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On the lattice programming gap of the group problems
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Abstract

Given a full-dimensional lattice Λ ⊂ Zk and a cost vector l ∈ Qk
>0, we are concerned

with the family of the group problems

min{l · x : x ≡ r(mod Λ), x ≥ 0} , r ∈ Zk. (0.1)

The lattice programming gap gap(Λ, l) is the largest value of the minima in (0.1) as r
varies over Zk. We show that computing the lattice programming gap is NP-hard when
k is a part of input. We also obtain lower and upper bounds for gap(Λ, l) in terms of l
and the determinant of Λ.

Keywords: group relaxations; integer programming gap; lattices; diameters of graphs;
covering radius; Frobenius numbers.
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1. Introduction and statement of results

Consider the integer programming problem

min{c · x : Ax = b, x ≥ 0 , x is integer} . (1.1)

Gomory [11] defined a group relaxation of (1.1) as follows. Let B and N be the index sets
of basic and non-basic variables for an optimal basic solution to the linear programming
relaxation min{c · x : Ax = b, x ≥ 0} of (1.1). Then the problem (1.1) can be written as

min{cB · xB + cN · xN : ABxB +ANxN = b , xB , xN ≥ 0 , xB , xN are integer} (1.2)

and a relaxation of (1.2) is obtained by removing the restriction xB ≥ 0:

min{cB · xB + cN · xN : ABxB +ANxN = b , xN ≥ 0 , xB , xN are integer} . (1.3)

Hence (1.3) is a lower bound for (1.1) and it can be used in any branch and bound
procedure.

The constraints ABxB + ANxN = b in (1.3) can be written in the equivalent form
xB = A−1

B b− (A−1
B AN )xN . Thus, given any non-negative integral vector xN , the vector

xB is integer if and only if (A−1
B AN )xN ≡ A−1

B b(mod 1). Setting c′N = cN − cBA
−1
B AN ,

we can rewrite (1.3) as

min{c′N · xN : (A−1
B AN )xN ≡ A−1

B b(mod 1) , xN ≥ 0 , xN is integer} . (1.4)
Preprint submitted to Elsevier January 24, 2015



The program (1.4) is called the Gomory’s group relaxation for (1.1).
In this paper we fix a cost vector c ∈ Qn and for a matrix A ∈ Zd×n of rank d and

b ∈ Sg(A) = {Au : u ∈ Zn
≥0} consider the integer program

IPc(A, b) = min{c · x : Ax = b, x ∈ Zn
≥0} .

For simplicity, we assume that the cone cone(A) = {Ax : x ≥ 0} is pointed and that the
subspace A⊥ = {x ∈ Rn : Ax = 0}, the kernel of A, intersects the nonnegative orthant
Rn

≥0 only at the origin. This assumption guarantees that IPc(A, b) is bounded for all
b ∈ Sg(A).

Consider the (n− d)-dimensional lattice L(A) = A⊥ ∩ Zn. The program IPc(A, b) is
equivalent to the lattice program

min{c · x : x ≡ u(mod L(A)), x ≥ 0} , (1.5)

where u is any integer solution of the equation Ax = b.
A subset τ of {1, . . . , n} partitions x ∈ Rn as xτ and xτ̄ , where xτ consists of the

entries indexed by τ and xτ̄ the entries indexed by the complimentary set τ̄ . Similarly,
the matrix A is partitioned as Aτ and Aτ̄ . Let τ be the set of indices of the basic variables
for an optimal solution to the linear relaxation LPc(A, b) = min{c · x : Ax = b, x ≥ 0}
of the integer program IPc(A, b). Let πτ be the projection map from Rn to Rn−d that
forgets all coordinates indexed by τ and let Λ(A) = πτ (L(A)). The lattices L(A) and
Λ(A) are isomorphic (see e.g. Section 2 in [23]) and the Gomory’s group relaxation for
IPc(A, b) is equivalent to the lattice program

min{c′τ̄ · x : x ≡ uτ̄ (mod Λ(A)), x ≥ 0} , (1.6)

where c′τ̄ = cτ̄ − cτA
−1
τ Aτ̄ . Note that the vector c′τ̄ is nonnegative. For simplicity we will

consider in this paper the generic case, when all entries of c′τ̄ are positive.
The group relaxations can be defined for various sets of variables. Wolsey [24] intro-

duced the extended group relaxations obtained by dropping non-negativity restrictions
on the variables indexed by each subset of τ . Hoşten and Thomas [16] studied the set of
all group relaxations obtained by dropping non-negativity restrictions on the variables
indexed by each face of a polyhedral complex associated with A and c. For further details
on the classical theory of group relaxations we refer the reader to [17] and [2].

In this paper we will consider the group relaxations in the following general form. For
a fixed cost vector l ∈ Qk

>0, a k-dimensional lattice Λ ⊂ Zk and r ∈ Zk we are concerned
with the lattice program (also referred to as the group problem)

min{l · x : x ≡ r(mod Λ), x ≥ 0} . (1.7)

Let m(Λ, l, r) denote the value of the minimum in (1.7). We are interested in the lattice
programming gap gap(Λ, l) of (1.7) defined as

gap(Λ, l) = max
r∈Zk

m(Λ, l, r) . (1.8)

The lattice programming gaps were introduced and studied for sublattices of all di-
mensions in Zk by Hoşten and Sturmfels [15]. The algebraic and algorithmic results on
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the lattice programming gaps obtained in [15] have applications to the statistical theory
of multidimensional contingency tables.

For fixed k the value of gap(Λ, l) can be computed in polynomial time (see Section 3
in [15] and [8]). The first result of this paper shows that computing gap(Λ, l) is NP-hard
when k is a part of input.

Theorem 1.1. Computing gap(Λ, l) is NP-hard.

The proof of Theorem 1.1 is based on a connection between the lattice programming
gaps and the Frobenius numbers. Computing Frobenius numbers is NP-hard due to the
well-know result of Ramı́rez Alfonśın [21].

Our next goal is to obtain the lower and upper bounds for gap(Λ, l) in terms of the
parameters of the lattice program (1.7). The bounds on the lattice programming gap
provide bounds on the possible objective solutions when considering Gomory’s group
relaxation type problems. We show that the obtained lower bound is optimal and that
the upper bound has the optimal order. The proofs are based on recent results of Marklof
and Strombergson [20] on the diameters of circulant graphs and on the estimates of
Fukshansky and Robins [10] for the Frobenius numbers.

For a given closed bounded convex set K with nonempty interior in Rk and a k-
dimensional lattice Λ ⊂ Rk, the covering radius of K with respect to Λ is defined as
ρ(K,Λ) = min{r > 0 : rK + Λ = Rk}. Let Xk be the set of all k-dimensional lattices

Λ ⊂ Rk of determinant one, let ∆ = {x ∈ Rk
≥0 :

∑k
i=1 xi ≤ 1} be the standard k-

dimensional simplex and let ρk = infΛ∈Xk
ρ(∆,Λ). We obtain the following optimal

lower bound for gap(Λ, l).

Theorem 1.2. (i) For any l ∈ Qk
>0, k ≥ 2, and any k-dimensional lattice Λ ⊂ Zk

gap(Λ, l) ≥ ρk(det(Λ)l1 · · · lk)1/k −
k∑

i=1

li . (1.9)

(ii) For any c ∈ Qk+1
>0 , k ≥ 2, and any ǫ > 0, there exists a matrix A ∈ Z1×(k+1) such

that for all b ∈ Sg(A) the knapsack problem LPc(A, b) has a unique solution with
nonbasic variables indexed by σ = {1, . . . , k} and for l = c′σ

gap(Λ(A), l) < (ρk + ǫ)(det(Λ(A))l1 · · · lk)1/k −
k∑

i=1

li . (1.10)

Furthermore, there exists b′ ∈ Sg(A) such that the optimal value of IPc(A, b′) is
equal to gap(Λ(A), l) + cσ̄A

−1
σ̄ b′.

The only known values of ρk are ρ1 = 1 and ρ2 =
√
3 (see [9]). It was proved in [3],

that ρk > (k!)1/k. Thus we obtain the following estimate.

Corollary 1.1. For any l ∈ Qk
>0, k ≥ 2, and any k-dimensional lattice Λ ⊂ Zk

gap(Λ, l) > (k! det(Λ)l1 · · · lk)1/k −
k∑

i=1

li . (1.11)
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For sufficiently large k the bound (1.11) is not far from being optimal. Indeed,
ρk ≤ (k!)1/k(1 +O(k−1 log k)) (cf. [7]).

