Spectral Measures for G_2 II: finite subgroups

DAVID E. EVANS AND MATHEW PUGH

School of Mathematics, Cardiff University,
Senghennydd Road, Cardiff CF24 4AG, Wales, U.K.

April 8, 2014

Abstract

Joint spectral measures associated to the rank two Lie group G_2, including the representation graphs for the irreducible representations of G_2 and its maximal torus, nimrep graphs associated to the G_2 modular invariants have been studied. In this paper we study the joint spectral measures for the McKay graphs of finite subgroups of G_2.

Contents

1 Introduction 2
2 Preliminaries 3
 2.1 Spectral measures over different domains 3
 2.2 Spectral measures for G_2 5
 2.3 Spectral measures for nimrep graphs associated to G_2 modular invariants 6
3 The finite subgroups of G_2 7
 3.1 Spectral measures for finite subgroups of G_2 8
4 Group $PSL(2; 7) \cong GL(3; 2) \cong \Sigma(168)$ 10
5 Group $PSL(2; 7) \rtimes \mathbb{Z}_3^3$ 14
6 Group $PGL(2; 7)$ 17
7 Group $PSL(2; 8)$ 22
8 Group $PSL(2; 13)$ 24
9 Group $PU(3; 3) \cong G_2(2)'$ 26
10 Group $G_2(2)$ 29
References 31
1 Introduction

Spectral measures for the representation graphs for the irreducible representations of the exceptional compact Lie group G_2 and its maximal torus \mathbb{T}^2, and for nimrep graphs associated to the G_2 modular invariants, were studied in [8]. Here we consider the McKay graphs for finite subgroups of G_2 and study their spectral measures.

The spectral measure of a self-adjoint operator a in a unital C^*-algebra A with state φ is a compactly supported probability measure ν_a on the spectrum $\sigma(a) \subset \mathbb{R}$ of a, uniquely determined by its moments

$$\varphi(a^m) = \int_{\sigma(a)} x^m \, d\nu_a(x),$$

for all non-negative integers m.

The self-adjoint operators we consider here are the adjacency matrices of the McKay graphs for finite subgroups of G_2. The characters of the rank two Lie group G_2 are functions on \mathbb{T}^2, and it is convenient to write the spectral measures for these operators as measures ε over the torus \mathbb{T}^2. However, \mathbb{T}^2 has dimension one greater than $\sigma(a) \subset \mathbb{R}$, so that there is an infinite family of pullback measures ε over \mathbb{T}^2 for any spectral measure ν_a. The details of the relation between the measures ε and ν_a are given in Section 2.1.

In order to remove this ambiguity, we also consider joint spectral measures, that is, measures over the joint spectrum $\sigma(a, b) \subset \sigma(a) \times \sigma(b) \subset \mathbb{R}^2$ of commuting self-adjoint operators a and b. The abelian C^*-algebra B generated by a, b and the identity 1 is isomorphic to $C(X)$, where X is the spectrum of B. Then the joint spectrum is defined as $\sigma(a, b) = \{(a(x), b(x)) | x \in X\}$. In fact, one can identify the spectrum X with its image $\sigma(a, b)$ in \mathbb{R}^2, since the map $x \mapsto (a(x), b(x))$ is continuous and injective, and hence a homomorphism since X is compact [19]. In the case where the operators a, b act on a finite-dimensional Hilbert space, this is the set of all pairs of real numbers (λ_a, λ_b) for which there exists a vector ϕ, $\|\phi\| = 1$, such that $a\phi = \lambda_a\phi$, $b\phi = \lambda_b\phi$. Then there exists a compactly supported probability measure $\tilde{\nu}_{a,b}$ on $\sigma(a, b)$, which is uniquely determined by its cross moments

$$\varphi(a^m b^n) = \int_{\sigma(a,b)} x^m y^n \, d\tilde{\nu}_{a,b}(x, y),$$

for all non-negative integers m, n. Such joint spectral measures specialize to the spectral measures ν_a (respectively ν_b) by integrating over all y for which $(\lambda_a, y) \in \sigma(a, b)$ (respectively all x for which $(x, \lambda_b) \in \sigma(a, b)$). As discussed in Section 2.1 such a measure uniquely defines a measure over \mathbb{T}^2 invariant under an action of the Weyl group of G_2. In this paper we determine the joint spectral measure for each finite subgroup Γ of G_2 for all non-conjugate embeddings of Γ into the fundamental representations of G_2.

The paper is organised as follows. In Section 2 we present some preliminary material, including a discussion on the relation between spectral measures over certain different domains in Section 2.1 and a summary of relevant results for G_2 and its nimreps from [8].

In Section 3 we discuss the finite subgroups of G_2, including their embeddings into the fundamental representations of G_2. We also give a general discussion of their spectral measures. In Sections 4-10 we discuss each finite subgroup of G_2 individually, including determining all non-conjugate embeddings into the fundamental representations of G_2. For each such embedding we construct their McKay graphs, some of which have appeared before in [12], and we determine their joint spectral measures.
Spectral measures associated to the compact Lie groups $A_1 = SU(2)$ and $A_2 = SU(3)$ and their maximal tori, nimrep graphs associated to the $SU(2)$ and $SU(3)$ modular invariants, and the McKay graphs for finite subgroups of $SU(2)$ and $SU(3)$ were studied in [1, 6, 7]. Spectral measures associated to the compact Lie group C_2 are studied in [9], whilst spectral measures associated to other compact rank two Lie groups and their maximal tori are studied in [10].

2 Preliminaries

2.1 Spectral measures over different domains

The Weyl group of G_2 is the dihedral group D_{12} of order 12. As a subgroup of $GL(2, \mathbb{Z})$, D_{12} is generated by matrices T_2, T_6, of orders 2, 6 respectively, given by

$$T_2 = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \quad T_6 = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix},$$

where the action of D_{12} on \mathbb{T}^2 is given by $T(\omega_1, \omega_2) = (\omega_1^{a_{11}} \omega_2^{a_{12}}, \omega_1^{a_{21}} \omega_2^{a_{22}})$, for $T = (a_{ij}) \in D_{12}$. This action leaves $\chi_\mu(\omega_1, \omega_2)$ invariant, for any $\mu \in P_+ = \{(\mu_1, \mu_2) \in \mathbb{N}^2 | \mu_1 \geq \mu_2\}$, the interior of the Weyl alcove for G_2. Any D_{12}-invariant measure ε_μ on \mathbb{T}^2 yields a pushforward probability measure ν_μ on $I_\mu = \chi_\mu(\mathbb{T}^2) \subset \mathbb{R}$ by

$$\int_{I_\mu} \psi(x) d\nu_\mu(x) = \int_{\mathbb{T}^2} \psi(\chi_\mu(\omega_1, \omega_2)) d\varepsilon_\mu(\omega_1, \omega_2),$$

for any continuous function $\psi : I_\mu \to \mathbb{C}$, where $d\varepsilon_\mu(\omega_1, \omega_2) = d\varepsilon_\mu(g(\omega_1, \omega_2))$ for all $g \in D_{12}$. There is a loss of dimension here, in the sense that the integral on the right hand side is over the two-dimensional torus \mathbb{T}^2, whereas on the right hand side it is over the interval I_μ. Thus there is an infinite family of pullback measures ε_μ over \mathbb{T}^2 for any measure ν_μ on I_μ, that is, any ε_μ such that $\varepsilon_\mu(I_\mu^{-1}[x]) = \nu_\mu(x)$ for all $x \in I_\mu$ will yield the probability measure ν_μ on I_μ as a pushforward measure by I_μ. As in [8], we instead work with an intermediate probability measure $\tilde{\nu}_{\lambda,\mu}$ which lives over the joint spectrum $\mathcal{D}_{\lambda,\mu} \subset I_\lambda \times I_\mu \subset \mathbb{R}^2$, for $\lambda, \mu \in P_+$, where there is no loss of dimension.

A fundamental domain C of \mathbb{T}^2 under the action of the dihedral group D_{12} is illustrated in Figure 2 where the axes are labelled by the parameters θ_1, θ_2 in $(e^{2\pi i \theta_1}, e^{2\pi i \theta_2}) \in \mathbb{T}^2$, which is a quotient of the fundamental domain of \mathbb{T}^2/S_3 illustrated in Figure 1 (see [4]) by the \mathbb{Z}_2-action given by the matrix -1. Note that in Figure 2 the lines $\theta_1 = 0$ and $\theta_2 = 0$ are also boundaries of copies of the fundamental domain C under the action of D_{12}, whereas in Figure 1 they are not boundaries of copies of the fundamental domain under the action of S_3. The torus \mathbb{T}^2 contains 12 copies of C, so that

$$\int_{\mathbb{T}^2} \phi(\omega_1, \omega_2) d\varepsilon(\omega_1, \omega_2) = 12 \int_{C} \phi(\omega_1, \omega_2) d\varepsilon(\omega_1, \omega_2),$$

for any D_{12}-invariant function $\phi : \mathbb{T}^2 \to \mathbb{C}$ and D_{12}-invariant measure ε over \mathbb{T}^2. The only fixed point of \mathbb{T}^2 under the action of D_{12} is the point $(1,1)$.

Let $x_\lambda = \chi_\lambda(\omega_1, \omega_2)$ and let $\Psi_{\lambda,\mu}$ be the map $(\omega_1, \omega_2) \mapsto (x_\lambda, x_\mu)$. We denote by $\mathcal{D}_{\lambda,\mu}$ the image of $\Psi_{\lambda,\mu}(C)(= \Psi_{\lambda,\mu}(\mathbb{T}^2))$ in \mathbb{R}^2. Note that we can identify $\mathcal{D}_{\lambda,\mu}$ with $\mathcal{D}_{\mu,\lambda}$ by
reflecting about the line $x_\lambda = x_\mu$. Then the joint spectral measure $\tilde{\nu}_{\lambda,\mu}$ is the measure on $D_{\lambda,\mu}$ uniquely determined by its cross-moments as in (2). Then there is a unique D_{12}-invariant pullback measure ε on T^2 such that

$$\int_{D_{\lambda,\mu}} \psi(x_\lambda, x_\mu) d\tilde{\nu}_{\lambda,\mu}(x_\lambda, x_\mu) = \int_{T^2} \psi(\chi_\lambda(\omega_1, \omega_2), \chi_\mu(\omega_1, \omega_2)) d\varepsilon_{\lambda,\mu}(\omega_1, \omega_2),$$

(6)

for any continuous function $\psi : D_{\lambda,\mu} \to \mathbb{C}$.

Any probability measure on $D_{\lambda,\mu}$ yields a probability measure on the interval I_λ, given by the pushforward $(p_\lambda)_*(\tilde{\nu}_{\lambda,\mu})$ of the joint spectral measure $\tilde{\nu}_{\lambda,\mu}$ under the orthogonal projection p_λ onto the spectrum $\sigma(\lambda)$ (see [8] for more details). Since the spectral measure ν_λ over I_λ is also uniquely determined by its (one-dimensional) moments $\tilde{\varsigma}_m = \int_{I_\lambda} x_\lambda^m d\nu_\lambda(x_\lambda)$ for all $m \in \mathbb{N}$, one could alternatively consider the moments in (2) with $n = 0$ to determine the measure ν_λ over I_λ.

Let

$$C_k^W = \{(e^{2\pi i q_1/3(k+4)}, e^{2\pi i q_2/3(k+4)}) \in T^2 \mid q_1, q_2 = 0, 1, \ldots, 3k+11; q_1 + q_2 \equiv 0 \text{ mod } 3\}$$

(7)

which is the support (over T^2) of the spectral measure of the nimrep graph $A_k(G_2)$ associated to the trivial G_2 modular invariant at level k. The following G_2-invariant measures will be useful later, c.f. [7].

Definition 2.1. Let $\omega = e^{2\pi i/3}$, $\tau = e^{2\pi i/6}$. We define the following measures on T^2:

1. $d_m \times d_n$, where d_k is the uniform measure on the k^{th} roots of unity, for $k \in \mathbb{N}$.

2. $d^{(n)}$, the uniform measure on C_k^W for $n \in \mathbb{N}$.

3. $d^{(n)}$, the uniform measure on the S_3-orbit of the points $(\tau, \tau), (\omega \tau, \omega), (\omega, \omega \tau)$, for $n \in \mathbb{Q}$, $n \geq 2$.

4. $d^{(n,k)}$, the uniform measure on the S_3-orbit of the points $(\tau e^{2\pi i k}, \tau), (\tau, \tau e^{2\pi i k}), (\omega \tau, \omega e^{2\pi i k}, \omega \tau e^{-2\pi i k}), (\omega e^{-2\pi i k}, \omega \tau \tau e^{-2\pi i k})$, for $n,k \in \mathbb{Q}$, $n > 2$, $0 \leq k \leq 1/n$.

Figure 1: A fundamental domain of T^2/S_3. Figure 2: A fundamental domain C of T^2/D_{12}.

