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Abstract
Several recent approaches use distributional similarity
for making symbolic reasoning more flexible. While
an important step in the right direction, the use of sim-
ilarity has a number of inherent limitations. We ar-
gue that similarity-based reasoning should be comple-
mented with commonsense reasoning patterns such as
interpolation and a fortiori inference. We show how the
required background knowledge for these inference pat-
terns can be obtained from distributional models.

Introduction
Structured knowledge bases such as Freebase, YAGO, CYC
and ConceptNet are becoming increasingly important in ap-
plications (e.g. semantic search). As a result, several au-
thors have recently looked at techniques for automatically
extending such knowledge bases. One possibility is to use
external knowledge (West et al. 2014), and for example
rely on information extraction techniques to fill in missing
values for prominent attributes (e.g. missing birth dates).
Other approaches rely on exploiting regularities within the
knowledge base, e.g. learning probabilistic dependencies
(Lao, Mitchell, and Cohen ) or using matrix factorisation
(Speer, Havasi, and Lieberman 2008). A third class of
approaches relies on commonsense reasoning, and in par-
ticular on similarity-based reasoning (Beltagy et al. 2013;
Freitas et al. 2014; d’Amato et al. 2010). These approaches
are based on the assumption that similar concepts tend to
have similar properties, where similarity degrees are often
obtained from distributional models. For example, knowing
that Cabernet Sauvignon pairs well with a grilled steak, we
can plausibly derive that this wine will also pair well with a
barbecued steak, given the similarity between both types of
steaks.

Similarity-based reasoning has two main limitations.
First, it can only be used when there are sufficiently sim-
ilar concepts for which the required type of knowledge is
available. Second, similarity degrees are highly context-
dependent (e.g. red and white Burgundy wine are similar
in some sense, but they should be paired with very differ-
ent types of food). To alleviate these issues, we propose
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to complement similarity-based reasoning with additional
commonsense reasoning patterns:

Interpolative reasoning Suppose we know that undergrad-
uate students and PhD students are both exempt from pay-
ing council tax in the UK, then we can plausibly conclude
that master’s students are also exempt from paying this
tax, given that master’s students are conceptually between
undergraduate students and PhD students.

A fortiori reasoning Suppose we know that buying beer is
illegal under the age of 18 in the UK, then we can plau-
sibly derive that buying whiskey is also illegal under the
age of 18, since whiskey is stronger than beer.

These reasoning patterns require background knowledge:
conceptual betweenness for interpolation and relative prop-
erties for a fortiori reasoning. The aim of this paper is to
show how this type of background knowledge can be ob-
tained from distributional models. In the next section, we
explain how we use multi-dimensional scaling (MDS) to in-
duce from a text corpus a Euclidean space (called a seman-
tic space or conceptual spaces) in which entities of a given
type (e.g. wines) are represented as points, categories cor-
respond to (usually convex) regions and relative properties
correspond to directions. Subsequently, we explain in more
detail how conceptual betweenness and relative properties
correspond to spatial relations in a semantic space.

Inducing a semantic space
The examples in this paper are mostly based on a semantic
space of place types, containing place types from three tax-
onomies: GeoNames1 (667 place types organised in 9 cate-
gories), Foursquare2 (435 place types organised 9 top-level
categories) and OpenCYC3 (3388 place types, being the re-
finements of the category site). We have used the Flickr API
to collect meta-data of photos that have been tagged with
each of these place types. Our assumption is that photos
which are tagged with a given place type (e.g. restaurant)

1http://www.geonames.org/export/codes.
html, accessed September 2013.

2http://aboutfoursquare.com/
foursquare-categories/, accessed September 2013.

3http://www.cyc.com/platform/opencyc, ac-
cessed April 2014.



will often contain other tags that relate to that place type (e.g.
food, waiter, dessert), and will thus enable us to model the
meaning of that place type. In total we collected 22 816 139
photos in April 2014. Place types with fewer than 1000 asso-
ciated photos on Flickr have been omitted from our analysis,
resulting in a total of 1383 remaining place types.

Following (Turney and Pantel 2010), we use Positive
Pointwise Mutual Information (PPMI) to represent the bag
of words corresponding to each place type as a real-valued
vector. Subsequently, following (Gärdenfors and Williams
2001), we apply MDS to represent place types as points in
a lower-dimensional space; unless otherwise stated, we will
assume a 100-dimensional space throughout this paper. As
input, MDS requires a dissimilarity matrix. To measure the
dissimilarity between place types, we used the angular dif-
ference between the corresponding PPMI weighted vectors.

