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findings that highlight a functional coupling between anterior temporal lobe regions, such as PrC, and

face processing regions of fusiform cortex (Moeller et al., 2008 ; O’Neil et al., 2012 , 2013 , 2014 ;

Anzellotti et al., 2014 ). The results presented here also go beyond such findings by presenting

a ‘structural realisation’ of this functional connectivity (Kosslyn and Van Kleeck, 1990 ; Behrmann and
Plaut, 2013 ), that is, a direct relationship between the WM bundle connecting these distributed regions

and complex face discrimination. Moreover, we demonstrate that ILF tissue microstructure is associated

with face-related BOLD activity in both PrC and FFA. Together, these analyses provide clear links

between structure, function, and behaviour, and support the idea that the anatomical connection linking

antero-medial temporal cortex (including PrC) and FFA is a critical structure in complex face perception,

as suggested by neuropsychological studies (Thomas et al., 2009 ; Grossi et al., 2014 ).

An important question that emerges from these results is how inter-individual variation in behaviour

emerges from the interplay between ILF microstructure and functional activity in the face-processing

network. Studies exploring the role of functional nodes in antero-medial temporal and occipital

temporal cortex suggest a number of possible mechanisms for how these regions might together

support face processing. For instance, both antero-medial temporal cortex (Barense et al., 2010 ;

Freiwald and Tsao, 2010 ; Collins and Olson, 2014 ; Yang et al., 2014 ; Anzellotti and Caramazza,
2015 ) and ventral occipital temporal cortex (Winston et al., 2004 ; Nestor et al., 2011 ; Anzellotti
et al., 2014 ) have been shown to contain representations that are invariant to facial transformations

(e.g., viewpoint or emotional expression), indicating that these discrete regions may be involved jointly

in the online maintenance of viewpoint-invariant face representations (Freiwald and Tsao, 2010 ;

Nestor et al., 2011 ; Collins and Olson, 2014 ). Another study that manipulated the visual similarity

between face stimuli found that PrC exhibits a greater response to highly overlapping faces, whereas

FFA shows the opposite pattern (Mundy et al., 2012 ), a finding consistent with a posterior-to-anterior

hierarchy in which face representations become increasingly complex (Saksida and Bussey, 2010 ).

Furthermore, a recent study reported response suppression for different images of matching identities

in antero-medial temporal cortex but not more posterior face-processing regions (Yang et al., 2014 ).

Strikingly, this adaptation effect in anterior temporal lobe was preserved in a prosopagnosic patient

with ipsilateral lesions of FFA and ‘occipital face area’, indicating a potential top–down role of this

region in processing face identity. By observing a specific relationship between the ILF and

performance on our oddity task in which highly overlapping faces must be discriminated across

multiple viewpoints, our results suggest that the connection established by the ILF may be integral for

both (a) an effective iterative feedback mechanism between PrC and ventral occipital temporal cortex

that allows for online maintenance of identity across visual transformations (Fox et al., 2008 ; Freiwald
and Tsao, 2010 ; Nestor et al., 2011 ; O’Neil et al., 2013 ; Yang et al., 2014 ) and (b) the efficient feed

forward of stimulus information from fusiform gyrus and extrastriate cortex to antero-medial temporal

cortex, which permits fine-grained discrimination across multiple viewpoints (Graham et al., 2010 ;

Saksida and Bussey, 2010 ; Fox et al., 2013 ). This proposed relationship is confirmed by evidence of

a strong coupling between ILF MD and face-sensitivity in both FFA and PrC, as well as recent evidence

suggesting that patterns of WM connectivity are better predictors of an individual’s FFA location than

group-derived functional ROIs (Saygin et al., 2012 ; Osher et al., 2015 ). These results may also address

some inconsistencies in the literature, where associations have been found between face recognition

and locally defined ventral temporal pathways but not with long-range ILF (Tavor et al., 2014 ; Gomez
et al., 2015 ). As indicated above, it may be the case that tasks probing complex antero-medial

temporal representations (e.g., perceptual identity) will reveal stronger associations with long-range

ILF connectivity (see also Postans et al., 2014 ).

