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Abstract 
 

Out-of-sample forecasting tests of DSGE models against time-series benchmarks such 

as an unrestricted VAR are increasingly used to check a) the specification and b) the 

forecasting capacity of these models. We carry out a Monte Carlo experiment on a 

widely-used DSGE model to investigate the power of these tests. We find that in 

specification testing they have weak power relative to an in-sample indirect inference 

test; this implies that a DSGE model may be badly mis-specified and still improve 

forecasts from an unrestricted VAR. In testing forecasting capacity they also have 

quite weak power, particularly on the lefthand tail. By contrast a model that passes an 

indirect inference test of specification will almost definitely also improve on VAR 

forecasts. 
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1. Introduction 

In recent years macro-economists have turned to out-of-sample forecasting (OSF) 

tests of Dynamic Stochastic General Equilibrium (DSGE) models as a way of 

determining their value to policymakers both for deciding policy and for improving 

forecasts. Thus for example Smets and Wouters (2007) showed that their model of the 

US economy could beat a Bayesian Vector Auto Regression (VAR) or BVAR, their 

point being that while they had estimated the model by Bayesian methods with strong 

priors there was a need to show also that the model could independently pass a 

(classical specification) test of overall fit, otherwise the priors could have dominated 

the model's posterior probability. Further papers have documented models' OSF 

capacity, including Gürkaynak et al (2013); see Wickens (2014) for a survey of recent 

attempts by central banks to evaluate their own DSGE models' OSF capacity1. But 

how good are these OSF tests? This question is what this paper sets out to answer. 

The value of DSGE models' OSF capacity to policymakers comes as we said from 

two main motivations. 

The first is to use DSGE models to improve economic forecasting. One can think 

of an unrestricted VAR as a method that uses data to forecast without imposing any 

theory. Then if one knows the true theory one can improve the efficiency of these 

forecasts by imposing this theory on the VAR, to obtain the restricted VAR. This will 

improve the forecasts, reducing the Root Mean Square Error (RMSE) of forecasts at 

all horizons. However imposing a false parameter structure on the VAR may produce 

worse forecasts; the further from the truth the parameters are the worse the forecasts. 

There will be some 'cross-over point' along this falseness spectrum at which the 

forecasts deteriorate compared with the unrestricted VAR. 

The second reason is the desire to have a well-specified model that can be used 

reliably in policy evaluation; clearly in assessing the effects of a new policy the 

better-specified the model, the closer it will get to predicting the true effects. The 

assessment of the DSGE model's forecasting capacity is being used by policymakers 

with this desire, as a means of evaluating the extent of the model's mis-specification. 

                                                 
      1Other papers that have computed OSF performance of DSGE models relative to time-series 
models include: Adolfson, Linde and Villani (2007), Edge and Gürkaynak (2010), Edge, Kiley and 
Laforte (2010), Giacomini and Rossi (2010), and Del Negro and Schorfheide (2012). 
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Notice that the two motivations are linked by the requirement of a well-specified 

model. Thus for the DSGE model to give better forecasts than the unrestricted VAR it 

needs to be not too far from the true model- i.e. the right side of the cross-over point. 

It is harder for us to judge how close the model needs to be to the truth for a policy 

evaluation: this will depend on how robust the policy is to errors in its estimated 

effects and this will vary according to the policy in question. But we can conclude that 

both reasons require us to be confident about the model's specification. 

Thus evaluations of the DSGE model's forecasting capacity, to be useful, should 

provide us with a test of the model's specification; and this indeed is how these 

evaluations are presented to us. Typically the model's forecasting RMSE is compared 

with that of an unrestricted VAR, e.g. the ratio of the model's RMSE to that of the 

VAR; there is a distribution for this ratio for the sample size involved and we can see 

how often the particular model's forecasts give a ratio in say the 5% tail, indicating 

model rejection. The asymptotic distribution for this ratio (of two t-distributions) 

cannot be derived analytically; but we establish below by numerical methods that it is 

a t-distribution. 

The questions we ask in this paper are: 

x what is the small sample distribution for this ratio for a model 1) if it is true and 

2) if it is marginally able to improve other forecasts? 

x how much power do these OSF evaluations have, viewed as a test of a DSGE 

model's specification? In other words can we distinguish clearly between the 

forecasting performance of a badly mis-specified model and the true model. 

x can we say anything about the relationship between a DSGE model's degree of 

mis-specification and its forecasting capacity? There is a large literature on 

forecast success of different sorts of models- Clements and Hendry (2005); 

Christoffel, Coenen and Warne (2011). We would like to see how success is 

related to specification error. 

We investigate these questions using Monte Carlo experiments for a model of the 

DSGE type being evaluated here; we do so using sample sizes for the out-of-sample 

forecasts that are of the same order as those used in these tests and so rely not on the 

asymptotic but on the small sample distributions of the models. In section 2 that 

follows we explain the OSF tests of a DSGE model. In section 3 we set out the Monte 

Carlo experiments and show the power of OSF tests of a DSGE model's specification. 
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In section 4 we establish some links between a DSGE model's specification error and 

its capacity to improve forecasts. Section 5 concludes. 

2. DSGE  models  out-of-sample  forecasting  tests 

2.1 DSGE model OSFs 

A DSGE model (e.g. that of Smets and Wouters, 2007, henceforth SW)) has a general 

form: 
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where 1ty �  are endogenous variables, tz  are exogenous variables, typically errors, 

which may be represented by an autoregressive process in which 1tH �  are shocks (i.e. 

(0, )NID 6 ). The solution to a DSGE model can be represented by a restricted VAR: 
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(2) 

where 1 1 1( , )t t tx y z� � � c . The coefficient matrices A  and B  are full rank but restricted. 

 A  and B  can be derived analytically (see Wickens, 2014). Alternatively, if we 

input the parameter set :  = 0 1 0{ , , , }A A B R  into the programme Dynare (Juilliard, 

2001), then A and B in (2) can be derived by it. OSFs are then derived 

straightforwardly from (2). Suppose the initial forecast origin is m , then the OSFs are: 
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where 1,2,l h  .  ˆm lx �  denotes the l  -step ahead forecast. We also create False 

models whose parameters are altered from those of the True one in a manner we 

explain below.  
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2.2 VAR model OSFs 

Consider the first order VAR 
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(4) 

where  tH  is assumed to be  (0, )NID 6 . Suppose the initial forecast origin is m , the 

OSFs are: 
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where m̂P  is OLS (or MLE) estimates of VAR coefficients, i.e.  ' 1
1

ˆ [ ] .m m m m mP y y y y� c
�   

2.3 OSF tests 

The root mean square error (RMSE) of a forecast is defined as: 
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(6) 

where m ly �  is the true data, ,ˆ j m ly �  is its out of sample forecasts from model j ; M is 

the initial forecast origin.  1,2, ,l h  denotes the l  -step ahead forecast. We look at 

the 4-quarter-ahead (4Q) and 8-quarter-ahead (8Q) forecasts. T is the sample size.  

1,2j   denotes the two competing models, say M1 is the DSGE model, M2 is the 

unrestricted VAR model. Then  ( )jRMSE l  is the root mean squared forecast error for 

the  l -step-ahead forecast of model j . 

The OSF test is carried out on the ratio of the RMSE of the DSGE model to that of 

the VAR: 

 
( )( )
( )

DSGE

VAR

RMSE lRatio l
RMSE l

  

 

(7) 



 

6 
 

Since it is hard to find the asymptotic distribution for the OSF Ratio test, we use 

Monte Carlo methods and when the error distribution is unknown, the bootstrap. By 

these methods, described in detail below, we obtain the empirical distribution of the 

OSF Ratio. From this distribution, we find (say) the 95% percentile and use it as the 

empirical critical value. Since the tests considered are one-sided tests, the p-value of 

the OSF Ratio test is the percentage of the empirical distribution above the test 

statistic. It should be noted that the empirical critical value varies with sample size, 

forecast origin and forecast horizons. 

To compare the out-of-sample forecasting ability, there are two alternative 

statistics that focus on the difference of the minimum mean-squared forecast error 

(MSFE) between two nested models: the Diebold-Mariano and West (DMW) and the 

Clark-West (CW) statistics. Diebold and Mariano (1995) and West (1996) construct t-

type statistics which are assumed to be asymptotically normal and where the sample 

difference between the two MSFE's are zero under the null. Clark and West (2006, 

2007) provide an alternative DMW statistic that adjusts for the negative bias in the 

difference between the two MSFEs. 

However in empirical analysis, both the DMW and CW test statistics take their 

critical values from their asymptotic distributions. Rogoff and Stavrakeva (2008) 

criticize the asymptotic CW test as oversized; an oversized asymptotic CW test would 

cause too many rejections of the null hypothesis. Rogoff and Stavrakeva (2008) and 

Onur Ince (2014) propose to use the bootstrapped OSF test to avoid this size 

distortion in small samples. 

Our bootstrapped OSF test statistics are similar to these. There is not too much 

difference between the simulated asymptotic distributions of the RMSE ratio and the 

RMSE difference. But we focus on the ratio of the RMSEs between the DSGE and the 

VAR model, as this is the measure usually adopted in macroeconomic forecasting 

studies, such as those discussed here.  

3. The  power  of  OSF  tests 

3.1 Monte Carlo experiments 

We follow the basic procedures of Le et al (2011) to design the Monte Carlo 

experiment. We take the model of Smets and Wouters (2007) for the US and adopt 
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their posterior modes for all parameters, including for error processes; the innovations 

are given their posterior standard errors with the normal distribution (Table 1A&1B, 

SW (2007)). 

We set the sample size (T ) at 200, and generate 1000 samples. We set the initial 

forecast origin ( )M  at 133. The VAR and DGSE autoregressive processes are 

initially estimated over the first 133 periods. The models were then used to forecast 

the data series 4- or 8-periods-ahead over the remaining 67 periods, with re-estimation 

every period (quarter). We find the distribution of this for the relevant null hypothesis 

under our small sample from our 1000 Monte Carlo samples. Our null hypothesis for 

the OSF tests is 1) the True DSGE model and 2) (discussed in section 4) the False 

DSGE model that marginally succeeds in improving the forecast. 

We follow Le et al (2011) in specifying a False DSGE model. A False DSGE 

model is chosen by changing the parameters ( 0 1 0, ,A A B ) in the true model by + or - 

%q  alternately where q  is the degree of falseness. We then extract the model 

residuals ( )tz  from the data, re-estimate the error process and get R̂ . Le et al (2011) 

consider two ways to extract the model residuals (the Limited Information estimation 

method, LIML, which projects expectations by Instrumental Variables and the Exact 

Method, which projects them as the DSGE model solution) and find their differences 

are trivial. We use the Exact Method to estimate the model residuals and get R̂  2 

Denoting the false parameters as F: = 0 1 0
ˆ{ , , , },F F FA A B R we can derive FA from Dynare 

as before. The OSFs are calculated as in (3), except that we use FA  rather than A . 

The RMSE of the False DSGE model is: 
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(8) 

where ,ˆ FDSGE m ly �  is the OSF from the False DSGE model. The RMSE of the VAR 

model remains the same. Then we can obtain the ratio test statistic for each sample. 

                                                 
      2We only reestimate the errors for a given False model (for each overlapping sample). If we 
reestimated the whole False model each period, it would have variable falseness. 
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( )( )
( )

F
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(9) 

The power of the test is the probability of rejecting a hypothesis when it is false. In 

our OSF test, the power of the ratio test is the probability that the Ratio > the 5% 

critical value for the True distribution. 

3.2 Asymptotic versus small sample distributions 

We begin with a discussion of how the distribution for our typical 200-size sample 

differs from the asymptotic. In the absence of an analytical expression for the 

asymptotic distribution we use a sample of 1000 as a proxy (as can be seen from 

Figure 2 it is close to the tf  distribution)- we raise both the sample used to obtain the 

forecasts and the subsequent sample used to make the forecasts, in proportion, i.e. by 

5 times. In this way we obtain five times the size of sample for estimation and five 

times as many forecasts for the evaluation; this mimics the idea of raising the data 

available  to  ‘very  large’ amounts.  Figures 1 show that the 5% critical value differs 

by more than 10% between the two for the case shown here of the 4Q forecast which 

is typical. 

 
Figure 1: Asymptotic versus small sample distributions 
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We then normalise the ratio statistics by adjusting its mean and standard deviation. 

This is plotted agaist a normal distribution in figure 2. It can be observed that the large 

sample distribution is very close to a normal distribution. The 5% critical value for the 

normalized large sample ratio is 1.543, which is close to 5% critical value from the 

standard normal distribution (1.645). 

In what follows all the distributions are based on Monte Carlo results for  

200T   . For the sake of brevity we focus solely on the 5% confidence level test. 

 

 
Figure 2: Normalized ratio statistics and standard normal distribution 

 

3.3 Power of the specification test at 5% nominal value 

The Power of the OSF tests at a 5% nominal value are reported in table 1. The first 

three sets of results are for each variable viewed alone. The last set relates to the joint 

forecast performance; for this we use the square root of the determinant of the joint 

forecast-error-covariance matrix (also used to measure the joint error in SW 2007)3.  

See appendix for the small sample distribution and the 5% critical value associated 

with the OSF tests in table 1. 

