Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Seismic character and interaction of intrabasinal mass-transport deposits in deep-water continental margins (Espírito Santo Basin, SE Brazil)

Omosanya, Kamaldeen 2014. Seismic character and interaction of intrabasinal mass-transport deposits in deep-water continental margins (Espírito Santo Basin, SE Brazil). PhD Thesis, Cardiff University.
Item availability restricted.

PDF - Accepted Post-Print Version
Download (47MB) | Preview
[img] PDF - Supplemental Material
Restricted to Repository staff only

Download (188kB)


The aim of this thesis is to assess the spatial and temporal recurrence of mass-transport deposits (MTDs) within salt withdrawal basins to unravel the complex interaction between mass-wasting processes and salt halokinesis. A high-quality 3D seismic dataset from the mid-continental slope of Espírito Santo Basin, SE Brazil, was used to assess the provenance of mass-transport deposits and their potentials as structural markers for seafloor perturbation and fault activity. A new proposition from this work includes scale-independent classification of mass- transport deposits into homogeneous and heterogeneous types. Heterogeneous MTDs are composed of seismic facies corresponding to slides, slumps and debrites. Homogeneous MTDs comprise consolidated debrites considered in this work as comprising barriers to fluid flow. In addition, MTD composed of rafted blocks displayed a disproportionate relationship between their shape, transporting distance and degree of remobilization. Drag zones denote sections of MTDs that are uplifted during salt diapir rise. These drag zones are extended and shortened along their long and short axis respectively. Ramps flanking salt diapirs are formed by either complete or partial erosion of paleo-seafloors and pre-existing fault scarps. In this thesis, it is shown that the risk of remobilized sediments is highest within drag zones. The erosive nature of mass-wasting processes is justified by the decoupling history of faults eroded by MTDs. An innovative method to assess fault decoupling history on continental margin is the use of cumulative throw character. MTD-decoupled faults are iv | P a g e characterised by shorter propagation rate and cumulative throw and are potentially sealing compared to their non-decoupled counterparts. The information from this study is crucial information for successful hydrocarbon exploration and risk assessment in deep-water environments. The methodologies and results from this thesis are applicable to continental margins worldwide.

Item Type: Thesis (PhD)
Status: Unpublished
Schools: Earth and Ocean Sciences
Subjects: Q Science > QE Geology
Funders: TETFund, Nigeria
Date of First Compliant Deposit: 30 March 2016
Last Modified: 19 Mar 2016 23:50

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics