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The use of “Big Data” in policy and decision making is a current topic of debate. The 2013 murder

of Drummer Lee Rigby in Woolwich, London, UK led to an extensive public reaction on social

media, providing the opportunity to study the spread of online hate speech (cyber hate) on Twitter.

Human annotated Twitter data was collected in the immediate aftermath of Rigby’s murder to train

and test a supervised machine learning text classifier that distinguishes between hateful and/or

antagonistic responses with a focus on race, ethnicity, or religion; and more general responses.

Classification features were derived from the content of each tweet, including grammatical

dependencies between words to recognize “othering” phrases, incitement to respond with

antagonistic action, and claims of well-founded or justified discrimination against social groups.

The results of the classifier were optimal using a combination of probabilistic, rule-based, and

spatial-based classifiers with a voted ensemble meta-classifier. We demonstrate how the results of the

classifier can be robustly utilized in a statistical model used to forecast the likely spread of cyber

hate in a sample of Twitter data. The applications to policy and decision making are discussed.
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Introduction

Research using traditional surveys and interviews has identified that crimes

with a prejudicial motive are influenced in the short term by singular events such

as widely publicized murders (Phillips, 1980, on homicide), riots (Bobo,

Zubrinsky, Johnson, & Oliver, 1994, on race relations), and court cases and

terrorism (King & Sutton, 2013, on hate crime; Legewie, 2013, on anti-immigrant

sentiment). Hate crimes have been shown to cluster in time and tend to increase,

sometimes dramatically, in the aftermath of an antecedent or “trigger” event

(King & Sutton, 2013). The impacts of hate crime on individuals and communities

are well documented (see Williams & Tregidga, 2014) and most research is

preoccupied with where hate crimes happen (risky neighborhoods, demographic

factors, etc.), while there is little research that looks at when they happen. King
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and Sutton (2013) report that 481 hate crimes with a specific anti-Islamic motive

occurred in the year following 9/11, with 58 percent of them perpetrated two

weeks following the event (4 percent of the at-risk period). Such evidence

demonstrates that crimes entailing a prejudicial motive often occur in close

temporal proximity to galvanizing events, such as terrorist attacks. It is during

this period that decision makers, particularly those responsible for minimizing

the risk of social disorder through community reassurance, local policing, and the

online governance of hateful and antagonistic content, require additional informa-

tion on the likelihood of disruption.

Hate crimes are communicative acts, often provoked by events that incite

retribution in the targeted group, toward the group that share similar character-

istics to the perpetrators (King & Sutton, 2013). Collecting and analyzing temporal

data allows decision makers to study the escalation, duration, diffusion, and de-

escalation of hate crimes following “trigger” events. However, decision makers

are often limited in the information that can be obtained in the immediate

aftermath of such events. When data can be obtained, they are often of low

granularity, subject to missing information (hate crimes are largely unreported to

the police), and invariably retrospective. However, the recent widespread

adoption of social media offers a new opportunity to address these data

problems. The continued growth of online social networks and microblogging

Web services, such as Twitter, enable a locomotive, extensive and near real-time

data source through which the analysis of hateful and antagonistic responses to

“trigger” events can be undertaken. Such data affords researchers with the

possibility to measure the online social mood and emotion following large-scale,

disruptive, and emotive events such terrorist attacks in near real-time.

Twitter is a defensible and logical source of data for such analysis given that

users of social media are more likely to express emotional content due to

deindividuation (anonymity, lack of self-awareness in groups, disinhibition)

(Festinger, Pepitone, & Newcomb, 1952). There is also a case history relating to

the expression of hateful sentiment on social media in the United Kingdom,

providing evidence of “real world” criminal justice response to, and therefore

criminalization of, online acts of targeted hateful communication. For example, in

2012, Liam Stacey was sentenced to 56 days in prison for posting racially

offensive comments on Twitter after a U.K. Premier League footballer’s cardiac

arrest, and in 2014, Declan McCuish was jailed for a year for tweeting racist

comments about two Glasgow Rangers football players.

To date there has been very little research into the manifestation and

diffusion of hate speech and antagonistic content in social media in relation to

events that could be classed as “trigger” events for hate crimes. In 2013, the

murder of Drummer Lee Rigby in Woolwich (London) by Islamic extremists led

to an extensive social media reaction. Given the extreme terrorist motive and

public nature of the actions it was conceivable that the public response might

include written expressions of hateful and antagonistic sentiment toward a

particular race, ethnicity, or religion, which could be interpreted as “hate speech.”

In this article, we present a supervised machine learning text classifier trained
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and tested to identify online hate speech—or cyber hate—using data collected

from Twitter in the immediate aftermath of Lee Rigby’s murder. The data were

annotated by human coders, who were asked to decide whether the tweets they

were shown contained hateful and/or antagonistic responses toward minority

groups.

As “Big Data” is a growing topic of study, and its use in policy and decision

making a current subject of debate (González-Bailón, 2013), we discuss the use of

supervised machine learning tools to classify a sample of “Big Data,” and how

the results can be interpreted for use in policy and decision making. Data from

Twitter, and social media more generally, are exceptionally noisy and contain a

great deal of grammatical variance, misinformation, and mundane chatter. Due to

the poor veracity of such data in its raw form, its use in policymaking is

somewhat hindered. A key contribution of this study is therefore the production

of a machine classifier that could be developed into a technical solution for use by

policymakers as part of an existing evidence-based decision-making process.

Further contributions of the paper are the identification of nuanced features of

cyber hate on social media using a particular type of syntactic relationship within

text as a classification feature, and the application of an ensemble machine

classifier to cyber hate. We include a section on how the classifier can be finely

trained to suit the needs of policymakers, in order to minimize error and

maximize confidence in results. We then demonstrate how the results of the

classifier can be robustly utilized in a statistical model used to forecast the likely

spread of cyber hate in a sample of Twitter data.