2.2 Spectral measures for \(G_2 \)

Here we review the results, determined in [8], for the spectral measures for \(G_2 \). Let \(\rho_1, \rho_2 \) denote the fundamental representations of \(G_2 \) of dimensions 7, 14 respectively. The restrictions of the characters \(\chi_{\rho_j} \) of the fundamental representations of \(G_2 \) to \(\mathbb{T}^2 \) yield maps from the torus to the interval \(I_j = \chi_{\rho_j}(\mathbb{T}^2) \subset \mathbb{R} \):

\[
\begin{align*}
\chi_{\rho_1}(\omega_1, \omega_2) &= 1 + \omega_1 + \omega_1^{-1} + \omega_2 + \omega_2^{-1} + \omega_1 \omega_2^{-1} + \omega_1^{-1} \omega_2 \\
&= 1 + 2 \cos(2\pi \theta_1) + 2 \cos(2\pi \theta_2) + 2 \cos(2\pi (\theta_1 - \theta_2)), \\
\chi_{\rho_2}(\omega_1, \omega_2) &= \chi_{\rho_1}(\omega_1, \omega_2) + 1 + \omega_1 \omega_2 + \omega_1^{-1} \omega_2^{-1} + \omega_1^2 \omega_2^{-1} + \omega_1^{-2} \omega_2 + \omega_1 \omega_2^{-2} + \omega_1^{-1} \omega_2^2 \\
&= \chi_{\rho_1}(\omega_1, \omega_2) + 1 + 2 \cos(2\pi (\theta_1 + \theta_2)) + 2 \cos(2\pi (2\theta_1 - \theta_2)) + 2 \cos(2\pi (\theta_1 - 2\theta_2)),
\end{align*}
\]

where \(\omega_j = e^{2\pi i \theta_j} \in \mathbb{T} \) for \(\theta_j \in [0, 1], j = 1, 2 \).

Let

\[
x := \chi_{\rho_1}(\omega_1, \omega_2), \quad y := \chi_{\rho_2}(\omega_1, \omega_2),
\]

and denote by \(\Psi \) the map \(\Psi: (\omega_1, \omega_2) \mapsto (x, y) \). The image \(\mathcal{D} = \Psi(C) \) of the fundamental domain \(C \) of \(\mathbb{T}^2/D_{12} \) (illustrated in Figure 2) under \(\Psi \) is illustrated in Figure 5 where the boundaries of \(C \) given by \(\theta_1 = 2\theta_2, \theta_1 = -\theta_2, \theta_1 = \theta_2 \) yield the curves \(c_1, c_2, c_3 \) respectively. These curves are given by [20]

\[
\begin{align*}
c_1 & : \quad y = -5(x + 1) + 2(x + 2)^{3/2}, \quad x \in [-2, 7], \\
c_2 & : \quad y = -5(x + 1) - 2(x + 2)^{3/2}, \quad x \in [-2, -1], \\
c_3 & : \quad 4y = x^2 + 2x - 7, \quad x \in [-1, 7].
\end{align*}
\]
The fixed point \((1, 1)\) of \(T^2\) under the action of \(D_{12}\) maps to 7, 14 in the intervals \(I_1, I_2\) respectively.

Under the change of variables (8) the Jacobian is given by

\[
J = 8\pi^2(\cos(2\pi(2\theta_1 + \theta_2)) + \cos(2\pi(\theta_1 - 3\theta_2)) + \cos(2\pi(3\theta_1 - 2\theta_2)) \\
- \cos(2\pi(\theta_1 + 2\theta_2)) - \cos(2\pi(3\theta_1 - \theta_2)) - \cos(2\pi(2\theta_1 - 3\theta_2))).
\] (9)

The Jacobian is real and vanishes in \(T^2\) only on the boundaries of the images of the fundamental domain \(C\) under \(D_{12}\). Again, \(J^2\) can be written in terms of the \(D_{12}\)-invariant elements \(x, y\) as

\[
|J| = 4\pi^2 \sqrt{(4x^3 - x^2 - 2x - 10xy - y^2 - 10y + 7)(x^2 + 2x - 7 - 4y)).
\] (10)

2.3 Spectral measures for nimrep graphs associated to \(G_2\) modular invariants

Suppose \(G\) is the nimrep associated to a \(G_2\) braided subfactor at some finite level \(k\) with vertex set \(G_0\). We define a state \(\varphi\) on \(\ell^2(G_0)\) by \(\varphi(\cdot) = \langle \cdot | e_\ast, e_\ast \rangle\), where \(e_\ast\) is the basis vector in \(\ell^2(G_0)\) corresponding to the distinguished vertex \(\ast\) with lowest Perron-Frobenius weight.

If we consider the nimrep graphs \(G_\lambda, G_\mu\), which have joint spectrum \(\mathfrak{D}_{\lambda, \mu}\), then the \(m,n\)th cross moment \(\varsigma_{m,n} = \varphi(G^m_\lambda G^n_\mu) = \int_{\mathfrak{D}_{\lambda, \mu}} x^my^nd\nu(x, y)\), where \(x = x_\lambda, y = x_\mu\), is given by \(\langle G^m_\lambda G^n_\mu e_\ast, e_\ast \rangle\). Let \(\beta^{(\nu)}_\lambda = \chi_\lambda(t_\nu)\) be the eigenvalues of \(G_\lambda\), where \(t_\nu = (\exp(\xi(\nu_1 + 1)), \exp(-3\xi(\nu_2 + 1)))\) for \(\xi = 6\pi i/(k + 4)\), with corresponding eigenvectors \(\psi^{(\nu)}\) (note that the eigenvectors of \(G_\lambda\) are the same for all \(\lambda\)). Each eigenvalue \(\beta^{(\nu)}_\lambda\) is also given by a ratio of the \(S\)-matrix for \(G_2\) at level \(k\), \(\beta^{(\mu)}_\lambda = S_{\lambda\mu}/S_{0\mu}\), where \(\mu \in \text{Exp}(G) \subset P^k_+ = \{(\lambda_1, \lambda_2) | \lambda_1, \lambda_2 \geq 0; \lambda_1 + 2\lambda_2 \leq k\}\) are given by the modular invariant \(Z\). Then \(G^m_\lambda G^n_\mu = U\Lambda^m_\lambda \Lambda^n_\mu U^*\), where \(\Lambda_\lambda\) is the diagonal matrix with the eigenvalues \(\beta^{(\nu)}_\lambda\) on the
Table 1: Finite subgroups of G_2.

| Subgroup $\Gamma \subset G_2$ | Type | $|\Gamma|$ |
|-------------------------------|------|--------|
| finite subgroups of $SU(2) \times SU(2)$, $SU(3)$ | - | - |
| $PSL(2; 7) \cong GL(3; 2) \cong \Sigma(168) \subset SU(3)$ | I | 168 |
| $PGL(2; 7)$ | P | 336 |
| $PSL(2; 8)$ | P | 504 |
| $PSL(2; 13)$ | P | 1092 |
| $PU(3; 3) \cong G_2(2)'$ | P | 6048 |
| $G_2(2)$ | P | 12096 |

3 The finite subgroups of G_2

The classification of finite subgroups of G_2 is due to [21,3] (see also [11,12]).

The reducible (i.e. block-diagonalizable) finite subgroups of G_2 are the finite discrete subgroups of $SU(2) \times SU(2)$ and $SU(3)$ [21]. These subgroups are thus well known, and the corresponding spectral measures can be obtained from [1,6,7].

The irreducible finite subgroups of G_2, of which there are seven up to conjugacy in G_2 (or equivalently, up to conjugacy in $GL(V)$, where V is the natural 7-dimensional module for $O(7,\mathbb{C})$ [11 Corollary 1]), can be further classified into two types, primitive and imprimitive, where a linear group $\Gamma \subset GL(V)$ is imprimitive if there is a non-trivial decomposition $V = \bigoplus_i V_i$ such that Γ permutes the V_i. There are two imprimitive finite subgroups and five primitive ones. These finite subgroups are listed in Table 1 where type denotes whether an irreducible subgroup is primitive (P) or imprimitive (I).

The McKay graph G_Γ is the the fusion graph of the irreducible representation ρ of Γ acting on the irreducible representations of Γ. This graph determines the Bratteli diagram
for the tower of relative commutants of the subfactor \(P^\Gamma \subset (M_n \otimes P)^\Gamma \), where \(n \) is the dimension the representation \(\rho \) and \(P \) is the type II factor \(\bigotimes_{n=1}^\infty M_n \) [22, §VI]. This graph is not however the principal graph of this subfactor as it is not bipartite. The principal graph is rather an unfolded version of the McKay graph \(G^\rho_{\Gamma} \), with adjacency matrix given by \(\begin{pmatrix} 0 & \Delta_{\Gamma}^\rho \\ \Delta_{\Gamma}^\rho & 0 \end{pmatrix} \), where \(\Delta_{\Gamma}^\rho \) is the adjacency matrix of the (folded) graph \(G^\rho_{\Gamma} \).

We will consider the (joint) spectral measure for the McKay graphs \(G^\rho_{\Gamma} := G^\rho_{\Gamma^j} \) associated to a finite subgroup \(\Gamma \subset G_2 \), where \(G_j \) are the restrictions of the fundamental representations \(\rho_j \) of \(G_2 \) to \(\Gamma \), \(j = 1, 2 \). We will consider all possible embeddings of the subgroup in \(G_2 \). Any two such embeddings are conjugate in \(G_2 \) if and only if they afford the same character on the seven-dimensional representation \(\rho_1 \) [\text{[1]} Corollary 1]. In some cases there is more than one non-conjugate embedding of the subgroup in \(G_2 \). In these cases the restricted representation \(\rho_1 \) is not necessarily irreducible. In all cases, even for irreducible \(\rho_1 \), the restriction \(\rho_2 \) of the 14-dimensional representation is not necessarily irreducible.

We use the following methods to determine embeddings \(\rho_1 \) of \(\Gamma \) in \(G_2 \). First, take a seven-dimensional (not necessarily irreducible) representation \(\gamma_1 \) of \(\Gamma \). The Kronecker square of \(\rho_1 \) decomposes into irreducible representations of \(G_2 \) as \(\rho_1^2 = \text{id} \otimes \rho_1 + \rho_2 + \lambda_{(2,0)} \), where \(\lambda_{(2,0)} \) has dimension 21. The Kronecker square of \(\rho_1 \) is obtained by restricting this decomposition to \(\Gamma \), and we see that \(\rho_1 \) appears in the decomposition of \(\rho_1^2 \) into irreducible representations of \(\Gamma \). Thus, if \(\gamma_1 \) is not contained in the decomposition of \(\gamma_1^2 \) into irreducible representations of \(\Gamma \), we can eliminate \(\gamma_1 \) as a possible restriction of \(\rho_1 \).

The decomposition of \(\gamma_1^2 \) into irreducible representations can be obtained using the character table for \(\Gamma \), by decomposing the character \(\chi_{\gamma_1^2} = \chi_{\rho_1}^2 \) of \(\gamma_1^2 \) into the characters of the irreducible representations \(\lambda \) of \(\Gamma \): \(\chi_{\gamma_1}^2 = \sum \lambda a_{\lambda} \chi_{\lambda} \), where \(a_{\lambda} = \langle \gamma_1^2, \lambda \rangle / |\Gamma| = \sum_{g \in \Gamma} \chi_{\gamma_1}(g) \chi_{\lambda}(g) / |\Gamma| \).

We next consider the eigenvalues of the representation matrices of \(\Gamma \). If the elements in a conjugacy class \(C_n \) of \(\Gamma \) have order \(n \), then \((C_n)^n = Z(\Gamma) \), where \(Z(\Gamma) \) is the center of \(\Gamma \). If the center is trivial, then the eigenvalues \(\xi \) of the matrices representing these elements must satisfy \(\xi^n = 1 \) (this is the case for \(PSL, PGL \) and \(PU(3; 3) \)). Since \(\chi_{\lambda}(\Gamma_j) \) is the sum of the eigenvalues \(\xi \), it is usually possible to write down the complete set of eigenvalues from the information provided by the character table of \(\Gamma \) and the fact that the eigenvalues must be powers of \(n^{th} \) roots of unity. Where there is some ambiguity, we can pin down the correct choice for the set of eigenvalues from the following considerations. Suppose there is ambiguity regarding the eigenvalues of the conjugacy class \(C_{mn} \) whose elements have order \(mn \), \(m, n \in \mathbb{N} \). If there is only one conjugacy class \(C_n \) whose elements have order \(n \), then for \(g \in C_{mn}, g^m \in C_n \), and since \(g, g^m \) commute, their corresponding representation matrices can be simultaneously diagonalised, and thus the eigenvalues of \(C_n \) must be \(m^{th} \) powers of those for \(C_{mn} \). Suppose now that there is more than one conjugacy class \(C_{n}^{(j)} \) whose elements have order \(n \). Since \(g^m \) are all conjugate for conjugate \(g \), we see that there exists a \(j \) such that \(g^m \in C_{n}^{(j)} \) for all \(g \in C_{mn} \). It turns out in all the cases considered here that there is only one consistent choice of \(j \) such that the eigenvalues of \(C_{n}^{(j)} \) are \(m^{th} \) powers of those for \(C_{mn} \) for all (irreducible) representations.

