












transcription start site. In combination these results suggest a

possible epigenetic mechanism whereby the associated variants in

the region influence TP53INP1 expression in several brain regions.

These expression data provide further evidence supporting the

functional relevance of TP53INP1 to AD susceptibility. The

IGHV1-67 gene was not found in those databases.

In addition we detected two genome-wide significant loci 1)

ZNF3 (chr7: 99,661,653–99,679,371; p = 8.661027) and 2) two

closely located genes on chromosome 11 MTCH2 (47,638,858–

47,664,206, combined p = 2.561026) and NDUFS3 (47,600,632–

47,606,114, combined p = 4.861027) (Table 4). None of these

genes harbour genome-wide significant SNPs in the SNP GWAS

analysis on its own (see Tables S5-S7). Figures S1-S3 show LD

plots of these additional genes.

ZNF3 and NDUFS3, MTCH2 genes on chromosomes 7 and 11,

respectively, lie close to rs1476679 (chr7:100,004,446; ZCWPW1)

and rs1083872 (chr11:47,557,871; CELF1) SNPs, which are shown

to be genome-wide significant in the IGAP study, when combining

Stage 1 and Stage 2 data. Figures S1-S3 show LD structure of

these genes in relation to the IGAP singe genome-wide significant

hits. (Note that the NDUFS3 gene on chromosome 11 was gene-

based genome-wide significant already at Stage 1.) Although none

of these SNPs actually lie within the genes mentioned above, it is

possible that they may account for the gene-based signals through

linkage disequilibrium. In order to test whether the gene-based

signals are independent of these strongly-associated SNPs, we

performed single-SNP association for each SNP annotated to these

genes by regression, adjusting for the significant SNPs mentioned

above, along with the other study covariates. The resulting p-

values were combined into gene-based tests, as described

previously. Under this conditional analysis ZNF3 gene does not

show significant association, however NDUFS3 still shows a trend

towards significance (p = 0.081) (see Table S8 for details).

Furthermore, five genes in chr11:47,593,749–47,615,961

(KBTBD4, NDUFS3, LOC100287127, FAM180B, C1QTNF4) all

have p,0.05 with gene-based analysis 610 kb, when conditioning

by the genome-wide significant hit rs10838725 in this region. This

may partially be explained by the SNP rs10838731 (p = 1.261023

after conditioning by rs10838725) which is shared by all latter five

genes.

Gene-based analysis with 610 kb around genes did not reveal

additional genome-wide significant loci in the Stage 1 data set.

Moreover, the significance of the genes identified above did not

improve in general, indicating that adding 10 kb flanking regions

to genes introduces more noise to the gene-based signal. The

combined Stage 1 and Stage 2 gene-based analysis provided

further evidence for significant signals in the loci on chr 11 with 8

genes (SPI1, SLC39A13, LOC100287086, PTPMT1, KBTBD4,

NDUFS3, LOC100287127, FAM180B) and on chr 7 with 6 genes

(LOC100128334, MCM7, PILRB, PILRA, LOC100289298,

C7orf51), all reaching genome-wide significance. This is likely to

be due to the fact that including genes’ flanking regions captures a

greater number of the same SNPs or SNPs in high LD showing

significant association.

The Manhattan plot of the gene-based p-values (Figure 3) gives

a general overview of the gene-based results and shows the new

loci in relation to previously reported genes (see also QQ-plots in

Figure S4). The results of gene-wide analysis for the genes, which

were previously reported as associated with AD[4-8] and those

which are GWAS significant in the Stage 1 analysis are presented

in Table S9. Out of 16 reported susceptibility genes, 15 are

nominally significant with gene-wide analysis (almost all p-values

are smaller than 1024), however not all of them reach the gene-

based genome-wide significance level (2.561026) when the

number of SNPs per gene and LD structure of the gene is taken

into account.

Figure 1. Linkage disequilibrium structure of TP53INP1 gene. The SNPs which are significant at 1024 level are circled in red.
doi:10.1371/journal.pone.0094661.g001
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We did not observe genome-wide significance for CD33 gene.

