66, 159.16, 164.09 (C, C-aromatic), 167.44 (C, C-1').
N’-(6,7,8,9-Tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidin-4-yl)picolino hydrazide (424)

(C_{17}H_{17}N_{2}O; M.W. = 339.4)

General procedure 22;
Reagent: 4-hyrazinyl-6,7,8,9-tetrahydro-5H-cyclohepta[4,5]thieno[2,3-d]pyrimidine (414) (0.2 g, 0.9 mmol);
Purification: re-crystallisation from EtOH;
White solid;
Yield: 0.09 g (30%)
Melting Point: 147-149°C

MS (ESI⁺): 340.4 [M+H]⁺

¹H-NMR (DMSO-d₆), δ: 1.69-1.74 (m, 4H, CH₂), 1.86-1.91 (m, 2H, CH₂), 2.90-2.95 (m, 2H, CH₂), 3.14-3.18 (m, 2H, CH₂), 7.66-7.69 (m, 1H, H-aromatic), 8.02-8.09 (m, 2H, H-aromatic), 8.33 (s, 1H, H-2), 8.71-8.75 (m, 1H, H-aromatic), 9.07 (s, 1H, NH), 10.67 (s, 1H, NH).

¹³C-NMR (DMSO-d₆), δ: 26.69, 26.78, 28.75, 28.84, 30.92 (CH₂, C-7, 8, 9 10, 11), 116.59 (C, C-aromatic), 122.25, 126.92 (CH, C-aromatic), 131.84, 137.33 (C, C-aromatic), 137.85, 148.68 (CH, C-aromatic), 149.37 (C, C-aromatic), 151.78 (CH, C-aromatic), 156.79, 163.17 (C, C-aromatic), 169.21 (C, C-1’).
6.4.12 5,6-Dihydro-3H-pyran[4',3':4,5]thieno [2,3-d]pyrimidines

Ethyl 2-amino-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate (406)65
(C\textsubscript{10}H\textsubscript{13}NO\textsubscript{3}S; M.W. = 227.3)

![Chemical Structure](image1)

General procedure 16;
Reagent: tetrahydro-4H-pyran-4-one (403) (1.5 g, 15 mmol);
Morpholine used instead of NEt\textsubscript{3};
T.L.C. System: nhexane-EtOAc 6:4 v/v, R\textsubscript{f}: 0.65.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane-EtOAc 85:15 v/v);
White solid;
Yield: 3.02 g (89%)

\[^1\text{H}-\text{NMR} (\text{CDCl}_3), \delta:\] 1.35 (t, J = 7.1 Hz, 3H, H-3'), 2.48 (tt, J\textsubscript{1} = 5.6 Hz, J\textsubscript{2} = 2.0 Hz, 2H, H-6), 3.92 (t, J = 5.6 Hz, 2H, H-7), 4.29 (q, J = 7.1 Hz, 2H, H-2'), 4.57 (t, J = 2.0 Hz, 2H, H-5), 6.03 (bs, 2H, NH\textsubscript{2}).

\[^{13}\text{C}-\text{NMR} (\text{CDCl}_3), \delta:\] 14.44 (CH\textsubscript{3}, C-3'), 27.72, 59.56, 64.60, 65.12 (CH\textsubscript{2}, C-5, 6, 7, 2'), 105.47, 114.81, 130.35, 162.21 (C, C-aromatic), 165.84 (C, C-1').

5,6-Dihydro-3H-pyran[4',3':4,5]thieno[2,3-d]pyrimidin-4(8H)-one (409)66
(C\textsubscript{9}H\textsubscript{8}N\textsubscript{2}O\textsubscript{2}S; M.W. = 208.2)

![Chemical Structure](image2)

General procedure 17;
Reagent: ethyl 2-amino-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate (406) (3.02 g, 13.3 mmol);
Brown solid;
Yield: 2.2 g (80%)

1H-NMR (DMSO-d$_6$), δ: 2.94 (t, J = 5.5 Hz, 2H, CH$_2$), 3.90 (t, J = 5.5 Hz, 2H, CH$_2$), 4.75 (s, 2H, H-7), 8.04 (s, 1H, H-2), 12.40 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 26.01, 63.85, 64.23 (CH$_2$, C-7, 8, 9), 122.29, 128.41, 129.93 (C, C-aromatic), 145.22 (CH, C-2), 157.56 (C, C-aromatic), 163.11 (C, C-1).

4-Chloro-6,8-dihydro-5H-pyran[4',3':4,5]thieno[2,3-d]pyrimidine (412)66

(C$_9$H$_7$ClN$_2$O; M.W. = 226.7)

General procedure 18;
Reagent: 5,6-dihydro-3H-pyran[4',3':4,5]thieno[2,3-d]pyrimidin-4(8H)-one (409) (2.2 g, 10.6 mmol);
T.L.C. System: nhexane-EtOAc 7:3 v/v, Rf: 0.46.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane-EtOAc 80:20 v/v);
White solid;
Yield: 2.28 g (95%)

1H-NMR (CDCl$_3$), δ: 3.18 (tt, J$_1$ = 5.5 Hz, J$_2$ = 1.9 Hz, 2H, H-8), 4.05 (t, J = 5.5 Hz, 2H, H-9), 4.88 (t, J = 1.9 Hz, 2H, H-7), 8.73 (s, 1H, H-2).

13C-NMR (CDCl$_3$), δ: 26.88, 64.66, 65.29 (CH$_2$, C-7, 8, 9), 125.04, 128.20, 137.02 (C, C-aromatic), 152.09 (CH, C-2), 153.55, 168.99 (C, C-aromatic).

4-Hydrazinyl-6,8-dihydro-5H-pyran[4',3':4,5]thieno[2,3-d]pyrimidine (415)66

(C$_9$H$_{10}$N$_4$O; M.W. = 222.3)

General procedure 19;
Reagent: 4-chloro-6,8-dihydro-5H-pyran[4′,3′:4,5]thieno[2,3-d]pyrimidine (415) (2.28 g, 10 mmol);
Purification: recrystallization from 40 % EtOH/H₂O;
White solid;
Yield: 1.24 g (55%)

\[^1H-NMR \text{(DMSO-d}_6\text{), } \delta: \ 3.03 \text{ (tt, } J_1 = 5.5 \text{ Hz, } J_2 = 1.8 \text{ Hz, } 2\text{H, H-8}), 3.92 \text{ (t, } J = 5.5 \text{ Hz, } 2\text{H, H-9}), 4.60 \text{ (bs, } 2\text{H, NH}_2\text{), 4.77 \text{ (t, } J = 1.8 \text{ Hz, } 2\text{H, H-7}), 8.01 \text{ (bs, } 1\text{H, NH), 8.36 \text{ (s, } 1\text{H, H-2).} \]

\[^{13}C-NMR \text{(DMSO-d}_6\text{), } \delta: \ 25.97, 63.89, 64.57 \text{ (CH}_2\text{, C-7, 8, 9), 114.17, 124.63, 129.26 \text{ (C, C-aromatic), 152.78 \text{ (CH, C-2), 158.46, 164.63 (C, C-aromatic).} \]
6.4.12.1 4-(2-(1-Phenylethylidene)hydrazinyl)-6,8-dihydro-5H-pyrano[4',3':4,5]thieno[2,3-d]pyrimidines (419-420)

2-(1-(2-(6,8-Dihydro-5H-pyrano[4',3':4,5]thieno[2,3-d]pyrimidin-4-yl)hydrazono)ethyl)phenol (419)

(C₁₇H₁₆N₄O₂S; M.W. = 340.4)

General procedure 20;
Reagent: 4-hydrazinyl-6,8-dihydro-5H-pyrano[4',3':4,5]thieno[2,3-d]pyrimidine (415) (0.2 g, 0.9 mmol);
Yellow solid;
Yield: 0.29 g (94%)
Melting Point: 236-239°C
MS (ESI⁺): 341.0 [M+H]⁺
Microanalysis: Calculated for C₁₇H₁₆N₄O₂S (340.4); Theoretical: %C = 59.98, %H = 4.74, %N = 16.45; Found: %C = 59.96, %H = 4.59, %N = 16.35.
Two species observed. Major/minor species ratio: 2:1.

¹H-NMR (DMSO-d₆), δ: (major species) 2.49 (s, 3H, H-2’), 3.05-3.09 (m, 2H, CH₂), 3.91-3.95 (m, 2H, CH₂), 4.75-4.77 (m, 2H, CH₂), 6.89-6.93 (m, 2H, H-aromatic), 7.26-7.31 (m, 1H, H-aromatic), 7.59-7.67 (m, 1H, H-aromatic), 7.78 (s, 1H, H-2), 11.51 (bs, 1H, NH), 12.46 (bs, 1H, OH).

¹H-NMR (DMSO-d₆), δ: (minor species) 2.49 (s, 3H, H-2’), 3.25.3.29 (m, 2H, CH₂), 3.99-4.03 (m, 2H, CH₂), 4.84-4.87 (m, 2H, CH₂), 6.89-6.93 (m, 2H, H-aromatic), 7.26-7.31 (m, 1H, H-aromatic), 7.59-7.67 (m, 1H, H-aromatic), 8.59 (s, 1H, H-2), 9.48 (bs, 1H, NH), 13.30 (bs, 1H, OH).

¹³C-NMR (DMSO-d₆), δ: (major and minor species) 14.84 (CH₃, C-2’), 25.54, 27.15, 64.11, 64.36 (CH₂, C-7, 8, 9), 112.85 (C, C-aromatic), 116.53, 117.29, 118.67 (CH, C-aromatic), 119.42, 120.93 (C, C-aromatic), 128.08 (CH, C-aromatic), 128.36 (C, C-
aromatic), 128.77 (CH, C-aromatic), 130.71 (C, C-aromatic), 130.43, 130.75 (CH, C-aromatic), 142.06 (C, C-aromatic), 144.44 (CH, C-aromatic), 145.40, 151.13, 158.22, 163.56, 168.71 (C, C-aromatic).

4-(2-(1-(Pyrazin-2-yl)ethylidene)hydrazinyl)-6,8-dihydro-5H-pyrano[4',3':4,5]thieno[2,3-d]pyrimidine (420)
(C₁₅H₁₄N₆S; M.W. = 326.4)

General procedure 20;
Reagent: 4-hydrazinyl-6,8-dihydro-5H-pyrano[4',3':4,5]thieno[2,3-d]pyrimidine (415) (0.2 g, 0.9 mmol);
Yellow solid;
Yield: 0.25 g (86%)
Melting Point: 219-223°C
MS (ESI⁺): 327.0 [M+H]⁺
Two species observed. Major/minor species ratio: 9:1.

¹H-NMR (CDCl₃), δ: (major species) 2.59 (s, 3H, H-2'), 3.21-3.25 (m, 2H, CH₂), 4.07 (t, J= 5.4 Hz, 2H, CH₂), 4.93-4.94 (m, 2H, CH₂), 7.77-7.78 (m, 1H, H-aromatic), 8.57-8.60 (m, 1H, H-aromatic), 9.01 (s, 1H, H-aromatic), 9.38 (s, 1H, H-aromatic), 10.45 (bs, 1H, NH).

¹H-NMR (CDCl₃), δ: (minor species) 2.59 (s, 3H, H-2'), 3.30-3.34 (m, 2H, CH₂), 4.18 (t, J= 5.4 Hz, 2H, CH₂), 4.93-4.94 (m, 2H, CH₂), 8.57-8.60 (m, 1H, H-aromatic), 8.73-8.76 (m, 2H, H-aromatic), 9.01 (s, 1H, H-aromatic), 14.36 (bs, 1H, NH).