Group relaxations provide the lower bounds for integer programs IPc(A, b). From
this viewpoint, part (i) of Theorem 1.2 and Corollary 1.11 estimate the largest possible
value that such a bound can take. Part (ii) of Theorem 1.2 also shows that the obtained
result is optimal in the case of knapsack problems.

Let | · | denote the Euclidean norm and let γk be the k-dimensional Hermite constant
(see i.e. Section IX.7 in [6]). We give the following upper bound for gap(Λ, l) (and hence
for the minimum in (1.6)).

Theorem 1.3. For any l ∈ Qk
>0, k ≥ 2, and any k-dimensional lattice Λ ⊂ Zk

gap(Λ, l) ≤ kγ
k/2
k det(Λ)(

∑k
i=1 li + |l|)

2
−

k∑

i=1

li . (1.12)

The known exact values of γk
k are 1, 4/3, 2, 4, 8, 64/3, 64, 256 (Sloan’s sequence

A007361 in [1]). By a result of Blichfeldt (see, e.g. [14]) γk ≤ 2
(

k+2
σk

)2/k

, where σk is

the volume of the unit k-ball; thus γk = O(k). The precision of the bound (1.12) depends
on the estimates for the covering radius of a simplex, associated with the cost vector l,
with respect to the lattice Λ. It follows from results in [4, Section 6] that the order
gap(Λ, l) = Ok,l(det(Λ)), where the constant depends on k and l, cannot be improved.

A widely used approach (see e.g. [5]) is to consider a group relaxation induced by a

single row i:
∑

j∈N âijxj ≡ b̂i(mod 1) of the matrix constraint in (1.4). Here we may

assume that all âij and b̂i are rational numbers from [0, 1) with common denominatorD =

| det(B)|. Thus, multiplying by D, we get the constraint
∑

j∈N (Dâij)xj ≡ Db̂i(mod D).

Set k = |N |, A = (Dâi1, . . . , Dâik, D) ∈ Z1×(k+1) and Λ = π{k+1}(L(A)). We may

assume that l = c′τ̄ ∈ Qk
>0, where τ is the set of indices of basic variables. Then for any

integer solution r ∈ Zk of r · π{k+1}(A) ≡ Db̂i(mod D) the group relaxation induced by
the row i can be written in the form (1.7). Thus all bounds derived in this paper can
be applied to the group relaxation induced by a selected row of (1.4). Note that in this
special case the lattice programming gap gap(Λ, l) can be associated with the diameter
of a directed circulant graph (see [20] for details). Furthermore, the results of [20] show
that the lower bound (1.9) is a good predictor for the value of gap(Λ, l) for a ‘typical’ Λ.

2. gap(Λ, l) and diameters of quotient lattice graphs

Assume for the rest of the paper k ≥ 2. Following notation from [20], let LG+
k =

(Zk, E) be the standard directed lattice graph with vertex set Zk. The edge set E
consists of all directed edges (x, x + ej), where x ∈ Zk and e1, . . . , ek are the standard
basis vectors. Let Λ be a k-dimensional sublattice of Zk. We define the quotient lattice
graph LG+

k /Λ as the digraph with vertex set Zk/Λ and the edge set {(x+Λ, x+ej +Λ) :
x ∈ Zk, j = 1, . . . , k}. Given cost vector l ∈ Qk

>0, we define the distance from vertex
x+ Λ to y + Λ in LG+

k /Λ as

dLG+

k
/Λ(x+ Λ, y + Λ) = min

z∈(y−x+Λ)∩Z
k

≥0

l · z .
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The diameter of LG+
k /Λ is given by diam (LG+

k /Λ) = maxy∈Zk/Λ dLG+

k
/Λ(0 + Λ, y + Λ).

Since for any y ∈ Zk

dLG+

k
/Λ(0 + Λ, y + Λ) = min{l · x : x ≡ y(mod Λ), x ≥ 0} ,

we obtain the following expression (cf. [11]).

Lemma 2.1. gap(Λ, l) = diam (LG+
k /Λ) .

3. gap(Λ, l) and the covering radius of a simplex

Given cost vector l ∈ Qk
>0, let ∆l =

{
x ∈ Rk

≥0 : l · x ≤ 1
}
. Then the following result

holds.

Lemma 3.1. gap(Λ, l) = ρ(∆l,Λ)−
∑k

i=1 li .

Proof. The result follows from Lemma 2.1 and results of [20]. For completeness we give
here a detailed proof. Where possible, we keep the notation from [20] for convenience of
the reader.

