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ITERATED CHVÁTAL-GOMORY CUTS AND THE GEOMETRY OF
NUMBERS

ISKANDER ALIEV ∗ AND ADAM LETCHFORD †

Abstract. Chvátal-Gomory cutting planes (CG-cuts for short) are a fundamental tool in Integer
Programming. Given any single CG-cut, one can derive an entire family of CG-cuts, by ‘iterating’ its
multiplier vector modulo one. This leads naturally to two questions: first, which iterates correspond
to the strongest cuts, and, second, can we find such strong cuts efficiently? We answer the first
question empirically, by showing that one specific approach for selecting the iterate tends to perform
much better than several others. The approach essentially consists in solving a nonlinear optimization
problem over a special lattice associated with the CG-cut. We then provide a partial answer to the
second question, by presenting a polynomial-time algorithm that yields an iterate that is strong in
a certain well-defined sense. The algorithm is based on results from the algorithmic geometry of
numbers.
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1. Introduction. Let x ∈ Zn be a vector of integer-constrained decision vari-
ables, and let Ax ≤ b be a system of linear inequalities, where A ∈ Zm×n and b ∈ Zm.
A Chvátal-Gomory cutting plane, or CG-cut for short, is a linear inequality of the form

(
λTA

)
x ≤

⌊
λT b

⌋
, (1.1)

for some multiplier vector λ ∈ Rm
≥0 with λTA ∈ Z. (Here, ⌊·⌋ denotes rounding down

to the nearest integer. If λT b ∈ Z, we call the CG-cut (1.1) trivial.)

CG-cuts are so-called because they were derived by Chvátal [13], based on earlier
work of Gomory [19, 20]. They form a fundamental family of cutting planes for Integer
Linear Programs (ILPs); see, e.g., [36, 46].

A large number of papers have appeared that use CG-cuts either theoretically or
algorithmically. We survey some of them in Section 2. One well-known operation in
the literature for creating new CG-cuts from old ones is to take a multiplier vector λ
and an integer t, and create the new multiplier vector tλ mod 1 := tλ−⌊tλ⌋. (When
⌊·⌋ is applied to a vector, each component of the vector is rounded down.) We call
this operation ‘iterating modulo 1’.

This leads naturally to two questions: first, which choices for the integer t cor-
respond to strong cuts, and, second, can we find such strong cuts efficiently? In this
paper, we answer the first question empirically, by showing that one specific approach
for selecting t tends to perform much better than several others. The approach es-
sentially amounts to solving a nonlinear optimization problem over a special lattice
associated with the initial cut. To address the second question, we first show that for
a ‘typical’ cut the covering radius of the associated lattice is small. This result justifies
using the covering radius for estimating the quality of the iterates. We then provide a
partial answer to the second question, by showing the existence of a polynomial-time
algorithm that computes an iterated CG-cut that is strong in a certain well-defined
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sense. The algorithm is based on results from the algorithmic geometry of numbers
and computational Diophantine approximations.

The structure of the paper is as follows. The relevant literature is briefly reviewed
in the next section. In Section 3, we describe several rules, both known and new, for
selecting the integer t, and study their empirical performance. In Section 4, we study
the properties of the iterates for the case in which λ is random. The polynomial-
time algorithm mentioned above is presented in Section 5. Finally, some concluding
remarks are made in Section 6.

2. Literature Review. In this section, we review some relevant papers, intro-
ducing some useful notation and terminology along the way.

2.1. Gomory fractional cuts. The original method of Gomory [19] was de-
signed for ILPs of the form:

max
{
cTx : Cx = d, x ∈ Zn

≥0

}
,

where c ∈ Zn, C ∈ Zp×n and d ∈ Zp. The first step is to solve the Linear Program
(LP)

max
{
cTx : Cx = d, x ∈ Rn

≥0

}

by the simplex method. Let x∗ be the optimal solution to this LP, and suppose that
x∗
k /∈ Z for some 1 ≤ k ≤ n. Then xk is basic, and there exists a row of the simplex

tableau of the form:

xk +
∑

i∈B

αixi = x∗
k, (2.1)

where B is the set of non-basic variables. Rounding down each coefficient to the
nearest integer, we obtain the valid inequality:

xk +
∑

i∈B

⌊αi⌋xi ≤ ⌊x∗
k⌋.

Using the equation (2.1), this inequality can be written as:

∑

i∈B

{αi}xi ≥ {x∗
k}, (2.2)

where {r} = r − ⌊r⌋ is the fractional part of r. The inequality (2.2) has come to be
known as the Gomory fractional cut. We will write GF-cut for short.

Gomory ([20], Section 4) pointed out that, by taking integral combinations of
the rows of the simplex tableau, one can create new equations, from which further
GF-cuts can be derived. In this way, he derived a ‘group’ of GF-cuts. He showed that,
unless the original ILP possesses an unusual degree of symmetry, then the group is
cyclic, which means that the entire group can be derived by taking integral multiples
of one single equation in the tableau.

2.2. Separation of Chvátal-Gomory cuts. Returning to CG-cuts, define the
polyhedron

P = {x ∈ Rn : Ax ≤ b} , (2.3)
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and let PI be the convex hull of P ∩Zn, i.e., the so-called integral hull of P . Chvátal
[13] defined the elementary closure of the P , denoted by P ′, as the convex set that
remains after all CG-cuts have been added. Clearly, PI ⊆ P ′ ⊆ P . Schrijver [42]
showed that P ′ is a polyhedron, or, equivalently, that a finite subset of the CG-cuts
dominates all others.

Now we consider the separation problem for CG-cuts. If P is pointed and x∗

is a fractional extreme point of P , then one can generate a violated CG-cut via the
following four-step procedure: (i) add slack variables to convert the inequality system
Ax ≤ b into an equation system, (ii) express x∗ as a basic feasible solution to that
equation system, (iii) generate a GF-cut, and (iv) convert the GF-cut into a CG-cut
by eliminating slack variables. (For details, see, e.g., Sect. II.1.3 of [36].) For general
x∗, however, separation over P ′ is NP -hard (Eisenbrand [16]). Fischetti and Lodi
[18] present an integer programming approach for separating over P ′ in practice. Fast
separation heuristics have been presented, for example, in [9, 10, 32].