Several authors have already proposed the use of dimen-
sionality reduction methods for commonsense reasoning.
For example, (Speer, Havasi, and Lieberman 2008) uses Sin-
gular Value Decomposition (SVD) to find missing properties
in ConceptNet. However, SVD produces a representation in
which entities correspond to vectors, which should be com-
pared in terms of cosine similarity rather than Euclidean dis-
tance. While this makes no difference in applications which
only rely on similarity, spatial relations such as between-
ness are only meaningful if Euclidean distance is meaning-
ful. This has been confirmed by experiments in (Derrac and
Schockaert 2014b), where MDS was found to substantially
outperform SVD for obtaining betweenness relations.

We also consider a semantic space of wine varieties,
which was induced from a corpus of wine reviews4. The
entities we will consider in this paper are the wine vari-
ants (e.g. Syrah), rather than the specific wines (e.g. 2001
Thierry Allemand Cornas Reynard). In particular, we con-
sider the 330 wine varieties for which the available reviews
together contained at least 1000 words. In the bag-of-words
representation of a given wine variety, we consider all terms
occurring in the corresponding reviews, after removing stop
words and diacritics and converting everything to lowercase.
As for the place types, we then use MDS to obtain a lower-
dimensional representation.

Betweenness and interpolative reasoning
We say that an entity b is conceptually between entities a
and c if b has all the natural properties that a and c have
in common. Geometrically, we say that the point b is be-
tween points a and c if cos(

−→
ab,
−→
bc) = 1 (assuming that a,

b and c are disjoint), where we identify an entity a with the
point representing it in the semantic space for the ease of
presentation. Conceptual and geometric betweenness can be
linked to each other, by taking into consideration that natural
properties tend to correspond to convex regions in a suitable
semantic space (Gärdenfors and Williams 2001). Indeed,
b is geometrically between a and c iff all convex regions
that contain a and c also contain b. This suggests that we

4https://snap.stanford.edu/data/
web-CellarTracker.html

Table 1: Examples of place types b which were classified
correctly using the betweenness classifier, because b was
found to be between place types a and c.

Place b Places (a, c) Category found
marina (harbor, plaza) Parks & Outdoor
music school (auditorium, elementary school) Professional & Other
campground (playground, scenic lookout) Parks & Outdoor
bike shop (bookstore, motorcycle shop) Shops & Services
medical center (fire station, hospital) Professional & Other
legal services (dojo, financial services) Shops & Services
candy store (grocery store, toy store) Shops & Services
art gallery (comedy club, museum) Arts & Entertainment
skate park (playground, plaza) Parks & Outdoor
veterinarian (animal shelter, emergency room) Professional & Other

Table 2: Examples of place types b which were misclassified
by 1-NN because they are most similar to a place type a from
a different category.

Place b Place a Category found
marina pier Travel & Transport
music school jazz club Arts & Entertainment
campground hostel Travel & Transport
bike shop bike rental Travel & Transport
medical center medical school College & University
legal services tech startup Professional & Other
candy store ice cream shop Food
art gallery sculpture garden Parks & Outdoor
skate park board shop Shops & Services
veterinarian photography lab Shops & Services

identify conceptual betweenness by checking for geometric
betweenness in a semantic space.

In practice we will need a measure for the degree of be-
tweenness of any three points (a, b, c). The following mea-
sure was found to give good results in (Derrac and Schock-
aert 2014b):

Btw(a, b, c) =


‖
−→
bp‖ if cos(−→ac,

−→
ab) ≥ 0

and cos(−→ca,
−→
cb) ≥ 0

+∞ otherwise

where p is the orthogonal projection of b on the line con-
necting a and c. Note that the condition cos(−→ac,

−→
ab) ≥ 0 and

cos(−→ca,
−→
cb) ≥ 0 is satisfied iff p lies on the line segment be-

tween a and c. Also note that higher values for Btw(a, b, c)
correspond to weaker betweenness relations, and in particu-
lar that a score of 0 denotes perfect betweenness.