Let Λ be a k-dimensional sublattice of Zk. Consider the continuous torus Rk/Λ. We
can define the distance dRk/Λ between any two points x+ Λ and y + Λ on Rk/Λ as

dRk/Λ(x+ Λ, y + Λ) = min
z∈(y−x+Λ)∩R

k

≥0

l · z .

By the directed diameter of Rk/Λ we understand diam+
l (R

k/Λ) = supy∈Rk/Λ dRk/Λ(0 +

Λ, y+Λ). It follows from the proof of Lemma 3 in [20] that diam (LG+
k /Λ) = diam+

l (R
k/Λ)−∑k

i=1 li. Then by Lemma 2.1 we can express gap(Λ, l) as

gap(Λ, l) = diam+
l (R

k/Λ)−
k∑

i=1

li . (3.1)

Next, define the lattice Γ(Λ, l) = Λdiag(Π−1/kl1, . . . ,Π
−1/klk), where Π = det(Λ)l1 · · · lk.

Then for e = (1, . . . , 1) ∈ Zk we have

diam+
l (R

k/Λ) = Π1/kdiam+
e (R

k/Γ(Λ, l)) . (3.2)

By Lemma 4 in [20],

diam+
e (R

k/Γ(Λ, l)) = ρ(∆,Γ(Λ, l)) . (3.3)

Since the linear transform defined by the matrix DΛ(l) maps ∆l to Π−1/k∆, we have

ρ(∆,Γ(Λ, l)) = Π−1/kρ(∆l,Λ) . (3.4)

Combining (3.1), (3.2), (3.3) and (3.4), we complete the proof of the lemma.
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4. Proof of Theorem 1.1

We are concerned with the following problem:

Given a k-dimensional lattice Λ ⊂ Zk and l ∈ Qk, compute gap(Λ, l) . (4.1)

Here we suppose that the lattice Λ is given by its basis.
Let a be a positive integral n-dimensional primitive vector with n = k + 1, i.e.,

a = (a1, . . . , ak+1)
t ∈ Zk+1

>0 with gcd(a1, . . . , ak+1) = 1. The Frobenius number F(a) is
the largest number which cannot be represented as a non-negative integral combination
of the ai’s. The problem of computing F(a) has been traditionally referred to as the
Frobenius problem. This problem is NP-hard when n is a part of input (Ramı́rez Alfonśın
[21]).

Set la = (a1, . . . , ak)
t and Λa = {x ∈ Zk : a1x1 + · · · + akxk ≡ 0 (mod ak+1)}. By a

celebrated result of Kannan [18] the Frobenius number can be expressed as

F(a) = ρ(∆la ,Λa)−
k+1∑

i=1

ai .

Hence, Lemma 3.1 with l = la implies

F(a) = gap(Λa, la)− ak+1 . (4.2)

By Corollary 5.4.10 in [13], given integer vector a, a basis of Λa can be computed in poly-
nomial time. Therefore, the formula (4.2) provides a polynomial time Turing reduction
from the Frobenius problem to (4.1).

5. Proof of Theorem 1.2

Part (i). By Lemma 3.1 and (3.4) we can write

gap(Λ, l) = ρ(∆,Γ(Λ, l))Π1/k −
k∑

i=1

li . (5.1)

Since Γ(Λ, l) ∈ Xk, the inequality (1.9) now follows from the definition of ρk.
Part (ii). There exists u = (p1/q, . . . , pk+1/q) ∈ Qk+1

>0 with p1, . . . , pk+1, q ∈ Z>0,
such that for any b ∈ Sg(qut) the linear relaxation LPc(qu

t, b) has a unique optimal
solution with nonbasic variables indexed by σ = {1, . . . , k}. Let F = {x ∈ Rk+1 : 0 <
x1 < . . . < xk+1}. Changing the order of coordinates and perturbing u, if needed, we
may assume that u ∈ F. For ǫ > 0 let Cǫ = {x ∈ Rk+1 : |u/|u| − x/|x|| < ǫ}. One can
choose sufficiently small ǫ0 > 0 such that Cǫ0 ⊂ F and for any v ∈ Cǫ0 ∩ Zk+1 the linear
relaxation LPc(v

t, b) has a unique optimal solution with nonbasic variables indexed by
σ for any b ∈ Sg(vt).