                                                 

     3It is defined as follows. Let  , ,y rf f fS  be the OSF errors of output growth, inflation and interest 

rate respectively. Denote
  
f = ( f y , f , fr ) '. Then f is a ( ) 3T l m� �   matrix. We can calculate the 

covariance of .f  The joint RMSE is defined as  | cov( ) |.f   
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Table 1: Power of OSF test 

GDP growth Inflation Interest rate Joint 3 
% F 4Q 8Q % F 4Q 8Q % F 4Q 8Q % F 4Q 8Q 
True 5.0 5.0 True 5.0 5.0 True 5.0 5.0 True 5.0 5.0 

1 10.2 5.0 1 5.8 4.7 1 4.7 4.8 1 6.0 4.9 
3 23.2 5.0 3 7.9 4.8 3 6.5 4.2 3 9.4 5.2 
5 34.9 5.2 5 13.4 5.1 5 11.5 4.2 5 15.3 6.0 
7 42.5 5.1 7 21.3 6.9 7 18.9 5.4 7 22.9 6.6 
10 52.3 5.5 10 35.6 10.7 10 30.3 6.5 10 36.2 9.8 
15 58.0 11.0 15 62.7 23.7 15 48.9 11.9 15 73.8 29.5 
20 49.9 60.5 20 97.8 72.4 20 62.7 21.3 20 99.8 90.7 

 

Notes on results in Table 1: (1) The 4Q-ahead GDP growth forecast is rejected less when the 
model is 20% False than when 15% False; this could arise from the reestimation of the model 
error processes that takes place when each model version is created; this reestimation can 
offset the effects of falseness of parameters. Thus in the 20% False model this offset could by 
chance be greater than for the 15%. (2) Sometimes the rejection rate for 95% confidence dips 
below 5%; this can happen for the same reason that error reestimation can offset the effect of 
parameter falseness. (3) The Joint 3 rejection rate cannot be obtained as the average of the 
three individual rejection rates because the forecast behaviour of the three variables may be 
correlated; thus if a forecast fails on one variable it is more likely to fail on another, raising 
the joint failure rate.   
 
 

These results are obtained with stationary errors and with a VAR(1) as the 

benchmark model. We redid the analysis under the assumption that productivity was 

non-stationary. The results were very similar to those above. We further looked at a 

case of much lower forecastability, where we reduced the AR parameters of the error 

processes to a minimal 0.05 (on the grounds that persistence in data can be exploited 

by forecasters). Again the results were very similar, perhaps surprisingly. It seems that 

while absolute forecasting ability of a model, whether it is a DSGE or a VAR, is 

indeed reduced by lesser forecastability, relative forecasting ability is rather robust to 

data forecastability. Finally, we redid the original analysis using a VAR(2) as the 

benchmark; this also produced similar results to those above. All these variants, 

designed to check the robustness of our results, are to be found in Appendix 2. 

What we see from Table 1 is that the power is weak. On a 1-year-ahead forecast, 

4Q, the rejection rate of the DSGE model on its joint performance remains low at the 

one year horizon until the model reaches 20% falseness, and at the two year horizon 

does not get above 40% even when the model is 20% false. Notice also that the 

individual variable tests show some instability, which is due to the way the OSF uses 

reestimated error processes for each overlapping-sample forward projection: each 

time the errors are reestimated the full model in effect is changed and sometimes this 
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improves its forecasting performance, sometimes worsens it. Thus forecast 

performance does not always deteriorate with rising parameter falseness, When all 

variables are considered jointly this is much less of a problem as across the different 

variables the effects of reestimation on forecast performance are hardly correlated. 

To put this RMSE test in perspective consider the power of the indirect inference 

Wald test, in sample using a VAR(1) on the same three variables (GDP, inflation and 

interest rates)- taken from Le et al (2012a) which also describes in full the procedures 

for obtaining the test, based on checking how far the DSGE model can generate in 

simulated samples the features found in the actual data sample. 

 
Table 2: Rejection Rates for Wald and Likelihood Ratio for 3 Variable VAR(1) 
% F Wald in-sample II Joint 3:4Q :8Q 
True 5.0 5.0 5.0 
1 19.8 6.0 4.9 
3 52.1 9.4 5.2 
5 87.3 15.3 6.0 
7 99.4 22.9 6.6 
10 100.0 36.2 9.8 
15 100.0 73.8 29.5 
20 100.0 99.8 90.7 
 

We see that the in-sample Wald II test has far more power. Why may this be the 

case? In forecasting, as we have just emphasised, DSGE models use fitted errors and 

when the model is mis-specified this creates larger errors which absorb the model's 

mis-specification; these new errors are projected into the future and could to some 

degree compensate for the poorer performance by the mis-specified parameters. To 

put this another way, as the DSGE model produces larger errors, reducing the relative 

input from the structural model proper, these larger errors take on some of the 

character of an unrestricted VAR. By contrast in indirect inference false errors 

compound the model's inability to generate the same data features as the actual data. 