2.3. Cut strengthening. GF-cuts and CG-cuts may induce facets of PI in
certain cases (see again [9, 10]). In general, however, the GF-cuts generated by Go-
mory’s method, or the CG-cuts generated by existing separation heuristics, can be
rather weak. There is a considerable literature on the derivation of general fami-
lies of valid linear inequalities which dominate the GF-cuts and/or CG-cuts (e.g.,
[12, 14, 21, 33, 36, 37]). The drawback of the inequalities described in those papers is
that their coefficients are typically numerically less stable than those of GF-cuts and
CG-cuts. (Recall that CG-cuts have integer coefficients by definition, and that any
GF-cut can be written as a CG-cut.)

An alternative way to address the issue of cut weakness is to develop procedures
which take one or more vectors α mod 1 (or, equivalently, one or more multiplier
vectors λ), and attempt to construct another vector with more desirable properties.
(Here, α is the vector with components αi from (2.1).) Here are three examples of
such procedures:

• Gomory ([20], Section 5) pointed out that, if {x∗
i } < 1/2, then one can obtain

a GF-cut that is at least as strong as the original, by multiplying the equation
(2.1) by the largest positive integer t such that 1/2 ≤ t{x∗

i } < 1.
• For the same case, Letchford and Lodi [33] suggested instead to multiply the
equation (2.1) by −1.

• Ceria et al. [11] gave a heuristic, based on solving systems of linear congru-
ences, to find a member of the group of GF-cuts with as many zero left-hand
side coefficients as possible.

We follow the same approach in this paper, but use more sophisticated algorithmic
tools.

We remark that sequences tλ mod 1 have been investigated in a completely dif-
ferent context, that of the method of good lattice points in numerical integration. See,
e.g., [28, 30, 44]. We remark also that this is not the first paper to apply tools from
the geometry of numbers to integer programming; see the survey [17].

3. Rules for Finding a Good Iterate. In this section, we examine various
rules for finding a good iterated CG-cut, or, equivalently, for selecting the integer t.
Throughout this section, and in the following two, we make an important assumption.
Let x∗ ∈ P \P ′ be a fractional point that we wish to separate, and let λ be an initial
multiplier vector. The assumption is that λT (b−Ax∗) = 0, i.e., that all inequalities
with a positive multiplier have zero slack at x∗. This assumption holds, for example,
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when x∗ is an extreme point of P and the CG-cut has been generated by the four-
step procedure mentioned in Subsection 2.2. It also holds when the CG-cut has been
generated using the separation heuristics in [10, 32]. It has the important implication
that, regardless of the integer t, every non-trivial iterated CG-cut will be violated by
x∗.

In the following three subsections, we present some useful notation, describe six
specific rules for selecting an iterate, and present some preliminary computational
results.

3.1. Some useful notation. It follows from results in Schrijver [42] that we
can assume, without loss of generality, that λ is rational. Furthermore, the CG-

cut
(
λTA

)
x ≤

⌊
λT b

⌋
is implied by Ax ≤ b and the CG-cut

(
(λ mod 1)TA

)
x ≤

⌊
(λ mod 1)T b

⌋
. Thus we may also assume that λ ∈ [0, 1)m.

Therefore we can write

λ =

(
p1
q
,
p2
q
, . . . ,

pm
q

)T

, (3.1)

where q is a positive integer and p1, p2, . . . , pm are non-negative integers with the
greatest common divisor gcd(p1, p2, . . . , pm, q) = 1. Then, for any integer 1 ≤ t < q,
the inequality

(
(tλ mod 1)TA

)
x ≤

⌊
(tλ mod 1)T b

⌋
(3.2)

is a (possibly trivial) iterated CG-cut.
The family of iterated CG-cuts formed in this way is analogous to the group of

GF-cuts described by Gomory, or, more precisely, to the subgroup of GF-cuts that
can be derived by taking integer multiples of one single row of the tableau. Note that
q can be exponentially large, and so can the family of iterated CG-cuts.

At this point, it is helpful to define the slack vector s = b−Ax and the rounding

effect ν =
{
λT b

}
. Then, the iterated CG-cut (3.2) can be written in the alternative

form:

(tλ mod 1)Ts ≥ {tν} . (3.3)

Now, since we are assuming that λTs = 0 at x∗, the left-hand side of (3.3) at x∗ will
be zero. This means that, provided that an iterated CG-cut is not trivial, it will be
violated by x∗.

3.2. Six specific rules. Now we consider how to select the integer t. A trivial
strategy, which we call Strategy 0, is to select t = 1. As mentioned in Subsection 2.3,
Gomory [20] suggested to set t = 1 if ν < 1/2, but to the largest integer such that
tν < 1 otherwise; and Letchford and Lodi [33] suggested to set t = 1 if ν < 1/2, but
to −1 otherwise. We will call these approaches Strategy 1 and Strategy 2, respectively.
Another approach, that we call Strategy 3, is to select an integer t such that the
right-hand side of (3.3) is maximised.

The previous three strategies are concerned only with making the right-hand side
of (3.3) (rounding effect) large. It is also desirable for the left-hand side to have small
norm. In this paper we propose to optimize these two quantities simultaneously. We
consider two strategies, multiplicative and additive, to ensure that the norm of the
multiplier vector is small, but the rounding effect is large.
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The multiplicative strategy attempts to minimise the ratio

||tλ mod 1||/{tν}

over all iterations with positive rounding effect {tν}. Here || · || denotes the Euclidean
norm. That is, we are solving the following optimization problem:

min {||tλ mod 1||/{tν} : t = 1, . . . , q − 1, {tν} > 0} . (3.4)

We will call this Strategy 4. Unfortunately, the complexity of this problem is unknown.
We conjecture that it is NP -hard.

Let us now construct the augmented vector

ν = (λ1, . . . , λm, ν)T

and put for x = (x1, . . . , xd−1, xd)

N(x) = ||(x1, . . . , xd−1, 1− xd)|| .