¹³C-NMR (CDCl₃), δ: (major and minor species) 22.19 (CH₃, C-2'), 27.06, 27.23, 64.73, 64.95, 65.21, 65.52 (CH₂, C-7, 8, 9), 132.23, 135.11, 139.56 (C, C-aromatic), 140.89, 142.79, 143.25, 143.78, 144.44 (CH, C-aromatic), 144.96 (C, C-aromatic), 145.30 (CH, C-aromatic), 147.94, 151.82, 155.57, 157.44 (C, C-aromatic).
6.4.12.2 \(N'-(6,8\text{-Dihydro-5\text{-H-pyran}[4',3':4,5]\text{thieno}[2,3-d]\text{pyrimidin-4-yl}]\text{aryl hydrazides (425-426)}\)

\(N'-(6,8\text{-Dihydro-5\text{-H-pyran}[4',3':4,5]\text{thieno}[2,3-d]\text{pyrimidin-4-yl}]\text{-2-hydroxybenzo hydrazide (425)}\)

\((C_{16}H_{14}N_4O_3S; M.W. = 342.4)\)

General procedure 22;
Reagent: 4-hydrazinyl-6,8-dihydro-5H-pyrano[4',3':4,5]thieno[2,3-d]pyrimidine (415) (0.3 g, 1.4 mmol);
Purification: recrystallization from EtOH/H\(_2\)O;
Light brown solid;
Yield: 0.11 g (23%)
Melting Point: 132-134°C
MS (ESI\(^+\)): 342.9 [M+H]\(^+\)

\(^1\text{H-NMR (DMSO-d\(_6\))}, \delta: 3.12-3.16\ (m, 2H, CH\(_2\)), 4.00\ (t, J= 5.2 Hz, 2H, H-9), 4.83-4.85\ (m, 2H, CH\(_2\)), 6.96-7.00\ (m, 2H, H-aromatic), 7.45-7.49\ (m, 1H, H-aromatic), 8.00\ (d, J= 7.8 Hz, 1H, H-aromatic), 8.41\ (s, 1H, H-2), 8.93\ (bs, 1H, NH), 10.87\ (bs, 1H, NH), 11.95\ (bs 1H, OH).

\(^{13}\text{C-NMR (DMSO-d\(_6\))}, \delta: 26.24, 63.84, 64.62\ (CH\(_2\), C-7, 8, 9), 114.59, 114.77\ (C, C-aromatic), 117.35, 119.04\ (CH, C-aromatic), 124.27\ (C, C-aromatic), 128.37\ (CH, C-aromatic), 130.87\ (C, C-aromatic), 134.05, 152.68\ (CH, C-aromatic), 156.84, 159.19, 165.89\ (C, C-aromatic), 167.56\ (C, C-1').
$N'-(6,8$-Dihydro-$5H$-pyrano$[4',3':4,5]$thieno$[2,3-d]$pyrimidin-4-yl)picolinohydrazide (426)

\[(\text{C}_{15}\text{H}_{13}\text{N}_{5}\text{O}_{2}\text{S} ; \text{M.W.} = 327.4)\]

General procedure 22;

Reagent: 4-hydrazinyl-6,8-dihydro-$5H$-pyrano$[4',3':4,5]$thieno$[2,3-d]$pyrimidine (415) (0.3 g, 1.4 mmol);

Purification: re-crystallisation from EtOH;

White solid;

Yield: 0.37 g (83%)

Melting Point: 220-222°C

MS (ESI$^+$): 327.9 [M+H$^+$]

$^1\text{H-NMR (DMSO-d}_6\text{), }\delta$: 3.13 (t, J= 5.4 Hz, 2H, CH$_2$), 3.99 (t, J= 5.4 Hz, 2H, CH$_2$), 4.84 (s, 2H, H-7), 7.66-7.69 (m, 1H, H-aromatic), 8.03-8.08 (m, 2H, H-aromatic), 8.36 (s, 1H, H-2), 8.72-8.74 (m, 1H, H-aromatic), 8.88 (bs, 1H, NH), 10.71 (bs, 1H, NH).

$^{13}\text{C-NMR (DMSO-d}_6\text{), }\delta$: 26.32, 63.86, 64.33 (CH$_2$, C-7, 8, 9), 114.64 (C, C-aromatic), 122.31 (CH, C-aromatic), 124.35 (C, C-aromatic), 126.95 (CH, C-aromatic), 130.60 (C, C-aromatic), 137.85, 148.68 (CH, C-aromatic), 149.34 (C, C-aromatic), 152.65 (CH, C-aromatic), 157.05, 162.99 (C, C-aromatic), 166.31 (C, C-1’).
6.4.13 7-Methyl-5,6,7,8-Tetrahydropyrido [4',3':4,5]thieno[2,3-d]pyrimidines

Ethyl 2-amino-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate (407)\(^{67}\)
(C\(_{11}\)H\(_{16}\)N\(_2\)O\(_2\)S; M.W. = 240.3)

![Diagram](image.png)

General procedure 16;
Reagent: N-methyl-4-piperidone (404) (1.5 g, 13.3 mmol);
Morpholine used instead of NEt\(_3\);
T.L.C. System: EtOAc-MeOH 9:1 v/v, Rf: 0.44.
Purification: recrystallization from 60% EtOH/H\(_2\)O;
Yellow solid;
Yield: 2.25 g (71%)

\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 1.34 (t, J = 7.1 Hz, 3H, H-3'), 2.45 (s, 3H, H-8), 2.67 (t, J = 5.8 Hz, 2H, H-7), 2.85 (dd, J\(_1\) = 5.8 Hz, J\(_2\) = 1.9 Hz, 2H, H-6), 3.38 (t, J = 1.9 Hz, 2H, H-5),
4.27 (q, J = 7.1 Hz, 2H, H-2'), 6.01 (bs, 2H, NH\(_2\)).

\(^13\)C-NMR (CDCl\(_3\)), \(\delta\): 14.44 (CH\(_3\), C-3'), 27.40 (CH\(_2\), C-aliphatic), 45.49 (CH\(_3\), C-8),
52.44, 53.32, 59.44 (CH\(_2\), C-aliphatic), 105.40, 114.60, 130.72, 162.07 (C, C-aromatic),
165.95 (C, C-1').

7-Methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one (410)\(^{68}\)
(C\(_{10}\)H\(_{11}\)N\(_3\)OS; M.W. = 221.3)

![Diagram](image.png)

General procedure 17a;
Reagent: ethyl 2-amino-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate (407) (0.51 g, 2.1 mmol);

After drying under high vacuum, the crude reaction residue was used for the next step without further purification.

Brown oil;

MS (ESI)^+: 221.9 [M+H]^+

^1H-NMR (DMSO-d6), δ: 2.36 (s, 3H, H-10), 2.65 (t, J= 5.8 Hz, 2H, H-9), 2.93 (tt, J1= 5.8 Hz, J2= 1.7 Hz, 2H, H-8), 3.54 (t, J= 1.7 Hz, 2H, H-7), 8.07 (s, 1H, H-2), 12.28 (bs, 1H, NH).

^13C-NMR (DMSO-d6), δ: 25.71 (CH2, C-aliphatic), 44.93 (CH3, C-10), 51.17, 52.88 (CH2, C-aliphatic), 122.28, 128.89, 129.70 (C, C-aromatic), 145.14 (CH, C-2), 157.63 (C, C-aromatic), 162.81 (C, C-1).

4-Chloro-7-methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine (413)^68
(C10H10ClN3S; M.W.= 239.7)

General procedure 14;
Reagent: 7-methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one (410) (0.45 g, 2.1 mmol);
2 equivalents of NEt3 added;
T.L.C. System: EtOAc-MeOH 9:1 v/v, Rf: 0.38.

Purification: flash column chromatography (EtOAc:MeOH 100:0 v/v increasing to EtOAc:MeOH 94:6 v/v);
White solid;
Yield: 0.25 g (49%)

MS (ESI)^+: 239.9, 241.9 [M+H]^+

^1H-NMR (CDCl3), δ: 2.55 (s, 3H, H-10), 2.85 (t, J= 5.8 Hz, 2H, H-9), 3.29 (tt, J1= 5.8 Hz, J2= 1.9 Hz, 2H, H-8), 3.75 (t, J= 1.9 Hz, 2H, H-7), 8.76 (s, 1H, H-2).
\[^{13}\text{C-} \text{NMR (CDCl}_3\), \delta: 26.74 \text{ (CH}_2, \text{ C-aliphatic), 45.41 \text{ (CH}_3, \text{ C-10), 51.75, 54.19 \text{ (CH}_2, \text{ C-aliphatic), 125.44, 128.26, 136.79 \text{ (C, C-aromatic), 151.96 \text{ (CH, C-2), 153.46, 168.98 \text{ (C, C-aromatic).}} \]

\textbf{4-Hydrazinyl-7-methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine (416)}

\((\text{C}_{10}\text{H}_{13}\text{N}_{5}\text{S}; \text{M.W.} = 235.3)\)

General procedure 19;
Reagent: 4-chloro-7-methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine (413) (0.25 g, 1.1 mmol);
Purification: recrystallization from MeOH;
Yellow crystals;
Yield: 1.56 g (62%)

\[^{1}\text{H-NMR (DMSO-d}_6\), \delta: 2.37 \text{ (s, 3H, H-10), 2.67 \text{ (t, J= 5.7 Hz, 2H, CH}_2\text{), 3.01 \text{ (t, J= 5.7 Hz, 2H, CH}_2\text{), 3.47 \text{ (s, 2H, H-7), 4.57 \text{ (bs, 2H, NH}_2\text{), 7.95 \text{ (bs, 1H, NH), 8.35 \text{ (s, 1H, H-2).}} \]

\[^{13}\text{C-NMR (DMSO-d}_6\), \delta: 25.75 \text{ (CH}_2, \text{ C-aliphatic), 44.84 \text{ (CH}_3, \text{ C-10), 51.31, 53.31 \text{ (CH}_2, \text{ C-aliphatic), 114.22, 125.07, 129.12 \text{ (C, C-aromatic), 152.70 \text{ (CH, C-2), 158.32, 164.24 \text{ (C, C-aromatic).}} \]
6.4.13.1 7-Methyl-4-(2-(1-phenylethylidene)hydrazinyl)-5,6,7,8-tetrahydropyrido [4',3':4,5]thieno[2,3-d]pyrimidines (421-422)

2-(1-(2-(7-Methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4-yl)hydrazono)ethyl)phenol (421)
(C_{18}H_{19}N_{5}OS; M.W. = 353.4)

General procedure 20;
Reagent: 4-hydrazinyl-7-methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine (416) (0.08 g, 0.3 mmol);
Light brown solid;
Yield: 0.03 g (23%)
Melting Point: 198-202°C
MS (ESI^+): 354.0 [M+H]^+
Two species observed. Major/minor species ratio: 3/1.

\(^1H\)-NMR (DMSO-d6), 8: (major species) 2.42 (s, 3H, CH_3), 2.52 (s, 3H, CH_3), 2.77 (t, J = 5.2 Hz, 2H, CH_2), 3.10-3.19 (m, 2H, CH_2), 3.64-3.67 (m, 2H, CH_2), 6.89-6.93 (m, 1H, H-aromatic), 7.27-7.31 (m, 1H, H-aromatic), 7.63 (d, J = 7.6 Hz, 1H, H-aromatic), 7.81 (s, 1H, H-2), 8.50 (s, 1H, NH), 11.97 (bs, 1H, OH).

\(^1H\)-NMR (DMSO-d6), 8: (minor species) 2.42 (s, 3H, CH_3), 2.52 (s, 3H, CH_3), 2.77 (t, J = 5.2 Hz, 2H, CH_2), 3.10-3.19 (m, 2H, CH_2), 3.64-3.67 (m, 2H, CH_2), 6.89-6.93 (m, 1H, H-aromatic), 7.27-7.31 (m, 1H, H-aromatic), 7.63 (d, J = 7.6 Hz, 1H, H-aromatic), 7.81 (s, 1H, H-2), 9.48 (bs, 1H, NH), 13.26 (bs, 1H, OH).

\(^13C\)-NMR (DMSO-d6), 8: (major and minor species) 39.86, 44.70 (CH_3, C-10, 2'), 51.32, 53.05, 55.99 (CH_2, C-7, 8, 9), 114.3 (C, C-aromatic), 116.78, 118.61 (CH, C-aromatic), 120.73, 122.94, 125.62 (C, C-aromatic), 127.21, 128.55, 130.77 (CH, C-aromatic), 138.34, 143.06, 153.52, 158.30 (C, C-aromatic).
7-Methyl-4-(2-(1-(pyrazin-2-yl)ethylidene)hydrazinyl)-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine (422)

(C_{16}H_{17}N_{7}S; M.W.= 339.4)

General procedure 20;
Reagent: 4-hydrazinyl-7-methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine (416) (0.08 g, 0.3 mmol);
Yellow solid;
Yield: 0.205 g (53%)
Melting Point: 201-203 °C
MS (ESI^+): 340.0 [M+H]^+
Single species observed.