As was shown in [6, §4], the eigenvalues of the representation matrices of \(\Gamma \) can be written in the form \(\chi_{\rho_1}(g) = \text{Tr}(\rho_1(g)) \), where \(g \) is any element of the conjugacy class \(\Gamma \) of \(\Gamma \). Every element \(g \in \Gamma \) is conjugate to an element \(d \) in the maximal torus of \(G_2 \), i.e.
\(g_j(h^{-1}gh) = g_j(d) = (g_j|_{\mathbb{T}^2})(t_1, t_2) \) for some \((t_1, t_2) \in \mathbb{T}^2 \), for \(j = 1, 2 \), where \(g_j|_{\mathbb{T}^2} \) is given by [8]

\[
\begin{align*}
(\rho_1|_{\mathbb{T}^2})(t_1, t_2) &= \text{diag}(D(t_1), D(t_2^{-1}), D(t_1^{-1}t_2), 1), \\
(\rho_2|_{\mathbb{T}^2})(t_1, t_2) &= \text{diag}(D(t_1), D(t_2^{-1}), D(t_1^{-1}t_2), D(1), D(t_1t_2), D(t_1^2t_2^{-1}), D(t_1^{-1}t_2^2)),
\end{align*}
\]

where \(D(t_i) = \left(\begin{array}{cc} \text{Re}(t_i) & -\text{Im}(t_i) \\ \text{Im}(t_i) & \text{Re}(t_i) \end{array} \right) \) for \(t_i \in \mathbb{T} \). Now \(\text{Tr}(\varrho_j(g)) = \text{Tr}(\varrho_j(d)) = \Phi_j(t_1, t_2) \), thus the eigenvalues of \(\varrho_j(g) \) are all of the form \(\Phi_j(\omega_1, \omega_2) \) for \(\omega_1, \omega_2 \in \mathbb{T} \), and hence its spectrum is contained in the interval \(I_j \). As shown in [8] Sections 3,4] the spectrum of the fundamental representation \(\rho_j \) of \(G_2 \), and its restriction to \(\mathbb{T}^2 \), is the whole of the interval \(I_j = \chi_{\rho_j}(\mathbb{T}^2) \), for \(j = 1, 2 \). Thus the support of the spectral measure \(\mu_{\Delta_j} \) of \(\Delta_j = \Delta_{\varrho_j} \), the adjacency matrix of \(G_2 \), is contained in \(I_j \) when \(\Gamma \) is \(G_2 \) or one of its finite subgroups. Then for \(\Gamma \subset G_2 \), the eigenvalues of every group element in \(\varrho_1 \) are necessarily of the form \(E_{1,t_1, t_2} := \{ 1, t_1, t_1^{-1}, t_2, t_2^{-1}, t_1t_2^{-1}, t_1^{-1}t_2 \} \), where \(t_i \in \mathbb{T} \). Thus, by [11] Proposition, if the eigenvalues of the group elements in the representation \(\gamma_1 \) have this form then \(\gamma_1 \) is a restriction \(\varrho_1 \) of the seven-dimensional fundamental representation \(\rho_1 \) of \(G_2 \) to \(\Gamma \).

We now turn to consider the possible restrictions \(\varrho_2 \) of the fourteen-dimensional fundamental representation \(\rho_2 \) of \(G_2 \) to \(\Gamma \), for fixed \(\varrho_1 \). By dimension considerations one can determine the possible candidates for \(\varrho_2 \) from the Kronecker square of \(\varrho_1 \). Let \(\gamma_2 \) be such a candidate, i.e. a fourteen-dimensional representation such that \(\varrho_2^2 = \text{id}_\Gamma + \gamma_1 + \gamma_2 + \lambda \), where \(\lambda \) is (necessarily) some 27-dimensional representation of \(\Gamma \). We make a choice of pair \((t_1^c, t_2^c) \) from the set \(X_C \) of eigenvalues of group elements (from the conjugacy class \(C \)) in \(\varrho_1 \) such that \(E_{t_1^c, t_2^c} = X_C \). Note that the choice of \((t_1^c, t_2^c) \) such that \(E_{t_1^c, t_2^c} = X_C \) is not unique. However, any other pair \((t_1^{\tilde{c}}, t_2^{\tilde{c}}) \) such that \(E_{t_1^{\tilde{c}}, t_2^{\tilde{c}}} = X_C \) will appear in the orbit of \((t_1^c, t_2^c) \) under the action of the Weyl group \(D_{12} \) of \(G_2 \), where the action of \(D_{12} \) on \(\mathbb{T}^2 \) is given in Section 2.1. Thus \(\Phi_j(t_1^{\tilde{c}}, t_2^{\tilde{c}}) = \Phi_j(t_1^c, t_2^c) \) for \(j = 1, 2 \). Then one checks that \(\varrho_2(t_1^c, t_2^c) = \chi_{\gamma_2}(C) \) for each conjugacy class \(C \), in which case \(\gamma_2 \) is indeed a restriction \(\varrho_2 \) of the fourteen-dimensional fundamental representation \(\rho_2 \) of \(G_2 \) to \(\Gamma \).

3.1 Spectral measures for finite subgroups of \(G_2 \)

There is an \(S \)-matrix, with rows, columns labelled by the irreducible characters, conjugacy classes respectively of \(\Gamma \), which simultaneously diagonalizes the representations of \(\Gamma \) [13]. The entries of this matrix for the trivial representation \(0 \) are given by \(S_{0,C} = \sqrt{|C||\chi_0(C)|/|\Gamma|} = \sqrt{|C|/|\Gamma|} \), for conjugacy class \(C \). Then the \(m, n \)th moment \(\varsigma_{m,n} \) is given over \(\mathcal{D} \) by (c.f. [6] Section 4) for the case of finite subgroups of \(SU(2) \)

\[
\varsigma_{m,n} = \int_{\mathcal{D}} x^m y^n d\nu(x, y) = \sum_C |C|/|\Gamma| \chi_{\varrho_1}(C)^m \chi_{\varrho_2}(C)^n.
\]

There is an analogous statement to (14) for the joint spectral measure \(\nu_{\lambda,\mu} \) over \(\mathcal{D}_{\lambda,\mu} \) for any irreducible representations \(\lambda, \mu \) of \(\Gamma \). The weight on the right hand side will again be \(|C|/|\Gamma| \), since the same \(S \)-matrix simultaneously diagonalises all the representations of \(\Gamma \). Since this weight does not depend on the representations \(\lambda, \mu \), we see that the
equation can easily be checked by substituting in $x = \Phi_1(\omega_1, \omega_2)$, $y = \Phi_2(\omega_1, \omega_2)$:

$$(\omega_j + \omega_j^{-1})^3 + (1 - x)(\omega_j + \omega_j^{-1})^2 + (y - 2)(\omega_j + \omega_j^{-1}) + 2y - x^2 + 2x - 1 = 0,$$

where $j = 1, 2$. Solving this cubic in $\omega_j + \omega_j^{-1} = 2 \cos(\vartheta_j)$, we obtain for $l \in \{0, 1, 2\}$

$$\vartheta_j(l) = \cos^{-1}\left(\frac{1}{6} \left(x - 1 + 2^{-1/3} \epsilon_l P + 2^{1/3} \epsilon_l (x^2 - 2x + 7 - 3y) P^{-1}\right)\right)$$

where $2^{1/3}$ takes a real value, $\epsilon_l = e^{2\pi i l/3}$ and $P = (2x^3 + 21x^2 - 30x + 7 - 45y - 9xy + \sqrt{(4x^3 - x^2 - 2x - 10xy - y^2 - 10y + 7)(x^2 + 2x - 7 - 4y)})^{1/3}$. We note that for the roots of a cubic equation it does not matter whether the square root in P is taken to be positive or negative. Then we set $\Psi_{l,l'}(x, y) = (e^{\vartheta_1(l)i}, e^{\vartheta_2(l')i})$, and we have that $\Psi(\Psi_{l,l'}(x, y)) = (x, y)$ for some $l, l' \in \{0, 1, 2\}$. The particular choice of pair l, l' such that the equality $\Psi \circ \Psi_{l,l'} = \text{id}$ is satisfied depends on x, y, but it is easy to check (eg. using Mathematica) whether a given choice satisfies this equality for any of the examples we consider. We present in Table 2 the values of the eigenvalues $(\chi_{g_1}(C), \chi_{g_2}(C)) = (x, y) \in \mathcal{D}$ which will appear for the finite subgroups of G_2, and (the orbits under D_{12} of) the corresponding points $(\theta_1, \theta_2) \in [0, 1]^2$ such that $\Psi(e^{2\pi i \theta_1}, e^{2\pi i \theta_2}) = (x, y)$.

4 Group $PSL(2;7) \cong GL(3;2) \cong \Sigma(168)$

The subgroup $PSL(2;7)$ of G_2 is an irreducible imprimitive group of order 168 which is isomorphic to the group $GL(3;2)$, and also to the subgroup $\Sigma(168)$ of $SU(3)$ which was considered in [7].

The group $PSL(2;7)$ has irreducible real representations Σ_d of dimensions $d = 1, 6, 7, 8$, and two complex conjugate irreducible representations Σ_3, Σ_3^* of dimension 3. Its character table is given in Table 3 [17].

There are two non-conjugate embeddings of $PSL(2;7)$ in G_2 [14], given by $g_1^{(1)} = \Sigma_7$ and $g_1^{(2)} = \Sigma_1 + \Sigma_3 + \Sigma_3^*$. The McKay graph $G_{PSL(2;7)}^{g_1^{(1)}}$ for $g_1^{(1)}$ is given in [12] Figure 1. We reproduce it in Figure 4 for completeness, along with the McKay graph $G_{PSL(2;7)}^{g_1^{(2)}}$ for $g_1^{(2)}$. We use the notation n, n^* to label the vertices corresponding to the irreducible representations Σ_n, Σ_n^* respectively.

The eigenvalues of the representation matrices are given in [14] Tables 4a,b]. The decomposition of the Kronecker square of $g_1^{(i)}$ into irreducibles is given by

$$(g_1^{(1)})^2 = \text{id} + g_1^{(1)} + \Sigma_3 + \Sigma_3^* + 3 \Sigma_6 + \Sigma_7 + 2 \Sigma_8, \quad (g_1^{(2)})^2 = \text{id} + g_1^{(2)} + \Sigma_1 + 2 \Sigma_3 + 2 \Sigma_3^* + 2 \Sigma_6 + 2 \Sigma_8,$$

where $\text{id} = \Sigma_1$. From dimension considerations there are thus two candidates for the fourteen-dimensional representation $g_2^{(i)}$, which are given by $\Sigma_3 + \Sigma_3^* + \Sigma_8$ and $\Sigma_6 + \Sigma_8$ for both $i = 1, 2$. However, as discussed in Section 3 since $\chi_{g_2}(C) = \Phi_2(t_1^C, t_2^C)$, where (t_1^C, t_2^C) is a pair from the set of eigenvalues of group elements from the conjugacy class C, from
Table 2: \((x, y) \in \mathcal{D}\) and (the orbits of) the corresponding points \((\theta_1, \theta_2) \in [0, 1]^2\). Here \(p = 2 \cos(4\pi/9)\), \(q = 2 \cos(8\pi/9)\)
Table 3: Character table for group $PSL(2; 7)$, where $w = \eta + \eta^2 + \eta^4 = (-1 + i\sqrt{7})/2$, $\eta = e^{2\pi i/7}$.

<table>
<thead>
<tr>
<th>C</th>
<th>C_1</th>
<th>C_2</th>
<th>(C_7, C_{14}^2, C_7^4)</th>
<th>(C_3^2, C_{14}^2, C_7^8)</th>
<th>(C_4, C_{14}^4)</th>
<th>(C_3, C_{14}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>C</td>
<td>$</td>
<td>1</td>
<td>21</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Σ_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Σ_3</td>
<td>3</td>
<td>-1</td>
<td>w</td>
<td>\bar{w}</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Σ_3^*</td>
<td>3</td>
<td>-1</td>
<td>\bar{w}</td>
<td>w</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Σ_6</td>
<td>6</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Σ_7</td>
<td>7</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>Σ_8</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

knowledge of the eigenvalues from [14] we see that the decomposition of the fundamental fourteen-dimensional representation into irreducible representations of $PSL(2; 7)$ is given by $\varrho_2 := \varrho_2^{(i)} = \Sigma_3 + \Sigma_3^* + \Sigma_8$ for both $i = 1, 2$. The values of $x^{(i)} = \chi_{\varrho_2^{(i)}}(C) \in [-2, 7]$, $y = \chi_{\varrho_2}(C) \in [-2, 14]$ for $PSL(2; 7)$ are given in Table 4 along with the values of $J^2/64\pi^4$ for the corresponding pairs $(\theta_1, \theta_2) \in [0, 1]^2$ obtained from Table 2.