Related Work

The analysis of subjective language has been widely applied to the classifica-

tion of opinions and emotions in text (Wiebe, 2005). Indeed, sentiment analysis,

which aims to annotate text using a scale that is a measure of the degree of

negative and positive sentiment within the text, has been applied to data collected

from social media to determine emotional differences between genders on

MySpace (Thelwall, Wilkinson, & Uppal, 2010b) and study levels of positive and

negative sentiment in Facebook (Ahktar & Soria, 2009) and Twitter comments

(Bollen, Goncalves, Ruan, & Mao, 2011; Thelwall, Buckley, & Paltogou, 2011)

following real-world events.

Specifically focusing on hateful and/or antagonistic content, Greevy and

Smeaton (2004) classified racist content in Web pages using a supervised machine

learning approach with a bag-of-words (BoW) as features. A BoW approach uses

words within a corpus as predictive features and ignores word sequence as well

as any syntactic or semantic content. This approach can lead to misclassification

due to word use in different contexts and, if words are used as a primary features

for classification, it has been shown that combining sequential words into n-

grams (list of words occurring in sequence from 1–n) improves classifier

performance by incorporating some degree of context into the features (Pendar,

2007). However, an n-gram approach can suffer from the problem of high levels
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of distance between related words—for example, if related words appear near the

start and near the end of a sentence (Chen, Zhou, Zhu, & Xu, 2012). Dadvar,

Trieschnigg, and de Jong (2013) used profane words in a social media account

username, references to profanities and bullying-sensitive topics, and first and

second person pronouns to classify antagonistic behavior on YouTube. Dinakar,

Jones, Havasi, Lieberman, and Picard (2012) also focused on the identification of

cyberbullying using a BoW approach, but also incorporated lists of profane

words, parts-of-speech and words with negative connotations as machine

learning features. Furthermore, they included a common-sense reasoning ap-

proach to classification by using a database that encoded particular knowledge

about bullying situations (e.g., associating wearing dresses with males).

Burnap et al. (2013) developed a rule-based approach to classifying antagonis-

tic content on Twitter and, similarly to Dinakar et al. (2012), they used

associational terms as features. They also included accusational and attributional

terms targeted at a person or persons following a socially disruptive event as

features, in an effort to capture the context of the term use. Their results

demonstrated an improvement on standard learning techniques (see also

Williams et al., 2013). Chen et al. (2012) identified offensive content by using

profanities, obscenities, and pejorative terms as features, weighted accordingly

based on the associated strength of the term, as well as references to people. They

also produced a set of rules to model offensive content, showing an improvement

on standard machine learning approaches in terms of a much-reduced false

negative rate.

Identifying syntactic constructs that tend to be insulting or condescending is

a key function of the “Smokey” abusive message classification tool (Spertus,

1997), which uses pattern matching and syntactic positioning of words within text

to classify content at a message level. Mahmud, Ahmed, and Khan (2008)

followed a similar approach but also incorporated relationships between terms to

identify “flaming” behavior online. The identification of syntactic relationships

within text is possible via the development of parsing tools such as the Typed

Dependency parser from Stanford (Marneffe, MacCartney, & Manning, 2006),

though this has yet to be applied to hate speech.

Data Collection

We collected the study data set from Twitter during a two-week time window

following the “trigger” event—the murder of Drummer Lee Rigby in Woolwich,

London, UK on May 22, 2013. To ensure we maximized the collection of data

surrounding the event we used the search term “woolwich,” which would

include many references to the events at Woolwich and also the main hashtag

surrounding the event “#woolwich.” The hashtag convention is widely used on

Twitter to link an individual’s thoughts and comments to an event.

The two-week data collection window was imposed based on three factors.

First, existing research indicates that public interest in events typically spikes a

short time after the event, and then rapidly declines (Downs, 1972). Second, this
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first point was confirmed by tracking the search term “Woolwich” using the

Google Trends service,1 which records the relative number of searches performed

on Google over time. Within two weeks, the use of “Woolwich” in Google

searches had almost returned to preevent levels. Third, more than half of all hate-

related attacks following 9/11 occurred within two weeks of the event; and we

wanted to measure the immediate reaction to such events and capture data that

perhaps would not otherwise be available to policy and decision makers due to

the time taken to collect, record, and process hate crime results, and therefore be

proactive in the first two weeks to reduce harm to targeted social groups in an

appropriate manner. Social media data lend themselves to this purpose given

their inherent fine-grained temporal characteristics. Tweets are produced by the

second, while curated and administrative data have a much higher degree of

latency in terms of both availability to decision makers and measurement of

reaction. A total of 450,000 tweets were collected during the study window.

Data Annotation—Crowdsourcing

Building models to classify data according to a predefined coding scheme is

an essential task in digital social research, used for the purposes of understanding

social interactions, beliefs, emotions, and the like. In this research, once the

Twitter data were collected, we built a supervised machine learning classifier to

distinguish between hateful and/or antagonistic responses with a focus on race,

ethnicity, religion, and more general responses, following the event. To complete

this subjective task using large-scale data analytics, which is absolutely necessary

for the volumes of data produced, we used machine classifiers to learn the

features of tweets that are indicative of the class they belong to (cyber hate or

general response).

Once features were learned, we applied the model to the whole data set.