This gene was genome-wide significant in Stage 1 (p = 1.961026),

but the association was attenuated when combining Stage 1 and

Stage 2 data (p = 1.7961025), similar to the single SNP association

result in the SNP GWAS study[9,19].

Discussion

In this study we show that there are more signals in the GWAS

imputed data at SNP- and gene-based levels than revealed by

single SNP analysis. A gene-based analysis is a next logical step

after the single SNP analyses in any attempt to combine possible

several signals in genes and thus enhance the power of the

association analyses.

The first new gene TP53INP1 (chromosome 8) encodes a

protein that is involved in mediating autophagy-dependent cell

death via apoptosis through altering the phosphorylation state of

p53[23] and in modulating cell-extracellular matrix adhesion and

cell migration[24]. TP53INP1 encodes a pro-apoptotic tumor

suppressor and its antisense oligonucleotide has been used as

potential treatment for castration-resistant prostate cancer[25].

This association is notable, given the potential inverse association

between cancer and AD that has previously been reported [26,27].

The second new gene IGHV1-67 (chromosome 14) is a

pseudogene in the immunoglobulin (IgG) variable heavy chain

region of chromosome 14: its function is unknown but all genes in

this region are most likely to be involved in IgG heavy chain VDJ

recombinations that lead to the full repertoire of antigen-detecting

immune cell clones[28].

The gene-based analysis in this study has shown its utility to

enhance the information provided by single SNP analysis (i.e.

NDUFS3 gene was genome-wide significant from Stage 1 using

gene-based analysis whereas this gene was only genome-wide

significant after combining the two stages of single SNP analysis).

ZNF3 is a zinc-finger protein at the same locus on chromosome

7 as ZCWPW1 thus rendering it a candidate as the gene that

contains the functional signal in this region. Although we can not

identify which gene actually confers the risk to AD, it is interesting

that ZNF3 function is unknown though it interacts with BAG3

which is involved in ubiquitin/proteasomal functions in protein

degradation[29] and ZNF3 is regulated by upstream binding of

BACH1 whose target genes have roles in the oxidative stress

response and control of the cell cycle[30].

In the cluster of genes on chromosome 11, MTCH2 encodes one

of the large family of inner mitochondrial membrane transport-

ers[31] which is associated with mitochondrially-mediated cell

death[32], adipocyte differentiation[33], insulin sensitivity[34] and

has a genetic association with increased BMI[35]. NDUFS3 also

has functions in the mitochondria as it encodes an iron-sulphur

component of complex 1 (mitochondrial NADH:ubiquinone

oxidoreductase) of the electron transport chain. A deficiency

causes a form of Leigh syndrome[36] an early-onset progressive

neurodegenerative disorder with a characteristic neuropathology

consisting of focal lesions including areas of demyelination and

gliosis[37].

In summary, we report two novel genes TP53INP1 (chr8:

95,938,200–95,961,615; combined p = 1.461026) and IGHV1-67

(chr14: 107,136,620–107,137,059; combined p = 7.961028),

which were not reported as genome-wide significant before. We

also report ZNF3 gene on chromosome 7 and a cluster of genes on

chromosome 11 (SPI1-MTCH2), showing gene-based genome-

wide significant association with Alzheimer’s disease. These genes

are in proximity with, but not the same as, those detected by

genome-wide significant SNPs, demonstrating support for the
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signals identified by IGAP[9,19]. They have an array of functions

previously implicated in AD including aspects of energy metab-

olism, protein degradation and the immune system and add

further weight to these pathways as potential therapeutic targets in

AD.

Materials and Methods

Stage 1 data
The main dataset was reported by the IGAP consortium[9,19]

and consists in total of 17,008 cases and 37,154 controls. This

sample of AD cases and controls comprises 4 data sets taken from

genome-wide association studies performed by GERAD, EADI,

CHARGE and ADGC (see primary IGAP manuscript[9,19] for

more details). The full details of the samples and methods for

conduct of the GWA studies are provided in the respective

manuscripts[4-8].