Let $\Omega(\theta_1, \theta_2) := \Phi_1(e^{2\pi i\theta_1}, e^{2\pi i\theta_2})^m\Phi_2(e^{2\pi i\theta_1}, e^{2\pi i\theta_2})^n \in D$ and $\Omega^W(\theta_1, \theta_2)$ its orbit under $W = D_{12}$, $\Omega^W(\theta_1, \theta_2) := \sum_{g \in D_{12}} \Omega(g(\theta_1, \theta_2))/12$. Then from (14) and Tables 3, 4 and 2 we see that

$$\varsigma_{m,n} = \frac{1}{168} \Omega^W(0, 0) + \frac{21}{168} \Omega^W(0, 1/2) + \frac{56}{168} \Omega^W(0, 1/3) + \frac{42}{168} \Omega' + \frac{24 + 24}{168} \Omega^W(1/7, 3/7),$$

where Ω' is $\Omega^W(1/4, 1/2)$ for $\varrho_2^{(1)}$, and $\Omega^W(0, 1/4)$ for $\varrho_2^{(2)}$. It is easy to see that $\Omega^W(0, 0) =$

<table>
<thead>
<tr>
<th>C</th>
<th>C_1</th>
<th>C_2</th>
<th>(C_7, C_{14}^2, C_7^4)</th>
<th>(C_3^2, C_{14}^2, C_7^8)</th>
<th>(C_4, C_{14}^4)</th>
<th>(C_3, C_{14}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_{\varrho_2^{(1)}}(C) \in [-2, 7]$</td>
<td>7</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>$\chi_{\varrho_2^{(2)}}(C) \in [-2, 7]$</td>
<td>7</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$\chi_{\varrho_2}(C) \in [-2, 14]$</td>
<td>14</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>$J^2(\theta_1, \theta_2)/64\pi^4$</td>
<td>0</td>
<td>0</td>
<td>49/4</td>
<td>49/4</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4: $\chi_{\varrho_j}(C)$ for group $PSL(2; 7)$, $j = 1, 2$.

Figure 6: The McKay graphs $G_{PSL(2; 7)}^{\varrho_i}$, $i = 1, 2$.

Let $\Omega(\theta_1, \theta_2) := \Phi_1(e^{2\pi i\theta_1}, e^{2\pi i\theta_2})^m\Phi_2(e^{2\pi i\theta_1}, e^{2\pi i\theta_2})^n \in D$ and $\Omega^W(\theta_1, \theta_2)$ its orbit under $W = D_{12}$, $\Omega^W(\theta_1, \theta_2) := \sum_{g \in D_{12}} \Omega(g(\theta_1, \theta_2))/12$. Then from (14) and Tables 3, 4 and 2 we see that

$$\varsigma_{m,n} = \frac{1}{168} \Omega^W(0, 0) + \frac{21}{168} \Omega^W(0, 1/2) + \frac{56}{168} \Omega^W(0, 1/3) + \frac{42}{168} \Omega' + \frac{24 + 24}{168} \Omega^W(1/7, 3/7),$$

where Ω' is $\Omega^W(1/4, 1/2)$ for $\varrho_2^{(1)}$, and $\Omega^W(0, 1/4)$ for $\varrho_2^{(2)}$. It is easy to see that $\Omega^W(0, 0) =$

<table>
<thead>
<tr>
<th>C</th>
<th>C_1</th>
<th>C_2</th>
<th>(C_7, C_{14}^2, C_7^4)</th>
<th>(C_3^2, C_{14}^2, C_7^8)</th>
<th>(C_4, C_{14}^4)</th>
<th>(C_3, C_{14}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_{\varrho_2^{(1)}}(C) \in [-2, 7]$</td>
<td>7</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>$\chi_{\varrho_2^{(2)}}(C) \in [-2, 7]$</td>
<td>7</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$\chi_{\varrho_2}(C) \in [-2, 14]$</td>
<td>14</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>$J^2(\theta_1, \theta_2)/64\pi^4$</td>
<td>0</td>
<td>0</td>
<td>49/4</td>
<td>49/4</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4: $\chi_{\varrho_j}(C)$ for group $PSL(2; 7)$, $j = 1, 2$.

12
Figure 7: The orbits of (a) $(1/7, 3/7)$, (b) $(0, 1/4) \bullet$ and $(1/4, 1/2) \ast$, (c) $(0, 1/3)$.

\[\int_{T^2} \Omega(\theta_1, \theta_2) \, d\theta_1 \times d\theta_2 \quad \text{and} \quad 3\Omega_W(0, 1/2) = \int_{T^2} \Omega(\theta_1, \theta_2)(4 \, d_2 \times d_1 - d_1 \times d_1). \]

Now \(12\Omega_W(1/7, 3/7) = 4 \int_{T^2} \Omega(\theta_1, \theta_2)(J^2/64\pi^4) \, d_7 \times d_7, \) as illustrated in Figure 7(a) since the Jacobian \(J = 0 \) along the boundaries of the orbit of the fundamental domain, whilst \(J^2(g(1/7, 3/7)/64\pi^4) = 49/4 \) for all \(g \in D_{12}. \)

The orbits of \((0, 1/4), (1/4, 1/2)\) are illustrated in Figure 7(b), represented by \(\bullet, \ast \) respectively. Both orbits lie on the boundary of the fundamental domains of \(T^2/D_{12}, \) however, only the orbit of \((1/4, 1/2)\) lies on the boundary of the fundamental domains of \(T^2/S_3, \) illustrated in Figure 11. Then \(6K(0, 1/4) \Omega_W(0, 1/4) = 16 \int_{T^2} \Omega(\theta_1, \theta_2)K(\theta_1, \theta_2) \, d_4 \times d_4 \) where \(K \) is an \(S_3 \)-invariant function on \(T^2 \) which is zero on the boundaries of the fundamental domains of \(T^2/S_3. \) Such an \(S_3 \)-invariant function is given by the square \(\overline{J}^2 \) of the Jacobian which appeared for the \(A_2 \) spectral measures in [6, 7], which is given by \(\overline{J}(\theta_1, \theta_2) = 4\pi^2(\sin(2\pi(\theta_1 + \theta_2)) - \sin(2\pi(2\theta_1 - \theta_2)) - \sin(2\pi(2\theta_2 - \theta_1))). \) Now \(|\overline{J}(0, 1/4)| = 8\pi^2, \) thus we take \(K = 16\overline{J}^2/64\pi^4 = \overline{J}^2/4\pi^4, \) and we have \(K(0, 1/4) = 16. \) We can thus also obtain an expression for \(\Omega_W(1/4, 1/2), \) where from Figure 7(b) we see that \(6\Omega_W(1/4, 1/2) = \int_{T^2} \Omega(\theta_1, \theta_2)((16 - K(\theta_1, \theta_2)) \, d_4 \times d_4 - 4 \, d_2 \times d_2). \)

Finally, the orbit of \((\theta_1, \theta_2) = (0, 1/3)\) is illustrated in Figure 7(c), and thus \(6\Omega_W(0, 1/3) = \)
Table 5: Character table for $PSL(2; 7) \times \mathbb{Z}_2^3$, where $w = \eta + \eta^2 + \eta^4 = (-1 + i\sqrt{7})/2$, $\eta = e^{2\pi i/7}$.

\[
\int_{\mathbb{T}^2} \Omega(\theta_1, \theta_2) \left(9 d_3 \times d_3 - 3 d^{(1)} \right), \text{ and we obtain}
\]

Theorem 4.1. The joint spectral measure (over \mathbb{T}^2) for the non-conjugate embeddings of the projective special linear group $PSL(2; 7)$ over the finite field \mathbb{F}_7 into the fundamental representations of G_2 is

\[
d\varepsilon = \frac{1}{672\pi^4} J^2 d_T \times d_T + \frac{1}{24} K' d_4 \times d_4 + \frac{1}{2} d_3 \times d_3 - \frac{1}{28} d_1 \times d_1 - \frac{1}{6} d^{(1)} \tag{15}
\]

where $K' = 16 - K$ for the embedding of $PSL(2; 7)$ in G_2 given by $\varrho^{(1)}_1 = \Sigma_7$ and $K' = K$ for the embedding given by $\varrho^{(2)}_1 = \Sigma_1 + \Sigma_3 + \Sigma_3$, where $K(\theta_1, \theta_2) = (\sin(2\pi(\theta_1 + \theta_2)) - \sin(2\pi(2\theta_1 - \theta_2))) - \sin(2\pi(2\theta_2 - \theta_1)))^2, d_m$ is the uniform measure over m^{th} roots of unity and $d^{(k+4)}$ is the uniform measure on the points in C_k^\prime.

Remark 4.2. Note that measure in Theorem 4.1 for the second embedding $\varrho^{(2)}_1$ of $PSL(2; 7)$ in G_2 is precisely that for $\Sigma(168) \subset SU(3)$ given in [7, Theorem 16]. However, (15) has a neater expression than that given in [7], because here we were able to use the Jacobian J for G_2 which is also 0 along the diagonal, whereas the Jacobian for $SU(3)$ (essentially K in Theorem 4.1) is non-zero along the diagonal.

5 Group $PSL(2; 7) \times \mathbb{Z}_2^3$

The subgroup $PSL(2; 7) \times \mathbb{Z}_2^3$ of G_2 is an irreducible imprimitive group of order 1344. It has eleven irreducible representations (nine real and two complex conjugate representations) and its character table is given in Table 5 (see [17, 12]), where elements in C_4, C_4', C_4'', C_7, C_7', C_6, C_6' are of cycle type $(C_4, C_4^C), (C_4', C_4'^C), (C_4'', C_4''^C), (C_7, C_7', C_7^C), (C_6, C_6^C), (C_6, C_6^C)$ respectively.
<table>
<thead>
<tr>
<th>Σ_1</th>
<th>Σ_3</th>
<th>Σ_3^*</th>
<th>Σ_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>1</td>
<td>(1, 1, 1)</td>
<td>(1, 1, 1, 1, 1)</td>
</tr>
<tr>
<td>C_2</td>
<td>1</td>
<td>(1, 1, 1)</td>
<td>(1, 1, 1, 1, 1)</td>
</tr>
<tr>
<td>C'_2</td>
<td>1</td>
<td>(1, -1, -1)</td>
<td>(1, -1, -1, -1, -1)</td>
</tr>
<tr>
<td>C''_2</td>
<td>1</td>
<td>(1, -1, -1)</td>
<td>(1, -1, -1, -1, -1)</td>
</tr>
<tr>
<td>C_3</td>
<td>1</td>
<td>(1, -1, -1, -1)</td>
<td>(1, -1, -1, -1, -1)</td>
</tr>
<tr>
<td>C_4</td>
<td>1</td>
<td>(1, i, -i)</td>
<td>(1, i, -i)</td>
</tr>
<tr>
<td>C'_4</td>
<td>1</td>
<td>(1, i, -i)</td>
<td>(1, i, -i)</td>
</tr>
<tr>
<td>C''_4</td>
<td>1</td>
<td>(1, i, -i)</td>
<td>(1, i, -i)</td>
</tr>
<tr>
<td>C_7</td>
<td>1</td>
<td>η, η^3, η^3</td>
<td>η, η^3, η^3</td>
</tr>
<tr>
<td>C''_7</td>
<td>1</td>
<td>η, η^3, η^3</td>
<td>η, η^3, η^3</td>
</tr>
<tr>
<td>C_6</td>
<td>1</td>
<td>μ, μ^2, μ^4</td>
<td>μ, μ^2, μ^4</td>
</tr>
<tr>
<td>C_3</td>
<td>1</td>
<td>$\omega, \omega^2, \omega^4$</td>
<td>$\omega, \omega^2, \omega^4$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Σ^1_γ</th>
<th>$\Sigma^1_\gamma^\prime$</th>
<th>Σ^2_γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>(1, 1, 1, 1, 1, 1)</td>
<td>(1, 1, 1, 1, 1, 1)</td>
</tr>
<tr>
<td>C_2</td>
<td>(1, 1, 1, -1, -1, -1)</td>
<td>(1, 1, -1, 1, 1, 1)</td>
</tr>
<tr>
<td>C'_2</td>
<td>(1, 1, 1, -1, -1, -1)</td>
<td>(1, 1, -1, 1, 1, 1)</td>
</tr>
<tr>
<td>C''_2</td>
<td>(1, 1, 1, -1, -1, -1)</td>
<td>(1, 1, -1, 1, 1, 1)</td>
</tr>
<tr>
<td>C_4</td>
<td>(1, -1, -1, i, i, -i)</td>
<td>(1, -1, -1, i, i, -i)</td>
</tr>
<tr>
<td>C'_4</td>
<td>(1, -1, -1, i, i, -i)</td>
<td>(1, -1, -1, i, i, -i)</td>
</tr>
<tr>
<td>C''_4</td>
<td>(1, -1, -1, i, i, -i)</td>
<td>(1, -1, -1, i, i, -i)</td>
</tr>
<tr>
<td>C_7</td>
<td>$\eta, \eta^3, \eta^3, \eta^3, \eta^3, \eta^3$</td>
<td>$\eta, \eta^3, \eta^3, \eta^3, \eta^3, \eta^3$</td>
</tr>
<tr>
<td>C''_7</td>
<td>$\eta, \eta^3, \eta^3, \eta^3, \eta^3, \eta^3$</td>
<td>$\eta, \eta^3, \eta^3, \eta^3, \eta^3, \eta^3$</td>
</tr>
<tr>
<td>C_6</td>
<td>$\mu, \mu^2, \mu^4, \mu^\prime$</td>
<td>$\mu, \mu^2, \mu^4, \mu^\prime$</td>
</tr>
<tr>
<td>C_3</td>
<td>$\omega, \omega^2, \omega^4, \omega^\prime$</td>
<td>$\omega, \omega^2, \omega^4, \omega^\prime$</td>
</tr>
</tbody>
</table>

Table 6: Eigenvalues of group elements in each conjugacy class of $PSL(2; 7) \rtimes \mathbb{Z}_2^3$ for irreducible representations of dimension ≤ 7, where $\omega = e^{2\pi i/3}$, $\mu = e^{2\pi i/6}$ and $\eta = e^{2\pi i/7}$.