The importance of WM in driving cognitive performance was made explicit by the finding that ILF

microstructure mediated the relationship between BOLD activity in FFA and accuracy on face

discrimination. This result converges with data from individuals with CP, in whom the FFA functions

normally, but who show disrupted ILF microstructure and macrostructure and a reduction in

posterior–anterior temporal lobe connectivity under both task-related and resting conditions (Thomas
et al., 2009 ; Avidan et al., 2014 ). Notably, ILF undergoes protracted development well into

adulthood, and these developmental changes in ILF MD are tightly and specifically linked with an

age-related increase in the size of the FFA (Scherf et al., 2014 ). Our findings, together with the

refinement of the ILF over an extended developmental period, and its compromise in CP, all point to

a potential mechanism in which an extended face network, over the course of experience and maturation,

becomes progressively organised and optimised. This may occur via neural activity-dependent
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mechanisms that can stimulate myelination or myelin remodelling, thereby leading to increased network

specialisation (Scherf et al., 2014 ; McKenzie et al., 2014 ).

Involvement of the ILF in face perception was further confirmed by a complementary whole-brain

TBSS analysis. This augmented our deterministic approach by highlighting additional associations

between face oddity performance and microstructural variation in the WM tracts linking occipital and

temporal lobe structures (including PrC) with the frontal lobes (e.g., IFOF, SLF, and the cingulum

bundle [Yeterian and Pandya, 2010 ]). These WM pathways may be necessary for linking perceptual

processing of faces in occipital cortex and vATL with prefrontal cortex face representations (Moeller
et al., 2008 ; Tsao et al., 2008 ), again highlighting the critical nature of broadly distributed circuits in

face perception.

By contrast, inter-individual differences in fornix microstructure were associated with performance

on a complex scene discrimination task and scene-related BOLD deactivations in HC; these findings

support the notion that the HC—as part of a broader anatomical network of which the fornix is a key

component—is involved in spatial processing (Aggleton et al., 2015 ). While the importance of the HC

in spatial navigation has long been established at the neurophysiological level (Ono et al., 1991 ;

O’Keefe et al., 1998 ; Rolls, 1999 ), recent studies have since indicated that the HC is behaviourally

important when tasks place a demand on complex spatial representations (Bird and Burgess, 2008 ;

Graham et al., 2010 ; Mundy et al., 2012 ). With this in hand, therefore, it is worth considering exactly

how the fornix, as a pathway between distributed regions, contributes to spatial scene perception and

the complex spatial representations contained in HC.

In particular, the reciprocal interplay between HC and surrounding neocortical and subcortical

regions (Saunders and Aggleton, 2007 ; Aggleton et al., 2015 )—that is afforded partly by fornical

connections—appears critical for the formation of flexible spatial representations in the HC (i.e., those

that maintain the coherent layout of a spatial environment across multiple viewpoints). For example,

efferent connections from the HC to both the mammillary bodies and the anterior thalamus, via the

fornix, have been shown to play a role in scene processing (Gaffan et al., 2001 ) and object-in-place

learning (Gaffan, 1994 ; Parker and Gaffan, 1997 ; Buckley et al., 2004 ). Fornix lesions also cause

object-in-place learning impairments above and beyond combined lesions to frontal and inferior

temporal (i.e., ventral stream) regions (Wilson et al., 2008 ). This suggests that visual-spatial inputs

from dorsal visual areas (e.g., parahippocampal and posterior cingulate cortices), via the subiculum of

the HC, may underpin aspects of scene processing that are independent of interactions between

inferotemporal and frontal cortices. These dorsally mediated inputs may, for example, convey spatial,

rather than object, feature information, such as orientation, position, and size (Buckley et al., 2004 ;

Wilson et al., 2008 ; Nasr et al., 2014 ). Interestingly, this may also account for the moderate, though

non-significant, association between size oddity and fornix microstructure (see ‘Results’).