However, it was essential to understand and explain the limitations of the learned

model by producing model-specific classification performance results, such as

precision and recall per class, and confusion matrices (terms that are explained in

detail later). Thus, we needed a “gold standard” against which to test the

classification model. Commonly, this is obtained by sampling from a larger data

set and employing human annotators to label each data point (tweet) according to

a coding frame (Burnap et al., 2013). The coding frame serves as a set of

categories or classes into which each data point can be classified. Computationally

crowdsourcing human annotations is now becoming popular, and Web services

such as CrowdFlower or the Amazon Mechanical Turk provide programmatic

application programming interfaces (APIs) through which researchers can

automatically upload a data set, coding frame, and set of instructions for

annotation. The results of the annotation tasks can then be split into training and

testing data sets for machine learning.

From the 450,000 tweets collected, we sampled 2,000 to be human coded.

Coders were provided with each tweet and the question: “is this text offensive or

antagonistic in terms of race ethnicity or religion?” They were presented with a
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ternary set of classes—yes, no, undecided. We utilized the CrowdFlower online

service that allows for Human Intelligence Tasks, such as coding text into classes,

to be distributed over multiple workers. Workers can sign up to the service to

participate in tasks in return for micropayments (small payments set by the task

creator based on the number of tasks completed to an acceptable standard). Task

creators can also specify a range of worker requirements such as location and

experience, and can verify the level of expertise via test questions. Results from

workers can then either be accepted or rejected, based on level of agreement with

other workers.

CrowdFlower recruits from its pool of workers until each unit of analysis (in

this case, each tweet) is annotated by a minimum number of workers, as specified

by the task creator. We required at least four human annotations per tweet as per

the convention in related research (Thelwall, Buckley, Paltogou, Cai, & Kappas,

2010a). CrowdFlower provides an agreement score for each annotated unit, which

is based on the majority vote of the trusted workers (Kolhatkar, Zinsmeister, &

Hirst, 2013). Because CrowdFlower continues to recruit workers until the task is

complete, there is no guarantee that all workers will annotate the same set of

units. Indeed, in this case we had 158 workers contribute to the task, each

annotating a sample of tweets. Therefore we cannot calculate traditional interrater

reliability scores, such as Krippendorf’s Alpha or Cohen’s Kappa to determine

agreement between all annotators. However, CrowdFlower has been shown to

produce an agreement score that compares well to these classic measures

(Kolhatkar et al., 2013).

Based on the output from our annotator task we can determine agreement on

each unit. The purpose of the experiments performed in this article are to establish

the accuracy of a machine classifier when annotating tweets as hateful and/or

antagonistic or not, and thus it is the agreement score for the unit of analysis

(each tweet), and not the overall human agreement for all units that is important

for validation. We removed all tweets with less than 75 percent agreement and

also those upon which the coders could reach an absolute decision (i.e., the

“undecided” class)—again, following established methods from related research

(Thelwall et al., 2010a). The results of the annotation exercise produced a “gold

standard” data set of 1,901 tweets, with 222 instances of offensive or antagonistic

content (11.68 percent of the annotated sample), which could be classed as cyber

hate (referred to below as the “cyber hate sample”), and 1,679 instances of

nonhateful or antagonistic commentary (88.32 percent), which we will refer to as

“benign.” Ten percent of each class was subsequently used as a sample from

which to identify appropriate features to build a cyber hate classifier. This

subsample was not used when testing the classifier.

Feature Selection

It was evident from the cyber hate sample that many of the terms used in

cyber hate were expletives or derogatory, targeted at specific social groups. The

sample contained words that are well known derogatory terms for black, asian,
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and muslim social groups, as well as derogatory adjectives (e.g., “black savages”).

It was evident that the words of the tweets were going to be particularly useful

features for the classification task. Using the words of the text to be classified,

known as a BoW technique, is not a particularly novel approach to text

classification, but the frequency of particular unigram (single word) and bigram

(two word) terms were overwhelming and needed to be utilized.

Of more interest from a sociological and common sense reasoning

perspective were the numerous instances in the cyber hate sample of calls for

collective action and hateful incitement toward social groups exhibiting

protected characteristics. For instance, there were exclamations such as “send

them home,” “get them out,” and “should be hung.” These exclamations

clearly follow a pattern that could be encoded in parts-of-speech notation

[e.g., Verb, Pronoun, Noun; Verb, Pronoun, Adverb; Verb, Verb, Verb(PT)].

However, the benign sample also displayed an abundance of similar patterns,

such as “leave them alone,” or “they are peaceful.” Thus, parts-of-speech

tagging to produce features to inform the machine classifier was avoided, as it

seemed highly likely to cause confusion between the classes. Instead, we

implemented the Stanford Lexical Parser, along with a context-free lexical

parsing model, to extract typed dependencies within the tweet text (Marneffe

et al., 2006). Typed dependencies provide a representation of syntactic

grammatical relationships in a sentence (or tweet in this case) that can be

used as features for classification. The following example explains the

meaning of such relationships and how they can be used as features to inform

the machine classifier.

Consider the sentence:

“Totally fed up with the way this country has turned into a haven for

terrorists. Send them all back home.”

The typed dependency parser returns the following output:

[root(ROOT-0, Send-1), nsubj(home-5, them-2), det(home-5, all-3), amod-

(home-5, back-4), xcomp(Send-1, home-5)]

Within the output we can see five instances of typed dependencies. The

second instance (nsubj(home-5, them-2)) identifies a relationship between “home”

and “them,” with “home” being the fifth word in the sentence and “them”

appearing before “home” as the second word. Word order within a sentence is

preserved in the type dependency and provides a feature for classification as well

as the syntactic relationship between words. The relationship identified by the

parser in this case is nsubj, which is an abbreviation of nominal subject. This will

include a noun phrase (“them”), which is the syntactic subject in the sentence,

and an associated relational term (“home”). Linguistically therefore, the term

“them” is associated with “home” in a relational sense. Sociologically, this is an

“othering” phrase, which essentially distances “them” from “us” through the

relational action of removing “them” to their “home,” as perceived by the author

of the tweet.
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Similarly, the third typed dependency (det(home-5, all-3)) identifies a det

relationship, which is short for determiner, where a link is established between a

noun phrase and its determiner. The noun phrase here being “home” (as in a

place) and the determiner being “all.” Again, this falls into an “othering”

behavior, suggesting that the entire social group to which the Woolwich

perpetrators belonged should have a relationship with “home,” which we can

assume means the perceived “home” of the social group by the author of the

tweet (i.e., “not my country”). This combination of linguistics and sociology

potentially provides a very interesting set of features for the more nuanced

classification of cyber hate, beyond the BoW approach that utilizes expletives and

derogatory terms. It allows a more common-sense reasoning approach to

classifying cyber hate by considering the integration of “othering” terms and calls

for retribution action into the classification features.