^1H-NMR (CDCl_{3}), δ: 2.38 (s, 3H, CH_{3}), 2.47 (s, 3H, CH_{3}), 2.69 (t, J= 5.7 Hz, 2H, CH_{2}), 3.10 (t, J= 5.7 Hz, 2H, CH_{2}), 3.57 (s, 2H, H-7), 7.88 (s, 1H, H-2), 8.58 (d, J= 2.6 Hz, 1H, H-4'), 8.62 (dd, J_{1}= 2.6 Hz, J_{2}= 1.5 Hz, 1H, H-5'), 9.79 (d, J= 1.5 Hz, 1H, H-6'), 11.98 (bs, 1H, NH).

^13C-NMR (CDCl_{3}), δ: 12.61 (CH_{3}, C-aliphatic), 26.76 (CH_{2}, C-aliphatic), 44.96 (CH_{3}, C-aliphatic), 51.47, 53.11 (CH_{2}, C-aliphatic), 119.22, 128.95, 130.53 (C, C-aromatic), 143.21, 143.30, 143.52, 144.11 (CH, C-aromatic), 148.72, 151.21, 157.06, 158.33 (C, C-aromatic).
6.4.13.2 \(\text{N'}-(7\text{-Methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4-yl}) \) benzohydrazide (427-428)

2-Hydroxy-\(\text{N'}-(7\text{-methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4-yl}) \)benzohydrazides (427)

\((\text{C}_{17}\text{H}_{17}\text{N}_{5}\text{O}_{2}\text{S}; \text{M.W.}=355.4) \)

![Chemical structure diagram]

General procedure 22;
Reagent: 4-hydrazinyl-7-methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine (416) (0.10 g, 0.4 mmol);
Purification: recrystallization from MeOH;
White solid;
Yield: 0.05 g (30%)
Melting Point: charring > 240°C
MS (ESI\(^+\)): 356.0 [M+H]\(^+\)

\(^1\text{H-NMR (DMSO-d}_6\), \(\delta\): 2.42 (s, 3H, H-10), 2.75-2.79 (m, 2H, CH\(_2\)), 3.10-3.15 (m, 2H, CH\(_2\)), 3.67 (s, 2H, H-7), 6.99-6.99 (m, 2H, H-aromatic), 7.44-7.49 (m, 1H, H-aromatic), 7.97-8.01 (m, 1H, H-aromatic), 8.38 (s, 1H, H-2), 8.89 (bs, 1H, NH), 11.39 (bs, 2H, NH, OH).

\(^1\text{C-NMR (DMSO-d}_6\), \(\delta\): 25.96 (CH\(_2\), C-aliphatic), 44.76 (CH\(_3\), C-10), 51.18, 53.28 (CH\(_2\), C-aliphatic), 114.88, 114.97 (C, C-aromatic), 117.33, 118.98 (CH, C-aromatic), 124.48 (C, C-aromatic), 128.33 (CH, C-aromatic), 130.53 (C, C-aromatic), 133.95, 151.93 (CH, C-aromatic), 156.98, 159.22, 165.96 (C, C-aromatic), 168.02 (C, C-1').
$N'(7$-Methyl-$5,6,7,8$-tetrahydro$pyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4-yl)$picolinohydrazide$ (428) \\
$(C_{16}H_{16}N_{6}OS; M.W. = 340.4)\\n
\begin{center}
\includegraphics{reaction.png}
\end{center}

General procedure 22;
Reagent: 4-hydrazinyl-7-methyl-$5,6,7,8$-tetrahydro$pyrido[4',3':4,5]thieno[2,3-d]pyrimidine$ (416) (0.10 g, 0.4 mmol);
Purification: re-crystallisation from EtOH;
Orange solid;
Yield: 0.06 g (41\%);
Melting Point: charring $> 200\degree C$
MS (ESI$^+$): 341.0 [M+H]$^+$
1H-NMR (DMSO-d_6), δ: 2.41 (s, 3H, H-10), 2.75 (t, $J= 5.5$ Hz, 2H, CH$_2$), 3.10-3.13 (m, 2H, CH$_2$), 3.64 (s, 2H, H-7), 7.66-7.69 (m, 1H, H-aromatic), 8.02-8.08 (m, 2H, H-aromatic), 8.33 (s, 1H, H-2), 8.72-8.74 (m, 1H, H-aromatic), 8.85 (bs, 1H, NH), 10.71 (bs, 1H, NH).
13C-NMR (DMSO-d_6), δ: 26.06 (CH$_2$, C-aliphatic), 44.81 (CH$_3$, C-10), 51.23, 53.32 (CH$_2$, C-aliphatic), 114.74 (C, C-aromatic), 122.30 (CH, C-aromatic), 124.83 (C, C-aromatic), 126.93 (CH, C-aromatic), 130.35 (C, C-aromatic), 137.84, 148.68 (CH, C-aromatic), 149.37 (C, C-aromatic), 152.46 (CH, C-aromatic), 157.12, 162.91 (C, C-aromatic), 166.27 (C, C-1').
6.4.14 5,6,7,8-Tetrahydropyrido[4',3':4,5]thieno [2,3-d]pyrimidines

tert-Butyl 4-oxopiperidine-1-carboxylate (430)

\(\text{C}_{10}\text{H}_{17}\text{NO}_{3}; \text{M.W.} = 199.3 \)

To a solution of 4-piperidone hydrate hydrochloride (429) (1 g, 6.5 mmol) in \(\text{H}_2\text{O} \) (10 mL) was added NaOH (0.29 g, 7.2 mmol), di-tert-butyl dicarbonate (77) (1.4 g, 6.5 mmol) and THF (10 mL). The reaction mixture was stirred at r.t. for 16 h, then extracted with diethyl ether (3 x 30 mL). The combined organic layers were washed with brine (40 mL), dried over MgSO\(_4\) and concentrated under reduced pressure to give tert-butyl 4-oxopiperidine-1-carboxylate (430) as a waxy solid.

Yield: 1.2 g (98%)

\(^1\text{H}-\text{NMR (CDCl}_3\), } \delta: \ 1.51 \ (s, 9H, H-3'), 2.45 \ (t, J = 6.2 \text{ Hz, } 4\text{H, CH}_2), \ 3.73 \ (t, J = 6.2 \text{ Hz, } 4\text{H, CH}_2).

\(^13\text{C}-\text{NMR (CDCl}_3\), } \delta: \ 28.37 \ (\text{CH}_3, \ C-3'), \ 41.16, \ 42.99 \ (\text{CH}_2, \ C\text{-aliphatic}), \ 80.46 \ (C, \ C-2'), \ 154.50 \ (C, \ C-2), \ 207.79 \ (C, \ C-1').

6-tert-Butyl 3-ethyl 2-amino-4,5-dihydrothieno[2,3-c]pyridine-3,6(7H)-dicarboxylate (431)

\(\text{C}_{15}\text{H}_{22}\text{N}_2\text{O}_4\text{S; M.W.} = 324.4 \)

General procedure 16;

Reagent: tert-butyl 4-oxopiperidine-1-carboxylate (430) (1.4 g, 7.1 mmol);
The reaction mixture was cooled to r.t. and the precipitate formed was collected by filtration and recrystallized from EtOH.

Pale yellow solid;

Yield: 1.4 g (61%)

\(^1\text{H-NMR (CDCl}_3\), \(\delta\): 1.35 (t, J= 7.1 Hz, 3H, H-3’), 1.50 (s, 9H, H-10), 2.80-2.84 (m, 2H, CH\(_2\)), 3.63 (t, J= 5.7 Hz, 2H, H-7), 4.28 (q, J= 7.1 Hz, 2H, H-2’), 4.36 (s, 2H, H-5), 6.04 (bs, 2H, NH\(_2\)).

\(^{13}\text{C-NMR (CDCl}_3\), \(\delta\): 14.14(CH\(_3\), C-3’), 27.18 (CH\(_2\), C-aliphatic), 28.46 (CH\(_3\), C-10), 40.79, 59.58 (CH\(_2\), C-aliphatic), 79.97 (C, C-9), 104.83, 113.71, 131.22, 154.66 (C, C-aromatic), 162.31, 165.81 (C, C-8, 1’).

tert-Butyl 4-oxo-3,4,5,6-tetrahydropyrido[4’,3’:4,5]thieno[2,3-d]pyrimidine-7(8H)-carboxylate (432)

(C\(_{14}\)H\(_{17}\)N\(_3\)O\(_3\)S; M.W. = 307.4)

\[
\begin{array}{c}
\text{431} \\
\text{432}
\end{array}
\]

General procedure 17a;

Reagent: *6-tert*-butyl 3-ethyl 2-amino-4,5-dihydrothieno[2,3-c]pyridine-3,6(7H)-dicarboxylate (432) (1.4, 4.3 mmol);

Yellow solid;

Yield: 1.33 g (83%).

\(^1\text{H-NMR (DMSO-d}_6\), \(\delta\): 1.43 (s, 9H, H-12), 2.93 (t, J= 5.7 Hz, 2H, CH\(_2\)), 3.62 (t, J= 5.7 Hz, 2H, CH\(_2\)), 4.58 (s, 2H, H-7), 8.04 (s, 1H, H-2), 12.42 (bs, 1H, NH).

\(^{13}\text{C-NMR (DMSO-d}_6\), \(\delta\): 25.42 (CH\(_2\), C-aliphatic), 28.00 (CH\(_3\), C-11), 40.55, 42.31 (CH\(_2\), C-aliphatic), 79.38 (C, C-11), 108.46, 122.16, 129.49 (C, C-aromatic), 154.28 (CH, C-2), 155.86, 157.57 (C, C-aromatic), 165.31 (C, C-1).
tert-Butyl 4-chloro-5,6-dihydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine-7(8H)-carboxylate (433)

$\text{(C}_{14}\text{H}_{16}\text{ClN}_{3}\text{O}_{2}\text{S}; \text{M.W.}=325.8)$

To a mixture of POCl$_3$ (3 mL) and NEt$_3$ (3 mL) at 0°C was added intermediate tert-butyl 4-oxo-3,4,5,6-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine-7(8H)-carboxylate (432) (1.1 g, 3.6 mmol). The reaction mixture was heated at 60 °C for 3 h, then cooled in an ice-bath and carefully neutralised with sat. Na$_2$CO$_3$ solution. The mixture was extracted with DCM (50 mL), the organic layer separated, dried over MgSO$_4$ and concentrated under vacuum. The residue was purified by flash column chromatography ($\text{nhexane-EtOAc: 100:0 v/v increasing to nhexane-EtOAc: 85:15 v/v}$) to give tert-butyl 4-chloro-5,6-dihydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine-7(8H)-carboxylate (433) as a white solid.

T.L.C. System: $\text{nhexane-EtOAc 7:3 v/v, Rf: 0.48}$.

Yield: 1.26 g (96%)

$^1\text{H-NMR (CDCl}_3\text{), }\delta$: 1.52 (s, 9H, H-11), 3.22 (t, J= 5.7 Hz, 2H, CH$_2$), 3.81 (t, J_1= 5.7 Hz, 2H,), 4.76 (s, 2H, H-7), 8.78 (s, 1H, H-2).

$^{13}\text{C-NMR (CDCl}_3\text{), }\delta$: 26.51 (CH$_2$, C-aliphatic), 28.41 (CH$_3$, C-12), 41.12, 42.55 (CH$_2$, C-aliphatic), 78.99 (C, C-11), 125.11, 128.19, 133.24 (C, C-aromatic), 152.17 (CH, C-2), 155.47, 169.08 (C, C-aromatic).

tert-Butyl 4-hydrazinyl-5,6-dihydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine-7(8H)-carboxylate (436)

$\text{(C}_{14}\text{H}_{19}\text{N}_{5}\text{O}_{2}\text{S}; \text{M.W.}=321.4)$
General procedure 19;
Reagent: *tert*-butyl 4-chloro-5,6-dihydropyrido[4',3':4,5]thieno[2,3-\(d\)]pyrimidine-7(8\(H\))-carboxylate (433) (0.23 g, 0.7 mmol);
Purification: recrystallization from 40\% EtOH/H\(2\)O;
Pale yellow crystals;
Yield: 0.11 g (46\%)

\(^1\)H-NMR (DMSO-d\(_6\)), \(\delta\): 1.44 (s, 3H, H-11), 3.01 (t, J= 5.7 Hz, 2H, CH\(_2\)), 3.63 (t, J= 5.7 Hz, 2H, CH\(_2\)), 4.58-4.62 (bs, 4H, CH\(_2\), NH\(_2\)), 8.03 (bs, 1H, NH), 8.36 (s, 1H, H-2).

\(^13\)C-NMR (DMSO-d\(_6\)), \(\delta\): 25.75 (CH\(_2\), C-aliphatic), 28.00 (CH\(_3\), C-11), 79.46 (C, C-10), 114.17, 125.82 (C, C-aromatic), 152.90 (CH, C-2), 158.71, 164.12 (C, C-aromatic).