3.4 The connection between mis-specification and forecast improvement 

For our small samples here we find that the cross-over point at which the DSGE 

model forecasts 1 year ahead less well on average than the unrestricted VAR is for 

output growth 1% false, for inflation and interest rates 7% false; for the three 

variables together it is also 7%. This reveals that the lower the power of the 

forecasting test for a variable the more useful are False models in improving 
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unrestricted VAR forecasts. Thus for output growth where power is higher, the DSGE 

model needs to be less than 1% false to improve the forecast; yet for inflation and 

interest rates where the power is very weak a model needs only to be less than 7% 

false to improve the forecast. This is illustrated in the two cases shown in Figure 3. In 

the lower one the false distribution with a mean RMSE ratio of unity (where the 

DSGE model is on average only as accurate as the unrestricted VAR) is 7% false; 

hence any model less false than this will have a distribution with a mean ratio of less 

than unity- and will therefore on average improve the forecast. In the upper one the 

false distribution with a mean RMSE ratio of unity is only 1% false; so to improve 

output growth forecasts you need a model that is less than 1% false. Essentially what 

is happening with weak power is that as the model becomes more false its RMSE ratio 

distribution moves little to the right, with the OSF performance deteriorating little; 

this, as we have pointed out, may be because as the model parameters worsen, the 

error parameters offset some of this worsening. 

 

 

 
Figure 3: The connection between mis-specification and forecast improvement 
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What this shows is that if all a policymaker cares about is improving forecasts and 

the power of the forecast test is weak, then a poorly specified model may still suffice 

for improvement and will be worth using. This could well account for the willingness 

of central banks to use DSGE models in forecasting in spite of the evidence from 

other tests that they are mis-specified and so unreliable for policymaking. We now 

turn to how central banks can check on the forecasting capacity of their DSGE models 

using OSF tests. 

4. OSF  tests  of  whether  a  DSGE  model  improves  forecasts 

We now consider how policymakers could assure themselves of the forecasting 

capacity of their DSGE model. Here they set up the marginal forecast-failure model as 

the null hypothesis, illustrated as the red distributions in Figure 3. This is the structure 

of the Diebold-Mariano (1995) test widely used to test the forecast accuracy of 

models. Notice that policymakers can either look at the right hand tail, which tests the 

null against the alternative that the model forecasts worse; if they use this test they are 

assuming in the event of non-rejection that the model forecasts just better- the benefit 

of the doubt goes to the model. Or they can look at the left hand tail which tests 

against the alternative that the model forecasts better; if they use this test they are 

assuming in the event of non-rejection that the model is not worth using- the benefit 

of the doubt goes to the VAR forecast. If they obtain a result in the left hand tail, then 

they can be sure, at least with 95% confidence, that the model will improve forecasts. 

If they obtain a result in the right hand tail, then again they can be sure, at lest with 95% 

confidence, that the model will worsen forecasts. We need to check the power of each 

tail: how fast rejection rises on the RH tail as models get worse and on the LH tails 

how fast it rises as models get better. The situation is illustrated in figure 4.    
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Figure 4: Illustration of LH and RH tails 

 

4.1 Power of Left Hand and Right Hand tails    

Table tests shows for the joint-3 case (the results for individual variables are reported 

in the appendix) the power of the Left Hand and Right Hand tails as just discussed. 

Thus for the LH tail we show the chances of less False models being rejected, while 

for the RH tail we show the chances of more False models being rejected. 

The main problem with these tests remains that of poor power. 

On the one hand, policymakers could use a DSGE model that was poor at 

forecasting without detection by the RH tail test. Thus for example a model that was 3% 

more false than the marginal one would only be rejected on the crucial 4Q-ahead test 

11.3% of the time on the RH tail. 

On the other hand, they could refuse to use a DSGE model that was good at 

forecasting without detection; for example a model that was 3% less False than the 

marginal one would only be rejected on the 4Q-ahead test by the LH tail 9.8% of the 

time. 

We can design a more powerful test by going back to Table 2 and using simply the 

right hand tail as a test of specification. What is needed is a test of the DSGE model's 

specification (as true) that has power against a model that is so badly specified that it 

would marginally worsen forecasting performance on the joint 3 variables- the 

marginal forecast-failure model: as we have seen such a model is at the 4Q horizon 7% 

false and at the 8Q horizon 15% false. Now the power of OSF specification tests 
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against such a bad model is larger: Table 3 below shows that if on an OSF 4Q test at 

95% confidence a model is not rejected (as true), then the marginal forecast-failure 

model (the 7% false model) has a 22.9% chance of rejection. On an 8Q test the 

equivalent model (15% false) has a 29.5% chance of rejection. Thus the OSF test has 

better power against the marginal forecast-failure model; but it is still quite weak. 