Data Preprocessing and Feature Preparation

Each tweet was computationally transformed into a word vector—a list of all

the individual words (tokens) in the tweet. All tokens we transformed to lower

case to avoid capitalized versions of words being treated as separate features to

lower case versions of the same word. Nonalphanumeric characters other than

those present in emoticons and exclamatory punctuation were removed, stop

words were removed, and we stemmed each token to ensure that multiple

representations and tenses of a word could be considered as a single features; for

example, “attacked,” “attackers,” and “attacking” can all be reduced to “attack”

so the machine can consider the verb as a single predictive feature, as well as the

various forms of the verb. Tokens within each tweet were then clustered into

sequential groups of tokens, or n-grams, ranging from one to five tokens in length

to preserve an element of context for each word by encapsulating their

surrounding words within a feature. Single tokens, or unigrams, were prominent

in the cyber hate sample in the form of expletives or derogatory terms. Two-token

combinations, or bigrams, were also present in the form of combinations of

expletives, adjectives, and derogatory terms. Three-token terms (trigrams) could

represent “othering” and incitements of retributional action, such as “send them

home” or “get them out.” Four- and five-token terms contained extended but

similar phrases.

The BoW approach used here is fairly unsophisticated as a feature identifica-

tion method, as it weights each n-gram equally as a feature and is likely to lead

to confusion within the classification task when words occur frequently in both

classes. Therefore, two experiments were conducted at the classification stage

where in the first experiment all n-grams were retained as classification features,

while in the second, only hateful and derogatory terms sampled from an online

racial slur database2 were retained, and the remaining n-grams were removed.

Classification results were produced for each experiment. It was expected that the

hateful terms would be predictive of cyber hate, but we were interested to see if

other terms were also statistically significant predictors.
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To produce a more sophisticated classifier capable of learning the grammati-

cal structure of tweets containing cyber hate, each tweet was transformed into a

set of typed dependencies using the Stanford Parser. Each typed dependency was

considered as a unigram feature, and we again performed clustering on all the

typed dependencies in a tweet to identify groups of between one and three typed

dependency n-grams that represented the syntactic structure of each tweet. The

number of possible typed dependency relationships produced by the Stanford

model is around 50, and we suspected that not all relationships would be useful

for classification.

As with the BoW experiments, at the classification stage we performed a two-

step approach. The first experiment involved testing the classifier using all typed

dependencies as features. We then performed a meta-analysis to better determine

which features were more statistically significant at classifying cyber hate. To

achieve this we ran a Bayesian Logistic Regression (BLR) using the typed

dependency features extracted from the 10 percent sample of gold standard cyber

hate and benign tweets. We used the model output of the BLR to establish a list

of statistical coefficients relating to the probability of each typed dependencies n-

gram occurring in a hateful or antagonistic tweet. The list was sorted to identify

the most likely forms of typed dependency relationship to occur in the cyber hate

class, and these relationships alone were retained as predictive features when the

classifier was retrained and re-evaluated in a second experiment.

Finally, we combined both experiments and produced a final testing scenario

to determine if combining the BoW, typed dependencies, and hateful and

derogatory n-grams would prove to be the optimal set of features.

Model Selection

Given our feature set of specific words and syntactic features, we aimed to

create a set of results and related model that could be used to inform

policymakers of the risk of cyber hate spreading online following events that are

likely to incur a hateful or antagonistic response toward a specific social group.

To produce experimental results we used the Java Weka machine learning

libraries to develop a number of supervised classifiers that were trained and

tested using the features discussed in the previous section. Each tweet was

transformed into a feature vector—a list of attributes that represent the tweet for

the purposes of training a classifier. Each vector included the actual class the

tweet belonged to based on the human annotation exercises (reduced to a binary

“Yes” or “No” as to whether it was hateful or antagonistic or not), and a list of n-

grams that either included words, typed dependencies, or a combination of both,

depending on the feature set used to train the classifier.

Given the prevalence of individual words or short combinations of words in

the cyber hate sample, it was appropriate to implement a classifier that would

make decisions based on the likelihood of feature occurrence. We implemented a

BLR classifier as a probabilistic approach. This classifier identifies statistical

coefficients for each feature in a vector based on the likelihood of that feature
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appearing in any of the classes available (“Yes” or “No”) and uses this to predict

the classes of previously unseen tweets.

Rule-based approaches to classifying antagonistic content have been shown to

produce promising results in previous research, and the case of cyber hate

seemed similar to other work in its accusational and targeted construct. Therefore,

we employed a Random Forest Decision Tree (RFDT) as a rule-based approach to

classification. A decision tree approach was chosen because it iteratively identifies

the feature from the vector that maximizes information gain in a classification

exercise—or put another way, it quantifies the significance of how using one n-

gram as a rule to classify a tweet as “Yes,” reduces the uncertainty as to which

class it belongs to. Performing this step multiple times creates a hierarchical and

incremental set of rules that can be used to make classification decisions. A

Random Forest implementation of a decision tree was used because it iteratively

selects a random subsample of features in the training phase and trains multiple

decision trees before predicting the outputs and averaging out the results,

maximizing the reduction in classification error (Breiman, 2001). The approach

combines the results of a number of decision trees to identify the optimal set of

rules, which was appropriate in this case because of the amount of noise and

grammatical variance within the training and testing data sets.

