Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Growth of hormone-dependent MCF-7 breast cancer cells is promoted by constitutive caveolin-1 whose expression is lost in an EGF-R-mediated manner during development of tamoxifen resistance

Thomas, Nicholas B. P., Hutcheson, Iain Robert, Campbell, Lee, Gee, Julia Margaret Wendy, Taylor, Kathryn Mary, Nicholson, Robert Ian and Gumbleton, Mark 2010. Growth of hormone-dependent MCF-7 breast cancer cells is promoted by constitutive caveolin-1 whose expression is lost in an EGF-R-mediated manner during development of tamoxifen resistance. Breast Cancer Research and Treatment 119 (3) , pp. 575-591. 10.1007/s10549-009-0355-8

Full text not available from this repository.

Abstract

Caveolin-1 displays both tumour-suppressor and tumour-promoter properties in breast cancer. Using characterised preclinical cell models for the transition of oestrogen-sensitive (WT-MCF-7 cells) to a tamoxifen-resistant (TAM-R cells) phenotype we examined the role caveolin-1 in the development of hormone-resistant breast cancer. The WT-MCF-7 cells showed abundant expression of caveolin-1 which potentiated oestrogen-receptor (ERα) signalling and promoted cell growth despite caveolin-1 mediating inhibition of ERK signalling. In TAM-R cells caveolin-1 expression was negligible, repressed by EGF-R/ERK signalling. Pharmacological inhibition of EGFR/ERK in TAM-R cells restored caveolin-1 and also resulted in the emergence of pools of phosphorylated caveolin-1. WT-MCF-7 cells exposed to tamoxifen for upto 12 weeks displayed increased caveolin-1 (peaking by week 2) followed (after week 8) by a marked decrease as the cells progress to develop a stable tamoxifen-resistant phenotype. The targeted down-regulation (siRNA) of caveolin-1 in WT-MCF-7 cells reduced growth but did not affect their sensitivity to tamoxifen, suggesting loss of caveolin-1 alone is not sufficient to confer tamoxifen-resistance. Hyperactivation of EGFR/ERK is a feature of tamoxifen-resistant breast cancer cells, a principal driver of cell growth. Recombinant expression of caveolin-1 in TAM-R cells did not affect EGFR/ERK activity, potentially due to mislocalisation of caveolin-1 through hyperactivation of the mTOR pathway or altered caveolin-1 phosphorylation. This work defines a novel role for caveolin-1 with implications for the clinical course of breast cancer and identifies caveolin-1 as a potential drug target for the treatment of early oestrogen-dependent breast cancers. Further, the loss of caveolin-1 may have benefit as a molecular signature for tamoxifen resistance.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Pharmacy
Subjects: R Medicine > RC Internal medicine > RC0254 Neoplasms. Tumors. Oncology (including Cancer)
R Medicine > RM Therapeutics. Pharmacology
Uncontrolled Keywords: Caveolin ; Tamoxifen ; Breast cancer ; Resistance ; Hormone-dependent ; EGFR ; ERK1/2 ; Phosphorylated-caveolin ; mTOR ; Oestrogen receptor ERα
Publisher: Kluwer
ISSN: 0167-6806
Last Modified: 02 Feb 2018 23:21
URI: http://orca.cf.ac.uk/id/eprint/6744

Citation Data

Cited 8 times in Google Scholar. View in Google Scholar

Cited 15 times in Scopus. View in Scopus. Powered By Scopus® Data

Cited 6 times in Web of Science. View in Web of Science.

Actions (repository staff only)

Edit Item Edit Item