The additive strategy attempts to find a vector ξ = tν mod 1 with minimum
value N(x) and positive last entry ξd = {tν}, which represents the rounding effect of
the iterated cut. That is, we are solving the following optimization problem:

min {N(tν mod 1) : t = 1, . . . , q − 1, {tν} > 0} . (3.5)

We call this Strategy 5. We conjecture that this problem too is NP -hard. In Section 5,
we show that both problems (3.4) and (3.5) can be solved approximately in polynomial
time.

Note that the new Strategies 4 and 5 (as well as the Strategies 0–3) do not depend
on the objective function. Finding an effective strategy that employs the parameters
of the objective function is a topic for future research.

3.3. Preliminary computational results. In order to gain some insight into
the performance of the six strategies mentioned in the previous subsection, we per-
formed some computational experiments on some small ILPs. We began by creating
45 random ILPs of the form

max
{
cTx : Ax ≤ b, x ∈ Zn

≥0

}
,

where c ∈ Zn
≥0, A ∈ Zm×n

≥0 and b ∈ Zm
≥0. (Note that instances of this form are

guaranteed to be feasible, since the origin is feasible.) For any pair (n,m) with
m ∈ {5, 10, 15} and n ∈ {10, 20, 30}, 5 such instances (m,n, k), k ∈ {1, . . . , 5} were
constructed. The ci were random integers distributed uniformly between 1 and 5. The
Aij were random integers with a 50% chance of being distributed uniformly between
1 and 5, but a 50% chance of being zero. This was to mimic the sparsity that is
usually found in real-life ILPs. (If any column of A had fewer than two non-zeroes,
the column was discarded and another one generated. This is to ensure boundedness.)
The bj were set to

⌈
1
2

∑n
i=1 Aij

⌉
.

For each instance (m,n, k), the LP relaxation was solved to optimality and the
optimal simplex tableau computed using exact rational arithmetic. (To avoid numer-
ical problems, instances for which the determinant D of the basis matrix exceeded
2 · 106 were discarded. The desire to keep D small also motivated the above restric-
tions on the coefficients.) Then, for each variable taking a fractional value in the LP
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Table 3.1
Computational results

m n A0(m,n) A1(m,n) A2(m,n) A3(m,n) A4(m,n) A5(m,n)

10 19.29 35.46 30.98 34.99 45.94 45.02
5 20 18.89 29.14 23.56 33.67 36.00 40.84

30 14.09 21.76 17.23 19.99 21.20 29.74

10 4.52 5.95 4.66 6.68 13.22 10.46
10 20 3.14 5.90 4.97 7.13 11.37 8.90

30 3.85 6.63 4.93 6.28 10.49 9.44

10 5.89 9.02 7.53 10.02 15.92 16.39
15 20 1.86 2.94 2.51 3.68 14.16 12.15

30 2.87 4.04 3.16 3.28 10.25 10.00

As : 8.27 13.43 11.06 13.97 19.83 20.33

solution, whether a structural variable or a slack variable, a GF-cut was generated
and converted into a CG-cut. At the end, for the instance (m,n, k) and for each of
the strategies s ∈ {0, . . . , 5}, we stored the average As(m,n, k), over all considered
CG-cuts, of the percentage of the integrality gap closed by a CG-cut.

In Table 3.1, we compare all six strategies. For each value of (n,m) and for each of

the strategies s ∈ {0, . . . , 5}, we report the averageAs(m,n) = (1/5)
∑5

k=1 As(m,n, k).
In the last row of the table, As = (1/9)

∑
m,n As(m,n) are the averages of As(m,n, k)

over all computed instances.
The computational results show that both Strategies 4 and 5 close significantly

more of the integrality gap than the other four strategies. This indicates that the
rounding effect and the norm of the multiplier vector should be simultaneously opti-
mized for generating strong CG-cuts. To gain an insight on the theoretical aspects
of this problem, we study in the next section the behavior of the iterated cuts for a
randomly chosen augmented vector ν.

4. Behaviour of the Iterates for a Random Vector. As illustrated by Table
4.1, the values of the minima in (3.4) and (3.5) may vary significantly from one vector
ν to another, even for a fixed q. Intuitively, the chance of obtaining a good iterate is
higher if the iterates are ‘spread’ reasonably uniformly over the hypercube, as in cases
C and D. This led us to examine the behaviour of the iterates for ‘typical’ vectors ν.

To formulate the obtained results, we need to introduce the following notation.
Given a matrix B ∈ Rd×l with linearly independent column vectors b1, . . . , bl ∈ Rd,
the set

L(b1, . . . , bl) = {u1b1 + · · ·+ ulbl : u1, . . . , ul ∈ Z}

is called a lattice of rank (or dimension) l with basis b1, . . . , bl and determinant

det(L(b1, . . . , bl)) =
√
det(BTB) .

For a comprehensive and extensive survey on lattices and Minkowski’s geometry of
numbers we refer the reader to the book of Gruber and Lekkerkerker [24].

Given lattice L, we will denote by L∗ its dual lattice, that is

L∗ = {y ∈ span
R
(L) : yTx ∈ Z for all x ∈ L} .
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Table 4.1
Examples of sequences ν mod 1 with q = 256: (A) ν = (1/256, 255/256, 255/256); (B) ν =

(1/256, 15/256, 255/256); (C) ν = (1/256, 63/256, 127/256) and (D) ν = (1/256, 15/256, 63/256).

(A) (B)

(C) (D)

Let Bd(x, r) denote a d-dimensional ball of radius r centered at x. Given any
l-dimensional lattice Λ ⊂ Rd we also denote by λi = λi(Λ) its ith successive minimum

λi = min{r > 0 : dim span
R
(Bd(0, r) ∩ Λ) ≥ i} , 1 ≤ i ≤ l .

Recall that the inhomogeneous minimum of a set S ⊂ span
R
(L) with respect to

a lattice L is defined as

µ(S,L) = inf{σ > 0 : L+ σS = span
R
(L)} .

The covering radius τ(L) of a lattice L is the inhomogeneous minimum of the unit
ball B in span

R
(L) with respect to L,

τ(L) = µ(B,L) .