A Support Vector Machine (SVM) was also used to determine if a spatial

classification model would improve or enhance on a probabilistic or rule-based

model. Feature vectors are plotted in high-dimensional space, and hyperplanes (lines

that separate the data points) are used to try to find the optimum way to divide the

space such that the tweets belonging to “Yes” and “No” classes are separated.

Multiple hyperplanes can be used and the optimal hyperplane will be the line that

maximizes the separation between classes. The rationale for the use of an SVM

classifier was to determine whether cyber hate tweets and general responses to an

event could be separated by spatial differences in lexical or syntactic features, as

well as with probability and rules to determine predictive feature efficiency.

In addition to the three individual classifiers, we also implemented an

“ensemble” classifier where a combination of all three was used to make a final

classification decision. We used a voting meta-classifier, which produces a

classification result for each base classifier (BLR, RFDT, and SVM) during the

training phase, before making a decision on which model to use based on its

prediction accuracy. A choice can be made based on the base classifier with the

maximum probability or minimum probability; the results of all base classifiers

can be averaged; or a majority vote can be taken. We implemented the maximum

probability to make classification decisions, based on selecting the classification

function that is most statistically likely to reduce error.

Classification Results

A 10-fold cross-validation approach was used to train and test the supervised

machine learning methods. This approach has previously been used for building

machine classifiers for short text (e.g., Thelwall et al., 2010a). It functions by
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iteratively training the classifier with features from 10 percent of the manually

coded data set, and classifying the remaining 90 percent as “unseen” data, based

on the features evident in the cases it has encountered in the training data. It then

determines the accuracy of the classification process and moves on to the next

iteration, finally calculating the overall accuracy.

The results of the classification experiments are provided in Table 1 using

standard text classification measures of: precision (i.e., for class x, how often are

tweets classified as x when they should not be—a measure of false positives);

recall (i.e., for class x, how often are tweets not classified as x when they should

be—a measure of false negatives); and F-Measure, a harmonized mean of precision

and recall. The results for each measure range between 0 (worst) and 1 (best). The

formulae for calculating these results are as follows (where TP¼ true positives,

FP¼ false positives, TN¼ true negative, and FN¼ false negative):

Precision ¼ TP=TPþ FP

Recall ¼ TP=TPþ FN

F�Measure ¼ 2� ððP� RÞ=ðPþ RÞÞ

Because of the specific interest in the accurate detection of hateful and

antagonistic content, the results reported in Table 1 are the precision, recall and f-

measure for the Yes class ONLY. The number of false positives (instances where

benign content has been classified as cyber hate) and false negatives (where cyber

hate has been classified as benign) are also reported. Table 2 provides results for

the best performing classifier and includes both Yes and No classes, as well as an

overall performance score. Table 3 presents the confusion matrix for the best

performing classifier with a breakdown of classifier error.

In Table 1, the bold text indicates the best performance results for precision,

recall, FP, and FN for each feature set. In cases such as the n-gram hateful terms

feature set, the whole row is bold because there was no difference between the

performance of the classifiers. The shaded areas indicate the best overall perform-

ing feature set for each classifier.

The results suggest that overall the most efficient features for classifying cyber

hate are n-gram typed dependencies combined with n-gram hateful and antagonis-

tic terms. In fact, the hateful terms alone achieved the same precision performance

but had a lower performance for recall. The number of false negative results

(missed instances of cyber hate) was 7 percent higher when using hateful terms

alone. This is an interesting result as it provides evidence to suggest that human

annotators identify hateful or antagonistic content on Twitter that does not

necessarily contain hateful or antagonistic terms, and requires a more nuanced

representation of what is deemed cyber hate when aiming to classify tweets.

The use of a more sophisticated set of features as well as a BoW has

successfully contributed to this requirement. A 7 percent improvement may seem

fairly small, but considering the size of the initial corpus was 450,000, and in the

annotated random sample of these data around 11 percent was considered hate

speech by the human annotators, we could infer that there were around 49,500

Burnap/Williams: Machine Classification of Cyber Hate Speech 11



T
a
b
le

1
.
C
y
b
er

H
at
e
C
la
ss
ifi
ca
ti
o
n
R
es
u
lt
s

B
L
R

R
F
D
T

S
V
M

V
o
te
d
E
n
se
m
b
le

(M
ax

P
ro
b
ab

il
it
y
)

P
R

F
P

R
F

P
R

F
P

R
F

n
-G

ra
m

w
o
rd

s
(1
–5
)