Given the effect of fornix lesions on these various forms of spatial processing, it is plausible that

tasks that tap these emergent flexible scene representations, either by the use of different viewpoints

(as in oddity tasks) or where there is a need to discriminate between scenes or objects with unique

conjunctions of spatial features (Buckley et al., 2004 ), may be particularly sensitive to the HC and the

functional network it forms via the fornix. Consistent with this, patients with HC damage only show

scene oddity impairments when items are presented from different viewpoints (Lee et al., 2005b ),

and individuals with Alzheimer’s disease exhibit greater deficits on scene odd-one-out tasks when

different, rather than same, viewpoint scenes are presented (Lee et al., 2006 ). Likewise, HC damage

leads to short-term memory deficits in matching rotated scenes based on topographical information

(Bird and Burgess, 2008 ). As representational accounts also propose that episodic retrieval is

predominantly driven by reimagining the rich spatial context in which a particular memory event

occurred (Gaffan, 1994 ; Hassabis and Maguire, 2007 ; Graham et al., 2010 ), this may explain why

individual differences in fornix microstructure have also been associated with non-spatial, episodic

memory tasks (Metzler-Baddeley et al., 2011 ).

Interestingly, the reported association between fornix microstructure (FA, and to a lesser extent

MD) and scene-related BOLD activity in HC was in the opposite direction to that observed between

ILF microstructure and face selectivity in PrC/FFA, with fornix FA positively correlating with HC scene

deactivations. Further, this surprising association was localised in more anterior/intermediate HC

(Figure 3C ). In contrast, posterior HC is more often recruited during visual perception (i.e., oddity;

Lee et al., 2005a ; Mundy et al., 2013 ; Zeidman et al., 2014 ). Given differences in subfield

organisation (Duvernoy, 1988 ; Poppenk et al., 2013 ) and fornical axon fibre contributions
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(Saunders and Aggleton, 2007 ; Aggleton, 2012 ) along the long axis, it is likely that the more

anterior HC plays a different functional role compared to posterior HC (Nadel et al., 2013 ; Poppenk
et al., 2013 ; Duarte et al., 2014 ; Zeidman et al., 2014 ). Notably, using a similar scene oddity

paradigm, Lee et al. (2008) reported significant scene activations in posterior HC but scene

deactivations (relative to baseline) in anterior HC. Negative HC BOLD response has also been

localised to anterior rather than posterior HC during spatial encoding and retrieval, consistent with

the results reported here (Figure 3C ; Duarte et al., 2014 ).

This interpretation of scene deactivations (relative to baseline) should be treated with caution given

that baselines are difficult to define in functional neuroimaging studies (Gusnard and Raichle, 2001 ),

particularly in MTL regions such as the HC (Stark and Squire, 2001 ). For instance, it is possible that

the reported association emerges from variability in anterior HC activity during rest, rather than during

scene oddity judgements. Further, not only is it difficult to define a baseline in HC, but there is also

a particularly complex relationship between HC neural activity and the BOLD response (Ekstrom,
2010 ). Studies in both rats (Schridde et al., 2008 ; Angenstein et al., 2009 ) and humans (Ekstrom
et al., 2009 ) have reported increases in neural activity that are associated with negative changes in the

HC BOLD signal. The BOLD signal itself is dependent on the relationship between cerebral blood flow

and oxygen metabolism (Fox and Raichle, 1986 ), and the assumption that, during neural activity,

blood flow outmatches metabolic demands (leading to a relative increase in oxygenated haemoglobin).

One possibility, therefore, is that sparser blood supply in the HC (e.g., lower capillary density; Borowsky
and Collins, 1989 ) leads to a decoupling between neuronal activity and BOLD, that is, where oxygen

metabolism exceeds local blood flow.