4-Hydrazinyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-\(d\)]pyrimidine (435)
(C\(_9\)H\(_{11}\)N\(_5\)S; M.W. = 221.3)

To a mixture of intermediate *tert*-butyl 4-hydrazinyl-5,6-dihydropyrido[4',3':4,5]thieno[2,3-\(d\)]pyrimidine-7(8\(H\))-carboxylate (436) (0.1 g, 0.3 mmol) in DCM (2 mL) at 0\(^\circ\)C was added TFA (1 mL) and then warmed to r.t. The reaction mixture was stirred for 2 h, then dried under vacuum. The mixture was neutralised by slow addition of sat. NaHCO\(_3\) solution, then dried under vacuum. The resulting residue was added of MeOH and filtered. The filtrate was finally dried under vacuum to give crude 4-hydrazinyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-\(d\)]pyrimidine (435) as a brown oil which was used for the last reaction step without purification.

MS (ESI): 221.9 [M+H]\(^+\)

2-(1-(2-(5,6,7,8-Tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4-yl)hydrazono)ethyl)phenol (437)
(C_{17}H_{17}N_{5}OS; M.W. = 339.4)

![Chemical structure](image)

General procedure 20;
Reagent: 4-hydrazinyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine (435) (0.07 g, 0.5 mmol);
Yellow solid;
Yield: 0.02 g (23%)
Melting Point: 241-244°C
MS (ESI\(^+\)): 340.0 [M+H]\(^+\)
Single species observed.

\(^1\)H-NMR (DMSO-d\(_6\)), \(\delta\): 2.50 (s, 3H, H-2'), 3.04-3.09 (m, 4H, CH\(_2\)), 3.10-3.19 (m, 4H, CH\(_2\)), 3.94 (s,2H, H-7), 6.84-7.03 (m, 2H, H-aromatic), 7.26-7.31 (m, 1H, H-aromatic), 7.61-7.65 (m, 1H, H-aromatic), 8.04 (s, 2H, H-2).

\(^13\)C-NMR (DMSO-d\(_6\)), \(\delta\): 14.13 (CH\(_3\), C-7), 26.73, 42.27, 44.07 (CH\(_2\), C-7, 8, 9), 114.37 (C, C-aromatic), 116.80, 118.02 (CH, C-aromatic), 118.52, 123.07, 128.17 (C, C-aromatic), 128.42, 130.66 (CH, C-aromatic), 131.99, 143.43 (C, C-aromatic), 152.61 (CH, C-aromatic), 153.78, 158.42 (C, C-aromatic).
4-(2-(1-(Pyrazin-2-yl)ethylidene)hydrazinyl)-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine (438)

(C_{15}H_{15}N_{7}S; M.W. = 325.4)

General procedure 20;
Reagent: 4-hydrazinyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine (435) (0.07 g, 0.5 mmol);
Yellow solid;
Yield: 0.03 g (10%)
Melting Point: charring > 300°C
MS (ESI+): 340.0 [M+H]^+
Single species observed.

^1H-NMR (DMSO-d_6), δ: 2.48 (s, 3H, CH_3), 3.32 (t, J = 6.1 Hz, 2H, CH_2), 3.44 (t, J = 6.1 Hz, 2H, CH_2), 34.39 (s, 2H, H-7), 7.96 (ds, 1H, H-2), 8.61 (d, J = 2.5 Hz, 1H, H-4'), 8.64 (dd, J_1 = 2.5 Hz, J_2 = 1.5 Hz, 1H, H-5'), 9.63 (bs, 1H, NH), 9.82 (d, J = 1.5 Hz, 1H, H-6'), 12.15 (bs, 1H, NH).

^13C-NMR (DMSO-d_6), δ: 12.71 (CH_3, C-aliphatic), 23.51, 40.34, 41.40 (CH_2, C-aliphatic), 118.60, 124.76, 128.28 (C, C-aromatic), 143.27, 143.36, 143.75, 145.11 (CH, C-aromatic), 148.46, 151.01, 157.69, 159.41 (C, C-aromatic).
6.4.15 2-Methyl-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidines

2-Methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (439)\(^{61}\)
\((C_{11}H_{12}N_{2}O_{2}S; M.W.= 220.3)\)

Intermediate ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate (190)
(0.86 g, 3.8 mmol) and acetonitrile (0.2 mL, 3.8 mmol) were placed in a pressure tube and saturated HCl solution in dioxane (8 mL) was added dropwise. The tube was carefully sealed and left at r.t. in ultrasonic bath for 4 h, and then heated at 100°C with stirring for 16 h. The reaction mixture was then cooled to r.t. and poured into water (70 mL). The precipitate formed was filtered and washed with water and \textit{n}hexane to give 2-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (439) as a white solid.
Yield: 0.34 g (40%)

\(^1\)H-NMR (DMSO-\textit{d}_6), \(\delta\): 1.72-1.77 (m, 2H, \textit{CH}_2), 1.77-1.82 (m, 2H, \textit{CH}_2), 2.31 (s, 3H, H-7), 2.70 (t, \textit{J}= 5.8 Hz, 2H, \textit{CH}_2), 2.84 (t, \textit{J}= 5.8 Hz, 2H, \textit{CH}_2), 12.18 (bs, 1H, \textit{NH}).

\(^{13}\)C-NMR (DMSO-\textit{d}_6), \(\delta\): 20.78 (CH\textsubscript{3}, C-7), 21.76, 22.49, 24.32, 25.23 (CH\textsubscript{2}, C-8, 9, 10, 11), 120.13, 130.47, 130.69, 154.14, 158.44 (C, C-aromatic), 163.06 (C, C-1).

4-Chloro-2-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (440)\(^{62}\)
\((C_{11}H_{11}ClN_{2}O_{2}S; M.W.= 256.7)\)

General procedure 18;
Reagent: 2-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (439)
(0.4 g, 1.8 mmol);
T.L.C. System: \textit{n}hexane-EtOAc 7:3 v/v, \textit{Rf}: 0.69.
Purification: flash column chromatography (n-hexane:EtOAc 100:0 v/v increasing to n-hexane-EtOAc 85:15 v/v);

Light brown solid;

Yield: 0.31 g (72%)

1H-NMR (CDCl$_3$), δ: 1.91-1.94 (m, 4H, CH$_2$), 2.77 (s, 3H, H-7), 2.85-2.88 (m, 2H, CH$_2$), 3.06-3.09 (m, 2H, CH$_2$).

13C-NMR (CDCl$_3$), δ: 22.26, 22.53 (CH$_2$, C-aliphatic), 25.25 (CH$_3$, C-7), 25.93, 26.27 (CH$_2$, C-aliphatic), 126.14, 126.94, 137.90, 152.83, 161.76, 169.50.

4-Hydrazinyl-2-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (441)63
(C$_{11}$H$_{14}$N$_4$S; M.W.= 234.3)

General procedure 19;

Reagent: 4-chloro-2-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (440) (0.23 g, 1 mmol);

Purification: recrystallization from 40 % EtOH/H$_2$O;

Yellow crystals;

Yield: 0.15 g (67%)

1H-NMR (DMSO-d$_6$), δ: 1.77-1.80 (m, 4H, CH$_2$), 2.25 (s, 3H, H-7), 2.71-2.74 (m, 2H, CH$_2$), 2.87-2.90 (m, 2H, CH$_2$), 4.54 (bs, 2H, NH$_2$), 7.75 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 22.03, 22.19, 24.77 (CH$_2$, C-aliphatic), 25.34 (CH$_3$, C-7), 25.46 (CH$_2$, C-aliphatic), 112.49, 126.54, 130.06, 158.19, 161.08, 164.61 (C, C-aromatic).
6.4.15.1 2-Methyl-4-(2-(1-arylethylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines (442-443)

2-(1-(2-(2-Methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)hydrazono)ethyl)phenol (442)
(C_{19}H_{20}N_{4}OS; M.W. = 352.5)

General procedure 20;
Reagent: 4-hydrazinyl-2-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (441) (0.05 g, 0.2 mmol);
Pale yellow solid;
Yield: 0.06 g (86%)
Melting Point: 257-260°C
MS (ESI\(^{+}\)): 353.0 [M+H]\(^{+}\)
Two species observed. Major/minor species ratio: 5/4.

\(^{1}\)H-NMR (DMSO-d\(_6\), \(\delta\)):
(major species) 1.77-1.82 (m, 4H, CH\(_2\)), 2.33 (s, 3H, CH\(_3\)),
2.49 (s, 3H, CH\(_3\)), 2.72-2.75 (m, 2H, CH\(_2\)), 2.97-3.01 (m, 2H, CH\(_2\)), 6.88-6.96 (m, 2H, H-aromatic),
7.26-7.31 (m, 1H, H-aromatic), 7.58-7.65 (m, 1H, H-aromatic), 10.96 (bs, 1H, NH), 12.73 (bs, 1H, OH).

\(^{1}\)H-NMR (DMSO-d\(_6\), \(\delta\)):
(minor species) 1.85-1.89 (m, 4H, CH\(_2\)), 2.49 (s, 3H, CH\(_3\)),
2.56 (s, 3H, CH\(_3\)), 2.79-2.84 (m, 2H, CH\(_2\)), 3.12-3.16 (m, 2H, CH\(_2\)), 6.88-6.96 (m, 2H, H-aromatic),
7.26-7.31 (m, 1H, H-aromatic), 7.58-7.65 (m, 1H, H-aromatic), 9.32 (bs, 1H, NH), 13.35 (bs, 1H, OH).

\(^{13}\)C-NMR (DMSO-d\(_6\), \(\delta\)):
(major and minor species) 12.88, 14.65, 21.21 (CH\(_3\), C-aliphatic), 22.06, 22.13, 22.19, 22.41, 24.62, 24.91 (CH\(_2\), C-aliphatic), 25.52 (CH\(_3\), C-aliphatic), 26.46 (CH\(_2\), C-aliphatic), 113.66 (C, C-aromatic), 116.58, 117.30 (CH, C-aromatic),
117.43 (C, C-aromatic), 118.42, 118.53 (CH, C-aromatic), 119.60, 121.08, 126.11 (C, C-aromatic), 127.93, 128.50, 130.53, 130.70 (CH, C-aromatic), 131.33,
Chapter 6: Experimental

132.46, 145.92, 152.88, 153.78, 154.50, 157.00, 158.47, 161.47, 162.68, 166.62 (C, C-aromatic).

2-Methyl-4-(2-(1-(pyrazin-2-yl)ethylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (443)
(C_{17}H_{18}N_{6}S; M.W. = 338.4)

General procedure 20;
Reagent: 4-hydrazinyl-2-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (441) (0.05 g, 0.2 mmol);
Yellow solid;
Yield: 0.07 g (59%)
Melting Point: 189-191°C
MS (ESI^+): 339.0 [M+H]^+
Single species observed.

1H-NMR (DMSO-d$_6$), δ: 1.76-1.82 (m, 4H, CH$_2$), 2.44 (s, 3H, CH$_3$), 2.46 (s, 3H, CH$_3$), 2.72-2.74 (m, 2H, CH$_2$), 3.00-3.03 (m, 2H, CH$_2$), 8.58 (d, J= 2.6 Hz, 1H, H-4'), 8.61 (dd, J$_1$= 2.6 Hz, J$_2$= 1.4 Hz, 1H, H-5'), 9.82 (d, J= 1.4 Hz, 1H, H-6'), 11.18 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 128.3, 21.51 (CH$_3$, C-7, 2'), 22.14, 22.39, 24.64, 26.40 (CH$_2$, C-8, 9, 10, 11), 117.73, 130.61, 131.55 (C, C-aromatic), 143.13, 143.42, 143.66 (CH, C-aromatic), 148.97, 151.20, 152.79, 157.02, 158.28 (C, C-aromatic).
6.4.15.2 \[N'-(2-Methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-\textit{d}]pyrimidin-4-yl)aryl hydrazides (444-445) \]

2-Hydroxy-\[N'-(2-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-\textit{d}]pyrimidin-4-yl) \]benzohydrazide (444)
\(\text{C}_{18}\text{H}_{18}\text{N}_{4}\text{O}_{2}; \text{M.W.} = 354.4 \)

General procedure 22;
Reagent: 4-hydrizinyl-2-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-\textit{d}]pyrimidine (441) (0.09 g, 0.4 mmol);
Purification: re-crystallisation from 70% MeOH/H\textsubscript{2}O;
Light orange solid;
Yield: 0.05 g (36\%)

Melting Point: 209-212°C

MS (ESI+): 355.0 [M+H]+

1H-NMR (DMSO-d\textsubscript{6}), \(\delta \): 1.82-1.87 (m, 4H, CH\textsubscript{2}), 2.42 (s, 3H, H-7), 2.77-2.81 (m, 2H, CH\textsubscript{2}), 2.99-3.03 (m, 2H, CH\textsubscript{2}), 6.95-7.02 (m, 2H, H-aromatic), 7.44-7.48 (m, 1H, H-aromatic), 7.98 (d, J= 7.0 Hz, 1H, H-aromatic), 8.69 (bs, 1H, NH), 10.92 (bs, 1H, NH), 11.89 (bs 1H, OH).