There are five non-conjugate seven-dimensional representations, $\gamma^{(1)}_1 = \Sigma_1 + \Sigma_3 + \Sigma^*_3$, $\gamma^{(2)}_1 = \Sigma_1 + \Sigma_6$, $\gamma^{(3)}_1 = \Sigma^{(1)}_7$, $\gamma^{(4)}_1 = \Sigma^{(1)}_7^\prime$ and $\gamma^{(5)}_1 = \Sigma^{(2)}_7$. These all satisfy the condition that $\gamma^{(i)}_1$ appears in the decomposition of $(\gamma^{(i)}_1)^2$. We thus consider the eigenvalues of the representation matrices to determine which of the $\gamma^{(i)}_1$ are embeddings of $PSL(2; 7) \rtimes \mathbb{Z}_2^3$ in G_2. These eigenvalues are given in Table 6 for representations of dimension less than or equal to 7. As described in Section 3, these eigenvalues can be determined from the character table of $PSL(2; 7) \rtimes \mathbb{Z}_2^3$. The additional information that is needed is to note that the eigenvalues for group elements in (C_4, C_3) square to those for elements in C_2, those for (C'_4, C'_3) square to those for C_2, those for (C''_4, C''_3) square to those for C_2, whilst those for (C_6, C_6^\prime) square to those for (C_3, C_3^\prime) and also cube to those for C_2. These observations follow from [17] and the fact that, for example, it is impossible to choose eigenvalues for group elements in (C_6, C_6^\prime) which cube to those for elements in C'_2 or C''_2 for all irreducible representations.

From considering the set of eigenvalues X_C for group elements in C in the representation $\gamma^{(i)}_1$, we see that there is no choice of $(t^C_1, t^C_2) \in X_C$ such that $E_{t^C_1, t^C_2} = X_C$ for
Figure 8: The McKay graphs $G_{\rho_1}^{(i)}$, $i = 1, 2$.

$i = 2, 3$ when $C = C'_2$ and for $i = 4$ when $C = C''_2$. However, such a choice does exist for $i = 1, 5$ for all conjugacy classes C, thus we set $\rho_1^{(1)}(C) = \rho_2^{(1)}(C)$ and $\rho_1^{(2)}(C) = \rho_2^{(2)}(C)$. We present one such choice of eigenvalues (t_1, t_2) in Table 7. The McKay graphs $G_{\rho_1}^{(i)}$, $i = 1, 2$ are given in Figure 8. We use the notation n, n' to label the vertices corresponding to the irreducible representations $\Sigma_n, \Sigma'_n, \Sigma^{(i)}_n$ respectively. Since both McKay graphs are not connected, we see that $\rho_1^{(i)}$ is not a faithful representation, $i = 1, 2$. Note that the McKay graph for $PSL(2; 7) \rtimes Z_2^3$ given in [12, Figure 1] is not the McKay graph for a restriction of the fundamental seven-dimensional representation, as claimed there, but rather for the irreducible representation $\Sigma_7^{(i)}$ (or equivalently the representation $\Sigma_7^{(1)}$).

The decomposition of the Kronecker square of $\rho_1^{(i)}$ into irreducibles is given by

$$(\rho_1^{(1)})^2 = \text{id} + \rho_1^{(1)} + \Sigma_3 + \Sigma_3^* + 2\Sigma_6 + \Sigma_7 + 2\Sigma_8,$$

$$(\rho_1^{(2)})^2 = \text{id} + \rho_1^{(2)} + \Sigma_1 + 2\Sigma_3 + 2\Sigma_3^* + 2\Sigma_6 + 2\Sigma_8,$$

where $\text{id} = \Sigma_1$. From dimension considerations there are thus two candidates for the fourteen-dimensional representation $\rho_2^{(i)}$, which are given by $\gamma_2^{(1)} = \Sigma_3 + \Sigma_3^* + \Sigma_8$ and $\gamma_2^{(2)} = \Sigma_6 + \Sigma_8$ for both $i = 1, 2$. However, since $\chi_{\rho_2^{(i)}}(C) = \Phi_2(t_1, t_2)$, we see from Table 7 that the decomposition of the fundamental fourteen-dimensional representation into irreducible representations of $PSL(2; 7) \rtimes Z_2^3$ is given by $\rho_2 = \gamma_2^{(i)} = \Sigma_3 + \Sigma_3^* + \Sigma_8$ for both $i = 1, 2$.

The values of $x^{(i)} = \chi_{\rho_2^{(i)}}(C) \in [-2, 7]$, $y = \chi_{\rho_2^{(2)}}(C) \in [-2, 14]$ for $PSL(2; 7) \rtimes Z_2^3$ are given in Table 4 along with the values of $J^2/64\pi^4$ for the corresponding pairs $(\theta_1, \theta_2) \in [0, 1]^2$ obtained from Table 2.

Then from (14) and Tables 5, 8, and 2, we see that

$$\zeta_{m,n} = \frac{1 + 7}{1344} \Omega^W(0, 0) + \frac{224 + 224}{1344} \Omega^W(0, 1/3) + \frac{168 + 168}{1344} \Omega' + \frac{192 + 192}{1344} \Omega^W(1/7, 3/7),$$
where $\Omega^W(\theta_1, \theta_2)$ is as in Section 4 and Ω' is $\Omega^W(1/4, 1/2)$ for $\vartheta_1^{(1)}$, and $\Omega^W(0, 1/4)$ for $\vartheta_1^{(2)}$. Thus the joint moments are precisely those for the two embeddings of $PSL(2; 7)$ in G_2, and we obtain:

Theorem 5.1. The joint spectral measure (over \mathbb{T}^2) for the non-conjugate embeddings of $PSL(2; 7) \rtimes \mathbb{Z}_2^3$ into the fundamental representations of G_2 is given by (15), where $K' = 16 - K$ for the embedding of $PSL(2; 7) \rtimes \mathbb{Z}_2^3$ in G_2 given by $\vartheta_1^{(1)} = \Sigma_7^{(2)}$ and $K' = K$ for the embedding given by $\vartheta_1^{(2)} = \Sigma_1 + \Sigma_3 + \Sigma_3^*$, and where K is again given by $-4K(\omega_1, \omega_2) = (\omega_1 \omega_2 - \omega_1^{-1} \omega_2^{-1} - \omega_1^2 \omega_2^{-1} + \omega_1^{-2} \omega_2 + \omega_1 \omega_2^{-2} - \omega_1^{-1} \omega_2^2)^2$ for $\omega_1, \omega_2 \in \mathbb{T}$.

6 Group $PGL(2; 7)$

The subgroup $PGL(2; 7)$ of G_2 is an irreducible primitive group of order 336. It has nine irreducible representations, all real, and its character table is given in Table 9 [14].

There are eight non-conjugate seven-dimensional representations, $\gamma_1^{(1)} = \Sigma_1 + \Sigma_6^{(1)}$, $\gamma_1^{(2)} = \Sigma_1 + \Sigma_6^{(2)}$, $\gamma_1^{(3)} = \Sigma_1 + \Sigma_6^{(3)}$, $\gamma_1^{(4)} = \Sigma_1 + \Sigma_6^{(4)}$, $\gamma_1^{(5)} = \Sigma_1 + \Sigma_6^{(5)}$, $\gamma_1^{(6)} = \Sigma_1 + \Sigma_6^{(6)}$, $\gamma_1^{(7)} = \Sigma_7$ and $\gamma_1^{(8)} = \Sigma_7^*$. The decomposition of the Kronecker squares of the $\gamma_i^{(l)}$ are given

<table>
<thead>
<tr>
<th>C</th>
<th>$\vartheta_1^{(1)}$</th>
<th>$\vartheta_1^{(2)}$</th>
<th>$\vartheta_1^{(3)}$</th>
<th>$\vartheta_1^{(4)}$</th>
<th>$\vartheta_1^{(5)}$</th>
<th>$\vartheta_1^{(6)}$</th>
<th>$\vartheta_1^{(7)}$</th>
<th>$\vartheta_1^{(8)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>$(1, 1)$</td>
<td>14</td>
<td>$(1, 1)$</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_2</td>
<td>$(1, 1)$</td>
<td>14</td>
<td>$(1, 1)$</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_2'</td>
<td>$(1, -1)$</td>
<td>-2</td>
<td>$(1, -1)$</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td>$(1, -1)$</td>
<td>-2</td>
<td>$(1, -1)$</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_4'</td>
<td>$(-1, i)$</td>
<td>2</td>
<td>$(1, i)$</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_6</td>
<td>$(1, i^2)$</td>
<td>-1</td>
<td>$(1, i^2)$</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_3</td>
<td>$(1, \omega)$</td>
<td>-1</td>
<td>$(1, \omega)$</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Choice of eigenvalues (t_1^C, t_2^C) for $\vartheta_1^{(i)}$, $i = 1, 2$, and corresponding values of $\chi_{\vartheta_1^{(i)}}(C)$.

<table>
<thead>
<tr>
<th>C</th>
<th>$\vartheta_1^{(1)}(\Gamma_j)$</th>
<th>$\vartheta_1^{(2)}(\Gamma_j)$</th>
<th>$\vartheta_1^{(3)}(\Gamma_j)$</th>
<th>$\vartheta_1^{(4)}(\Gamma_j)$</th>
<th>$\vartheta_1^{(5)}(\Gamma_j)$</th>
<th>$\vartheta_1^{(6)}(\Gamma_j)$</th>
<th>$\vartheta_1^{(7)}(\Gamma_j)$</th>
<th>$\vartheta_1^{(8)}(\Gamma_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>7</td>
<td>7</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C_2</td>
<td>7</td>
<td>7</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>C_2'</td>
<td>14</td>
<td>14</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>$J^2(\theta_1, \theta_2)/64\pi^4$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>49/4</td>
</tr>
</tbody>
</table>

Table 8: $\chi_{\vartheta_1}(C)$ for group $PSL(2; 7) \rtimes \mathbb{Z}_2^3$, $j = 1, 2$.

Table 9: Character table for $PGL(2; 7)$.

<table>
<thead>
<tr>
<th>C</th>
<th>C_1</th>
<th>C_2</th>
<th>C_2'</th>
<th>C_3</th>
<th>C_4</th>
<th>C_7</th>
<th>C_6</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>C</td>
<td>$</td>
<td>1</td>
<td>21</td>
<td>28</td>
<td>42</td>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>Σ_6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Σ_6'</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>$\Sigma_6^{(1)}$</td>
<td>6</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\Sigma_6^{(2)}$</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>$\sqrt{2}$</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\Sigma_6^{(2)'}$</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>$-\sqrt{2}$</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Σ_7</td>
<td>7</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Σ_7'</td>
<td>7</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Σ_8</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Σ_8'</td>
<td>8</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

by:

$$(\gamma_1^{(1)})^2 = \text{id} + \gamma_1^{(1)} + \Sigma_1' + 2\Sigma_6^{(1)} + \Sigma_6^{(2)} + \Sigma_6^{(2)'} + \Sigma_8 + \Sigma_8'$$

$$((\gamma_1^{(1)})^2 = \text{id} + \gamma_1^{(2)} + 2\Sigma_6^{(2)} + \Sigma_6^{(2)'} + \Sigma_7 + \Sigma_8 + \Sigma_8'$$

$$((\gamma_1^{(4)})^2 = \text{id} + \gamma_1^{(4)} + \Sigma_1 + 2\Sigma_6^{(1)} + \Sigma_6^{(2)} + \Sigma_6^{(2)'} + \Sigma_8 + \Sigma_8'$$

$$((\gamma_1^{(5)})^2 = \text{id} + \Sigma_1 + 3\Sigma_6^{(2)} + \Sigma_6^{(2)'} + \Sigma_7 + \Sigma_8 + \Sigma_8'$$

$$((\gamma_1^{(7)})^2 = \text{id} + \gamma_1^{(7)} + \Sigma_1 + \Sigma_6^{(1)} + \Sigma_6^{(2)} + \Sigma_6^{(2)'} + \Sigma_7 + \Sigma_8 + \Sigma_8'$$

$$((\gamma_1^{(8)})^2 = \text{id} + \gamma_1^{(8)} + \Sigma_1 + \Sigma_6^{(1)} + \Sigma_6^{(2)} + \Sigma_6^{(2)'} + \Sigma_7 + \Sigma_8 + \Sigma_8'$$

where $\text{id} = \Sigma_1$. Note, we have omitted the decompositions for $\gamma_1^{(3)}$, $\gamma_1^{(6)}$, since from the character table we see that these representations are essentially the same as $\gamma_1^{(2)}$, $\gamma_1^{(4)}$ respectively. Then we see that $\gamma_1^{(i)}$ does not appear in the decomposition of $(\gamma_1^{(i)})^2$ for $i = 5, 6$, therefore they are not embeddings of $PGL(2; 7)$ in G_2. From dimension considerations, we see that candidates $\gamma_2^{(j)}$ for ρ_2 are $\gamma_2^{(1)} = \Sigma_6^{(1)} + \Sigma_8$, $\gamma_2^{(2)} = \Sigma_6^{(1)} + \Sigma_8$, $\gamma_2^{(3)} = \Sigma_6^{(2)} + \Sigma_8$, $\gamma_2^{(4)} = \Sigma_6^{(2)} + \Sigma_8'$, $\gamma_2^{(5)} = \Sigma_6^{(2)'} + \Sigma_8'$ and $\gamma_2^{(6)} = \Sigma_6^{(2)'} + \Sigma_8'$, where $1 \leq j \leq 6$ for $\gamma_1^{(i)}$ when $i = 1, 4, 7, 8$, and $3 \leq j \leq 6$ when $i = 2$. Then with $(x_i^C, y_j^C) = (x_{\gamma_1^{(i)}}^C, x_{\gamma_2^{(j)}}^C)$, we see that $(x_i^C, y_j^C) \notin \mathfrak{D}$ for any candidate $\gamma_2^{(j)}$ in the cases $i = 1, 2, 3, 7$ when $C = C_2$. Thus $\gamma_1^{(i)}$ cannot define an embedding of $PGL(2; 7)$ in G_2 for $i = 1, 2, 3, 7$. We also see that $(x_i^C, y_j^C) \notin \mathfrak{D}$ for $j = 3, 4, 5, 6$.