Let also ≪d (resp. ≫d) denote the Vinogradov symbol with the constant depend-
ing on d only. The notation ≫≪d is interpreted as both ≪d and ≫d hold.

We will first study the ‘typical’ behaviour of the iterates, for a random vector ν
sampled from a certain natural distribution. In particular, we show that the covering
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radius of a lattice associated with ν is relatively small on average. This is important
because the quality of the approximation algorithm presented in Section 5 will be
defined in terms of the covering radius. (Of course, a multiplier vector obtained in
a real cutting-plane algorithm will not be truly random. Nevertheless, the insights
gained in this section will be useful for what follows.)

In more detail, we study in this section the behavior of the points tν mod 1 for a
random vector ν uniformly chosen from the set of rational vectors of the form

ν =

(
p1
q
,
p2
q
, . . . ,

pd
q

)T

, p1, p2, . . . , pd, q ∈ Z>0 ,

max
1≤i≤d

pi < q , gcd(p1, p2, . . . , pd, q) = 1
(4.1)

that have denominator q ≤ T , for some T ≥ 1. Our aim is to understand how well
the points tν mod 1 are distributed ‘on average’.

The iterates tν mod 1 can be naturally embedded in the lattice

Lν = {z + (tν mod 1) : z ∈ Zd , t = 1, . . . , q − 1} . (4.2)

Equivalently, Lν = Zd+Zν. This observation allows us to use results fromMinkowski’s
geometry of numbers and, via the transference principle (see, e.g., [7]), Schmidt’s the-
orems [40] on the distribution of integer sublattices.

The first result of this paper aims to understand the ‘typical’ behavior of the
covering radius τ(Lν) for ν of the form (4.1) with common denominator q ≤ T . Note
that for any dimension d and any common denominator q > 1 there exist vectors ν
such that the covering radius τ(Lν) is relatively large. For instance, it is easy to see
that τ(L(1/q,...,1/q)) > 1/4 for any integer q > 1. In what follows, we will show that

for a ‘typical’ vector ν the covering radius τ(Lν) has the order q−1/d.
For technical reasons it is convenient to replace the rationals with bounded de-

nominators by the primitive integer vectors in a bounded domain. Let N̂d+1 be the
set of integer vectors in Rd+1 with positive co-prime coefficients, and let

Dd+1 =

{
(x1, . . . , xd, xd+1) ∈ Rd+1

≥0 : max
j=1,...,d

xj < xd+1 ≤ 1

}
.

Then for T ≥ 1, the elements a = (p1, . . . , pd, q) of the set N̂d+1 ∩ TDd+1 will cor-
respond to the rational vectors ν of the form (4.1) and the common denominator
q ≤ T . Since Lν is uniquely defined by the integer vector a = (p1, . . . , pd, q), we will
also denote the lattice Lν by La.

For any T ∈ R≥1 and R ∈ R>0, we define the quantity

Pd(T,R) =
1

#(N̂d+1 ∩ TDd+1)
#

{
a ∈ N̂d+1 ∩ TDd+1 : τ(La)a

1/d
d+1 > R

}
.

Roughly speaking, Pd(T,R) is the probability of uniformly picking up a rational vector
ν of the form (4.1) with denominator q ≤ T , such that the iterations tν mod 1 are
relatively badly distributed in [0, 1)d or, more precisely, such that the covering radius
of the lattice Lν is bigger than Rq−1/d.

Theorem 4.1. Let d ≥ 2. Then

Pd(T,R) ≪d R−d , (4.3)
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uniformly over all T ≥ 1 and all R > 0. Furthermore,

Pd(T,R) = 0 whenever R >

√
d

2
T 1/d . (4.4)

A celebrated result of Kannan [29] implies that the Frobenius number associated

with an integer vector a ∈ N̂d+1 can be estimated in terms of the covering radius of
the dual lattice L∗

a. (For more details we refer the reader to the book of Ramirez
Alfonsin [39].) The following proof of Theorem 4.1 is based on a recent far-reaching
refinement due to Strömbergsson [45] of the approach used in [2] and [3] for estimating
the expected value of Frobenius numbers, combined with the Banaszczyk transference
theorem [7]. The approach is built on results from the Minkowski’s geometry of
numbers (see e. g. [23], [24]) and results on the distribution of integer lattices obtained
by Schmidt in [40].

Proof of Theorem 4.1. Observe that Zd is a sublattice of La and hence

τ(La) ≤ τ(Zd) =

√
d

2
. (4.5)

Note also that for all a ∈ N̂d+1 ∩ TDd+1 we have ad+1 ≤ T . Hence the inequality
(4.5) implies (4.4).

Let us now prove that the inequality (4.3) holds. For a subset Y ⊂ Rd+1 we
denote by πd+1(Y ) the orthogonal projection of Y onto the coordinate hyperplane

xd+1 = 0; we view πd+1(Y ) as a subset of Rd. Given a ∈ N̂d+1, we define the lattice

Λa = {x ∈ Zd+1 : xTa = 0}

and set Ma = πd+1(Λa). Then Ma is a sublattice of Zd of determinant det(Ma) =
ad+1 (see e. g. [1], Section 2) It is well-known that Ma = L∗

a (see e.g. [1]).
By Banaszczyk transference theorem [7], we have

λ1(Ma) ≤
d

2τ(La)
.

Since Ma embedded in Rd+1 is the orthogonal projection of Λa on the coordinate
hyperplane xd+1 = 0 and ad+1 = maxi ai, we have λ1(Λa) ≤

√
d+ 1λ1(Ma) and,

consequently,

λ1(Λa) ≤
d
√
d+ 1

2τ(La)
. (4.6)

In the rest of this subsection we modify the proof of Theorem 3 in [45] for our
case. Roughly speaking, the main difference is that, due to the transference principle
reflected in the inequality (4.6), we need to work with the first successive minimum
λ1(Λa), whilst in the case of the Frobenius number the last successive minimum
λd(Λa) plays the major role.