Whilst HC BOLD deactivations were related to both fornix microstructure and scene discrimination

accuracy, fornix microstructure did not mediate the relationship between HC BOLD and behavioural

performance (and vice versa). More specifically, HC activity and fornix microstructure independently

contribute to individual variability in scene discrimination performance. Further, in the BOLD-DTI

analyses, fornix microstructure was only found to correlate with HC BOLD (Figure 3C ) when the

contrast was between scenes and rest, not scene and faces. The distinct contributions of HC neuronal

activity and fornix microstructure are consistent with several lines of evidence from lesion work in rats.

First, that non-fornical HC pathways are also critical for spatial processing (Dumont et al., 2015 ).

Second, that fornix lesions, which impair HC-dependent spatial memory, do not necessarily suppress

HC neuronal activity but rather disrupt longer term HC cellular plasticity mechanisms (Fletcher et al.,
2006 ). Third, that fornical fibres may mediate some spatial functions not attributable to the HC

(Whishaw and Jarrard, 1995 ). In summary, our findings confirm that scene processing (and by

extension episodic memory) is an emergent property of the functional and structural connectivity

between the HC and key cortical and subcortical regions (Graham et al., 2010 ), mediated in part, but

not exclusively, by the fornix.

It is notable that, overall, we observed stronger statistical effects with MD compared to FA,

although FA did show a similar profile to that seen in MD (e.g., for fornix FA and scene oddity), and

was associated with a cluster in ILF for face oddity in our whole brain TBSS analysis. As different

attributes of WM (e.g., axon density, axon diameter, myelin [Beaulieu, 2002 ], and the manner in which

axons are laid out within a given voxel [Jones et al., 2013 ]) can influence the hindrance and restriction

of water, as has been described elsewhere (Jones et al., 2013 ), the interpretation of DTI and its

specific metrics (including MD and FA) is not straightforward. Thus, while we found stronger

associations with MD than with FA, we are not yet able to say whether a particular aspect of WM

microstructure (e.g., myelin) underpins these differences. Consistent with this, MD and FA are often

reported jointly in the literature (Metzler-Baddeley et al., 2011 ; Gschwind et al., 2012 ; Scherf et al.,
2014 ), and like our reported findings, sometimes MD has been shown to have stronger effects than

FA. For example, MD can decrease following spatial learning (Sagi et al., 2012 ) and appears to be

more sensitive than FA to age-related changes in ILF and fornix WM (Scherf et al., 2014 ; Wendelken
et al., 2014 ). Further, MD and FA metrics are not orthogonal, meaning that changes in one of these

measures will be potentially reflected in the other (O’Donnell and Pasternak, 2015 ).

Based on representational accounts of MTL function that assume dissociable roles for the HC and

PrC in scene and face processing, respectively (Graham et al., 2010 ; Saksida and Bussey, 2010 ), we

provide a compelling demonstration that WM tracts connecting to the HC and PRC may be critical

pathways in networks that support the successful discrimination of complex places and faces,

respectively. More specifically, complex face perception is not just a property of the FFA or PrC but
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voxel dimensions = 2.4 × 2.4 × 2.4 mm3; field of view = 23 × 23 cm2; 96 × 96 acquisition matrix; 60
contiguous slices acquired along an oblique –axial plane with 2.4-mm thickness (no gap).
Acquisitions were cardiac gated using a peripher al pulse oximeter. Gradients were applied along
30 isotropic directions ( Jones et al., 1999 ) with b = 1200 s/mm2. Three non-diffusion-weighted
images were acquired with b = 0 s/mm2. Functional BOLD data were acquired using an EPI pulse
sequence with the following scan parameters: TR/TE = 3000/35 ms; FOV = 240 mm; 64 × 64 data matrix;
ASSET (acceleration factor); 90� flip angle. 42 interleaved slices were collected per volume for whole-
brain coverage. Each slice was 2.8-mm thick with a 1-mm inter-slice gap (3.75 × 3.75 × 2.8-mm voxels).
Slices were acquired with a 30� axial-to-coronal tilt relative to the AC-PC line (anterior upwards).
The first four volumes of each run were discarde d to allow for signal equilibrium. Two 3D SPGR
images were acquired to improve registratio n and reduce image distortion as a result of
magnetic field inhomogeneity (TE = 7 ms and 9 ms, TR = 20 ms, FOV = 384 × 192 × 210 mm,
128 × 64 × 70 data matrix, 10� flip angle). The SPGR used the same slice orientation as the functional
acquisition. High-resolution anatomical images were acquired using a standard T1-weighted 3D FSPGR
sequence comprising 178 axial slices (TR/TE= 7.8/3.0 s, FOV = 256 × 256 × 176 mm, 256 × 256 × 176
data matrix, 20� flip angle, and 1 mm isotropic resolution).