Thus we have candidates $(\gamma_1^{(i)}, \gamma_2^{(j)})$ for (ρ_1, ρ_2) when $i = 4, 8$, where $1 \leq j \leq 6$ for $i = 4$ and $j \in \{1, 2\}$ for $i = 8$.

We now consider the eigenvalues of the representation matrices to determine which of the remaining $\gamma_1^{(i)}$ are embeddings of $PSL(2; 7)$ in G_2. These eigenvalues are given in Table 10. As described in Section 3, these eigenvalues can be determined from the character table of $PGL(2; 7)$. The additional information that is needed is to note that the eigenvalues for group elements in C_4 square to those for elements in C_2, those for C_8, C_8' square to those for C_4, those for C_6 square to those for C_3 and also cube to those for
C'_2. These observations follow from the fact that, for example, it is impossible to choose eigenvalues for group elements in C_4 which square to those for elements in C'_2 for all irreducible representations. Note also that we have omitted the eigenvalues for matrices in the irreducible representation $\Sigma_6^{(2)}$. These eigenvalues are identical to those for $\Sigma_6^{(2)}$, except for elements in the conjugacy classes C_8, C'_8, where for $\Sigma_6^{(2)}$ the eigenvalues for elements in C_8, C'_8 respectively are given by those for elements in C_8, C'_8 respectively in the representation $\Sigma_6^{(2)}$.

From considering the set of eigenvalues X_C for group elements in C in the representation $\gamma_1(i)$, $i = 4, 8$, we see that there is a choice of $(t_1^C, t_2^C) \in X_C$ such that $\varrho_C^{t_1^C, t_2^C} = X_C$, for all conjugacy classes C. We present one such choice of eigenvalues (t_1^C, t_2^C) in Table 11. Thus we set $\varrho_1^{(1)} = \Sigma_7$, $\varrho_1^{(2)} = \Sigma'_7 + \Sigma_6^{(1)}$. The McKay graphs $G_{PGL(2;7)}^{\varrho_1^{(1)}}$, $G_{PGL(2;7)}^{\varrho_1^{(2)}}$ for $\varrho_1^{(1)}$, $\varrho_1^{(2)}$ are given in Figure 9 where we use the same notation as previously. Note that the graph given in [12] Figure 2] is not the McKay graph for the restriction ϱ_1 of the fundamental seven-dimensional representation of G_2 as claimed in [12], but is rather the McKay graph for the seven-dimensional representation Σ_7, which as shown above does not define an embedding of $PGL(2;7)$ in G_2.

Since $\chi_{\varrho_1}^{(1)}(C) = \Phi_2(t_1^C, t_2^C)$, we see from Table 7 that the decomposition of the fundamental fourteen-dimensional representation into irreducible representations of $PGL(2;7)$
Figure 9: The McKay graphs $G^i_1 \subseteq \mathbb{P} GL(2; 7)$, $i = 1, 2$.

<table>
<thead>
<tr>
<th>C</th>
<th>(t^C_1, t^C_2)</th>
<th>$\varphi^{(1)}_1(C)$</th>
<th>(t^C_1, t^C_2)</th>
<th>$\varphi^{(2)}_1(C)$</th>
<th>$\chi^{(1)}_1(C)$</th>
<th>$\chi^{(2)}_1(C)$</th>
<th>$\chi^{(3)}_2(C)$</th>
<th>$\chi^{(4)}_2(C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>$(1, 1)$</td>
<td>14</td>
<td>$(1, 1)$</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>C_2</td>
<td>$(1, -1)$</td>
<td>-2</td>
<td>$(1, -1)$</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C_7</td>
<td>(μ, μ')</td>
<td>0</td>
<td>(μ, μ')</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$\sqrt{2}$</td>
<td>$\sqrt{2}$</td>
</tr>
<tr>
<td>C_8</td>
<td>(i, ν^2)</td>
<td>2</td>
<td>$(1, i)$</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C_3</td>
<td>$(1, \omega)$</td>
<td>-1</td>
<td>$(1, \omega)$</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>C_3'</td>
<td>$(1, \omega)$</td>
<td>-1</td>
<td>$(1, \omega)$</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Table 11: Choice of eigenvalues (t^C_1, t^C_2) for $\varphi^{(i)}_1$, $i = 1, 2$, and corresponding values of $\chi^{(i)}_2(C)$.

is given by $\varphi_2 = \gamma^{(2)}_2 = \Sigma^{(1)}_6 + \Sigma'_6$ for both $i = 1, 2$. The values of $x^{(i)} = \chi^{(i)}_1(C) \in [-2, 7]$, $y = \chi^{(i)}_2(C) \in [-2, 14]$ for $PGL(2; 7)$ are given in Table 12.

Then from (14) and Tables 9, 12 and 2, we see that

$$s_{m,n} = \frac{1}{336} \Omega^W(0, 0) + \frac{21 + 28}{336} \Omega^W(0, 1/2) + \frac{56}{336} \Omega^W(0, 1/3) + \frac{56}{336} \Omega^W(1/6, 1/2) + \frac{48}{336} \Omega^W(1/7, 3/7) + \frac{42}{336} \Omega' + \frac{42}{336} \Omega'' + \frac{42}{336} \Omega''',$$

where $\Omega^W(\theta_1, \theta_2)$ is as in Section 4 and (Ω', Ω'') is $(\Omega^W(1/4, 1/2), \Omega^W(1/8, 3/8))$ for $\varphi_1^{(1)}$, and $(\Omega^W(0, 1/4), \Omega^W(1/8, 1/2))$ for $\varphi_1^{(2)}$.

Now $129 \Omega^W(1/6, 1/2) = 4 \int_{T^2} \Omega(\theta_1, \theta_2)(J^2/64\pi^4) d_6 \times d_6$, as illustrated in Figure 10(a) since the Jacobian $J = 0$ along the boundaries of the orbit of the fundamental domain, whilst $J^2(g(1/6, 1/2)/64\pi^4) = 9$ for all $g \in D_{12}$.

The orbits of $(1/8, 3/8), (1/8, 1/2)$ are illustrated in Figure 10(b), represented by $\bullet, *$ respectively. Neither orbit gives a linear combination of the measures in Definition 2.1.
Table 12: $\chi_{\varrho_j}(C)$ for group $PGL(2;7)$, $j = 1, 2$.

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>C_8</th>
<th>C_8'</th>
<th>C_4</th>
<th>C_7</th>
<th>C_6</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_{\varrho_1}(C)$ $\in [-2,7]$</td>
<td>7</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>$\chi_{\varrho_2}(C)$ $\in [-2,7]$</td>
<td>7</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>$\chi_{\varrho_2}(C)$ $\in [-2,14]$</td>
<td>14</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

The measures $J^2 d_7 \times d_7$, $K' d_4 \times d_4$, $d_3 \times d_3$, $d_2 \times d_2$ and $d_1 \times d_1$ supported by the other points have all appeared in the previous sections, so we obtain:

Theorem 6.1. The joint spectral measure (over \mathbb{T}^2) for the non-conjugate embeddings of $PGL(2;7)$ into the fundamental representations of G_2 is

\begin{align*}
\text{d}\varepsilon &= \frac{1}{1344\pi^4} J^2 d_7 \times d_7 + \frac{1}{1152\pi^4} J^2 d_6 \times d_6 + \frac{1}{24} K' d_4 \times d_4 + \frac{1}{4} d_3 \times d_3 \\
&+ \frac{1}{9} d_2 \times d_2 - \frac{23}{304} d_1 \times d_1 + \frac{1}{48} \sum_{g \in D_{12}} \delta_{g(e^{i/4},t)} ,
\end{align*}

where $K' = 16 - K$ for the embedding of $PGL(2;7)$ in G_2 given by $\varrho_1^{(1)} = \Sigma'$ and $K' = K$ for the embedding given by $\varrho_1^{(2)} = \Sigma'_1 + \Sigma_6$, with K as in Theorem 4.1 whilst $t = e^{3\pi i/4}$ for the embedding of $PGL(2;7)$ in G_2 given by $\varrho_1^{(1)}$ and $t = -1$ for the embedding given by $\varrho_1^{(2)}$, and where d_m is the uniform measure over mth roots of unity and δ_x is the Dirac measure at the point x.

Figure 10: The orbits of (a) $(1/6,1/2)$, (b) $(1/8,3/8)$ \bullet and $(1/8,1/2)$ \star.

thus we have $12\Omega^W(1/8,3/8) = \int_{\mathbb{T}^2} \Omega(\theta_1,\theta_2) \left(\sum_{g \in D_{12}} \delta_{g(e^{i/4},e^{3\pi i/4})} \right)$, $12\Omega^W(1/8,1/2) = \int_{\mathbb{T}^2} \Omega(\theta_1,\theta_2) \left(\sum_{g \in D_{12}} \delta_{g(e^{i/4},-1)} \right)$.

The measures $J^2 d_7 \times d_7$, $K' d_4 \times d_4$, $d_3 \times d_3$, $d_2 \times d_2$ and $d_1 \times d_1$ supported by the other points have all appeared in the previous sections, so we obtain:

Theorem 6.1. The joint spectral measure (over \mathbb{T}^2) for the non-conjugate embeddings of $PGL(2;7)$ into the fundamental representations of G_2 is

\begin{align*}
\text{d}\varepsilon &= \frac{1}{1344\pi^4} J^2 d_7 \times d_7 + \frac{1}{1152\pi^4} J^2 d_6 \times d_6 + \frac{1}{24} K' d_4 \times d_4 + \frac{1}{4} d_3 \times d_3 \\
&+ \frac{1}{9} d_2 \times d_2 - \frac{23}{304} d_1 \times d_1 + \frac{1}{48} \sum_{g \in D_{12}} \delta_{g(e^{i/4},t)} ,
\end{align*}

where $K' = 16 - K$ for the embedding of $PGL(2;7)$ in G_2 given by $\varrho_1^{(1)} = \Sigma'$ and $K' = K$ for the embedding given by $\varrho_1^{(2)} = \Sigma'_1 + \Sigma_6$, with K as in Theorem 4.1 whilst $t = e^{3\pi i/4}$ for the embedding of $PGL(2;7)$ in G_2 given by $\varrho_1^{(1)}$ and $t = -1$ for the embedding given by $\varrho_1^{(2)}$, and where d_m is the uniform measure over mth roots of unity and δ_x is the Dirac measure at the point x.

21
seven-dimensional representations are equal, since the conjugacy classes
where \(\text{id} = \Sigma \). The subgroup \(\text{PSL}(\Sigma) \) of its Kronecker square into irreducibles, and therefore does not give an embedding of \(\text{PSL}(\Sigma) \) into \(\text{irreducible representations, all real, five of which have dimension less than or equal to 7. The character table for \(\text{PSL}(\Sigma) \) is given in Table 13 [16] (the orders of the elements in each conjugacy class can be obtained from [18]). The spectral measure for the first three seven-dimensional representations are equal, since the conjugacy classes \(C_9, C'_9, C''_9 \) each have the same order.

We thus have four candidates for the restriction \(\rho_1 \) of the fundamental representation \(\rho_1 \) of \(G_2 \) to \(\text{PSL}(\Sigma) \). The Kronecker squares of \(\Sigma_{7}' \), \(\Sigma_{7}'' \) decompose into irreducibles as

\[
(\Sigma_{7}'^2) = \text{id} + \Sigma_{7} + \Sigma_{7}' + \Sigma_{7}'' + \Sigma_{9} + \Sigma'_{9} + \Sigma''_{9}, \quad (\Sigma_{7}''^2) = \text{id} + \Sigma_{7} + \Sigma_{7}' + \Sigma_{7}'' + \Sigma_{9} + \Sigma'_{9} + \Sigma''_{9},
\]

where \(\text{id} = \Sigma_1 \). The irreducible representation \(\Sigma_{7}'' \) does not appear in the decomposition of its Kronecker square into irreducibles, and therefore does not give an embedding of \(\text{PSL}(\Sigma) \) into \(G_2 \). The other three seven-dimensional representations give non-conjugate embeddings of \(\text{PSL}(\Sigma) \) into \(G_2 \). We will fix \(\rho_1 = \Sigma_{7} \) for the remainder of this section.