Note first that #(N̂d+1 ∩ TDd+1) ≫≪d T d+1 uniformly over all T ≥ 1 and that
det(Λa) = ||a|| ≥ ad+1. Therefore

Pd(T,R) ≪d T−(d+1)×

×#

{
Λ ∈ Ld : det(Λ) ≤

√
d+ 1T, λ1(Λ) <

d
√
d+ 1det(Λ)1/d

2R

}
,

(4.7)
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where Ld is the set of all d-dimensional sublattices of Zd+1.
Let

ρj(Λ) = λj+1(Λ)/λj(Λ) , j = 1, . . . , d− 1 .

For any r = (r1, . . . , rd−1) ∈ Rd−1
≥1 we set

Ld(r) = {Λ ∈ Ld : ρj(Λ) ≥ rj , 1 ≤ j ≤ d− 1} .

Let also Xd be the set of all lattices L ⊂ Rd of determinant one and µd be Siegel’s
measure (see [43]) onXd, normalized to be a probability measure. The main ingredient
of the proof is the following result.

Theorem 4.2 (Schmidt [40]). For any r ∈ Rd−1
≥1 and T > 0 we have

#{Λ ∈ Ld(r) : det(Λ) ≤ T} =
π

d+1

2

2Γ
(
1 + d+1

2

)




d∏

j=2

ζ(j)


×

×µd ({L ∈ Xd : ρj(L) ≥ rj , 1 ≤ j ≤ d− 1})T d+1

+Od






d−1∏

j=1

r
−(j− 1

d
)(d−j)

j


T d+1− 1

d


 .

(4.8)

Furthermore,

µd({L ∈ Xd : ρj(L) ≥ rj , 1 ≤ j ≤ d− 1}) ≫≪d

d−1∏

j=1

r
−j(d−j)
j . (4.9)

From the above theorem we get the upper bound

# {Λ ∈ Ld(r) : det(Λ) ≤ T} ≪d T d+1×

×
d−1∏

j=1

r
−j(d−j)
j


1 + T− 1

d

d−1∏

j=1

r
1
d
(d−j)

j


 .

(4.10)

By Minkowski’s Second theorem, for any d-dimensional lattice Λ we have

λ1(Λ)
d =

∏d
j=1 λj(Λ)

∏d−1
j=1 ρj(Λ)

d−j
≫≪d

det(Λ)
∏d−1

j=1 ρj(Λ)
d−j

. (4.11)

Thus there exists a constant c1 = c1(d) > 0 such that for any d-dimensional
lattice Λ and any R > 0, we have

λ1(Λ) <
d
√
d+ 1det(Λ)1/d

2R
⇒

d−1∏

j=1

ρj(Λ)
d−j > c1R

d . (4.12)

Assume without loss of generality R > ec
− 1

d

1 (the inequality (4.3) is trivial when
R ≪ 1 as Pd(T,R) ≤ 1), put

B = ⌊log(c1Rd)− d⌋ ∈ Z≥0 , (4.13)
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and denote

R(d,R) = {(eb1/(d−1), eb2/(d−2), . . . , ebd−2/2, ebd−1) :

b ∈ Zd−1
≥0 ,

d−1∑

j=1

bj = B} .
(4.14)

If Λ is an d-dimensional lattice with
∏d−1

j=1 ρj(Λ)
d−j > c1R

d, then for bj = ⌊(d −
j) log ρj(Λ)⌋ we have

d−1∑

j=1

bj >
d−1∑

j=1

((d− j) log ρj(Λ)− 1) > log(c1R
d)− (d− 1)

> log(c1R
d)− d ≥ B .

(4.15)

Thus we can decrease some of the numbers bj ’s so as to make
∑d−1

j=1 bj = B, while

keeping b = (b1, . . . , bd−1) ∈ Zd−1
≥0 . The new vector b still satisfies bj ≤ (d−j) log ρj(Λ)

for each j, that is ρj(Λ) ≥ ebj/(d−j). Therefore, for any d-dimensional lattice Λ with∏d−1
j=1 ρj(Λ)

d−j > c1R
d, there exists some r ∈ R(d,R) such that rj ≤ ρj(Λ) for all j.

By (4.12), the set in the right hand side of (4.7) is contained in the union of Ld(r)

over all r ∈ R(d,R). Hence we have for all T ≥ 1 and all R ≥ ec
1
d

1 ,

Pd(T,R) ≪d T−(d+1)×

×
∑

r∈R(d,R)

#
{
Λ ∈ Ld(r) : det(Λ) ≤

√
d+ 1T

}
. (4.16)

By (4.10),

Pd(T,R) ≪d

∑

b ∈ Z
d−1

≥0

b1 + . . . + bd−1 = B

exp



−

d−1∑

j=1

jbj





+T− 1
d

∑

b ∈ Z
d−1

≥0

b1 + . . . + bd−1 = B

exp



−

d−1∑

j=1

(
j − 1

d

)
bj



 .

(4.17)

If d = 2 we get

P2(T,R) ≪ R−2 + T− 1
2R−1.

If R ≤
√
2
2 T 1/2 then this implies P2(T,R) ≪ R−2. On the other hand, if R >

√
2
2 T 1/2

then P2(T,R) = 0 by (4.4).
Let us now assume d ≥ 3. Observe that for any b ∈ Zd−1

≥0 with b1+ . . .+bd−1 = B
and b2 + . . .+ bd−1 = s, we have

d−1∑

j=1

jbj ≥ B + s
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and

d−1∑

j=1

(
j − 1

d

)
bj ≥

(
1− 1

d

)
B + s .

Next, for s ∈ {0, 1, . . . , B} there are exactly
(
s+d−3
d−3

)
vectors b ∈ Zd−1

≥0 with b1 + . . .+
bd−1 = B and b2 + . . .+ bd−1 = s. Therefore

Pd(T,R) ≪d

B∑

s=0

(
s+ d− 3

d− 3

)
e−B−s

+T− 1
d

B∑

s=0

(
s+ d− 3

d− 3

)
e−(1−

1
d )B−s ≪d e−B + T− 1

d e−(1−
1
d )B

≪d R−d(1 + T− 1
dR) .

If R ≤
√
d
2 T 1/d then this implies Pd(T,R) ≪ R−d. On the other hand, if R >

√
d
2 T 1/d then Pd(T,R) = 0 by (4.4). The proof is complete.