Each of these datasets was imputed with Impute2[38] or

MACH[39] software using the 1000 genomes data (release

Dec2010) as a reference panel. In total 11,863,202 SNPs were

included in the SNPs allelic association result file. To make our

analysis as conservative as possible, we only included autosomal

SNPs which passed stringent quality control criteria, i.e. we

included only SNPs with minor allele frequencies (MAF) $0.01

and imputation quality score greater than or equal to 0.3 in each

individual study, resulting in 7,055,881 SNPs which are present in

at least 40% of the AD cases and 40% of the controls in the

analysis. The summary statistics across datasets were combined

using fixed-effects inverse variance-weighted meta-analysis. We

corrected all individual SNPs p-values for genomic control (GC)

l= 1.087. These SNPs are well imputed on a large proportion of

the sample, which increases confidence in the accuracy of the

association analysis upon which gene-wide analysis is based.

Stage 2 data
11,632 SNPs with p-values ,1023 in the IGAP meta-analysis

were successfully genotyped in a Stage 2 sample comprising 8,572

cases and 11,312 controls (see primary IGAP manuscript[9,19]

for more details). An additional 771 SNPs were successfully

genotyped to test all genes with gene-wide p-values ,10-4 in the

IGAP Stage 1 analysis, excluding genes reported prior to

IGAP[4–8], the four loci reaching genome-wide significance in

the Stage 1 IGAP meta-analysis[9,19] and the 0.5Mb regions

around them (Table S2). These SNPs cover 887 genes and

correspond to 444 independent loci where all genes within

0.5 Mb are counted as one locus.

Assignment of SNPs to genes
SNPs were assigned to genes if they were located within the

genomic sequence lying between the start of the first and the end

of the last exon of any transcript corresponding to that gene. The

chromosome and location for all currently known human SNPs

were taken from the dbSNP132 database, as was their assignment

to genes (using build 37.1). In total, we retained 2,804,431 (39.7%

of the total) SNPs which annotated 28,636 unique genes with 1–

16,514 SNPs per gene. For the gene-wide analysis we have

excluded genes which contain only one SNP in the IGAP Stage 1

analysis, leaving a total of 25,310 genes. If a SNP belongs to more

than one gene, it was assigned to each of these genes. In order to

account for possible signals which are correlated with those in a

gene, gene-wide analysis was also performed using a 10 kb window

around genes to assign SNPs to genes.

Figure 2. Linkage disequilibrium structure of IGHV1-67 gene ±5 kb. The SNPs which are significant at 1024 level are circled in red.
doi:10.1371/journal.pone.0094661.g002
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Gene-wide analysis
The gene-wide analysis was performed based on the summary

p-values while controlling for LD and different number of markers

per gene using an approximate statistical approach[40] adopted

for set-based analysis of genetic data[41]. This is a method for

calculating the significance of a set of SNPs in the absence of

individual genotype data based on a theoretical approximation to

Fisher’s statistic for combining p-values. Fisher’s statistic (-gln(pi))

combines probabilities and under the null hypothesis has a chi-

square distribution with 2N degrees of freedom, where N is the

number of markers, and the summation above is for i = 1,…,N). If

Fisher’s statistic combines the results of several tests when the tests

are independent, the approximate method combines non-inde-

pendent tests and requires only the list of p-values for each SNP

and knowledge of correlations between SNPs. Then the value of

Fisher’s statistic and the number of degrees of freedom is corrected

by the coefficient which depends upon the number of SNPs and

correlations (LD) between them. This approximation was applied

to the Stage 1 and Stage 2 samples separately, and the resulting

gene-wide p-values combined using Fisher’s method (since these

are independent). LD between markers was computed using 1000

genomes data. The gene-based genome-wide significant level was

set to 2.561026 to account for the number of tested genes[42].