13C-NMR (DMSO-d\textsubscript{6}), \(\delta \): 21.97, 22.17, 24.87 (CH\textsubscript{2}, C-aliphatic), 25.41 (CH\textsubscript{3}, C-7), 25.62 (CH\textsubscript{2}, C-aliphatic), 112.87, 115.22 (C, C-aromatic), 117.27, 119.06 (CH, C-aromatic), 126.16 (C, C-aromatic), 128.46 (CH, C-aromatic), 131.63 (C, C-aromatic), 133.81 (CH, C-aromatic), 156.30, 158.83, 161.08, 166.11 (C, C-aromatic), 166.88 (C, C-1’).
N’-(2-Methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)picolino hydrazide (445)

(C_{17}H_{17}N_{5}OS; M.W. = 339.4)

General procedure 22;
Reagent: 4-hydrazinyl-2-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (441) (0.08 g, 0.3 mmol);
Purification: re-crystallisation from MeOH/H_2O;
Pale yellow solid;
Yield: 0.04 g (38%)
Melting Point: 99-101°C
MS (ESI\(^+\)): 340.0 [M+H]\(^+\)

\(^1\)H-NMR (DMSO-d_6), \(\delta\): 1.83-1.86 (m, 4H, CH_2), 2.38 (s, 3H, H-7), 2.78-2.81 (m, 2H, CH_2), 2.98-3.02 (m, 2H, CH_2), 7.65-7.69 (m, 1H, H-aromatic), 8.02-8.08 (m, 2H, H-aromatic), 8.58 (bs, 1H, NH), 8.72-8.74 (m, 1H, H-aromatic), 10.63 (bs, 1H, NH).

\(^1\)C-NMR (DMSO-d_6), \(\delta\): 22.00, 22.20, 24.88 (CH_2, C-aliphatic), 25.45 (CH_3, C-7), 25.69 (CH_2, C-aliphatic), 112.96 (C, C-aromatic), 122.25 (CH, C-aromatic), 126.22 (C, C-aromatic), 126.92 (CH, C-aromatic), 131.39 (C, C-aromatic), 137.86, 148.71 (CH, C-aromatic), 149.37, 156.69, 161.08, 162.74 (C, C-aromatic), 166.02 (C, C-1').
6.4.16 6-Ethylthieno[2,3-d]pyrimidines

Ethyl 2-amino-5-ethylthiophene-3-carboxylate (448)\(^\text{52}\)
\((\text{C}_{9}\text{H}_{13}\text{NO}_{2}\text{S}; \text{M.W.}=199.3)\)

![Diagram of 6-Ethylthieno[2,3-d]pyrimidine-4(3H)-one (449)](image)

General procedure 16;
Reagent: butyraldehyde (447) (1 g, 13.9 mmol);
T.L.C. System: n-hexane-EtOAc 8:2 v/v, Rf: 0.52.
Purification: flash column chromatography (n-hexane:EtOAc 100:0 v/v increasing to n-hexane-EtOAc 95:5 v/v);
White solid;
Yield: 2.46 g (88%)

\(^1\text{H}-\text{NMR (CDCl}_3\text{)}, \delta: 1.24 (t, J= 7.5 Hz, 3H, H-6), 1.35 (t, J= 7.1 Hz, 3H, H-3’), 2.63 (qd, J1= 7.5 Hz, J2= 1.2 Hz, 2H, H-5), 4.27 (q, J= 7.1 Hz, 2H, H-2’), 5.80 (bs, 2H, NH\textsubscript{2}), 6.65 (t, J= 1.2 Hz, 1H, H-3).

\(^{13}\text{C}-\text{NMR (CDCl}_3\text{)}, \delta: 14.54, 15.37 (\text{CH}_3, \text{C}-6, 3’), 23.02, 59.43 (\text{CH}_2, \text{C}-5, 2’), 106.34 (\text{C, C-aromatic}), 120.66 (\text{CH}, \text{C}-3), 128.46, 161.14 (\text{C, C-aromatic}), 165.39 (\text{C, C-1’}).

6-Ethylthieno[2,3-d]pyrimidin-4(3H)-one (449)\(^\text{53}\)
\((\text{C}_{8}\text{H}_{8}\text{N}_{2}\text{OS}; \text{M.W.}=180.2)\)

General procedure 17;
Reagent: ethyl 2-amino-5-ethylthiophene-3-carboxylate (448) (2.46 g, 12.3 mmol);
Purification: recrystallization from EtOH/H\textsubscript{2}O;
Light brown solid;
Yield: 1.64 g (73%)
1H-NMR (DMSO-d6), δ: 1.27 (t, J= 7.5 Hz, 3H, H-6), 2.85 (qd, J1= 7.5 Hz, J2= 1.1 Hz, 2H, H-5), 7.11 (t, J= 1.1 Hz, 1H, H-7), 8.05 (s, 1H, H-2), 12.39 (bs, 1H, NH).

13C-NMR (DMSO-d6), δ: 15.25 (CH3, C-6), 23.12 (CH2, C-5), 117.34 (CH, C-7), 124.77, 144.23 (C, C-aromatic), 145.00 (CH, C-2), 156.99 (C, C-aromatic), 162.76 (C, C-1).

4-Chloro-6-ethylthieno[2,3-d]pyrimidine (450)54
(C8H7ClN2S; M.W.= 198.7)

![Chemical structure of 4-Chloro-6-ethylthieno[2,3-d]pyrimidine](image)

General procedure 18;
Reagent: 6-ethylthieno[2,3-d]pyrimidin-4(3H)-one (449) (1.64 g, 9.1 mmol);
T.L.C. System: nhexane-EtOAc 8:2 v/v, Rf: 0.63.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane-EtOAc 95:5 v/v);
White solid;
Yield: 1.42 g (78%)

1H-NMR (CDCl3), δ: 1.42 (t, J= 7.5 Hz, 3H, H-6), 3.01 (qd, J1= 7.5 Hz, J2= 1.2 Hz, 2H, H-5), 7.11 (t, J= 1.2 Hz, 1H, H-7), 8.78 (s, 1H, H-2).

13C-NMR (CDCl3), δ: 14.92 (CH3, C-6), 24.59 (CH2, C-5), 115.19 (CH, C-7), 130.49, 150.86 (C, C-aromatic), 152.02 (CH, C-2), 153.24, 168.45 (C, C-aromatic).

6-Ethyl-4-hydrazinylthieno[2,3-d]pyrimidine (451)53
(C8H10N4S; M.W.= 194.3)

![Chemical structure of 6-Ethyl-4-hydrazinylthieno[2,3-d]pyrimidine](image)

General procedure 19;
Reagent: 4-chloro-6-ethylthieno[2,3-d]pyrimidine (450) (1.42 g, 7.1 mmol); Purification: recrystallization from 40 % EtOH/H2O; White crystals; Yield: 0.98 g (70%)

\[^{1}H\text{-NMR (DMSO-d}_6\text{), } \delta: \]
1.28 (t, J= 7.5 Hz, 3H, H-6), 2.86 (q, J= 7.5 Hz, 2H, H-5), 4.56 (bs, 2H, NH2), 7.33 (s, 1H, H-7), 8.30 (s, 1H, H-2), 8.99 (bs, 1H, NH).

\[^{13}C\text{-NMR (DMSO-d}_6\text{), } \delta: \]
15.11 (CH3, C-6), 23.47 (CH2, C-5), 114.75 (C, C-aromatic), 115.97 (CH, C-7), 128.47 (C, C-aromatic), 152.97 (CH, C-2), 158.67, 166.73 (C, C-aromatic).
6.4.16.1 6-Ethyl-4-(2-(1-arylethylidene)hydrazinyl)thieno[2,3-d]pyrimidines (446, 453-454)

6-Ethyl-4-(2-(thiophen-2-yl)methylene)hydrazinyl)thieno[2,3-d]pyrimidine (446)53

(C$_{13}$H$_{12}$N$_{4}$S$_{2}$; M.W.: 288.4)

General procedure 20;
Reagent: 6-ethyl-4-hydrazinylthieno[2,3-d]pyrimidine (451) (0.10 g, 0.5 mmol);
Pale yellow solid;
Yield: 0.07 g (46%)
Melting Point: 164-168°C
MS (ESI$^+$): 289.0 [M+H]$^+$
Single species observed.

1H-NMR (DMSO-d$_6$), δ: 1.37 (t, J = 7.5 Hz, 3H, H-6), 2.94 (d, J = 7.5 Hz, 2H, H-5), 7.15 (dd, J$_1$ = 5.1 Hz, J$_2$ = 3.5 Hz, 1H, H-4'), 7.43 (d, J = 3.5 Hz, 1H, H-aromatic), 7.65 (d, J = 5.1 Hz, 1H, H-aromatic), 7.78 (s, 1H, H-aromatic), 8.40 (s, 2H, H-aromatic), 11.78 (bs, 1H, NH).

13C-NMR (DMSO-d$_6$), δ: 14.60 (CH$_3$, C-6), 23.55 (CH$_2$, C-5), 115.02 (C, C-aromatic), 117.93, 127.94, 128.05, 129.57, 138.41 (CH, C-aromatic), 139.59, 143.26 (C, C-aromatic), 152.34 (CH, C-aromatic), 154.26, 162.84 (C, C-aromatic).
2-(1-(2-(6-Ethylthieno[2,3-d]pyrimidin-4-yl)hydrazono)ethyl)phenol (453)
(C_{16}H_{16}N_{4}OS; M.W.= 312.4)

General procedure 20;
Reagent: 6-ethyl-4-hydrazinylthieno[2,3-d]pyrimidine (451) (0.10 g, 0.5 mmol);
Pale yellow solid;
Yield: 0.06 g (44%)
Melting Point: 123-127°C
MS (ESI+): 313.0 [M+H]+
Single species observed.

1H-NMR (DMSO-d\textsubscript{6}), \delta: 1.35 (t, J= 7.5 Hz, 3H, H-6), 2.53 (s, 3H, H-2'), 2.95 (q, J= 7.5 Hz, 2H, H-5), 6.89-6.94 (m, 2H, H-aromatic), 7.27-7.31 (m, 2H, H-aromatic), 7.62 (dd, J\textsubscript{1}= 7.5 Hz, J\textsubscript{2}= 1.5 Hz, 1H, H-aromatic), 7.66 (s, 1H, H-7), 8.54 (s, 1H, H-2), 10.63 (bs, 1H, NH), 13.01 (bs, 1H, OH).

13C-NMR (DMSO-d\textsubscript{6}), \delta: 14.02, 14.93 (CH\textsubscript{3}, C-6, 2'), 23.59 (CH\textsubscript{2}, C-5), 115.61 (CH, C-aromatic), 115.79 (C, C-aromatic), 117.13, 118.49 (CH, C-aromatic), 121.24, 124.32 (C, C-aromatic), 128.12, 130.64 (CH, C-aromatic), 144.33 (C, C-aromatic), 152.82 (CH, C-aromatic), 154.27, 158.07, 165.25 (C, C-aromatic).

6-Ethyl-4-(2-(1-(pyrazin-2-yl)ethylidene)hydrazinyl)thieno[2,3-d]pyrimidine (454)
(C\textsubscript{14}H\textsubscript{14}N\textsubscript{6}S; M.W.= 298.4)

General procedure 20;
Reagent: 6-ethyl-4-hydrazinylthieno[2,3-d]pyrimidine (451) (0.10 g, 0.5 mmol);
Pale yellow solid;
Yield: 0.11 g (71%)
Melting Point: 149-152°C
MS (ESI[]): 299.0 [M+H]^+
Two species observed. Major/minor species ratio: 5/1.