5. The Approximation Algorithm. We will assume for this section that d ≥
2. Theorem 4.1 shows that the quantity 1/q1/d is a good predictor for the covering
radius of the lattice Lν . Let S = [0,+∞)d−1 × (−∞, 1). The following result states
the existence of a polynomial-time algorithm which computes a point of the set Lν∩S
in a certain ball of radius bounded in terms of τ(Lν). The obtained bound will be
used to estimate the quality of polynomial-time approximations for the multiplicative
and additive strategies (i.e., Strategies 4 and 5) introduced in Section 3.

For r ∈ R set

c(r) = (r, . . . , r, 1− r) ∈ Rd .

Theorem 5.1. There is a polynomial time algorithm which, given a rational
vector ν of the form (4.1) and any rational ϵ ∈ (0, 1), finds a point ξ ∈ Lν ∩ S, such
that

ξ ∈ B(c(r), 2d/2τ(Lν)) with 0 < r ≤ 2d/2τ(Lν) + ϵ . (5.1)

The proof is constructive. We present the polynomial time algorithm in Section 5.1.

5.1. Proof of Theorem 5.1. .
We need to find in polynomial time a point of the set Lν ∩S in a ball Bd(c(r), r).

The main challenge of the proof is to choose the radius r ≪d τ(Lν) as small as
possible. Note that computing the covering radius of a lattice is conjectured in [35]
to be NP-hard (see also [27], [25] and [15]). The Banaszczyk transference theorem [7]
gives the estimate

τ(Lν) ≤
d

2λ1(L∗
ν)

,

which allows to approximate τ(Lν) in polynomial time within the factor d2d/2−1

using the celebrated LLL algorithm [31]. The approximation can be then used for
computing a relatively small radius r.

12



In this paper we use a slightly different approach. We will choose a suitable
radius r by combining binary search in a certain interval with Babai’s nearest plane
algorithm. The nearest plane algorithm finds in polynomial time an approximation
to a solution of the closest vector problem. The quality of the approximation is given
by the following result.

Theorem 5.2 (Babai [5]). Let L be a lattice of rank d in Qd. Given any basis
of L and any c ∈ Qd as input, the nearest plane algorithm computes a vector x ∈ L
such that

||x− c|| ≤ 2d/2 min
y∈L

||y − c|| . (5.2)

Babai’s nearest plane algorithm is based on using the LLL algorithm and, in
fact, makes use also of the transference principle, via Gram-Schmidt orthogonal-
ization. Note also that the approximation factor 2d/2 in (5.2) can be replaced by

2O(d(log log d)2/ log d) by applying the algorithm of Schnorr [41].
We shall now give a high level description of a polynomial-time algorithm that

satisfies conditions stated in Theorem 5.1. Given rational ν of the form (4.1), we first
compute a basis u1,u2, . . . ,ud of the Lν . To perform this step, we use a link between
iterations of ν modulo one and the computational Diophantine approximations. Next
we use a version of binary search to find in the interval [0, 1] two rationals r− and
r+ with r− < r+, satisfying the following properties. First, the numbers r−, r+ are
relatively close to each other, so that r+ − r− < ϵ. Second, Babai’s nearest plane
algorithm applied to u1,u2, . . . ,ud and c = c(r+) finds a lattice point ξ ∈ Lν such
that ξ ∈ S and the same algorithm applied to u1,u2, . . . ,ud and c = c(r−) fails to
find a lattice point in S. This will imply that ξ satisfies conditions of Theorem 5.1.

The algorithm is given below.

Algorithm
Input : ν of the form (4.1) and rational ϵ ∈ (0, 1).

Output : ξ ∈ Lν satisfying conditions of Theorem 5.1.
Step 0 : Set r− := 0, r+ := 1 and ξ := c(1).
Step 1 : Compute a basis u1,u2, . . . ,ud of the lattice Lν .
Step 2 : While r+ − r− > ϵ do

2.1 Set m := (r− + r+)/2 and c := c(m).
2.2 Apply the Babai’s algorithm for finding a nearby lattice point to the

basis u1, . . . ,ud and the point c. The algorithm returns a lattice point
χ ∈ Lν .

2.3 If χ ∈ S then set r+ := m else set r− := m end if.
end while.

Step 3 : Output vector ξ.
Let us now analyze the algorithm. Clearly, Step 0 can be done in polynomial

time. In Step 1 we can compute a basis of Lν as follows. Consider the matrix
G(ν) ∈ Qd×(d+1) defined as

G(ν) =




1 0 . . . 0 p1/q
0 1 . . . 0 p2/q
...

...
. . .

...
...

0 0 . . . 1 pd/q
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and denote by gi its ith column vector. Observe that Lν = {y1g1 + . . .+ yd+1gd+1 :
y1, . . . , yd+1 ∈ Z}. Thus we can find a basis of Lν in polynomial time by Corollary
5.4.8 of [22] (see also [8]).

The while loop at Step 2 is performing a binary search in the interval [0, 1] with
approximation error bounded by ϵ and thus will be executed O(l(ϵ)) times, where
l(ϵ) is the length of the binary expansion of the rational number ϵ. The algorithm of
Babai (see [5]), applied at Step 2.2, runs in polynomial time. Step 2.3 can be done in
polynomial time as well.

Thus it is now enough to show that the vector ξ output at Step 3 satisfies con-
ditions of Theorem 5.1. By Theorem 5.2, we clearly have ξ ∈ B(c(r+), 2d/2τ(Lν)).
Next, since Babai’s algorithm applied to u1, . . . ,ud and the point c(r−) returns a
lattice point outside of S, we also conclude by Theorem 5.2 that r− ≤ 2d/2τ(L). The
latter inequality together with r+ − r− ≤ ϵ implies then

r+ ≤ 2d/2τ(L) + ϵ .

