Tuneable optical lenses from diamond thin films

Citation: Appl. Phys. Lett. 95, 031905 (2009); doi: 10.1063/1.3183534
View online: http://dx.doi.org/10.1063/1.3183534
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v95/i3
Published by the American Institute of Physics.

Related Articles
Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light
Visualization of the conductive channel in a planar resistance switching device based on electrochromic materials
Whispering gallery mode selection in optical bottle microresonators
Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor
Theoretical description of thermal lens spectrometry in micro space

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT

ACCELERATE AMBER AND NAMD BY 5X.
TRY IT ON A FREE, REMOTELY-HOSTED CLUSTER.
Tuneable optical lenses from diamond thin films

A. Kriele,a) O. A. Williams, M. Wolfer, D. Brink, W. Müller-Sebert, and C. E. Nebel
Fraunhofer Institut Angewandte Festkörperphysik, Tullastrasse 72, 79108 Freiburg, Germany

(Received 4 June 2009; accepted 27 June 2009; published online 20 July 2009)

Nanocrystalline diamond (NCD) membranes of 150 nm thickness and diameters in the millimeter range grown by microwave-assisted chemical-vapor deposition were bulged to investigate their mechanical properties and their use as tuneable optical lenses. The NCD films were grown at different CH4/H2 gas mixtures to vary the sp2/sp3 ratio and thereby to tune their mechanical, optical, and surface morphology properties. By applying gas over pressure the membrane forms a lens shaped geometry. From deflection data we calculated Young’s moduli which decrease with increasing CH4/H2 ratio from 1160 GPa at 0.5% to 900 GPa at 7%. Optical lens applications show a variation in the focal point from infinity to 3.5 mm. The data indicate that NCD is a promising material for tuneable optical lenses applications. © 2009 American Institute of Physics.

[DOI: 10.1063/1.3183534]

Tuneable micro-optics are currently manufactured almost exclusively from polymers [polydimethylsiloxane (PDMS) and SU8] or silicon.1 These materials are, however, limited by their mechanical and tribological properties which make them less than ideal for applications in fast moving microelectromechanical systems (MEMS) devices and in harsh environments where optical transparency is required. Microlenses made of polymer membranes and pneumatically tuned by hydrogels or oils show adverse effects such as swelling of the membrane and no uniformity of the membrane thickness during expansion which causes spherical aberration.2 When gas is used for actuation the permeability of such polymer membranes make stable positioning difficult.3

Using thin film diamond will overcome these limits as diamond films are known to show exceptional hardness,4 wear-resistance,5 chemical stability, and high thermal conductivity6 in addition to optical transparency from deep UV to far infrared.7–9 In this paper we show that diamond thin films are also suitable for tuneable microlenses applications which are planned to be implemented in arthroscopic microsurgery devices where biocompatibility, chemical stability, and optical properties are of high importance.

For this application we use nanocrystalline diamond films grown by microwave-assisted chemical-vapor deposition (MWCVD) on silicon substrates. Silicon is partially removed to generate NCD membranes of typically 1–2 mm in diameter. We show that the shape of NCD membranes can be tuned to lens properties which allow varying of the focal point from infinity to 3.5 mm. These experiments are also applied to characterize Young’s moduli as function of the CH4/H2 gas mixtures during the growth.

NCD films of 150 nm thickness were grown on 2 in. silicon wafers where the silicon surface is ultrasonificated for 30 min with a water based suspension of ultra dispersed (0.1 wt %) nanodiamond (UDD) particles of typically 5–10 nm in size.10 Then samples were rinsed with de-ionized water and subsequently exposed to MWCVD plasma with CH4/H2 gas mixtures varying from 0.5%, 1%, 3%, 5%, to 7% methane in hydrogen at a pressure of 60 mbar using a bell jar reactor.11

The gas flow rate was 300 SCCM (SCCM denotes standard cubic centimeter per minute). The microwave power was kept constant at 3 kW and the typical deposition temperature was 800 °C. The deposition time decreases with increasing CH4 admixture and was 30 min at 0.5% CH4 and 10 min at 7% CH4. The thickness of films was measured in situ using laser interferometry and was proofed by scanning electron microscopy (SEM) cross section images and is in the range of 150 nm.

To remove the silicon substrate we applied photolithographic patterning using Si3N4 mask material and HF and HNO3 (2:1) wet-chemical etching thereby generating circular membranes from NCD.

By variation in the CH4/H2 gas mixture during growth, the sp3 (diamond) to sp2 (graphite) ratio has been varied. In order to investigate the compositional properties of the nanocrystalline diamond films, Raman scattering experiments have been applied. The Raman spectra recorded at an excitation wavelength of 457.94 nm are shown in Fig. 1a. The NCD films show peaks at 1332 cm−1, which corresponds to sp2-bonded carbon (diamond). The D band at 1350 cm−1 causes broadening of the diamond peak with increasing CH4 admixture. There is a substantial graphite band (G band) at 1558 cm−1, which corresponds to sp2-bonded carbon and two transpolycaylene bands at 1150 cm−1 and at 1460 cm−1. Both nondiamond bands increase significantly with increasing CH4 content during the growth step. By increasing the CH4 gas admixture from 0.5% to 7% the graphite and transpolycaylene contents rise, as shown in Fig. 1b. Please note that the values of nondiamond contents were calculated by integration of the area beneath the fitted peaks, as shown in Fig. 1c.