 
Table 3: Power of OSF tests: LHT and RHT 
Joint (Det)- RHTail Joint (Det) -LHTail 
% F 4Q 8Q % F 4Q 8Q 
True   True 16.7 18.8 
1   1 14.2 17.4 
3   3 9.8 14.8 
5   5 7.2 12.9 
7 5.0  7 5.0 11.3 
10 11.3  10  9.4 
15 46.8 5.0 15  5.0 
20 99.5 70.5 20   
25 100 100 25   
30 100 100 30   
35 100 100 35   
40 100 100 40   
 

Policymakers could however use the II in-sample test of whether the model is true 

also shown in that Table. Against the 4Q 7% false model it has power of 99.4%, and 

against the 8Q 15% false model power of 100%. Thus if policymakers could find a 

DSGE model that was not rejected by the II test, then they could have complete 

confidence that it could not worsen forecasts. 

If no DSGE model can be found that fails to be rejected, then this strategy would 

not work and one must use the Diebold-Mariano test faute de mieux, on whatever 

DSGE model comes closest to passing the II specification test. 

4.2 Reviewing the evidence of OSF tests 

In this subsection we review some of the available OSF tests of DSGE models against 

time-series alternatives and see how we could interpret them in the light of these 

Monte Carlo experiments. Our aim is not to go through all such tests but merely to 

illustrate from some prominent ones how one might interpret the available evidence; 

we choose in particular those of SW(2007) and Gürkaynak et al (2013) for the SW 

(2007) model of the US on which our Monte Carlo experiment is also focused. 
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 Table 4: DSGE/Time-series RMSE ratio for SW real-time data. 
 RMSE: 4Q 8Q  4Q 8Q 
Gürkaynak et al (2013) VAR   RW   
  S    0.92 0.73   1.20  1.19 
  y'    0.68  0.63  0.70 0.69 
  R    0.99  0.89  1.02 0.99 
SW (2007) VAR      
  S    0.54  0.32    
  y    0.80  0.77    
  R    0.98  0.72    
  intJo    0.80  0.66    
Source: Gurkaynak et al (2013), SW post-war model- for 1992-2007 as OSF period. NB they 
report the inverse of these ratios. SW(2007),SW model- for 1990-2004 as OSF period. NB 
they report the percentage gains relative to VAR(1) model; we convert these to RMSE ratios. 
 

If we first consider the forecasting performance of these DSGE models, what we 

see from this summary table is that the RMSE ratio of DSGE models relative to 

different time-series forecasting methods varies from better to worse according to 

which variable and which time-series benchmark is considered: Gürkaynak et al (2013) 

note that there is a wide variety of relative RMSE performance. Wickens (2014) who 

reviews a wide range of country/variable forecasts finds the same. No joint 

performance measures are reported in these papers; however SW (2007)'s joint ratio 

comes out at 0.8 against a VAR(1) 4Q-ahead and 0.66 8Q-ahead.4 Thus on these joint 

ratios the LH tail rejects the marginal forecast-failure model, strong evidence that the 

SW model forecasts better than a VAR1. 

If we turn now to consider DSGE models' specification from these results, we see 

first that in general they do not reject these DSGE models. But because of the low 

power of the OSF tests, the same would be true with rather high probability of quite 

false models. Le et al (2011) show that the SW model is strongly rejected by the II 

Wald test, which is consistent with these OSF results, since as we have seen a false 

DSGE model may still forecast better than a VAR. They went on to find a version of 

the model, allowing for the existence of a competitive sector, that was not rejected for 

the Great Moderation period. By the arguments of this paper this model must also 

improve on time-series forecasts. 

                                                 
      4SW (2007) calculate the overall percentage gain as (log(|𝑐𝑜𝑣(𝑓ோ)|) − log  (|𝑐𝑜𝑣(𝑓ீா)|)/2𝑘 , 
where 𝑘  is the number of variables (here=3). We convert this to joint ratio as follows:  
(log(|𝑐𝑜𝑣(𝑓ோ)|) − log  (|𝑐𝑜𝑣(𝑓ீா)|)/2𝑘 = −(𝑙𝑜𝑔ඥ|𝑐𝑜𝑣(𝑓ௌீ)| − 𝑙𝑜𝑔ඥ|𝑐𝑜𝑣(𝑓௩)|)/𝑘     ≈

−ඥ|௩(ವೄಸ)|ିඥ|௩(ೇಲೃ)|
ඥ|௩(ೇಲೃ)|  ∗

    =− ோெௌாವೄಸିோெௌாೇಲೃ
ோெௌாೇಲೃ  ∗

   −(𝐽𝑜𝑖𝑛𝑡𝑅𝑎𝑡𝑖𝑜 + 1)/𝑘. 
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5. Conclusions 

OSF tests are now regularly carried out on DSGE models against time-series 

benchmarks such as the VAR1 used here as typical. These tests aim to discover how 

good DSGE models are in terms of a) specification b) forecasting performance. Our 

aim in this paper has been to discover how well these tests achieve these aims. 