w
it
h
2,
00
0
fe
at
u
re
s

0.
76

F
P
¼
46

0.
67

F
N

¼
74

0.
71

0.
76

F
P
¼
38

0.
55

F
N

¼
99

0.
64

0
.8
0
F
P
¼
3
8

0.
69

F
P
¼
69

0
.7
4

0.
73

F
P
¼
58

0
.7
1
F
N
¼
6
5

00
.7
2

n
-G

ra
m

h
at
ef
u
l
te
rm

s
0
.8
9
F
P
¼
1
9

0
.6
6
F
P
¼
7
5

0
.7
6

0
.8
9
F
P
¼
1
9

0
.6
6
F
N

¼
7
5

0
.7
6

0
.8
9
F
P
¼
1
9

0
.6
6
F
N
¼
7
5

0
.7
6

0
.8
9
F
P
¼
1
9

0
.6
6
F
N
¼
7
5

0
.7
6

n
-G

ra
m

w
o
rd

s
(1
–5
)
w
it
h

2,
00
0
fe
at
u
re
s
þ
h
at
ef
u
l

y
er
m
s

0.
75

F
P
¼
40

0.
55

F
N

¼
10
0

0.
64

0
.8
1
F
P
¼
2
1

0.
42

F
N

¼
12
8

0.
56

0.
74

F
P
¼
50

0.
65

F
N
¼
78

0
.6
9

0.
68

F
P
¼
70

0
.6
6
F
N
¼
7
5

0.
67

n
-G

ra
m

ty
p
ed

d
ep

en
d
en

ci
es

0.
52

F
P
¼
50

0.
25

F
N

¼
16
7

0.
34

0.
56

F
P
¼
36

0.
21

F
N

¼
17
6

0.
30

0.
53

F
P
¼
48

0.
24

F
N

¼
16
8

0.
33

0.
49

F
P
¼
57

0.
25

F
N
¼
16
7

0.
25

n
-G

ra
m

re
d
u
ce
d
ty
p
ed

d
ep

en
d
en

ci
es

1
F
P
¼
0

0
.1
8
F
N

¼
18
3

0
.2
9

0.
97

F
P
¼
1

0.
14

F
N

¼
19
0

0.
25

1
F
P
¼
0

0.
17

F
N

¼
18
5

0.
28

1
F
P
¼
0

0
.1
8
F
N
¼
18
3

0
.2
9

n
-G

ra
m

re
d
u
ce
d
ty
p
ed

d
ep

en
d
en

ci
es

þ
h
at
ef
u
l

te
rm

s

0
.8
9
F
P
¼
1
9

0
.6
9
F
N

¼
7
0

0
.7
7

0
.8
9
F
P
¼
1
9

0
.6
8
F
N

¼
7
1

0
.7
7

0
.8
9
F
P
¼
1
9

0
.6
9
F
N
¼
7
0

0
.7
7

0
.8
9
F
P
¼
1
9

0
.6
9
F
N
¼
7
0

0
.7
7

n
-G

ra
m

w
o
rd

s
(1
–5
)
w
it
h

2,
00
0
fe
at
u
re
s
þ
n
-G

ra
m

re
d
u
ce
d
ty
p
ed

d
ep

en
d
en

ci
es

þ
h
at
ef
u
l

te
rm

s

0.
87

F
P
¼
16

0.
50

F
N

¼
11
1

0.
63

0
.8
8
F
P
¼
10

0.
32

F
N

¼
15
0

0.
42

0.
88

F
P
¼
18

0.
59

F
N
¼
91

0.
70

0.
83

F
P
¼
27

0
.6
0
F
N
¼
88

0
.7
0

12 Policy & Internet, 9999:9999



instances of cyber hate in the corpus. Overlooking 7 percent of these would lead

to more than 3,000 hateful or antagonistic tweets being missed; so for policy-

making purposes, the 7 percent improvement achieved by introducing the typed

dependency features is significant if an accurate snapshot of the level of hateful

and antagonistic emotive responses to an event is to be achieved.

The number of false positives in the best performing classifiers was 19, which

constitutes 0.009 percent of the test data. Other classifiers reduced the number of

false positives to below 19 (to zero in once instance), but the recall performance in

these instances was far below that of the best performing classifiers, meaning that

a reduction in false positives was also accompanied by an increase in false

negatives. It is essential to retain a balance of minimized false positives and false

negatives. In all cases, the voted ensemble classifier matched or improved upon

the recall of each of the individual base classifiers. This suggests that combining

the output of the respective probabilistic, rule-based and spatial classifiers, and

selecting the classification decision of maximum probability can assist policy and

decision makers in reducing the oversight of hateful or antagonistic content.

While the base classifiers all achieved fairly similar results using the most efficient

features set, given the improvement of recall across all other experiments when

using a voted classifier, it would seem pertinent to consider the use of the voted

classifier as a first choice when applying the cyber hate classifier to unseen data.

The full results of the cyber hate classifier are reported in Table 2. It is clear

that the precision and recall of the non-hateful responses is very high (P¼ 0.96,

R¼ 0.98). The precision of the “Yes” class is also high (P¼ 0.89), showing a low

number of false positives, but there are improvements to be made to the recall of

the “Yes” class (R¼ 0.69) before significant confidence can be given to the results

for policy- and decision-making purposes. Table 3 shows 70 misclassifications

where cyber hate was classified as a benign response by the classifier, suggesting

Table 2. Voted Classifier Full Results

Voted Classifier

P R F

Yes 0.89 0.69 0.77
No 0.96 0.98 0.97
Overall 0.95 0.95 0.95

Table 3. Voted Classifier Confusion Matrix

Human Coders

Yes No

Machine
Yes 152 70
No 19 1,660
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a further refinement is required to detect more discrete hateful and antagonistic

content.

To give some insight into the qualitative narrative of cyber hate we have

provided some instances of typed dependencies that were probabilistically more

likely to occur in cyber hate than the benign class in Table 4. We can see that the

content of tweets focuses on a response to religious and ethnic minority social

groups from the wider population (e.g., black muslims). There are phrases

suggestive of incitement to respond with actions (e.g., burn Korans) and claims of

well founded or justified discrimination against social groups (e.g., “I told you

black people...”). Given this reflective and responsive narrative it would seem

pragmatic to include more semantic rules and constructs into feature identifica-

tion in future in order to improve classifier performance.

Cautionary Caveat

Once a supervised machine learning classifier has been developed it can be

used on a larger sample to classify new and unseen data, and inform policy

decisions directly or via additional models. First and foremost it is essential to

remember that supervised machine learning classifiers build models of what they

perceive to be the features indicative of specific classes—in this case, hateful and

antagonistic content. As a result, if new or unseen features occur, such as

different types of language or content with mixed meaning, it can cause confusion

in the classifier and produce inaccurate results. We can classify new instances,

but we must always bear in mind the limitations in the existing model (i.e., not

all instances of cyber hate were identified by our model), and that variance in the

way people respond to such events may compound this.