The surface morphology of the films was measured by atomic force microscopy (AFM) and SEM as depicted in the insets in Fig. 1d. The grain structure decreases with increasing CH4 admixture and hence the surface roughness rms decreases from 9 nm at 0.5% CH4 to 5 nm at 7% CH4.

To characterize the mechanical properties of these films bulging experiments have been carried out by applying nitrogen gas pressure on one side of the membrane. The maximum height of deflection [Fig. 2d) as a function of applied pressure was measured with a white light interferometer.

a)Electronic mail: armin.kriele@iaf.fraunhofer.de.
Results are shown in Fig. 2a. The load-deflection dynamics of the membranes show extreme flexibility. Membranes 2.5 mm in diameter and grown at 5% CH₄ admixture expand 60−70 μm before destruction at a critical pressure, which is decreasing with increasing CH₄/H₂ ratio. Please note that the membranes do not show any hysteresis or degradation up to 30 cycles, as we have proven so far. Leak tests on inflated membranes show that there is no pressure drop within 48 h. A stable positioning of these membranes for a long time is therefore possible actuated either with gas or liquids. Proofed by SEM, we did not observe any detachment of the NCD films also when expanding them until they burst which indicates a strong adhesion of the films to the silicon.

We use the bulging variation to calculate the Young’s modulus of the NCD films. As the membrane deflection z is hemispherical in shape we can apply the following equation:13,14

\[p = \frac{c_1 t}{r^2} \sigma_0 z + \frac{c_2 f(\nu)}{r^4} \frac{E}{1 - \nu^2} z^3, \]

where \(p \) is the uniform pressure applied to the membrane, \(z \) is the maximum deflection measured at the center of the membrane, \(r \) is the membrane radius, \(t \) is the membrane thickness, \(\sigma_0 \) is the residual stress, \(E \) is the Young’s modulus, and \(\nu \) is the Poisson’s ratio (0.069).15 The geometrical coefficients \(c_1, c_2, \) and \(f(\nu) \) for circular membranes are 4, 2.67, and 1 respectively.12 The residual stress \(\sigma_0 \) and Young’s moduli \(E \) have been calculated by fitting this equation to the experimental data. As result, the Young’s moduli varies from \(E = 1160 \), 1070, 995, 960, to 897 GPa while the residual stress drops from \(\sigma_0 = 0.83, 0.51, 0.23, 0.13, \) to 0.11 GPa for CH₄ in H₂ varying from 0.5%, 1%, 3%, 5%, and 7%, respectively, as shown in Fig. 2c. Please note that the Young’s modulus of NCD grown at low CH₄ content is only slightly smaller than that of single crystalline diamond (1220 GPa). Due to these unique properties of NCD only thin membranes are required to achieve such large deflections while polymer films require 10 μm (SU8) to 100 μm (PDMS) in thickness for comparable deflection.2
The optical properties of the NCD membranes were characterized measuring transmission properties in the regime 200–850 nm [Fig. 3(a)]. The transmission is dominated by interference effects and varies from 20% at 200 nm to 80% at 700 nm. The transmission properties are only slightly affected by the increasing sp^2 content.

From these membranes, microlenses have been fabricated by sealing the backside with a thin glass slide and supporting the circular cavity with liquids through microchannels [Fig. 3(c)]. Using microscope immersion oil as pressure-transmitting liquid which has a refractive index of $n=1.46$ the focal length of such planoconvex lenses can be adjusted over a wide range. It varies from infinity (flat membrane) to 7.5 mm for lenses of 2.5 mm in diameter and to 3.5 mm for lenses of 1.3 mm in diameter, as shown in Fig. 3(b).

In conclusion, thin nanocrystalline diamond films have been characterized for applications as tuneable optical lenses. Circular NCD membranes of 150 nm thickness show bulging properties which resemble lens shapes. The bulging variation has been measured as a function of sp^2/sp^3 ratio of films which was tuned by increasing the CH$_4$ admixture to H$_2$ during the CVD growth. The resulting load-deflection membrane properties show up to 70 μm deflection of the membranes. They reveal extreme flexibility with no degradation. From variations in the surface expansion as a function of pressure the calculated Young’s moduli of NCD films varies from 1160 to 897 GPa by increasing the CH$_4$/H$_2$ ratio from 0.5% to 7%. NCD diamond films can be grown very homogeneously on 3 in. wafers on various materials such as silicon, metals, or sapphire. Therefore, this NCD material can be implemented in silicon MEMS technology for hybrid material combinations. The discussed data are promising to apply NCD films for demanding applications such as tuneable lenses where optical transparency, hardness, chemical stability, and biocompatibility are required.