Therefore the point ξ satisfies conditions of Theorem 5.1.
Remark. It is easy to see that, in fact, we are solving in the above proof a problem

of simultaneous Diophantine approximation of rationals p1/q, . . . , pd/q. Indeed, all
points of the lattice Lν have the form (y1− yd+1p1/q, . . . , yd− yd+1pd/q) with integer
numbers yi. It may also be worthwhile using another standard approach to computing
Diophantine approximations with bounded denominators for a given rational vector.
In this case, we construct a basis of a special lattice Ω ∈ Qd+1 with πd+1(Ω) = Lν .
For details, see the proof of Theorem 5.3.19 in [22] or, for a more recent approach,
Chapter 6 in [31].

5.2. Approximation for the multiplicative strategy. For the rest of the
paper we set d = m+1. Given the multiplier vector λ of the form (3.1), we construct
the augmented vector

ν = (λ1, . . . , λm, ν)T ∈ (0, 1)d,

and attempt to find a vector ξ = tν mod 1, ξd > 0, with minimum ratio

r(ξ) = ||πd(ξ)||/ξd .

Recall that for Y ⊂ Rd by πd(Y ) we understand the orthogonal projection of Y onto
the coordinate hyperplane xd = 0; we view πd(Y ) as a subset of Rd−1.

As it was remarked in Section 4, for any given common denominator q > 1 there
exist rational vectors ν of the form (4.1) with τ(Lν) ≫ 1. However, due to Theorem
4.1, for a typical ν the covering radius of the lattice Lν is of order q−1/d. In the
following we show the existence of a vector ξ = tν mod 1, with ratio r(ξ) bounded
in terms of the covering radius. We also show the existence of a polynomial-time
algorithm which computes an approximation of that vector ξ.

For 0 < R < 1/2 set

a(d,R) =
(1−R)((d− 1)R2 − 2R+ 1)1/2 − (d− 1)1/2R2

dR2 − 2R+ 1

and

r(d,R) =

{
(a(d,R)−2 − 1)1/2 for 0 < R < 1/2 ,
+∞ otherwise .
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We will first prove a simple geometric lemma.

Lemma 5.1. Let 0 < R < 1/2. Then

max{r(x) : x ∈ Bd(c(R), R)} = r(d,R) . (5.3)

Proof. For any fixed 1−R ≤ y ≤ 1 , the maximum

max{r(x) : x = (x1, . . . , xd−1, y) ∈ Bd(c(R), R)}

is attained at a point of the form (x, . . . , x, y). Thus we can consider only two vari-
ables, x and y, and (5.3) reduces to solving a 2-dimensional trigonometric problem.
Straightforward computation gives

max

{√
d− 1 x

y
: (x, . . . , x, y) ∈ Bd(c(R), R)

}
= r(d,R) . (5.4)

By (5.4), we also have r(d,R) ≪d R when 0 < R < 1/2.

Proposition 5.1. There exists a point ξ = tν mod 1, 1 ≤ t ≤ q − 1, with

r(ξ) ≤ min{r(d, τ(Lν)), 2
√
d− 1} . (5.5)

Proof. Observe first that there is a positive integer t0 such that 1/2 ≤ {t0ν} < 1.
Thus for ξ = t0ν mod 1, we have

r(ξ) < 2
√
d− 1 .

This justifies the second bound in (5.5).

Recall that the iterations tν mod 1 can be naturally embedded in the lattice Lν .
Thus, it is enough to show that there exists a nonzero point ξ ∈ Lν ∩ [0, 1)d that
satisfies the first inequality in (5.5). If τ(Lν) ≥ 1/2, the latter inequality holds by
the definition of r(d,R). Suppose that τ(Lν) < 1/2. By the definition of the covering
radius there exists a point ξ ∈ Lν ∩ Bd(c(τ(Lν)), τ(Lν)). Since τ(Lν) < 1/2, the
point ξ is in [0, 1)d. The first inequality in (5.5) now holds by Lemma 5.1.

On the algorithmic side, Theorem 5.1 implies the following result.

Corollary 5.1. There is a polynomial-time algorithm which, given an augmented
vector ν = (λ1, . . . , λm, ν) of the form (4.1) and any rational ϵ ∈ (0, 1), finds a point
ξ = tν mod 1, 1 ≤ t ≤ q − 1, with

r(ξ) < min{r(d, 2d/2τ(Lν) + ϵ), 2
√
d− 1} . (5.6)

Proof. The first bound in (5.6) immediately follows from Theorem 5.1 and Lemma
5.1, where we take R = 2d/2τ(Lν) + ϵ.

Next, if ν ≥ 1/2, we have r(ν) < 2
√
d− 1, so the second bound in (5.6) holds

for ξ = ν. If 0 < ν < 1/2, then we can take ξ = t0ν mod 1 with t0 = ⌊1/ν⌋ when
⌊1/ν⌋ν ̸= 1 and t0 = ⌊1/ν⌋ − 1 otherwise.
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5.3. Approximation for the additive strategy. Now we move on to the
additive strategy. As in the previous section, for a non-trivial CG-cut (1.1) with λ

of the form (3.1) we construct the augmented vector ν = (λ1, . . . , λm, ν)T . One can
easily obtain the following bound for Problem 3.5.

Proposition 5.2. There exists a point ξ = tν mod 1, 1 ≤ t ≤ q − 1, with

N(ξ) ≤ (1 +
√
d)τ(Lν) . (5.7)

Furthermore,

{tν} > 0 whenever τ(Lν) < 1/2 . (5.8)

Proof. Observe first that the set Bd(c(0), (1 +
√
d)τ(Lν)) ∩ S contains the ball

Bd(c(τ(Lν)), τ(Lν)). By the definition of the covering radius there exists a point
χ ∈ Lν ∩ Bd(c(τ(Lν)), τ(Lν)), so that N(χ) ≤ (1 +

√
d)τ(Lν). If χ ∈ Zd then we

may assume without loss of generality that χ = c(1). Thus in this case we can take
ξ = ν. Otherwise, since χ ∈ S \ Zd, we have 0 < N(χ mod 1) ≤ N(χ). Thus, the
point ξ = χ mod 1 satisfies condition (5.7).