The McKay graph for \(\rho_1 \) is given in Figure 11 where we use the same notation as previously. Note that the graph given in [12, Figure 2] is not the McKay graph for the restriction \(\rho_1 \) of the fundamental seven-dimensional representation of \(G_2 \) as claimed in [12], but is rather the McKay graph for the seven-dimensional representation \(\Sigma_{7}'' \).

From the decomposition of the Kronecker square of \(\rho_1 \) and dimension considerations there is only one possibility for the fourteen-dimensional representation \(\rho_2 \), that is, \(\rho_2 = \Sigma_{7}' + \Sigma_{7}'' \). The values of \(x = \chi_{\rho_1}(C) \in [-2, 7] \), \(y = \chi_{\rho_2}(C) \in [-2, 14] \) for \(\text{PSL}(\Sigma) \) are given in Table 14.

Then from (14) and Tables 13 and 2 we see that

\[
\zeta_{m,n} = \frac{1}{504} \Omega^W(0, 0) + \frac{56}{504} \Omega^W(0, 1/3) + \frac{63}{504} \Omega^W(0, 1/2) + \frac{72}{504} \Omega^W(1/7, 3/7) + \frac{56}{504} \Omega^W(1/9, 4/9) + \frac{56}{504} \Omega^W(1/9, 1/3) + \frac{56}{504} \Omega^W(2/9, 5/9),
\]

<table>
<thead>
<tr>
<th>(C)</th>
<th>(C_1)</th>
<th>(C_3)</th>
<th>(C_9)</th>
<th>(C_9')</th>
<th>(C_9'')</th>
<th>(C_2)</th>
<th>(C_7)</th>
<th>(C_7')</th>
<th>(C_7'')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>C</td>
<td>)</td>
<td>1</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>63</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>(\Sigma_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\Sigma_{7}')</td>
<td>7</td>
<td>1</td>
<td>(-p)</td>
<td>(-q)</td>
<td>(p+q)</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\Sigma_{7}'')</td>
<td>7</td>
<td>1</td>
<td>(p+q)</td>
<td>(-p)</td>
<td>(-q)</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\Sigma_{8})</td>
<td>7</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\Sigma_{9})</td>
<td>8</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\Sigma_{9}')</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2 cos(2\pi/7)</td>
<td>2 cos(4\pi/7)</td>
</tr>
<tr>
<td>(\Sigma_{9}'')</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2 cos(4\pi/7)</td>
<td>2 cos(6\pi/7)</td>
</tr>
</tbody>
</table>

Table 13: Character table for \(\text{PSL}(\Sigma) \), where \(p = 2 \cos(4\pi/9) \), \(q = 2 \cos(8\pi/9) \).
The McKay graph $G^{\varphi_1}_{PSL(2;8)}$.

![McKay graph](image)

Table 14: $\chi^\varphi_j(C)$ for group $PSL(2;8)$, $j = 1, 2$.

<table>
<thead>
<tr>
<th>C</th>
<th>C_1</th>
<th>C_3</th>
<th>C_9</th>
<th>C'_9</th>
<th>C_2</th>
<th>C_7</th>
<th>C'_7</th>
<th>C''_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^\varphi_1(C) \in [-2, 7]$</td>
<td>7</td>
<td>1</td>
<td>$-p$</td>
<td>$-q$</td>
<td>$p + q$</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\chi^\varphi_2(C) \in [-2, 14]$</td>
<td>14</td>
<td>-1</td>
<td>$p + q + 1$</td>
<td>$1 - p$</td>
<td>1 - q</td>
<td>-2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

where $\Omega^W(\theta_1, \theta_2)$ is as in Section 4. Now $J^2(g(1/9, 4/9)/64\pi^4) = 9(3 + 2\cos(\pi/9) + 2\cos(2\pi/9))/4 =: a_1$, $J^2(g(1/9, 1/3)/64\pi^4) = 9(3 - 2\cos(2\pi/9) + 2\sin(\pi/18))/4 =: a_2$ and $J^2(g(2/9, 5/9)/64\pi^4) = 9(3 - 2\cos(\pi/9) - 2\sin(\pi/18))/4 =: a_3$, for all $g \in D_{12}$. Thus $a_1\Omega^W(1/9, 4/9) = 18 \int_{T^2} \Omega(\theta_1, \theta_2)(J^2/64\pi^4) \, d^{(9/4)}$, $a_2\Omega^W(1/9, 1/3) = 18 \int_{T^2} \Omega(\theta_1, \theta_2)(J^2/64\pi^4) \, d^{(9/4)}$ and $a_3\Omega^W(2/9, 5/9) = 18 \int_{T^2} \Omega(\theta_1, \theta_2)(J^2/64\pi^4) \, d^{(9/4)}$, as illustrated in Figure 12 since the Jacobian $J = 0$ along the boundaries of the orbit of the fundamental domain. The measures $J^2 \, d_7 \times d_7$, $d_3 \times d_3$, $d_2 \times d_2$, $d_1 \times d_1$ and $d^{(1)}$ supported by the other points above have all appeared in the previous sections, so we obtain:

Theorem 7.1. The joint spectral measure (over T^2) for all embeddings of $PSL(2;8)$ into
Table 15: Character table for $PSL(2; 13)$, where $p_{\pm} = (1 \pm \sqrt{13})/2$, $r_j = -2 \cos(2j\pi/7)$.

<table>
<thead>
<tr>
<th>C</th>
<th>C_1</th>
<th>C_{13}</th>
<th>C'_{13}</th>
<th>C_2</th>
<th>C_7</th>
<th>C'_7</th>
<th>C''_7</th>
<th>C_6</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>C</td>
<td>$</td>
<td>1</td>
<td>84</td>
<td>84</td>
<td>91</td>
<td>156</td>
<td>156</td>
<td>156</td>
</tr>
<tr>
<td>Σ_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Σ_2</td>
<td>7</td>
<td>p_-</td>
<td>p_+</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>Σ'_7</td>
<td>7</td>
<td>p_-</td>
<td>p_+</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>Σ_{12}</td>
<td>12</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>r_1</td>
<td>r_2</td>
<td>r_3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Σ''_{12}</td>
<td>12</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>r_2</td>
<td>r_3</td>
<td>r_1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Σ''_{12}</td>
<td>12</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>r_3</td>
<td>r_1</td>
<td>r_2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Σ_{14}</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Σ''_{14}</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

The subgroup $PSL(2; 13)$ of G_2 is an irreducible primitive group of order 1092. It has nine irreducible representations, all real, and its character table is given in Table 15 [2].

Only three of the irreducible representation have dimension less than or equal to 7. These are the identity representation, and two seven dimensional representations Σ_1 and Σ_7, whose elements have order 13. Here $\chi_{\Sigma_7}(g) = p, q$ for $g \in C_{13}$, C'_{13} respectively, whilst $\chi_{\Sigma'_7}(g) = q, p$ respectively, where $p = (1 + \sqrt{13})/2 = 1 + \zeta + \zeta^3 + \zeta^4 + \zeta^5 + \zeta^9 + \zeta^{10} + \zeta^{12}$, $q = (1 - \sqrt{13})/2 = 1 + \zeta^2 + \zeta^3 + \zeta^5 + \zeta^6 + \zeta^7 + \zeta^8 + \zeta^{11}$, for $\zeta = e^{2\pi i/13}$. Thus the spectral measure for both seven-dimensional representations are equal, since C_{13}, C'_{13} both have the same order, and both give embeddings of $PSL(2; 13)$ in G_2. The McKay graph for the fundamental seven-dimensional representation is given in [12, Figure 2], and is reproduced (twice) in Figure 13 for completeness, where we use the same notation as previously. The figure on the right hand side illustrates the resemblance of $G_{PSL(2;13)}^{\chi_1}$ with the McKay graph of G_2 itself.

The set X_C of eigenvalues of group elements in each conjugacy class for $\rho_1 = \Sigma_7$ are given in Table 16 along with a choice of $(t'_{1}, t''_{1}) \in X_C$ such that $\mathcal{E}_{t'_{1}, t''_{1}} = X_C$.

The decomposition of the Kronecker square of ρ_1 into irreducibles is given by

$$\rho_1^2 = \text{id} + \rho_1 + \Sigma_{13} + \Sigma_{14} + \Sigma''_{14},$$
where as before the notation Σ_n denotes an irreducible representation of $PSL(2;13)$ of dimension n. From dimension considerations there are thus two candidates for the fourteen-dimensional representation ϱ_2, which are given by the two fourteen-dimensional irreducible representations. However, since $\chi_{\varrho_2}(C) = \Phi_2(t^C_1, t^C_2)$, we see from Table 16 that the decomposition of the fundamental fourteen-dimensional representation into irreducible representations of $PSL(2;13)$ is given by $\varrho_2 = \Sigma_{14}$, not Σ^*_{14}.

Then from (14) and Tables 16 and 2, we see that

$$s_{m,n} = \frac{1}{1092} \Omega^W(0,0) + \frac{91}{1092} \Omega^W(0,1/2) + \frac{182}{1092} \Omega^W(0,1/3) + \frac{182}{1092} \Omega^W(1/6,1/2)$$

$$+ \frac{156 + 156 + 156}{1092} \Omega^W(1/7,3/7) + \frac{84}{1092} \Omega^W(1/13,4/13) + \frac{84}{1092} \Omega^W(2/13,7/13),$$

where $\Omega^W(\theta_1, \theta_2)$ is as in Section 4.

The orbit of the points $(1/13, 4/13)$, $(2/13, 7/13)$, illustrated in Figure 14, do not give a linear combination of the measures in Definition 2.1, thus we have $12\Omega^W(1/13, 4/13) = \int_{T^2} \Omega(\theta_1, \theta_2) \left(\sum_{g \in D_{12}} \delta_{g(\xi, \eta)} \right)$ and $12\Omega^W(2/13, 7/13) = \int_{T^2} \Omega(\theta_1, \theta_2) \left(\sum_{g \in D_{12}} \delta_{g(\xi, \eta)} \right)$. The measures $J^2 d_7 \times d_7$, $J^2 d_6 \times d_6$, $d_3 \times d_3$, $d_2 \times d_2$, $d_1 \times d_1$ and $d^{(1)}$ supported by the other points above have all appeared in the previous sections, so we obtain:

Theorem 8.1. The joint spectral measure (over T^2) for all embeddings of $PSL(2;13)$
into the fundamental representations of G_2 is
\begin{align}
 d\varepsilon &= \frac{1}{448\pi^4}J^2 d_7 \times d_7 + \frac{1}{1152\pi^4}J^2 d_6 \times d_6 + \frac{1}{4} d_3 \times d_3 + \frac{1}{9} d_2 \times d_2 \\
 &- \frac{22}{819} d_1 \times d_1 - \frac{1}{12} d^{(1)} + \frac{7}{192} \sum_{g \in D_{12}} (\delta_{g(\zeta,\zeta^4)} + \delta_{g(\zeta^2,\zeta^7)})
\end{align}
(18)

where d_m is the uniform measure over m^{th} roots of unity, $d^{(k+4)}$ is the uniform measure on the points in C^W_k, δ_x is the Dirac measure at the point x and $\zeta = e^{2\pi i/13}$.

9 Group $PU(3; 3) \cong G_2(2)'$

The subgroup $PU(3; 3)$ of G_2 is an irreducible primitive group of order 6048. It has fourteen irreducible representations (seven real representations, one quaternionic representation Σ_6, and three pairs of complex conjugate representations) and its character table is given in Table 17 [5].

There are two non-conjugate real seven-dimensional representations, $\gamma_1^{(1)} = \Sigma_1 + \Sigma_6$ and $\gamma_1^{(2)} = \Sigma'_7$. These both satisfy the condition that $\gamma_1^{(i)}$ appears in the decomposition of $(\gamma_1^{(i)})^2$. We thus consider the eigenvalues of the representation matrices to determine which of the $\gamma_1^{(i)}$ are embeddings of $PU(3; 3)$ in G_2. These eigenvalues are given in Table 18 for the representations Σ_1, Σ_6 and Σ'_7. As described in Section 8, these eigenvalues can be determined from the character table of $PU(3; 3)$. The additional information that is needed is to note that the eigenvalues for group elements in C_4, C'_4 and C''_4 all square to those for elements in C_2, those for C_8, C'_8 square to those for C_4, C'_4 respectively, those for C_6 square to those for C_3 and also cube to those for C_2, those for C_{12} square to those for C_6 and cube to those for C_4 whilst those for C'_{12} also square to those for C_6 but cube to those for C'_4 (see 5).