We have carried out a Monte Carlo experiment on a DSGE model of the type 

commonly used in central banks for forecasting purposes and on which out-of-sample 

(OSF) tests have been conducted. In this experiment we generated the small sample 

distribution of these tests and also their power as a test of specification; we found that 

the power of the tests for this purpose was extremely low. Thus when we apply these 

results to the reported tests of existing DSGE models we find that none of them are 

rejected on a 5% test; but the lack of power means that models that were substantially 

false would have a very high chance also of not being rejected. Researchers could 

therefore have little confidence in these tests for this purpose. We show that they 

would be better off using an in-sample indirect inference test of specification which 

has substantial power. 

The reason for this relative weakness of OSF tests on DSGE models may be that 

the model errors, which are increased by the model mis-specification, nevertheless 

when projected forward compensate for the poorer forecast of the structural 

parameters. It follows that weak power implies that a DSGE model may be badly mis-

specified and yet still forecast well. Thus a corollary of the low power is that DSGE 

models can still improve forecasts even when badly misspecified. 

Viewed as tests of forecasting performance against the null of doing exactly as 

well as the VAR benchmark, OSF tests of DSGE models are used widely, with both 

the left hand tail of the distribution testing for significantly better performance and the 

right hand tail for significantly worse performance. Power is again rather weak, 

particularly on the left hand tail. An alternative would again be to use an in-sample 

indirect inference test of specification; if a DSGE model specification can be found 

that passes such a test, then it may not only be fit for policy analysis but will also 

almost definitely improve VAR forecasts. 
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Appendix   

Appendix 1: Small sample distribution and 5% critical values of OSF tests 

 
Figure 5: Historical distribution of ratio statistics: T=200 

  
 

Table5: Empirical critical value at 5 percent level 
 4Q 8Q 
GDP growth 1.0844 1.0889 
Inflation 1.0693 1.1257 
Interest rate 1.0662 1.1107 
Joint 3 variables 1.0922 1.0879 
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Appendix 2: Experiments with alternative error processes 

a) productivity shock follows an I(1) process 

We look here at the effect of non-stationarity in the shocks as exemplified by a non-

stationary productivity process. We do not alter the status of other shocks because 

they are are typically found to be stationary for the SW model: for example in related 

work on the SW data Le et al (2012b) found that only productivity was non-

stationary- see their Table 2 on p. 11.  
 
Table 6: Power of OSF test 
GDP growth Inflation Interest rate Joint3 variables 
% F 4Q 8Q % F 4Q 8Q % F 4Q 8Q % F 4Q 8Q 
True 5.0 5.0 True 5.0 5.0 True 5.0 5.0 True 5.0 5.0 
1 10.4 5.3 1 5.9 5.1 1 4.8 5.3 1 6.6 5.2 
3 21.5 5.8 3 8.5 5.7 3 5.9 5.2 3 10.1 5.4 
5 31.9 5.9 5 14.6 6.8 5 10.7 4.8 5 12.8 5.2 
7 39.6 5.8 7 21.2 7.5 7 16.9 5.5 7 13.6 5.0 
10 47.2 6.6 10 35.4 11.2 10 28.3 7.1 10 13.7 6.2 
15 52.1 12.4 15 62.8 24.7 15 43.4 12.7 15 18.7 10.0 
20 44.0 58.5 20 97.5 72.2 20 57.5 22.3 20 69.6 38.2 
 

There is essentially no difference in the power of the test as productivity becomes 

I(1), thereby also making output I(1) (though leaving inflation and interest rates 

stationary). The change makes output growth positively instead of negatively 

autocorrelated and so may well make little difference to how easy it is to forecast. 