Suppose now that τ(Lν) < 1/2. Then for all sufficiently small ϵ > 0 the ball
Bd(c((τ(Lν)+ϵ)), τ(Lν)) contains a point of the set Lν∩(0, 1)d. Since Lν is a discrete
set, we conclude that there exists a point ξ ∈ Lν ∩Bd(c(τ(Lν)), τ(Lν))∩ (0, 1)d. This
point clearly satisfies (5.8).

On the other hand, Theorem 5.1 implies the following
Corollary 5.2. There is a polynomial-time algorithm which, given an augmented

vector ν = (λ1, . . . , λm, ν) of the form (4.1) and any rational δ ∈ (0, 1), finds a point
ξ = tν mod 1, 1 ≤ t ≤ q − 1, with

N(ξ) < (1 +
√
d)2d/2τ(Lν) + δ . (5.9)

Furthermore,

{tν} > 0 whenever τ(Lν) < 2−d/2−1(1− δ/⌈
√
d⌉) . (5.10)

Proof. By Theorem 5.1, given ν = (λ1, . . . , λm, ν) and ϵ = δ/⌈
√
d⌉ ∈ (0, 1) we

can compute in polynomial time a point ξ ∈ Lν ∩S such that ξ ∈ B(c(r), 2d/2τ(Lν))
with 0 < r ≤ 2d/2τ(Lν) + ϵ. Thus N(ξ) ≤ N(c(r)) + 2d/2τ(L) and, consequently,

N(ξ) ≤ (2d/2τ(L) + ϵ)
√
d+ 2d/2τ(L) ≤ (1 +

√
d)2d/2τ(L) + δ.

Therefore the point ξ satisfies the inequality (5.9).
Suppose now that τ(Lν) < 2−d/2−1(1 − δ/⌈

√
d⌉). Clearly, {tν} = {ξd}, so it is

enough to show that ξd ∈ (0, 1). Since ξ ∈ S, the number ξd is positive. On the other
hand, we have

ξd ≤ r + 2d/2τ(L) ≤ 2d/2+1τ(L) + δ/⌈
√
d⌉ < 1 .

5.4. Approximation error. As it is shown in Sections 5.2 and 5.3, the com-
puted approximations of the optimal values of r(ξ) and N(ξ) are bounded in terms of
the covering radius and thus are small for a typical augmented vector. We conjecture
that the iterated CG-cuts found by the algorithms obtained in Corollaries 5.1 and
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5.2 solve problems (3.4) and (3.5), respectively, with the multiplicative approxima-
tion error 2O(d). In this section we prove the second conjecture for the special case
τ(Lν) ≪ q−1/d, where ≪ is the Vinogradov symbol.

Let ν = (λ1, . . . , λm, ν) be a vector of the form (4.1) and let δ ∈ (0, 1) ∩ Q. We
will denote by madd = madd(ν) the value of the minimum in (3.5), that is

madd(ν) = min {N(tν mod 1) : t = 1, . . . , q − 1, {tν} > 0} .

We will also denote by ξadd = ξadd(ν, δ) the output vector of the algorithm obtained
in Corollary 5.2.

Proposition 5.3. Let ν be a vector of the form (4.1) with common denominator
q. Then

N(ξadd(ν, 1/q))

madd(ν)
< 23d/2−1(1 +

√
d)τ(Lν)

dq + 1 . (5.11)

Proof. Recall that Lν = Zd + Zν. Therefore for the first successive minimum
λ1 = λ1(Lν) we obtain the inequalities 1/q ≤ λ1 ≤ madd(ν). Together with (5.9) this
observation implies the inequality

N(ξadd(ν, 1/q))

madd(ν)
<

(1 +
√
d)2d/2τ(Lν)

λ1
+ 1 . (5.12)

By Minkowski’s Second theorem for spheres, 1/q = det(Lν) ≤ λ1λ2 · · ·λd and hence

λ1 ≥ 1

qλd−1
d

. (5.13)

Next, by Jarnik’s inequalities (cf. [24, p. 99, p. 106])) we have λd ≤ 2τ(Lν). Conse-
quently, by (5.13)

λ1 ≥ 1

2d−1qτ(Lν)d−1
. (5.14)

Combining (5.12) and (5.14), we obtain the inequality (5.11).

Proposition 5.3 implies the inequality N(ξadd(ν, 1/q)) < 2O(d)madd(ν), provided
τ(Lν) ≪ q−1/d.

A natural step towards establishing both conjectures would be to show that the
approximation error is independent of the common denominator q. In this light,
Proposition 5.3, together with Theorem 4.3 imply that for a typical input vector ν

the problem (3.5) can be approximated with the multiplicative approximation error
that only depends on d.

6. Concluding Remarks. Although Chvátal-Gomory cuts have been around
for over 50 years and have been studied in depth, many important questions about
them remain unanswered. We have studied the behavior of the iterated CG-cuts for a
randomly chosen augmented vector and have shown the existence of a polynomial-time
algorithm that computes approximations for the problems 3.4 and 3.5. For computed
approximations the values of r(ξ) and N(ξ) are bounded in terms of the covering
radius and thus are small for a typical augmented vector. On the other hand, we do
not know the precise approximation ratio that this algorithm yields. Nor do we know
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the precise approximability (or inapproximability) status of the problems 3.4 and 3.5.
Moreover, our algorithm seems at present of mainly theoretical interest, though this
may change in the near future, given the intensive recent work on algorithms for
integer lattices (see the survey [26]).

We also remark that the strategy presented in this paper is designed to optimize
individual CG-cuts only. On the other hand, since the work of Balas et al. [6], most
integer programmers prefer to work with collections of cutting planes rather than in-
dividual ones. (Specifically, given a fractional simplex tableau, one can generate one
GF-cut for each fractional variable, and add all such GF-cuts to the LP relaxation.) It
is not clear that optimising each CG-cut in a collection will improve the effectiveness
of the entire collection. Indeed, in our computational experiments, we often observed
that different CG-cuts led to the same strengthened iterated CG-cut, so that a large
collection of weak CG-cuts was converted into a small collection of strong ones. This
suggests that a suitable topic for future research might be the simultaneous optimiza-
tion of a collection of CG-cuts. A method for strengthening a collection of Gomory
mixed-integer cuts, rather than GF-cuts, was presented in [4].
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