Diffusion MRI pre-processing
ExploreDTI (Leemans and Jones, 2009 ) was used to correct for subject motion and eddy current
distortions. In order to correct for partial volume artefacts arising from voxel-wise free water
contamination, the two-compartment ‘free water elimination’ procedure was implemented ( Pasternak
et al., 2009 ). Following free water correction, corrected diffusion indices were computed: MD and FA.
The resulting free water-corrected maps were inputs for both the tractography and the TBSS analyses.

Tractography
Deterministic whole-brain WM tractography was performed using ExploreDTI. Tractography was
based on constrained spherical deconvolution (CSD; see Tournier et al., 2004 ; Jeurissen et al.,
2011 ), which extracts peaks in the fibre orientation density function (fODF) at each voxel. The
‘diffusion tensor’ model is not sufficient when modelling the distribution of water displacement in
more complex fibre configurations, such as crossing or kissing fibres (e.g., as seen where the anterior
pillars of the fornix meet the anterior commissure). The fODF—which is estimated directly by
CSD—quantifies the proportion of fibres in a voxel pointing in each direction and so information
about more complex fibre configurations can be extracted ( Jones, 2008 ). Each streamline was
reconstructed using an fODF amplitude threshold of 0.1 and a step size of 1 mm and followed the
peak in the fODF that resulted in the smallest step-wise change in orientation. An angle threshold of
30� was used and any streamlines exceeding this threshold were terminated.

To generate three-dimensional reconstructions of each tract, ‘way-point’ ROIs were manually
drawn onto whole-brain FA maps in the diffusion space of individual subjects ( Metzler-Baddeley
et al., 2011 ). In accordance with Boolean logic, these way-point ROIs can specify that: (a) tracts
passing through multiple ROIs are retained for analysis (i.e., ‘AND’ ROIs) and (b) tracts passing
through certain ROIs are omitted from analysis (i.e., ‘NOT’ ROIs). Depending on the specific tract, or
the anatomical plausibility of initial reconstructions, such ROIs can be combined; for example, a tract
may pass through ROI-1 ‘AND’ ROI-2 but ‘NOT’ ROI-3 ( Figure 6 ). The ROI approaches described
below will adopt this Boolean terminology when describing the ROIs that were drawn for each tract.
Following the reconstruction of each pathway in each subject, mean MD and FA were calculated by
averaging the individual values at each 1-mm step along the tracts, and in the case of the ILF, across
hemispheres. The placement of ROIs for each tract is depicted in Figure 6 .

Fornix ROIs
A multiple ROI approach was used to reconstruct the fornix ( Metzler-Baddeley et al., 2011 ). The
approach involved placing a seed point ROI on the coronal plane where the anterior pillars enter the
main body of the fornix. A single AND ROI is then positioned on the axial plane, encompassing both
crus fornici at the lower part of the splenium of the corpus callosum. Three NOT ROIs are then placed:
(1) anterior to the fornix pillars, (2) posterior to the crus fornici, and (3) on the axial plane, intersecting
the corpus callosum. Once these ROIs were placed, and the tracts reconstructed, anatomically
implausible fibres were removed using additional NOT ROIs.
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