The choice on stationarity is dictated by the general absence of unit roots in shocks 

other than productivity- for example in related work on the SW data Le et al (2012) 

found that only productivity was non-stationary- see   Table   2   on   p.   11   of      “What 

causes banking crises? An empirical investigation” by Vo Phuong Mai Le, David 

Meenagh and Patrick Minford, Working Paper No. E2012/14, Cardiff University, 

Economics Section, Cardiff Business School, June 2012, updated April 2013- 

available from Minford repec page. 

b) altering the forecastability of the economy 

One might think that the power of the test would be affected by ease of forecasting the 

economy. We look at this issue by reducing the AR coefficients of the error processes 

to 0.05 from their SW values. 
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Table 7: Power of OSF test 
GDP growth Inflation Interest rate Joint3 variables 
% F 4Q 8Q % F 4Q 8Q % F 4Q 8Q % F 4Q 8Q 
True 5.0 5.0 True 5.0 5.0 True 5.0 5.0 True 5.0 5.0 
1 5.4 3.7 1 5.3 5.9 1 4.2 3.8 1 5.1 5.0 
3 5.6 3.3 3 6.3 8.7 3 3.4 2.8 3 6.3 6.6 
5 5.4 3.6 5 8.9 11.2 5 5.4 3.3 5 10.0 10.1 
7 5.1 5.9 7 14.9 16.1 7 8.0 3.9 7 17.4 15.8 
10 4.8 14.8 10 31.8 31.0 10 13.6 6.3 10 37.0 31.9 
15 5.4 46.0 15 88.6 73.0 15 30.2 20.3 15 88.0 76.6 
20 10.2 93.3 20 100 100 20 56.7 50.6 20 100 100 
 

What we see the power that is not dissimilar to that in our original Table. 

c) altering the benchmark model 

One might be concerned that the power of the test would be affected by using high 

order VARs. So we choose VAR(2) as benchmark model and redo the power of the 

test. The results are reported in the table below. 

 
Table 8: Power of OSF test 
GDP growth Inflation Interest rate Joint3 variables 
% F 4Q 8Q % F 4Q 8Q % F 4Q 8Q % F 4Q 8Q 
True 5.0 5.0 True 5.0 5.0 True 5.0 5.0 True 5.0 5.0 
1 5.7 4.5 1 5.1 5.1 1 4.9 4.7 1 5.6 5.2 
3 9.7 4.2 3 5.6 5.1 3 5.7 4.5 3 5.6 5.3 
5 14.8 4.4 5 6.9 5.8 5 7.4 4.5 5 6.4 5.4 
7 18.2 4.8 7 8.5 6.1 7 9.9 5.1 7 7.5 5.2 
10 22.7 5.2 10 13.1 8.0 10 12.1 5.5 10 10.6 6.4 
15 24.7 7.5 15 27.9 13.9 15 16.2 8.1 15 24.7 8.7 
20 20.5 38.5 20 69.0 45.3 20 22.2 12.6 20 87.0 42.5 

 

With VAR(2) as the benchmark model, the OSF tests have similarly low power. 

The AR(2) coefficients are mostly insignificant; including high order terms worsens 

the VAR's forecast capacity. This is also consistent with other literature (e.g. SW 

2007, Wickens 2014) in which a VAR(1) is often chosen as the benchmark model. 
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Appendix 3: OSF tests of whether a DSGE model improves forecasts for 

individual variables 

Table 9: Power of OSF test: RHL 
GDP growth Inflation Interest rate Joint (Det) 
% F 4Q 8Q % F 4Q 8Q % F 4Q 8Q % F 4Q 8Q 
True   True   True   True   
1 5.0  1   1   1   
3 14.6  3   3   3   
5 22.7  5   5   5   
7 29.7  7 5.0  7 5.0  7 5.0  
10 38.5  10 12.3 5.0 10 12.9  10 11.3  
15 44.1 5.0 15 38.8 13.1 15 26.3  15 46.8 5.0 
20 32.5 49.2 20 91.4 60.3 20 39.9 5.0 20 99.5 70.5 
25 100 100 25 100 100 25 60.9 12.8 25 100 100 
30 100 100 30 100 100 30 65.7 15.4 30 100 100 
35 100 100 35 100 100 35 71.8 20.4 35 100 100 
40 100 100 40 100 100 40 76.6 26.7 40 100 100 
 
 
Table 10: Power of OSF test: LHT 
GDP growth Inflation Interest rate Joint (Det) 
% F 4Q 8Q % F 4Q 8Q % F 4Q 8Q % F 4Q 8Q 
True 6.3 8.7 True 10.9 8.5 True 14.0 20.5 True 16.7 18.8 
1 5.0 7.2 1 9.8 8.3 1 11.5 20.4 1 14.2 17.4 
3  6.6 3 7.1 7.7 3 8.5 18.7 3 9.8 14.8 
5  6.1 5 5.7 6.7 5 6.3 16.2 5 7.2 12.9 
7  5.7 7 5.0 5.6 7 5.0 14.3 7 5.0 11.3 
10  5.3 10  5.0 10  10.9 10  9.4 
15  5.0 15   15  7.4 15  5.0 
20   20   20  5.0 20   
25   25   25   25   
30   30   30   30   
35   35   35   35   
40   40   40   40   
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