Test for excess of associated SNPs/loci
The effective number N of independent SNPs in the whole

genome (excluding genes with SNPs that are genome-wide

significant in the Stage 1 IGAP dataset 6 0.5 Mb was estimated

by the method described in [43] taking LD into account, as were

the observed number of independent SNPs significant at each p-

value criterion (adjusting individual SNP p-values for genomic

control l= 1.087 before hand). LD was computed from the 1000

Genomes database (http://www.1000genomes.org/). In the

absence of excess association, the expected number of independent

SNPs significant at significance level a is a normally distributed

random variable whose mean and standard deviation (SD) can be

calculated as aN and !Na(1-a) (mean and SD for a binomial

distribution). The number of independent SNPs (and thus

statistical tests) in the whole genome were estimated as

,3.76106, ,3.66106 and ,3.56106 at significance levels below

0.1, between 0.05 and 0.1, and 0.2 and above respectively (see [43]

for details on the dependence between the significance levels and

the estimated number of independent tests). We then calculated

mean of the expected number of significant SNPs in intervals a1 ,

p # a2, (a1, a2 = 0, 1026, 1025, …, 0.5) as difference between the

expected numbers of independent SNPs at a2 and a1 significance

levels and SD as the square root of sum of the corresponding

variances.

We calculated the significance of the excess number of genes

attaining the specified thresholds based upon the assumption that,

under the null hypothesis of no association, the number of

significant genes at a significance level of a in a scan is distributed

as a binomial (N,a), where N is the total number of genes, assuming

that genes are independent. Genes within 0.5 Mb of each other

are counted as one signal when calculating the observed number

of significant genes. This prevents significance being inflated by LD

between genes, where a single association signal gives rise to

several significantly-associated genes. The total number of genes

was not corrected for LD in this way, making the estimate of

significance of the excess number of genes conservative.
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Table S2 List of genes that are genome-wide significant
in the IGAP stage 1 dataset and the flanking regions
which included SNPs either in r2$0.3 or association p-
value#10-3 whichever covers the largest region.
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Table S3 Detailed SNP information for TP53INP1 gene.
(XLS)
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Table S7 Detailed SNP information for MTCH2 gene.
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Table S8 Gene-based analysis results, when single
SNPs p-values, contributing to the gene-based p-value
were adjusted for the best genome-wide significant SNP
in the nearby location.
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Table S9 Gene-wide analysis for genes which show
GWAS significant association with AD in the stage 1
IGAP dataset.
(DOCX)

Table S10 Brain eQTL Tissues.

(XLSX)

Table S11 Brain Meth QTLs.

(XLSX)

Figure S1 ZNF3 gene with rs1476679 (ZCWPW1) report-
ed by Lambert et al (2013) study. SNPs which are significant

at 1e-3 level are circled in red, rs1476679 is highlighted in blue.

(TIF)

Figure S2 NDUFS3 gene rs10838725 (CELF1) reported by
Lambert et al (2013) study. SNPs which are significant at 1e-3

level are circled in red, rs10838725 is highlighted in blue.

(TIF)

Figure S3 MTCH2 gene with rs10838725 (CELF1) re-
ported by Lambert et al (2013) study. SNPs which are

significant at 1e-3 level are circled in red, rs10838725 is

highlighted in blue.

(TIF)

Figure S4 QQ-plot of gene-wide p-values for all genes
(A) and excluding previously reported[4-8] GWAS signif-
icantly associated genes ±0.5Mb (B) in the discovery
dataset. Genomic control l= 1.08 and 1.07 respectively.

(TIFF)

Methods S1 Expression quantitative trait loci (eQTL) and
Methylation quantitative trait loci (meQTL) analyses.

(DOCX)

Materials S1 Full IGAP datasets description.

(DOCX)

Materials S2 List of IGAP consortium members.

(DOC)

Figure 3. Manhattan plot of gene-wide p-values in the Stage 1 dataset and combined gene-wide p-values where Stage 2 data are
available. Each dot represents a gene, genes in blue lie within the previously reported[4–8] associated regions.
doi:10.1371/journal.pone.0094661.g003
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