^{1}H-NMR (DMSO-d_{6}), δ: (major species) 1.33 (t, J= 7.5 Hz, 3H, H-6), 2.47 (s, 3H, H-2'), 2.93 (q, J= 7.5 Hz, 2H, H-5), 7.77-7.78 (m, 1H, H-aromatic), 8.51 (s, 1H, H-2), 8.61-8.63 (m, 1H, H-aromatic), 8.66 (dd, J_{1}= 2.5 Hz, J_{2}= 1.6 Hz, 1H, H-aromatic), 9.23 (d, J= 1.6 Hz, 1H, H-aromatic), 10.99 (bs, 1H, NH).

^{1}H-NMR (DMSO-d_{6}), δ: (minor species) 1.29 (t, J= 7.5 Hz, 3H, H-6), 2.48 (s, 3H, H-2'), 2.88 (q, J= 7.5 Hz, 2H, H-5), 7.16-7.17 (m, 1H, H-aromatic), 7.92 (d, J= 3.7 Hz, 1H, H-aromatic), 8.58 (d, J= 2.5Hz, 1H, H-aromatic), 8.61-8.63 (m, 1H, H-aromatic), 9.79 (d, J= 1.6 Hz, 1H, H-aromatic), 12.00 (bs, 1H, NH).

^{13}C-NMR (DMSO-d_{6}), δ: (major and minor species) 11.75, 12.24, 14.49, 15.35 (CH_{3}, C-6, 2'), 23.21, 23.50 (CH_{2}, C-5), 115.69 (C, C-aromatic), 117.04, 117.68, 141.79, 143.19, 143.27, 143.43, 143.49, 143.66 (CH, C-aromatic), 144.00, 147.56, 150.73 (C, C-aromatic), 152.06 (CH, C-aromatic), 155.02, 168.55 (C, C-aromatic).
6.4.16.2 \(N'-(6\text{-Ethylthieno}[2,3-d]\text{pyrimidin-4-yl})-2\text{-arylcarbohydrazides (455-456)} \)

\(N'-(6\text{-Ethylthieno}[2,3-d]\text{pyrimidin-4-yl})-2\text{-hydroxybenzohydrazide (455)} \)
\((C_{15}H_{14}N_4O_2S; \text{M.W} = 314.4) \)

![Chemical Structure](image)

General procedure 22;
Reagent: 6-ethyl-4-hydrazinylthieno[2,3-d]pyrimidine (451) (0.2 g, 1 mmol);
Purification: re-crystallisation from EtOH;
White solid;
Yield: 0.10 g (28%)
Melting Point: 176-179°C
MS (ESI\(^+\)) : 314.9 [M+H]\(^+\)

\(^1\text{H-NMR (DMSO-d}_6\), \delta: \)
1.32 (t, J= 7.2 Hz, 3H, H-6), 2.93 (q, J= 7.2 Hz, 2H, H-5), 6.96-7.01 (m, 2H, H-aromatic), 7.43 (s, 1H, H-7), 7.46-7.50 (m, 1H, H-aromatic), 7.98 (d, J= 7.9 Hz, 1H, H-aromatic), 8.39 (s, 1H, H-2), 10.09 (bs, 1H, NH), 10.83 (bs, 1H, NH), 11.87 (bs 1H, OH).

\(^{13}\text{C-NMR (DMSO-d}_6\), \delta: \)
14.97 (CH\(_3\), C-6), 23.53 (CH\(_2\), C-5), 114.64 (CH, C-aromatic), 114.77, 115.23, 116.99 (C, C-aromatic), 117.35, 119.06, 128.39 (CH, C-aromatic), 132.27 (C, C-aromatic), 134.13 (CH, C-aromatic), 144.57 (C, C-aromatic), 152.51 (CH, C-aromatic), 159.13 (C, C-aromatic), 168.00 (C, C-1').
Chapter 6: Experimental

N’-(6-Ethylthieno[2,3-d]pyrimidin-4-yl)picolinohydrazide (456)
(C_{14}H_{13}N_{5}S; M.W.= 299.35)

General procedure 22;
Reagent: 6-ethyl-4-hydraziniumthieno[2,3-d]pyrimidine (451) (0.2 g, 1 mmol);
Purification: re-crystallisation from EtOH;
Pale yellow solid;
Yield: 0.08 g (26%)
Melting Point: 149-152°C
MS (ESI+) : 299.9 [M+H]^+

^1H-NMR (DMSO-d6), δ: 1.30 (t, J= 7.2 Hz, 3H, H-6), 2.91 (q, J= 7.2 Hz, 2H, H-5),
7.41 (s, 1H, H-7), 7.66-7.71 (m, 1H, H-aromatic), 8.02-8.08 (m, 2H, H-aromatic), 8.33
(s, 1H, H-2), 8.74 (d, J= 4.2 Hz, 1H, H-aromatic), 9.90 (bs, 1H, NH), 10.83 (bs, 1H,
NH).

^13C-NMR (DMSO-d6), δ: 14.95 (CH₃, C-6), 23.50 (CH₂, C-5), 114.78 (CH, C-
aromatic), 115.19, 116.33 (C, C-aromatic), 122.44, 127.04 (CH, C-aromatic), 132.84
(C, C-aromatic), 137.87 (CH, C-aromatic), 144.13 (C, C-aromatic), 148.71 (CH, C-
aromatic), 149.26 (C, C-aromatic), 152.81 (CH, C-aromatic), 163.47 (C, C-1’).
6.5 Synthesis of pyrrolone structures

6.5.1 General procedures 24-25

General procedure 24: synthesis of 3-arylidene-5-phenylfuran-2(3H)-ones

A stirred solution of 3-benzoyl propanoic acid (460) (1 g, 5.6 mmol), benzaldehyde (6.6 mmol) and sodium acetate (0.47 g, 5.6 mmol) in 7 mL of acetic anhydride was heated at 95°C for 2 h under N₂ atmosphere. The reaction mixture was then cooled to r.t., diluted with MeOH and left in an ice-bath for 2 h. The resulting precipitate was filtered and washed with a cold 50% solution of MeOH in water to give 3-arylidene-5-phenylfuran-2(3H)-ones, that were used for the following step without further purification.

General procedure 25: synthesis of 1-aryl-3-arylidene-5-phenyl-1H-pyrrol-2(3H)-ones

A mixture of 3-arylidene-5-phenylfuran-2(3H)-one (2.0 mmol) and differently substituted aniline (1.9 mmol) in 18 mL of glacial acetic acid was stirred at r.t. under N₂ atmosphere for 4 h, then heated to reflux for 22 h. The solvent was then evaporated at reduced pressure and the crude residue was purified by flash column chromatography to afford pure 1-aryl-3-arylidene-5-phenyl-1H-pyrrol-2(3H)-ones.
6.5.2 Ethyl 4-formylbenzoate (461)

\(\text{(C}_{10}\text{H}_{10}\text{O}_3; \text{M.W.} = 178.2) \)

4-Formyl-benzoic acid (483) (2 g, 13.4 mmol), \(\text{H}_2\text{SO}_4 \) (0.6 mL) and \(\text{EtOH} \) (62 mL) were mixed and heated under reflux for 18 h. The reaction mixture was then cooled to r.t. and the organic solvent was removed under vacuum. The residue was dissolved in \(\text{EtOAc} \) (40 mL), washed with saturated \(\text{NaHCO}_3 \) solution (2 x 40 mL), brine (2 x 40 mL), and distilled water (2 x 40 mL), and finally dried over \(\text{MgSO}_4 \). The organic solvent was then removed under vacuum to afford the title compound as a brown oil, that was used for the following step without further purification.

Yield: 12.0 g (84%)

\(^1\text{H-NMR (CDCl}_3 \), 8: \)

\begin{align*}
1.43 & (\text{t, } J= 7.1 \text{ Hz, } 3\text{H, H-2'}), \\
4.43 & (\text{q, } J= 7.1 \text{ Hz, } 2\text{H, H-1'}), \\
7.96 & (\text{d, } J= 8.5 \text{ Hz, } 2\text{H, H-aromatic}), \\
8.21 & (\text{d, } J= 8.5 \text{ Hz, } 2\text{H, H-aromatic}), \\
10.11 & (\text{s, } 1\text{H, H-8}).
\end{align*}

\(^{13}\text{C-NMR (CDCl}_3 \), 8: \)

\begin{align*}
14.26 & (\text{CH}_3, \text{ C-2'}), \\
61.38 & (\text{CH}_2, \text{ C-1'}), \\
129.46 & , \\
130.14 & (\text{CH}, \text{ C-aromatic}), \\
135.48 & , \\
139.10 & (\text{C, C-2}, \text{ 5}), \\
165.56 & (\text{C, C-1}), \\
191.62 & (\text{CH}, \text{ C-8}).
\end{align*}
6.5.3 3-Arylidene-5-phenylfuran-2(3H)-ones (466-470)

4-(2-Oxo-5-phenyl-furan-3-ylidenemethyl)-benzoic acid ethyl ester (466)
\(C_{20}H_{16}O_4; M.W.= 320.3 \)

General procedure 24;
Yellow solid;
Yield: 0.55 g (31%)

\(^1H\text{-NMR (DMSO-d}_6), \delta: \) 1.34 (t, J= 7.0 Hz, 3H, H-8'), 4.34 (q, J= 7.0 Hz, 2H, H-7'), 7.40 (s, 1H, H-alkenylic), 7.56-7.60 (m, 3H, H-aromatic), 7.63 (s, 1H, H-alkenylic), 7.88-7.92 (m, 2H, H-aromatic), 7.97 (d, J= 7.8 Hz, 2H, H-aromatic), 8.01 (d, J= 8.3 Hz, 2H, H-aromatic).

\(^13C\text{-NMR (DMSO-d}_6), \delta: \) 14.07 (CH\(_3\), C-8'), 60.97 (CH\(_2\), C-7'), 101.07, 125.47 (CH, C-alkenylic, aromatic), 126.57, 127.50 (C, C-aromatic), 129.02, 129.52, 130.58 (CH, C-aromatic), 130.65 (C, C-aromatic), 130.91, 133.12 (CH, C-aromatic), 138.68, 157.08 (C, C-aromatic), 165.10, 168.37 (C, C-1, 6').

3-Benzylidene-5-phenyl-3H-furan-2-one (467)\(^{71} \)
\(C_{17}H_{12}O_2; M.W.= 248.3 \)

General procedure 24;
Yellow solid;
Yield: 0.49 g (35%)

\(^1H\text{-NMR (DMSO-d}_6), \delta: \) 7.41 (s, 1H, H-alkenylic), 7.49-7.55 (m, 6H, H-aromatic), 7.63 (s, 1H, H-alkenylic), 7.88-7.92 (m, 4H, H-aromatic).
13C-NMR (**DMSO-d<sub>6**), δ: 101.11 (CH, C-alkenylc), 124.61 (C, C-aromatic), 125.30 (CH, C-aromatic), 127.74 (C, C-aromatic), 128.86, 129.11, 129.29, 130.55, 130.59 (CH, C-aromatic), 134.42 (C, C-aromatic), 135.14 (CH, C-aromatic), 155.99 (C, C-aromatic), 168.74 (C, C-1).

3-(4-Methoxy-benzylidene)-5-phenyl-3H-furan-2-one (**468**)⁷²

(C₁₈H₁₄O₃; M.W.= 278.3)

General procedure 24;
Yellow solid;
Yield: 0.51 g (33%)

1H-NMR (**DMSO-d<sub>6**), δ: 3.85 (s, 3H, H-6’), 7.06 (d, J= 8.8 Hz, 2H, H-aromatic), 7.36 (s, 1H, H-3), 7.45-7.53 (m, 3H, H-aromatic), 7.60 (d, J= 0.7 Hz, 1H, H-1’), 7.86-7.89 (m, 4H, H-aromatic).

13C-NMR (**DMSO-d<sub>6**), δ: 55.44 (CH₂, C-6’), 101.14, 114.71 (CH, C-alkenylc, aromatic), 121.82 (C, C-aromatic), 125.04 (CH, C-aromatic), 127.19, 127.97 (C, C-aromatic), 128.92, 130.19, 132.82, 135.32 (CH, C-aromatic), 154.84, 161.34 (C, C-aromatic), 169.08 (C, C-1).

3-(4-Bromo-benzylidene)-5-phenyl-3H-furan-2-one (**469**)

(C₁₇H₁₁BrO₂; M.W.= 327.2)

General procedure 24;
Yellow solid;
Yield: 0.93 g (51%)
1H-NMR (CDCl$_3$), δ: 7.28 (s, 1H, H-alkenylic), 7.38 (s, 1H, H-alkenylic), 7.46-7.50 (m, 3H, H-aromatic), 7.52 (d, J= 8.4 Hz, 2H, H-aromatic), 7.63 (d, J= 7.6 Hz, 2H, H-aromatic), 7.78-7.83 (m, 2H, H-aromatic).