From considering the set of eigenvalues X_C for group elements in C in the representation $\gamma_1^{(i)}$, we see that there is no choice of $(t_{iC}, t_{iC'}) \in X_C$ such that $E_{t_{iC}, t_{iC'}} = X_C$ for $i = 1$ when $C = C_{12}, C'_{12}$. However, such a choice does exist for all conjugacy classes C for
Table 17: Character table for $PU(3;3)$.

| $|C|$ | C_1 | C_3 | C_2 | C_4 | C_4' | C_{12} | C'_{12} | C_6 | C_3' | C_8 | C_7' |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | 1 | 56 | 63 | 63 | 378 | 504 | 504 | 672 | 756 | 756 | 864 |

\[
\begin{array}{cccccccccc}
\Sigma_1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\Sigma_6 & 6 & -3 & -2 & -2 & 2 & 1 & 1 & 0 & 0 & -1 & -1 \\
\Sigma_7 & 7 & -2 & 3 & -1 - 2i & -1 + 2i & 1 & -1 - i & -1 + i & 0 & 1 & -i & 0 & 0 \\
\Sigma^*_7 & 7 & -2 & 3 & -1 + 2i & -1 - 2i & 1 & -1 + i & -1 - i & 0 & 1 & i & 0 & 0 \\
\Sigma_{14} & 14 & 5 & -2 & 2 & 2 & -1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 \\
\Sigma_{21} & 21 & 3 & 1 & -3 - 2i & -3 + 2i & -1 & -i & i & 1 & 0 & i & 0 & 0 \\
\Sigma^*_{21} & 21 & 3 & 1 & -3 + 2i & -3 - 2i & -1 & i & -i & 1 & 0 & -i & i & 0 & 0 \\
\Sigma_{21} & 21 & 3 & 5 & 1 & 1 & 1 & 1 & -1 & 0 & -1 & -1 & 0 & 0 \\
\Sigma_{27} & 27 & 0 & 3 & 3 & 3 & -1 & 0 & 0 & 0 & 1 & 1 & -1 & -1 \\
\Sigma_{28} & 28 & 1 & -4 & -4i & 4i & 0 & i & -i & -1 & 1 & 0 & 0 & 0 \\
\Sigma^*_{28} & 28 & 1 & -4 & 4i & -4i & 0 & -i & i & -1 & 1 & 0 & 0 & 0 \\
\Sigma_{32} & 32 & -4 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
\Sigma^*_{32} & 32 & -4 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[\Sigma_{14} = \sum_{\lambda_1} \chi_{\lambda_1}(C) \Phi_1(t_1^C, t_2^C),\]

Figure 15: The McKay graphs $G_{PU(3;3)}^{(2)}$.

\[i = 2, \text{ thus we have } \varrho_1 = \gamma_1^{(2)}. \]

We present one such choice of eigenvalues (t_1^C, t_2^C) in the final column of Table 18. The McKay graph $G_{PU(3;3)}^{(2)}$ is given in [12, Figure 2], and we reproduce it here in Figure 15 for completeness.

The decomposition of the Kronecker square of ϱ_1 into irreducibles is given by

\[\varrho_1^2 = \text{id} + \varrho_1 + \Sigma_{14} + \Sigma_{27},\]

where $\text{id} = \Sigma_1$. Thus the fourteen-dimensional representation ϱ_2 must be Σ_{14}, and we note that $\chi_{\varrho_2}(C) = \Phi_2(t_1^C, t_2^C)$ as required.
Table 18: Eigenvalues of group elements in each conjugacy class of \(PU(3; 3) \) for the irreducible representations \(\Sigma_1, \Sigma_6 \) and \(\Sigma'_7 \), where \(\omega = e^{2\pi i/3}, \mu = e^{2\pi i/6}, \eta = e^{2\pi i/7}, \nu = e^{2\pi i/8} \) and \(\xi = e^{2\pi i/12} \)

Then from (14) and Tables 17 and 2 we see that

\[
\varsigma_{m,n} = \frac{1}{6048} \Omega^W(0, 0) + \frac{56}{6048} \Omega^W(1/3, 2/3) + \frac{65}{6048} \Omega^W(0, 1/2) + \frac{672}{6048} \Omega^W(0, 1/3) + \frac{63}{6048} \Omega^W(0, 1/4) + \frac{378}{6048} \Omega^W(1/4, 1/2) + \frac{504}{6048} \Omega^W(1/6, 1/3) + \frac{864}{6048} \Omega^W(1/7, 3/7) + \frac{756}{6048} \Omega^W(1/8, 1/2) + \frac{504}{6048} \Omega^W(1/12, 5/12),
\]

where \(\Omega^W(\theta_1, \theta_2) \) is as in Section 4.

Now \(2 \Omega^W(1/3, 2/3) = \int_{T^2} \Omega(\theta_1, \theta_2)(3d^{(1)} - d_1 \times d_1) \) The points \(\circ \) in Figure 15(a) give the measure \(3d^{(1)} \) whilst the points \(\diamond \) in Figure 15(a) give the measure \(4d_2 \times d_2 - d_1 \times d_1 \) thus we see that \(6 \Omega^W(1/6, 1/3) = \int_{T^2} \Omega(\theta_1, \theta_2)(12d^{(2)} - 3d^{(1)} - 4d_2 \times d_2 + d_1 \times d_1) \).

Finally, \(12 \Omega^W(1/12, 5/12) = 18 \int_{T^2} \Omega(\theta_1, \theta_2)(J^2/64\pi^4)d^{(4)} \) as illustrated in Figure 16(b) since the Jacobian \(J = 0 \) along the boundaries of the orbit of the fundamental domain, whilst \(J^2(g(1/12, 5/12)/64\pi^4) = 12 \) for all \(g \in D_{12} \).

The measures \(J^2d_2 \times d_2, (24 - K)d_4 \times d_4, d_3 \times d_3 \) and \(\sum_{g \in D_{12}} \delta_{g(e^{\pi i/4}, -1)} \) supported by the other points have all appeared in the previous sections, so we obtain:

Theorem 9.1. The joint spectral measure (over \(T^2 \)) for all embeddings of \(PU(3; 3) \) into the fundamental representations of \(G_2 \) is

\[
d\varepsilon = \frac{1}{672\pi^4} J^2 d_2 \times d_2 + \frac{1}{144} (24 - K) d_4 \times d_4 + \frac{1}{6} d_3 \times d_3 - \frac{1}{12} d_2 \times d_2 + \frac{1}{168} d_1 \times d_1 + \frac{1}{1152\pi^4} J^2 d^{(4)} + \frac{1}{6} d^{(2)} - \frac{1}{12} d^{(4)} + \frac{1}{48} \sum_{g \in D_{12}} \delta_{g(e^{\pi i/4}, -1)}.
\]
where $K(\theta_1, \theta_2) = (\sin(2\pi(\theta_1 + \theta_2)) - \sin(2\pi(2\theta_1 - \theta_2)) - \sin(2\pi(2\theta_2 - \theta_1)))^2$, d_m is the uniform measure over m^{th} roots of unity, $d^{(k+4)}$ is the uniform measure on the points in C_k^W, and δ_x is the Dirac measure at the point x.

10 Group $G_2(2)$

The subgroup $G_2(2) = G_2(F_2)$ of $G_2 = G_2(\mathbb{C})$ is an irreducible primitive group of order 12096. It is the group G_2 defined over the Galois field F_2. It has sixteen irreducible representations (fourteen real and two complex conjugate representations), and its character table is given in \[12\] (the orders of the elements in each conjugacy class can be obtained from \[15\]).

The group $G_2(2)$ has only two seven-dimensional real representations, both of which are irreducible. Of these two, only Σ_7 has character values in $[-2, 7]$ for all $g \in G_2(2)$, thus this is the restriction ϱ_1 of the seven-dimensional fundamental representation ρ_1 of G_2 to $G_2(2)$. The McKay graph for ϱ_1 is given in Figure 17. This graph is a \mathbb{Z}_2-orbifold of the McKay graph $G_{\text{PU}(3;3)}^\varrho_1$ for $\text{PU}(3;3)$. Note that the McKay graph given in [12] Figure 2] is not that for ϱ_1, but rather for the other irreducible seven-dimensional representation Σ_7' of $G_2(2)$.

The decomposition of the Kronecker square of ϱ_1 into irreducibles is given by

$$\varrho_1^2 = \text{id} + \varrho_1 + \Sigma_{14} + \Sigma_{27},$$

thus the fourteen-dimensional representation ϱ_2 is given by the irreducible representation Σ_{14}. We note that the eigenvalues of the representation matrices for C_4, C_4', C_4'' all square to those for C_2, those for C_6 square to those for C_3, those for C_6' square to those for C_3', those for C_8 square to those for C_4, those for C_8' square to those for C_4'', and those for $C_{12}, C_{12}', C_{12}''$ all square to those for C_6.

![Figure 16: The orbits of (a) (1/6, 1/3), (b) (1/12, 5/12).](image)
Table 19: Character table for $G_2(2)$.

| C | $|C|$ | C_1 | C_3 | C_2 | C_4 | C_4' | C_6 | C_3' | C_{12} | C_{12}' | C_{12}'' | C_8 | C_8' | C_7 | C_9' |
|-----|------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|------|------|-----|------|
| Σ_1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Σ_1' | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Σ_6 | 6 | -3 | -2 | -2 | 0 | 2 | 1 | 0 | $i\sqrt{3}$ | $-i\sqrt{3}$ | 1 | 0 | 0 | -1 | 0 |
| Σ_6' | 6 | -3 | -2 | -2 | 0 | 2 | 1 | 0 | $-i\sqrt{3}$ | $i\sqrt{3}$ | 1 | 0 | 0 | -1 | 0 |
| Σ_7 | 1 | -2 | -1 | 3 | -1 | 1 | 3 | 2 | 1 | 0 | 0 | 0 | 1 | -1 | 0 | -1 |
| Σ_7' | 1 | -2 | -1 | 3 | 1 | -3 | 1 | 2 | 1 | 0 | 0 | 0 | -1 | -1 | 0 | 1 |
| Σ_{14} | 14 | 5 | -2 | 2 | -2 | 2 | 2 | 1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 |
| Σ_{14}' | 14 | 5 | -2 | 2 | 2 | -2 | 2 | 1 | -1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 |
| Σ_{21} | 21 | 3 | 5 | 1 | -3 | 1 | 3 | -1 | 1 | -1 | 0 | -1 | 1 | 1 | -1 | 0 |
| Σ_{21}' | 21 | 3 | 5 | 1 | 3 | 1 | -1 | 0 | 1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 |
| Σ_{27} | 27 | 0 | 3 | 3 | 3 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 0 |
| Σ_{27}' | 27 | 0 | 3 | 3 | -3 | -3 | -1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 0 |
| Σ_{42} | 42 | 6 | 2 | -6 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Σ_{56} | 56 | 2 | -8 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Σ_{64} | 64 | -8 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |

Then from (14) and Tables 19 and 2, we see that

$$\varsigma_{m,n} = \frac{1}{12096} \Omega^W(0,0) + \frac{56}{12096} \Omega^W(1/3,2/3) + \frac{63 + 252}{12096} \Omega^W(0,1/2) + \frac{672}{12096} \Omega^W(0,1/3)$$

$$+ \frac{126 + 252}{12096} \Omega^W(0,1/3) + \frac{378}{12096} \Omega^W(1/4,1/2) + \frac{504}{12096} \Omega^W(1/6,1/3)$$

$$+ \frac{1728}{12096} \Omega^W(1/7,3/7) + \frac{1512}{12096} \Omega^W(1/8,1/2) + \frac{1512}{12096} \Omega^W(1/8,3/8)$$

$$+ \frac{1008 + 1008 + 1008}{12096} \Omega^W(1/12,5/12) + \frac{2016}{12096} \Omega^W(1/6,1/2),$$

where $\Omega^W(\theta_1, \theta_2)$ is as in Section 4. The measures given by these points have all ap-

Figure 17: The McKay graphs $G^{\varphi_1}_{G_2(2)}$.

30
peared in the previous sections. Note however that $12(\Omega^W(1/8, 1/2) + \Omega^W(1/8, 3/8)) = 8 \int_{T^2} \Omega(\theta_1, \theta_2)(J^2/64\pi^4) \, d_8 \times d_8$, since the Jacobian $J = 0$ along the boundaries of the orbit of the fundamental domain, whilst $J^2(g(1/8, 1/2))/64\pi^4 = J^2(g(1/8, 3/8))/64\pi^4 = 8$ for all $g \in D_{12}$. Thus we obtain:

Theorem 10.1. The joint spectral measure (over T^2) for all embeddings of $G_2(2)$ into the fundamental representations of G_2 is

$$
\begin{align*}
\text{d}\varepsilon &= -\frac{1}{768\pi^4} J^2 d_8 \times d_8 + \frac{1}{1344\pi^4} J^2 d_7 \times d_7 + \frac{1}{1152\pi^4} J^2 d_6 \times d_6 + \frac{1}{12} d_4 \times d_4 \\
&\quad + \frac{1}{12} d_3 \times d_3 - \frac{1}{72} d_2 \times d_2 - \frac{1}{252} d_1 \times d_1 + \frac{1}{768\pi^4} J^2 d^{(4)} + \frac{1}{12} d^{(2)} - \frac{1}{24} d^{(4)},
\end{align*}
$$

(20)

where d_m is the uniform measure over m^{th} roots of unity and $d^{(k+4)}$ is the uniform measure on the points in C_k^W.

Acknowledgement.

The second author was supported by the Coleg Cymraeg Cenedlaethol.

References