Table 4. Probabilistic Features Highly Likely to be in Cyber Hate

Typed Dependency Qualitative Description

det(religion-5 a-4) Determiner (a specific reference to a noun phrase) discussing “a”
“religion” in a particular context

amod(people-7 black-6) Adjectival modifier (a descriptive phrase related to a noun phrase)
discussing “people” who are “black”

aux(burn-6 to-5) dobj(burn-6
korans-9)

Auxiliary (a form of “be,” “do,” or “have”) action phrase using “burn”
and “korans”

amod(muslim-40 black-39) Adjectival modifier (a descriptive phrase related to a noun phrase)
discussing “muslims” who are “black”

det(muslim-40 a-38) amod
(muslim-40 black-39)

Determiner (a specific reference to a noun phrase) discussing “a”
“muslim” in the context of a “black” “muslim”

dobj(told-4 you-5) amod
(people-7 black-6)

Direct object (an accusatory object of the verb) “told” “you” (e.g., “I told
you”) in the context of “black” “people”

advmod(seen-3 just-2)
dobj(seen-3 video-4)
dobj(getting-9 shot-10)

Adverbial modifier (a descriptive phrase related to a verb) “just” “seen,”
that is commenting on what has just been witnessed

dobj(burn-6 korans-9) Direct object (an accusatory object of the verb) “burn” “korans”

Note: Using a classifier to inform a statistical model.
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That said, what we have tried to achieve with the classifier is to assist human

decision making using a machine to handle the large volumes of data produced

by the general public in response to a large-scale emotive event. The results of the

cyber hate classifier are reasonably high, especially when considering that around

5 percent of our human-annotated sample had to be removed because the three

out of four humans could not agree which class a tweet belonged to. It is worth

remembering that while machine learned models are not always accurate in their

judgment, humans are also susceptible to disagreement and confusion.

Cyber Hate and Contagion Modeling

In the following example we demonstrate how the supervised machine

learning classification model of cyber hate can be applied to the whole corpus of

450,000 tweets to help determine to what degree hateful or antagonistic content is

spreading—a measure of the contagion effect of cyber hate in response to a specific

event. This could help inform those responsible for minimizing the risk of social

disorder through community reassurance, local policing, and the online gover-

nance of hateful and antagonistic content, as to whether cyber hate is likely to

spread.

One way to measure the impact of cyber hate on the spread of information on

Twitter is to treat cyber hate as a predictive feature in a statistical regression

model where the dependent variable (the outcome you are trying to predict) is

the number of retweets a tweet is likely to receive. Theoretically, the more

retweets a tweet receives, the more people are likely to see it, increasing the risk

of public exposure and opportunity to propagate and respond to cyber hate. By

measuring the statistical associated strength of cyber hate within a model of

retweet counts, we can determine the likelihood of hateful and antagonistic

content being retweeted, and therefore spreading to a large number of people.

We can define a tweet that has been retweeted a large number of times as an

information flow (Lotan, 2011).

Table 5 shows the result of a zero-inflated negative binomial model of

information flow “size.” The dependent variable is a count measure of the

number of retweets a tweet actually received following the Woolwich event. The

statistical predictors of the count include the number of followers of the person

sending the tweet, the time of day the tweet was sent, the content of the tweet

(hashtags, URLs), the sentiment polarity (þve, –ve), the number of press

headlines on the day the tweet was made, and the type of agent sending the

tweet (e.g., press, police, politician). The data for these features were all derived

from the data set collected from Twitter. For more details on how these were

derived we recommend the reader study a related paper that examined the social

media reaction in greater detail (Burnap et al., 2014). In this instance we are only

interested in the impact of cyber hate as an example of how machine classification

can help inform the modeling of online social reaction.

If we look at the incidence rate ratio (IRR) column in Table 5 we can see the

strengths of association for each predictor variable with the dependent “retweet”
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count, as indicated by the IRR. We can use the IRR to report the strength of

causal associations between certain factors and the information flow size, enabling

us to identify quantitatively which factors are more important than others. Where

an IRR >1, the difference is associated with a positive increase in the dependent

variable (retweet count), so in the case of the “URL” variable which records

whether or not a tweet contains a URL, the results indicate that the rate of retweet

for tweets containing a URL is 1.55 times higher than the rate for tweets without

a URL. Thus, a URL increases the chances of a tweet being retweeted. Where an

IRR <1, there is a negative effect. If we look at the “Cyber Hate Speech” predictor

we see the IRR is 0.55 (rounded to 2 decimal places), which means that the

Table 5. Zero-Inflated Negetive Binomial Regression Model Predicting Counts of Retweets

Count of Retweets

Poisson Model (Count/True Zeros) Coef. SE IRR

TimeLagRT5 0.000** 0.000 1.000
Tweet count �0.215** 0.015 0.807
Commute morning 0.030 0.048 1.030
Work 0.014 0.038 1.015
Commute evening 0.074 0.045 1.077
Evening �0.010 0.040 0.990

Ref: Commute night
Sunday �0.133** 0.041 0.875
Monday �0.302** 0.047 0.739
Tuesday �0.344** 0.051 0.709
Thursday �0.365** 0.058 0.694
Friday �0.311** 0.044 0.733
Saturday �0.122** 0.052 0.853

Ref: Wednesday
Hashtag 0.217** 0.025 1.242
URL 0.439** 0.026 1.551
Sentiment 0.322** 0.018 1.380
Google search 0.005** 0.001 1.005
Press headlines 0.000* 0.000 1.000
News agent 1.460** 0.044 4.304
Police Agent 1.742** 0.408 5.708
Political agent 0.670** 0.150 1.954
Far right political agent 0.632* 0.327 1.882