The resulting betweenness relations can then be used for
automating interpolative inference. In this paper, we will
focus on the use of interpolation in a standard classifica-
tion setting, as an alternative to k-NN. In particular, assume
that we need to classify an entity b to one of the categories
C1, ..., Cn and that for each category Ci we have a set Yi

of training items available. Using interpolation, we assign
b to the category Ci minimising mina,c∈Yi

Btw(a, b, c). In
practice, we could also consider the k strongest betweenness
triples (a, b, c) and use a voting procedure, as for k-NN.

We compared the performance of this betweenness based
classifier against 1-NN on three types of classification prob-



Table 3: Results obtained for place types.
Foursquare GeoNames OpenCYC

Acc. F1 Acc. F1 Acc. F1
Btw 0.950 0.730 0.872 0.345 0.955 0.400
a fortiori 0.938 0.724 0.852 0.328 0.945 0.404
1-NN 0.934 0.715 0.852 0.323 0.945 0.372
SVM 0.936 0.676 0.876 0.362 0.930 0.355

Table 4: Results obtained for wine varieties.
20 50 100

Acc. F1 Acc. F1 Acc. F1
Btw 0.884 0.527 0.888 0.553 0.882 0.543
a fortiori 0.885 0.564 0.883 0.570 0.874 0.554
1-NN 0.880 0.559 0.875 0.550 0.869 0.546
SVM 0.839 0.492 0.862 0.516 0.867 0.564

lems. In particular, we consider a binary classification
problem for each of the categories of place types used by
GeoNames, for each of the top-level categories used by
Foursquare, and for the 93 largest sub-categories of site in
OpenCYC. We did consider k-NN classifiers with differ-
ent values for k, but found k = 1 to be a suitable choice
here. The results are shown in Table 3 (using 5-fold cross-
validation). The results for SVM have been obtained using
the LIBSVM implementation, considering a Gaussian ker-
nel. The optimum value for the C parameter was set for
each category by using grid search (holding out one third of
the training data for testing the different values of C). The a
fortiori method will be explained in the next section.

We can observe that the betweenness based classifier con-
sistently outperforms 1-NN, although the differences are rel-
atively small. In many cases, both classifiers will make the
same decisions, which is unsurprising given that when a and
b are highly similar, the score Btw(a, b, c) will be very low.
As a result, when a sufficiently similar training item ex-
ists, betweenness based classification often degenerates to
a similarity based classification. However, in contrast to
k-NN, the betweenness based classifier can make reliable
classification decisions even when no highly similar train-
ing items exist. Table 1 contains examples of place types
which were correctly classified by the betweenness classi-
fier but incorrectly by 1-NN (for the Foursquare categories);
Table 2 shows which training item misled the 1-NN classi-
fier. Essentially, there are two types of mistakes in Table 2.
As an example of the first type, since there is no place type
in the training data which is highly similar to veterinarian,
1-NN relied on the most similar item, which was photog-
raphy lab. In contrast, the betweenness classifier success-
fully recognised that veterinarian is conceptually between
animal shelter and emergency room, from which the correct
category was obtained. A second type of mistake the 1-NN
classifier makes is illustrated by music school. While music
school and jazz club are indeed similar (both being music
related), they are not similar in the relevant aspects (as they
serve a rather different function). This is reflected in the fact
that music school is not between any two place types from
the Arts & Entertainment category.

The betweenness based classifier also outperforms SVM

on the Foursquare and OpenCYC classes, but not for GeoN-
ames. This seems related to the observation that some of
the categories used by GeoNames are more artificial (e.g.
feature code L encompasses naval base, housing develop-
ment, park and wildlife reserve) and therefore less likely to
correspond to convex regions in the semantic space, while
the betweenness classifier directly relies on the assumption
that categories are convex. For example, for feature type
L, SVM achieves an F1 score of 0.308 compared to 0.207
for 1-NN and 0.167 for Btw. In contrast, for feature type
V, which is a much more well-defined feature type covering
forest, heath and closely related types, SVM achieves an F1
score of 0.180 compared to 0.324 for 1-NN and 0.455 for
Btw. This also illustrates that the relatively small difference
between the results for 1-NN and Btw hides considerable
variation for individual categories (with Btw often perform-
ing substantially better for natural categories).