Set D = Cǫ0 ∩ [0, 1]k+1, l = c′σ and N̂k+1 be the set of integral vectors in Rk+1 with
positive coprime coefficients (i.e., the greatest common divisor of all coefficients is one).
We can view Γ(Λ(at), l) as an Xk-valued random variable defined by taking a uniformly

at random in N̂k+1 ∩ TD for some T > 0. Let µ0 be the SL(k,R) invariant probability
6



measure on Xk. Then as T → ∞, Γ(Λ(at), l) converges in distribution to a random vari-
able L ∈ Xk, taken according to µ0. Consider the complementary distribution function
Pk(R) = µ0({Λ ∈ Xk : ρ(∆,Λ) > R}). It was proved in [19] that Pk(R) is continuous for
any fixed k ≥ 2. It was also shown in [20] (see also [22]) that

Pk(R) = 1 for 0 ≤ R ≤ ρk, and 0 < Pk(R) < 1 for R > ρk. (5.2)

Furthermore, ρ(∆,Γ(Λ(at), l))
d−→ ρ(∆, L) as T → ∞, where X

d−→ Y denotes conver-
gence in distribution (see Section 2.5 in [20] for details). By (5.2) for any ǫ > 0 we have
0 < Pk(ρk + ǫ) < 1. Since Pk(R) is continuous, for sufficiently large T there exists a
vector a ∈ TD such that ρ(∆,Γ(Λ(at), l)) < ρk + ǫ. As TD ⊂ Cǫ0 , the linear relaxation
LPc(a

t, b) has a unique optimal solution with nonbasic variables indexed by σ for any
b ∈ Sg(at). By (5.1), the inequality (1.10) holds for A = at.

Finally, we will show that for some b′ ∈ Sg(A) the optimal value of IPc(A, b′) is
equal to gap(Λ(A), l) + cσ̄A

−1
σ̄ b′. Suppose gap(Λ(A), l) = m(Λ(A), l, r0) and the latter

minimum is attained at some x0 ∈ Zk
≥0. Then we can equivalently write gap(Λ(A), l) =

m(Λ(A), l, x0). Let us take any vector u ∈ Zk+1
≥0 with uσ = x0. By Theorem 3 in [12],

b′ = Au satisfies the desired property.

6. Proof of Theorem 1.3

Let us find the inradius of the simplex ∆l. The volume vol k(∆l) = 1/(k!
∏k

i=1 li) and
the surface area

Ak−1(∆l) =

k∑

i=1

1

(k − 1)!
∏k

j=1 ,j �=i lj
+

|l|
(k − 1)!

∏k
i=1 li

=

∑k
i=1 li + |l|

(k − 1)!
∏k

i=1 li
.

All facets of ∆l are touched by the insphere. Hence, the inradius r(∆l) of the simplex
∆l is given by

r(∆l) =
k vol k(∆l)

Ak(∆l)
=

1
∑k

i=1 li + |l|
. (6.1)

Let Bk(r, x) denote the ball in Rk of radius r centered at x. Then, as the covering radius
is independent of translation, we have

ρ(∆l,Λ) ≤ ρ(Bk(r(∆l), 0),Λ)) = (r(∆l))
−1ρ(Bk(1, 0),Λ) . (6.2)

Let λ1, . . . , λk be Minkowski’s successive minima of Bk(1, 0) with respect to the lattice
Λ. Since Λ ⊂ Zk, we have λi ≥ 1 for each i. By Jarnik’s inequalities (see e.g. [14])

ρ(Bk(1, 0),Λ) ≤ kλk

2
. (6.3)

In the geometry of numbers it is customary to use the Hermite constant γk defined
as the lower bound of the constants γ′

k such that every positive definite quadratic form∑
fijxixj in k variables represents a number ≤ γ′

k| det(fij)|1/k. It is known (see e.g.
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Section IX.7. in [6]) that the critical determinant of Bk(1, 0) is equal to γ
−k/2
k . Therefore,

by Minkowski’s second theorem for spheres (cf. [14, §18.4, Theorem 3]), we get

λk ≤ λ1 · · ·λk−1λk ≤ γ
k/2
k det(Λ) . (6.4)

By Lemma 3.1, gap(Λ, l) = ρ(∆l,Λ) −
∑k

i=1 li. Therefore, combining (6.2), (6.1), (6.3)
and (6.4) we obtain the upper bound (1.12).
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