Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

SEREN: a new SPH code for star and planet formation simulations

Hubber, David Anthony, Batty, Christopher Peter, McLeod, Andrew and Whitworth, Anthony Peter 2011. SEREN: a new SPH code for star and planet formation simulations. Astronomy and Astrophysics 529 , A27. 10.1051/0004-6361/201014949

[img]
Preview
PDF
Download (6MB) | Preview

Abstract

We present SEREN, a new hybrid Smoothed Particle Hydrodynamics and N-body code designed to simulate astrophysical processes such as star and planet formation. It is written in Fortran 95/2003 and has been parallelised using OpenMP. SEREN is designed in a flexible, modular style, thereby allowing a large number of options to be selected or disabled easily and without compromising performance. SEREN uses the conservative “grad-h” formulation of SPH, but can easily be configured to use traditional SPH or Godunov SPH. Thermal physics is treated either with a barotropic equation of state, or by solving the energy equation and modelling the transport of cooling radiation. A Barnes-Hut tree is used to obtain neighbour lists and compute gravitational accelerations efficiently, and an hierarchical time-stepping scheme is used to reduce the number of computations per timestep. Dense gravitationally bound objects are replaced by sink particles, to allow the simulation to be evolved longer, and to facilitate the identification of protostars and the compilation of stellar and binary properties. At the termination of a hydrodynamical simulation, SEREN has the option of switching to a pure N-body simulation, using a 4th-order Hermite integrator, and following the ballistic evolution of the sink particles (e.g. to determine the final binary statistics once a star cluster has relaxed). We describe in detail all the algorithms implemented in SEREN and we present the results of a suite of tests designed to demonstrate the fidelity of SEREN and its performance and scalability.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Advanced Research Computing @ Cardiff (ARCCA)
Physics and Astronomy
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Uncontrolled Keywords: Hydrodynamics; Methods: numerical; Stars: formation
Publisher: EDP Sciences
ISSN: 0004-6361
Last Modified: 04 Jun 2017 02:00
URI: http://orca.cf.ac.uk/id/eprint/7368

Citation Data

Cited 55 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics