Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Energy system impacts from heat and transport electrification

Baruah, Pranab J., Blainey, Simon, Eyre, Nicholas, Tran, Martino, Chaudry, Modassar, Jenkins, Nicholas, Qadrdan, Meysam and Hall, Jim W. 2014. Energy system impacts from heat and transport electrification. Proceedings of the Institution of Civil Engineers - Energy 167 (3) , pp. 139-151. 10.1680/ener.14.00008

Full text not available from this repository.

Abstract

Electrifying the energy system and powering it by low carbon electricity is one of the key decarbonisation pathways of the energy system. This study examines annual electricity and gas consumption in a high electrification scenario in Great Britain (GB) and the implications for electricity generation and transmission infrastructure using a suite of soft-linked models. High electrification of heating and transport services, which are two major fossil fuel consumers in GB, increases annual electricity consumption and peak electricity load by 35% and 93%, respectively, by 2050 while reducing overall annual energy consumption compared to a reference case. Meeting this high electricity consumption with a supply strategy that is dependent on offshore wind could more than double the supply-side investments required compared to a reference case, if demand-side measures are not available. High electrification would also impact existing gas and oil energy infrastructure by reducing consumption of these fuels. It was found that uncertainties in socio-economic growth can amplify these implications and therefore need serious consideration by analysts and policymakers involved in designing energy transition strategies. A case study and discussion demonstrate that smart-grid aided demand-side management has the potential to minimise electricity peak load and infrastructure requirements from high electrification.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Engineering
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Publisher: Thomas Telford
ISSN: 1751-4223
Last Modified: 21 Feb 2019 15:47
URI: http://orca.cf.ac.uk/id/eprint/72296

Citation Data

Cited 4 times in Google Scholar. View in Google Scholar

Cited 13 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item