Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Development of genetic control technology for Tephritid pests

Asadi, Romisa 2015. Development of genetic control technology for Tephritid pests. PhD Thesis, Cardiff University.
Item availability restricted.

[img]
Preview
PDF - Accepted Post-Print Version
Download (15MB) | Preview
[img] PDF - Supplemental Material
Restricted to Repository staff only

Download (1MB)

Abstract

The olive fly, Bactrocera oleae, is the single most important pest in olive plantations. Currently, control of olive fly relies on the heavy use of chemical pesticides. The sterile insect technique (SIT) is a highly effective, species-specific and environmentally non-polluting method of pest control that involves the mass-release of sterilised insects. SIT is considered a potentially valuable method for the control of olive fly. Previous olive fly SIT attempts failed due to an inability to produce large numbers of flies, low egg production rates and lack of a method to separate the sexes. RIDL (Release of Insects carrying a Dominant Lethal) is a biotechnology-based variant of SIT. This could potentially overcome several problems of classical SIT, including the radiation damage to insects. To develop fly male sterility, we have identified and tested several different germline specific promoters and several potential effector genes. These have been linked to the ‘tet-off’ expression system, which is suppressed by dietary tetracycline, and were initially tested in the Mediterranean fruit fly (Ceratitis capitata) for practicality. In the absence of tetracycline, tTAV binds to its target sequence, tetO, and activates expression of downstream genes. Flies carrying a promoter construct (topi-tTAV or β2-tubulin-tTAV) in medfly were crossed to flies carrying effector constructs (tetO-I-ppoI, tetO-3zincfinger or tetO-ProtamineFokI). A combination of β2-tubulin-tTAV and tetO-ProtamineFokI gave the best male sterility in medfly. A construct containing both elements was designed, and transposon-based germline transformation was used to generate and test ten olive fly strains. Progeny assessment off tetracycline indicates high penetrance of the male-sterile phenotype in all strains, with only 0.0-2.4% viable progeny; this sterile phenotype appears to be completely suppressed by provision of dietary tetracycline.

Item Type: Thesis (PhD)
Status: Unpublished
Schools: Biosciences
Subjects: Q Science > QH Natural history > QH301 Biology
Funders: BBSRC, Oxitec Ltd
Date of First Compliant Deposit: 30 March 2016
Last Modified: 10 Aug 2018 09:26
URI: http://orca.cf.ac.uk/id/eprint/72611

Actions (repository staff only)

Edit Item Edit Item