13C-NMR (CDCl$_3$), δ: 99.52 (CH, C-alkenylic), 121.12 (C, C-aromatic), 125.46 (CH, C-aromatic), 127.01, 127.54 (C, C-aromatic), 128.95, 130.76, 131.32, 132.41, 133.71 (CH, C-aromatic), 152.34, 159.53 (C, C-aromatic), 168.89 (C, C-1).

3-(4-Bromo-benzylidene)-5-phenyl-3H-furan-2-one (470)

(C$_{23}$H$_{16}$O$_2$; M.W. = 324.4)

General procedure 24;
Yellow solid;
Yield: 0.74 g (41%)

1H-NMR (DMSO-d$_6$), δ: 7.40-7.45 (m, 2H, H-aromatic), 7.47-7.56 (m, 5H, H-aromatic), 7.67 (s, 1H, H-alkenylic), 7.74-7.79 (m, 2H, H-aromatic), 7.80 (d, J= 8.3 Hz, 2H, H-aromatic), 7.89-7.93 (m, 2H, H-aromatic), 7.98 (d, J= 8.3 Hz, 2H, H-aromatic).

13C-NMR (DMSO-d$_6$), δ: 101.24 (CH, C-alkenylic), 124.35 (C, C-aromatic), 125.30, 126.74, 127.19 (CH, C-aromatic), 127.77 (C, C-aromatic), 128.16, 128.98, 129.07, 130.54, 131.34 (CH, C-aromatic), 133.57 (C, C-aromatic), 134.59 (CH, C-aromatic), 138.98, 141.93, 155.94 (C, C-aromatic), 168.89 (C, C-1).
6.5.4 1-Aryl-3-arylidene-5-phenyl-1H-pyrrol-2(3H)-ones (459, 475-482)

4-[1-(2-Bromo-4-methyl-phenyl)-2-oxo-5-phenyl-1,2-dihydro-pyrrol-3-ylidene methyl]-benzoic acid ethyl ester (459)
(C_{27}H_{22}BrNO_3; M.W. = 488.4)

General procedure 25;
Orange solid;
T.L.C. System: nhexane:EtOAc 8:2 v/v, Rf: 0.36.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane:EtOAc 90:10 v/v).
Yield: 0.41 g (44%)
Melting Point: 166-168°C
MS (ESI\(^+\)): 488.1, 490.1 [M+H]^+

Microanalysis: Calculated for C_{27}H_{22}BrNO_3 (488.4); Theoretical: %C = 66.40, %H = 4.54, %N = 2.87; Found: %C = 66.29, %H = 4.25, %N = 2.71.

\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 1.44 (t, J= 7.1 Hz, 3H, H-3”), 2.36 (s, 3H, H-12”), 4.43 (q, J= 7.1 Hz, 2H, H-2”), 6.50 (d, J= 0.8 Hz, 1H, H-1’), 7.06-7.17 (m, 2H, H-aromatic), 7.27-7.30 (m, 4H, H-aromatic), 7.30-7.35 (m, 1H, H-aromatic), 7.46-7.47 (m, 1H, H-aromatic), 7.55 (s, 1H, H-3), 7.76 (d, J= 8.3 Hz, 2H, H-aromatic), 8.13 (d, J= 8.3 Hz, 2H, H-aromatic).

\(^{13}\)C-NMR (CDCl\(_3\)), \(\delta\): 14.34 (CH\(_3\), C-3”), 20.90 (CH\(_3\), C-12”), 61.19 (CH\(_2\), C-2”), 100.82 (CH, C-1’), 123.44 (C, C-aromatic), 127.56, 128.41, 129.06, 129.42, 129.97, 130.01, 130.45 (CH, C-aromatic), 130.63, 130.80, 131.06 (C, C-aromatic), 131.43 (CH, C-aromatic), 132.69 (C, C-aromatic), 134.04 (CH, C-aromatic), 140.10, 140.36, 149.85 (C, C-aromatic), 166.04, 169.38 (C, C-1”, 1).
3-Benzylidene-1,5-diphenyl-1,3-dihydro-pyrrol-2-one (475)

(C_{23}H_{17}NO; M.W. = 323.4)

General procedure 25;
Orange solid;
T.L.C. System: nhexane-EtOAc 8:2 v/v, Rf: 0.53.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane:EtOAc 70:30 v/v).
Yield: 0.21 g (34%)
Melting Point: 165-167°C
MS (ESI^+): 324.1 [M+H]^+

1H-NMR (DMSO-d$_6$), δ: 6.82 (s, 1H, H-alkenyllic), 7.13 (d, J = 7.7 Hz, 2H, H-aromatic), 7.24-7.35 (m, 6H, H-aromatic), 7.36-7.40 (m, 2H, H-aromatic), 7.42 (s, 1H, H-alkenyllic), 7.43-7.48 (m, 1H, H-aromatic), 7.48-7.55 (m, 2H, H-aromatic), 7.88 (d, J = 7.5 Hz, 2H, H-aromatic).

13C-NMR (DMSO-d$_6$), δ: 101.92, 127.20, 127.47, 128.28, 128.63, 128.74 (CH, C-aromatic), 128.92 (C, C-aromatic), 129.07, 129.13, 129.17 (CH, C-aromatic), 129.93 (C, C-aromatic), 130.65, 132.28 (CH, C-aromatic), 135.10, 135.66, 147.95 (C, C-aromatic), 169.03 (C, C-1).

4-(2-Oxo-1,5-diphenyl-1,2-dihydro-pyrrol-3-ylidenemethyl)-benzoic acid ethyl ester (476)

(C_{26}H_{21}NO_{3}; M.W. = 395.5)
General procedure 25;
Orange solid;
T.L.C. System: \(\text{n} \)hexane:EtOAc 7:3 \(\text{v/v} \), \(\text{Rf: 0.66} \).
Purification: flash column chromatography (\(\text{n} \)hexane:EtOAc 100:0 \(\text{v/v} \) increasing to \(\text{n} \)hexane:EtOAc 80:20 \(\text{v/v} \)).
Yield: 0.42 g (57%)
Melting Point: 133-135°C
MS (ESI\(^+\)): 396.1 [M+H\(^+\)]
\(^1\)H-NMR (DMSO-\(\text{d_6} \)), \(\delta \): 1.34 (t, \(\text{J} = 7.1 \text{ Hz} \), 3H, H-3'''), 4.34 (q, \(\text{J} = 7.1 \text{ Hz} \), 2H, H-2'''), 6.84 (s, 1H, H-alkenylcylic), 7.12-7.15 (m, 2H, H-aromatic), 7.29-7.35 (m, 6H, H-aromatic), 7.36-7.43 (m, 3H, H-aromatic), 7.99 (d, \(\text{J} = 8.5 \text{ Hz} \), 2H, H-aromatic), 8.03 (d, \(\text{J} = 8.5 \text{ Hz} \), 2H, H-aromatic).
\(^{13}\)C-NMR (DMSO-\(\text{d_6} \)), \(\delta \): 14.10 (CH\(_3\), C-3'''), 60.89 (CH\(_2\), C-2'''), 101.78, 127.13, 127.32, 127.72, 128.50, 128.78, 129.44, 129.57 (CH, C-aromatic), 130.16 (C, C-aromatic), 130.34, 130.54 (CH, C-aromatic), 130.73, 135.49, 139.49, 149.32 (C, C-aromatic), 165.20, 168.89 (C, C-1''', 1).

3-(4-Methoxy-benzylidene)-1,5-diphenyl-1,3-dihydro-pyrrol-2-one (477)
(\(\text{C}_{24}\text{H}_{19}\text{NO}_2 \); M.W. = 353.4)

General procedure 25;
Yellow solid;
T.L.C. System: \(\text{n} \)hexane:EtOAc 7:3 \(\text{v/v} \), \(\text{Rf: 0.63} \).
Purification: flash column chromatography (\(\text{n} \)hexane:EtOAc 100:0 \(\text{v/v} \) increasing to \(\text{n} \)hexane:EtOAc 80:20 \(\text{v/v} \)).
Yield: 0.26 g (39%)
Melting Point: 150-152°C
MS (ESI\(^+\)): 354.1 [M+H\(^+\)]
1H-NMR (CDCl$_3$), δ: 6.50 (s, 3H, H-1''), 6.49 (s, 1H, H-alkenyllic), 7.00 (d, J= 8.7 Hz, 2H, H-aromatic), 7.14-7.17 (m, 2H, H-aromatic), 7.22-7.31 (m, 6H, H-aromatic), 7.32-7.33 (m, 2H, H-aromatic), 7.53 (s, 1H, H-alkenyllic), 7.70 (d, J= 8.7 Hz, 2H, H-aromatic).

13C-NMR (CDCl$_3$), δ: 55.42 (CH$_3$, C-1''), 102.11, 114.54, 126.71, 127.11 (CH, C-aromatic), 127.56 (C, C-aromatic), 127.68, 128.28, 128.55, 128.69 (CH, C-aromatic), 128.84, 131.16 (C, C-aromatic), 132.17, 133.24 (CH, C-aromatic), 135.89, 147.16, 160.96 (C, C-aromatic), 169.90 (C, C-1).

3-(4-Bromo-benzylidene)-1,5-diphenyl-1,3-dihydro-pyrrol-2-one (478)
(C$_{23}$H$_{16}$BrNO; M.W. = 402.3)

General procedure 25;
Orange solid;
T.L.C. System: nhexane:EtOAc 7:3 v/v, Rf: 0.66.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane:EtOAc 80:20 v/v).
Yield: 0.22 g (29%)
Melting Point: 155-157°C
MS (ESI$^+$): 402.0, 404.0 [M+H]$^+$

1H-NMR (CDCl$_3$), δ: 6.44 (s, 1H, H-alkenyllic), 7.13-7.16 (m, 2H, H-aromatic), 7.23-7.25 (m, 2H, H-aromatic), 7.26-7.30 (m, 3H, H-aromatic), 7.31-7.38 (m, 3H, H-aromatic), 7.47 (s, 1H, H-alkenyllic), 7.56 (d, J= 8.6 Hz, 2H, H-aromatic), 7.60 (d, J= 8.6 Hz, 2H, H-aromatic).

13C-NMR (CDCl$_3$), δ: 101.60 (CH, C-aromatic), 123.90 (C, C-aromatic), 126.95, 127.09, 127.29, 127.74, 128.36, 128.78, 129.25 (CH, C-aromatic), 130.16, 130.79 (C, C-aromatic), 131.52, 131.55 (CH, C-aromatic), 134.81, 135.59, 148.94 (C, C-aromatic), 169.57 (C, C-1).
3-Biphenyl-4-ylmethylene-1,5-diphenyl-1,3-dihydro-pyrrol-2-one (479)
(C_{29}H_{21}NO; M.W. = 399.5)

![Chemical structure](image)

General procedure 25;
Orange solid;
T.L.C. System: n-hexane:EtOAc 7:3 v/v, Rf: 0.70.
Purification: flash column chromatography (n-hexane:EtOAc 100:0 v/v increasing to n-hexane:EtOAc 80:20 v/v).
Yield: 0.20 g (27%)
Melting Point: 187-189°C
MS (ESI^+): 400.1 [M+H]^+

\(^1\)H-NMR (CDCl\(_3\)), \(\delta\): 6.57 (d, J = 0.8 Hz, 1H, H-1'), 7.16-7.19 (m, 2H, H-aromatic), 7.25-7.34 (m, 6H, H-aromatic), 7.35-7.39 (m, 2H, H-aromatic), 7.42 (tt, J\(_1\) = 7.3 Hz, J\(_2\) = 1.8 Hz, 1H, H-aromatic), 7.49-7.53 (m, 2H, H-aromatic), 7.61 (s, 1H, H-3), 7.66-7.70 (m, 2H, H-aromatic), 7.72 (d, J = 8.3 Hz, 2H, H-aromatic), 7.81 (d, J = 8.3 Hz, 2H, H-aromatic).