Ref: Other agent
Cyber hate speech �0.604** 0.107 0.546
Constant 0.543** 0.126 1.721

Binomial model (inflation/excess zeros)
Number of followers �0.899** 0.017 -
Constant 4.586 0.063 -

Model fit
Log-L �92,196.36
Chi-square 2,594.57
Sig. p¼ 0.00
LRT for alpha¼ 0 p¼ 0.00
Vuong Z¼ 45.00; p¼ 0.00;

Na¼ 210,807

Notes: *p< 0.05, **p¼<0.01.1.aReduction due to removal of retweets, leaving only original
tweets.
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inclusion of hateful or antagonistic content in a tweet reduces the rate of retweet

by a factor of 0.55 (or 45 percent), suggesting that a response to this event that

contains a hateful or antagonistic element, as determined by the machine

classifier, is in fact reducing the likelihood of the tweet being widely spread.

For policymakers, the combination of the cyber hate machine classifier with

the statistical predictive model of the retweet likelihood given the features of the

tweet could be useful in determining the changing dynamic of cyber hate on

Twitter over time, and as an event unfolds. At any point in time a new corpus of

tweets can be collected via the Twitter API, and the number of retweets each

tweet has received is available from the metadata provided by Twitter. If the

machine classifier is used to detect cyber hate within the corpus, and the

statistical model is subsequently rerun, the difference in IRR from one period of

time to another can be illustrative of the changing dynamic of cyber hate in

Twitter over time.

For instance, if the IRR for the “Cyber Hate Speech” predictor in the model is

0.55 at time x, and 0.75 at time y, it suggests an increase in the rate of retweets

containing cyber hate and therefore provides an indication that hateful and

antagonistic content is actually spreading more at time y. One limitation of our

approach is that the classification of cyber hate is dependent upon the language

used in response to an event, which may not predeterminable prior to an event.

Therefore, from these results we are not suggesting that the hate propagation IRR

could be compared to a preevent baseline, rather that while the event is unfolding

policymakers can study fluctuations within the analysis window following the

event. The utility of identifying fluctuations following the event include monitor-

ing the enabling and inhibiting factors of propagation of hate, such as further

connected events (e.g., a protest march, news coverage, published opinion pieces,

and political speeches).

Conclusion

In this article we have developed a supervised machine learning classifier for

hateful and antagonistic content in Twitter. The purpose of the classifier is to

assist policy and decision makers in monitoring the public reaction to large-scale

emotive events, such as the murder of Drummer Lee Rigby in Woolwich in 2013.

Previous research showed that 58 percent of hate crimes following 9/11 were

perpetrated two weeks following the event (4 percent of the at-risk period). Data

are available in near-real time from online social networks and microblogging

websites such as Twitter, which can allow us to monitor the prevalence of hateful

and antagonistic responses online in the period immediately following the event,

when risk of hateful responses is highest. Hateful and antagonistic responses

have led to imprisonment of the person posting the tweet—possibly as part of a

risk reduction response by the judicial system.

The classification results showed very high levels of performance at reducing

false positives and produced promising results with respect to false negatives.

Our implementation of individual probabilistic, rule-based, and spatial classifiers
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performed similarly across most feature sets, but the combination of the

classification output of these base classifiers using a voted meta-classifier based

on maximum probability matched or improved on the recall of the base classifiers

in every experiment, suggesting that an ensemble classification approach is most

suitable for classifying cyber hate, given the current feature sets. This could be

due to the noise and variety of types of response within the data, with some

features proving more effective with different classifiers.

The novel inclusion of syntactic features using typed dependencies within

tweets as machine learning features reduced the false negatives by 7 percent over

the baseline BoW features, providing a significant improvement when considering

the volumes of data produced in response to such events. Our corpus of 450,000

tweets was collected in the first two weeks following the event, and it would be

extremely difficult for human effort to manually parse these data to determine

levels of public antagonism within all the responses. The improvement in

machine classification using typed dependencies also suggests that cyber hate

comprises content that is not instantly identifiable by words that are traditionally

associated with hateful and discriminatory remarks, and requires a more nuanced

approach to text classification beyond words alone. For instance, there was a

prevalence of “othering” terms, such as “send them home” and “get them out,”

as well as incitements to undertake hateful retribution such as “burn korans” and

“should be hung.” The typed dependency approach was able to identify these as

useful features for classification.

We developed an illustrative example using cyber hate as classified by a

machine as a predictive feature in a statistical regression model. The model

produced IRRs for retweet activity given a set of features for each tweet. The

model showed a reduction in retweet rate ratio when a tweet contained a hateful

or antagonistic response, suggesting a stemming of the flow of content on Twitter

when a tweet contained cyber hate. This combination of machine classification

and statistical modeling can—while accepting the limitations of machines with

respect to utilizing a learned set of predictive features that are not an absolute

reflection of all the possible combinations and permutations of cyber hate

characteristics—produce aggregated statistics and prevalence indicators for

hateful and antagonistic responses to an event on social media, including the

relative spread of cyber hate on Twitter over time.

Our results are reflective of the individual event under study so we make

no claims as to the generalizability of the classifier or the statistical model.

However, through this case study, we have established for the first time a

method and a set of results that others could replicate following similar and

disparate events, in order to build up a body of work from which more

generalizable results can emerge. For example, following an event prompting a

hateful homophobic response, a data analyst could collect data, perform the

annotation task, and replicate our method. We hope this article acts as a clarion

call for further research into cyber hate and its manifestation in social media

around events, and the development of technical solutions that are informed by

such research.
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