Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Survival and functional restoration of human fetal ventral mesencephalon following transplantation in a rat model of Parkinson's Disease

Rath, Anika, Klein, Alexander, Papazoglou, Anna, Pruszak, Jan, Garcia, Joanna, Krause, Martin, Maciaczyk, Jaroslaw, Dunnett, Stephen Bruce and Nikkhah, Guido 2013. Survival and functional restoration of human fetal ventral mesencephalon following transplantation in a rat model of Parkinson's Disease. Cell Transplantation 22 (7) , pp. 1281-1293. 10.3727/096368912X654984

Full text not available from this repository.

Abstract

Cell replacement therapy by intracerebral transplantation of fetal dopaminergic neurons has become a promising therapeutic option for patients suffering from Parkinson’s disease during the last decades. However, limited availability of human fetal tissue as well as ethical issues, lack of alternative nonfetal donor cells, and the absence of standardized transplantation protocols have prevented neurorestorative therapies from becoming a routine procedure in patients suffering from neurodegenerative diseases. Improvement of graft survival, surgery techniques, and identification of the optimal target area are imperative for further optimization of this novel treatment. In the present study, human primary fetal ventral mesencephalon-derived tissue from 7- to 9-week-old human fetuses was transplanted into 6-hydroxydopamine-lesioned adult Sprague‐Dawley rats. Graft survival, fiber outgrowth, and drug-induced rotational behavior up to 14 weeks posttransplantation were compared between different intrastriatal transplantation techniques (full single cell suspension vs. partial tissue pieces suspension injected by glass capillary or metal cannula) and the intranigral glass capillary injection of a full (single cell) suspension. The results demonstrate a higher survival rate of dopamine neurons, a greater reduction in amphetamine-induced rotations (overcompensation), and more extensive fiber outgrowth for the intrastriatally transplanted partial (tissue pieces) suspension compared to all other groups. Apomorphine-induced rotational bias was significantly reduced in all groups including the intranigral group. The data confirm that human ventral mesencephalon-derived cells serve as a viable cell source, survive in a xenografting paradigm, and functionally integrate into the host tissue. In contrast to rat donor cells, keeping the original (fetal) neuronal network by preparing only a partial suspension containing tissue pieces seems to be beneficial for human cells, although a metal cannula that causes greater tissue trauma to the host is required for injection. In addition, homotopic intranigral grafts may represent a complimentary grafting approach to the “classical” ectopic intrastriatal target site in PD.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Biosciences
Subjects: R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
Uncontrolled Keywords: Glass capillary; Metal cannula; Neurorestoration; Single cell suspension; Tissue pieces
ISSN: 0963-6897
Last Modified: 04 Jun 2017 08:05
URI: http://orca.cf.ac.uk/id/eprint/72640

Citation Data

Cited 22 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item