\(^{13}\)C-NMR (CDCl\(_3\)), \(\delta\): 101.12 (CH, C-1'), 126.87, 127.07, 127.14, 127.91, 128.10, 128.34, 128.63, 128.87, 128.96, 129.09 (CH, C-aromatic), 129.55, 130.07 (C, C-aromatic), 131.22, 132.82 (CH, C-aromatic), 134.91, 135.74, 140.16, 142.34, 148.26 (C, C-aromatic), 169.80 (C, C-1).
4-(2-Oxo-5-phenyl-1-p-tolyl-1,2-dihydro-pyrrol-3-ylidenemethyl)-benzoic acid ethyl ester (480)

(C$_{27}$H$_{23}$NO$_3$; M.W. = 409.5)

General procedure 25;
Orange solid;
T.L.C. System: nhexane:EtOAc 8:2 v/v, Rf: 0.43.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane:EtOAc 85:15 v/v).
Yield: 0.25 g (32%)
Melting Point: 161-163°C
MS (ESI$^+$): 410.2[M+H]$^+$

1H-NMR (CDCl$_3$), δ: 1.44 (t, J = 7.1 Hz, 3H, H-3’’), 2.36 (s, 3H, H-12’’), 4.43 (q, J = 7.1 Hz, 2H, H-2’’), 6.47 (d, J = 0.8 Hz, 1H, H-1’’), 7.03 (d, J = 8.2 Hz, 2H, H-aromatic), 7.15 (d, J = 8.2 Hz, 2H, H-aromatic), 7.25-7.35 (m, 5H, H-aromatic), 7.54 (s, 1H, H-3), 7.75 (d, J = 8.3 Hz, 2H, H-aromatic), 8.13 (d, J = 8.3 Hz, 2H, H-aromatic).

13C-NMR (CDCl$_3$), δ: 14.34 (CH$_3$, C-3’’), 21.13 (CH$_3$, C-12’’), 61.18 (CH$_2$, C-2’’), 101.39 (CH, C-1’’), 126.92, 127.81, 128.35, 129.32, 129.49, 129.92, 130.01 (CH, C-aromatic), 130.75 (C, C-aromatic), 131.16 (CH, C-aromatic), 131.42, 132.91, 136.89, 140.18, 149.79 (C, C-aromatic), 166.04, 169.66 (C, C-1’’), 1.
4-[1-(2,3-Dimethyl-phenyl)-2-oxo-5-phenyl-1,2-dihydro-pyrrol-3-ylidenemethyl]-benzoic acid ethyl ester (481)
(C_{28}H_{25}NO_{3}; M.W. = 423.5)

General procedure 25;
Orange solid;
Purification: flash column chromatography (*n*hexane:EtOAc 100:0 v/v increasing to
*n*hexane:EtOAc 85:15 v/v).
Yield: 0.45 g (56%)
Melting Point: 64-66°C
MS (ESI\(^+\)): 424.2 [M+H]\(^+\)

\(^1\)H-NMR (CDCl\(_3\)), 8: 1.44 (t, *J* = 7.1 Hz, 3H, H-3’’’), 2.13 (s, 3H, CH\(_3\)), 2.32 (s, 3H, CH\(_3\)), 4.43 (q, *J* = 7.1 Hz, 2H, H-2’’’), 6.52 (d, *J* = 0.8 Hz, 1H, H-1’’), 6.89 (d, *J* = 7.7 Hz, 1H, H-aromatic), 7.05-7.09 (m, 1H, H-aromatic), 7.15 (d, *J* = 7.5 Hz, 1H, H-aromatic), 7.21-7.27 (m, 4H, H-aromatic), 7.28-7.32 (m, 1H, H-10’), 7.54 (s, 1H, H-3), 7.77 (d, *J* = 8.3 Hz, 2H, H-aromatic), 8.13 (d, *J* = 8.3 Hz, 2H, H-aromatic).

\(^{13}\)C-NMR (CDCl\(_3\)), 8: 14.34 (CH\(_3\), C-3’’’), 14.66, 20.42 (CH\(_3\), C-12’, 13’), 61.18 (CH\(_2\), C-2’’’), 100.57 (CH, C-1’’), 125.95, 126.35, 127.41, 128.36, 129.35, 129.88, 129.94, 130.02 (CH, C-aromatic), 130.74 (C, C-aromatic), 131.14 (CH, C-aromatic), 131.40, 134.83, 135.17, 138.26, 140.22, 150.41 (C, C-aromatic), 166.05, 169.59 (C, C-1’’’, 1).
3-Benzylidene-1-(2-bromo-4-methyl-phenyl)-5-phenyl-1,3-dihydro-pyrrol-2-one (482)
(C$_{24}$H$_{18}$BrNO; M.W. = 416.3)

General procedure 25;
Yellow solid;
T.L.C. System: nhexane:EtOAc 8:2 v/v, Rf: 0.38.
Purification: flash column chromatography (nhexane:EtOAc 100:0 v/v increasing to nhexane:EtOAc 85:15 v/v).
Yield: 0.39 g (50%)
Melting Point: 175-177°C
MS (ESI$^+$): 416.0, 418.0 [M+H]$^+$
1H-NMR (CDCl$_3$), δ: 2.36 (s, 3H, H-12'), 6.53 (d, J= 0.8 Hz, 1H, H-1’), 7.11-7.15 (m, 2H, H-aromatic), 7.25-7.33 (m, 5H, H-aromatic), 7.41 (tt, J$_1$= 7.3 Hz, J$_2$= 2.2 Hz, 1H, H-aromatic), 7.45-7.49 (m, 3H, H-aromatic), 7.5 (s, 1H, H-3), 7.72 (d, J= 7.5 Hz, 2H, H-aromatic).
13C-NMR (CDCl$_3$), δ: 20.90 (CH$_3$, C-12'), 101.10 (CH, C-1’), 123.49 (C, C-aromatic), 127.52, 128.34, 128.93, 129.02, 129.12, 129.47 (CH, C-aromatic), 129.61 (C, C-aromatic), 130.31, 130.49 (CH, C-aromatic), 131.78, 132.92 (C, C-aromatic), 133.34, 134.00 (CH, C-aromatic), 135.90, 140.20, 148.51 (C, C-aromatic), 169.60 (C, 1).
6.6 References

Chapter 6: Experimental

59 Goldfarb, D.S. Method using lifespan-altering compounds for altering the lifespan of eukaryotic organisms, and screening for such compounds. US patent 20090163545A1, June 25, 2009.

Appendix I

Structure and biological evaluation of purchased compounds

All the structures selected with virtual screening studies and purchased from the SPECS company were tested for their potential antiviral activity in the subgenomic replicon and cytostatic assays. Their structures and biological results are shown in tables 1-3.

Structure-based virtual screening on the enzyme closed conformation (3KQN)

<table>
<thead>
<tr>
<th>Structure</th>
<th>Compound</th>
<th>EC$_{50}$(μM)</th>
<th>CC$_{50}$(μM)</th>
<th>EC$_{90}$(μM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>8</td>
<td>>90</td>
<td>89.4% inhibition at 90</td>
<td>>6.9</td>
</tr>
<tr>
<td></td>
<td>483</td>
<td>30.6</td>
<td>>125.6</td>
<td>-</td>
<td>>4.1</td>
</tr>
<tr>
<td></td>
<td>484</td>
<td>13.2</td>
<td>33.4</td>
<td>-</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>485</td>
<td>26.4</td>
<td>>121.1</td>
<td>>121.1</td>
<td>>4.5</td>
</tr>
<tr>
<td></td>
<td>486</td>
<td>41.8</td>
<td>>89.5</td>
<td>>89.5</td>
<td>>2.1</td>
</tr>
<tr>
<td></td>
<td>487</td>
<td>>113.4</td>
<td>>113.4</td>
<td>>113.4</td>
<td>-</td>
</tr>
<tr>
<td>Compound</td>
<td>Antiviral</td>
<td>Cytotoxicity</td>
<td>IC50</td>
<td>HD50</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>--------------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>488</td>
<td>>101.5</td>
<td>>101.5</td>
<td>>101.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>489</td>
<td>>184.2</td>
<td>>184.2</td>
<td>>184.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>10.4</td>
<td>15.7</td>
<td>-</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>491</td>
<td>81.7</td>
<td>>135.8</td>
<td>-</td>
<td>>1.6</td>
<td></td>
</tr>
<tr>
<td>492</td>
<td>126.7</td>
<td>>149</td>
<td>-</td>
<td>>1.1</td>
<td></td>
</tr>
<tr>
<td>493</td>
<td>35.8</td>
<td>>103.6</td>
<td>-</td>
<td>>2.8</td>
<td></td>
</tr>
<tr>
<td>494</td>
<td>>224.9</td>
<td>>224.9</td>
<td>>224.9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>57.2</td>
<td>>104.9</td>
<td>-</td>
<td>>1.8</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Antiviral and cytotoxicity data for compounds 12, 483-495
Structure-based virtual screening on the enzyme open conformation (3KQH)

<table>
<thead>
<tr>
<th>Structure</th>
<th>Compound</th>
<th>EC$_{50}$ (μM)</th>
<th>CC$_{50}$ (μM)</th>
<th>EC$_{90}$ (μM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>187</td>
<td><1</td>
<td>>141</td>
<td>>116</td>
<td>>141</td>
</tr>
<tr>
<td></td>
<td>496</td>
<td>32</td>
<td>>106</td>
<td>-</td>
<td>>3.3</td>
</tr>
<tr>
<td></td>
<td>497</td>
<td>10.9</td>
<td>56.2</td>
<td>-</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>498</td>
<td>>149</td>
<td>>149</td>
<td>>149</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>499</td>
<td>36</td>
<td>>101</td>
<td>-</td>
<td>>2.8</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>21</td>
<td>128</td>
<td>-</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>501</td>
<td>65</td>
<td>>126</td>
<td>-</td>
<td>>1.9</td>
</tr>
<tr>
<td></td>
<td>502</td>
<td>>151</td>
<td>>151</td>
<td>>151</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>503</td>
<td></td>
<td>12.8</td>
<td>62.6</td>
<td>-</td>
<td>4.9</td>
</tr>
<tr>
<td>504</td>
<td></td>
<td>129.5</td>
<td>>141.5</td>
<td>>141.5</td>
<td>>1.1</td>
</tr>
<tr>
<td>505</td>
<td></td>
<td>>86</td>
<td>>86</td>
<td>>86</td>
<td>-</td>
</tr>
<tr>
<td>506</td>
<td></td>
<td>1.9</td>
<td>51.9</td>
<td>-</td>
<td>27.3</td>
</tr>
<tr>
<td>507</td>
<td></td>
<td>1.1</td>
<td>4.7</td>
<td>-</td>
<td>4.3</td>
</tr>
<tr>
<td>508</td>
<td></td>
<td>42.2</td>
<td>>125.5</td>
<td>-</td>
<td>>2.9</td>
</tr>
<tr>
<td>509</td>
<td></td>
<td>>126.8</td>
<td>>126.8</td>
<td>>126.8</td>
<td>-</td>
</tr>
<tr>
<td>510</td>
<td></td>
<td>34.5</td>
<td>>116</td>
<td>-</td>
<td>>3.4</td>
</tr>
<tr>
<td>511</td>
<td></td>
<td>>144</td>
<td>>144</td>
<td>>144</td>
<td>-</td>
</tr>
<tr>
<td>512</td>
<td></td>
<td>129.5</td>
<td>>139</td>
<td>>139</td>
<td>>1.1</td>
</tr>
<tr>
<td></td>
<td>513</td>
<td>514</td>
<td>515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>38.9</td>
<td>>139.9</td>
<td>21.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>61.7</td>
<td>>139.9</td>
<td>48.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>>139.9</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.6</td>
<td>-</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Antiviral and cytotoxicity data for compounds 187, 596-515
Ligand-based virtual screening on triphenylmethane derivative 458

<table>
<thead>
<tr>
<th>Structure</th>
<th>Compound</th>
<th>EC$_{50}$ (µM)</th>
<th>CC$_{50}$ (µM)</th>
<th>EC$_{90}$ (µM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>459</td>
<td>38.3</td>
<td>>204.8</td>
<td>149.1</td>
<td>>5.3</td>
</tr>
<tr>
<td></td>
<td>516</td>
<td>146.8</td>
<td>>206.2</td>
<td>>206.2</td>
<td>>1.4</td>
</tr>
<tr>
<td></td>
<td>517</td>
<td>>255.4</td>
<td>>255.4</td>
<td>>255.4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>518</td>
<td>28</td>
<td>150.6</td>
<td>97.6</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>519</td>
<td>7.7</td>
<td>36.9</td>
<td>-</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>520</td>
<td>234.6</td>
<td>>264.2</td>
<td>>264.2</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3: Antiviral and cytotoxicity data for compounds 459, 516-520