Direction and a fortiori reasoning
Our hypothesis is that for two entities a and b, the direc-
tion of the vector

−→
ab encodes how b differs from a. To test

this hypothesis, we evaluate the performance of a classifier
which is based on a form of a fortiori reasoning. We con-
sider a binary classification problem, with P the set of pos-
itive training items and N the set of negative training items.
If x ∈ N and y ∈ P then we assume that the direction
of −→xy in the semantic space is towards category member-
ship, and conversely that the direction of −→yx is towards non-
membership. This leads to the following measures of posi-
tive and negative support for a test item b:

pos(b) = max
x∈N

max
y∈P

max
a∈P

cos(−→xy,
−→
ab)

neg(b) = max
x∈P

max
y∈N

max
a∈N

cos(−→xy,
−→
ab)

Intuitively, if −→xy points towards category membership and a
is already a member of the category, then a fortiori we would
also expect b to belong to the category if−→xy is approximately
parallel to

−→
ab, and conversely for neg. We assume that b is

a positive instance iff pos(b) > neg(b). While a naive im-
plementation of this classifier would have a cubic time com-
plexity, when using a KD tree, the time it takes to classify an
item will only be quadratic in the number of training items.

The results of this classifier for the place type experiments
are shown in Table 3. As for the betweenness classifier, we
find a consistent but small improvement over 1-NN. In an
additional experiment, we looked at the semantic space of
wines. To obtain binary classification problems, we consid-
ered the 14 largest categories from a wine taxonomy5. The
results, for semantic spaces of dimension 20, 50 and 100, are
shown in Table 4. Here, the best results are obtained by the
a fortiori classifier in 50D. The a fortiori classifier outper-
forms 1-NN across all dimensions, while the betweenness
classifier only outperforms 1-NN for 50D.

In (Derrac and Schockaert 2014a) we proposed a differ-
ent type of classifier, also based on the idea of a fortiori

5http://winefolly.com/review/
different-types-of-wine/, accessed April 2014.



reasoning and the hypothesis that directions in the semantic
space encode relative properties. In particular, we proposed
a method to identify the most salient properties of the do-
main under consideration, and to identify which directions
correspond to these properties. Initially each term occurring
in the text collection is assumed to potentially correspond to
an important property. For each term, we train a linear SVM
classifier, separating those entities in the semantic space that
contain the term in at least one of their associated texts from
the other entities. We then use the Kappa score for selecting
those terms for which this classifier is sufficiently accurate.
The most salient properties are essentially taken as those for
which the Kappa score is maximal, and the corresponding
direction is defined by the perpendicular to the hyperplane
that was found by the SVM classifier. For example, in this
way the method discovered (in an unsupervised way) that
being scary and being romantic are salient properties in a
semantic space of movies. The corresponding directions are
displayed in Figure 1, which shows the projection of a 100-
dimensional semantic space of movies on the 2-dimensional
plane spanned by the two directions. Each of the salient
directions induces a ranking of the entities under considera-
tion. The classifier we proposed in (Derrac and Schockaert
2014a) uses a modification of the well-known FOIL algo-
rithm to learn classification rules from the rankings corre-
sponding to the 200 most salient properties. These rules are
of the form “if x is a Thriller and y is more violent than x,
then y is also a Thriller”. While the FOIL based classifier
achieved very good results in the movies domain, we found
it to be uncompetitive for the place types and wines domains.
The main reason seems to be that the number of underly-
ing entities is much smaller in these latter cases: while the
movies space was induced from data about 15000 movies,
we only considered 330 wine varieties and 1383 place types,
which may not be enough to reliable identify directions of
salient properties in a high-dimensional space. In contrast,
the betweenness and a fortiori based classifiers do not scale
to training sets of more than a few thousand items.

Conclusions
We have proposed two inference methods that rely on rela-
tions derived from a semantic space: interpolation, which
uses geometric betweenness, and a fortiori inference, which
uses direction relations. Like similarity-based reasoning,
these methods are based on commonsense reasoning, and
could thus readily provide intuitive explanations of why a
given conclusion is considered plausible. We envisage that
a combination of different forms of commonsense reason-
ing will be needed in practice. For example, interpolation is
only meaningful for natural categories, since it relies on the
assumption that categories correspond to convex regions;k-
NN classifiers are likely to be better suited for more artifi-
cial categories. When sufficient training data is available,
SVM classifiers or the FOIL based methods from (Derrac
and Schockaert 2014a) are likely to be more suitable. Note,
however, that the former does not easily allow us to provide
intuitive explanations, which would be a key drawback in
applications such as question answering.

Figure 1: Directions modelling the relative properties scary
and romantic (showing a two-dimensional projection of a
100-dimensional space).
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