Kinetics and mechanism of racemisation reactions of configurationally labile stereogenic centres in drug-like molecules in aqueous solutions; thiohydantoins and related compounds

Hiwa Omer Ahmad

A thesis submitted for the Degree of Doctor of Philosophy
School of Chemistry
Cardiff University

August 2015
DECLARATION

This work has not previously been accepted in substance for any other degree and is not concurrently submitted in candidature for any degree.

Signed …………………………………… (Candidate) Date ……………………………

STATEMENT 1

This thesis is being submitted in partial fulfillment of the requirements for the degree of Doctor of philosophy.

Signed ……………………………………… (Candidate) Date ……………………………

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where otherwise stated.

Other sources are acknowledged by explicit references.

Signed ……………………………………….. (Candidate) Date ……………………………

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.

Signed ……………………………………… (Candidate) Date ……………………………
Dedicated to the nations of Kurdistan and their peoples; to the person who declares a free Kurdistan and establishes Justice, safety, equality, for everyone in a country developing its science and economy.
Summary

In this thesis, studies of the kinetic and mechanism of racemisation of several drug-like molecule have been presented. Chapter 1 provides background information on the general mechanisms of racemisation of drugs in general, and hydantoin derivatives. In particular including reviews of the hydrolysis and the mechanism of base-catalysed racemisation of hydantoin derivatives.

The synthesis of different chiral hydantoins, thiohydantoins, thiazolidine-diones, and rhodanines is presented in Chapter 2. Several enantio-enriched 5-substituted 1-acetyl-2-thiohydantoins and two tri-substituted 2-thiohydantoins have been synthesised. Further racemic thiohydantoin derivatives including mono, di, and tri-substituted 2-thiohydantoins have also been prepared.

Chapter 3 focuses on the kinetics and mechanism of hydrolysis of 5-substituted 1-acetyl-2-thiohydantoins in physiological-like buffers. The key reaction involves de-acetylation and this is followed by the hydrolysis of the resulting 5-substituted 2-thiohydantoins. Sodium hydroxide and hydrochloric acid have also been used for the hydrolysis of 1-acetyl-5-phenyl-2-thiohydantoin. Similarly, the hydrolysis of several 5-substituted 2-thiohydantoins has been studied. The rate constants for hydrolysis suggest that the 5-substituted 1-acetyl-2-thiohydantoins hydrolyses faster than the subsequent hydrolysis of 5-substituted 2-thiohydantoins.

Chapter 4 focuses on the racemisation of 5-substituted 1-acetyl-2-thiohydantoins and shows that substituents at N-1 decelerate racemisation. Racemisation of tri-substituted 2-thiohydantoins is fast in comparison with 5-substituted 1-acetyl-2-thiohydantoins. The substituents at the asymmetric carbon affect the rate of racemisation. The solvent kinetic isotope effect on the racemisation were determined for different substituted 2-thiohydantoins and supported the S_E1 mechanism of racemisation.

Chapter 5 concerns further confirmation of the mechanism of racemisation by comparing k_{deu} and k_{rac} and this confirms the S_E1 mechanism for racemisation of 5-substituted 1-acetyl-2-thiohydantoin as k_{deu}/k_{rac} for all compounds approaches 1. For the racemic 5-substituted 2-thiohydantoins the rate constants of deuteration have been obtained using 1H-NMR spectroscopy and showed fast replacement of hydrogen by deuteron. Assuming $k_{deu} = k_{rac}$, we can order the rate constants for racemisation form high to low as rhodanine > thiohydantoin > thiazolidine-2,4-dione > hydantoin.
Acknowledgements

I would like to thank my supervisor, Dr Niek Buurma, for his invaluable teaching, patience, guidance and support. I feel I have developed as a scientist over the last few years, and I am glad I had a chance to work with him.

I would also like to thank Dr. Mazin Othman from Kurdistan to inspire me to come to Cardiff and work in the physical organic chemistry centre. A huge thank you to the POC members who helped me during my earlier work namely Drs. Azzedine, Julia, Mihaela, Jamie, Ismail, and Edward. Special thanks also go to the present and past students in POC especially Ibrahim, Karma, and Ammar, and those who worked with me namely Mesele, Ben, David, Yassine, and Ibrahim Bala.

Huge thanks also to the technical staff at Cardiff University; with particular thanks to Robin Hicks, Simon Waller, and Tom Williams for the mass spectrometry and GC-MS data. Thanks to Steve for repairing the machines which were necessary for my work. I would also like to express my sincere thanks to Dr Rob Jenkins for his help with NMR spectroscopy and keeping those instruments online, and Dr Benson Kariuki for obtaining the crystallographic data.

I would also like to thank Prof. Allemann for allowing me to use the CD machine for my work, and his group for their kind help.

Thanks to the Kurdistan Government / Ministry of Higher Education for funding my scholarship.

More importantly, a very special thanks to my parents for their love and endless support throughout my life. Thank you both for giving me strength to chase my dreams. Nothing I can do would pay off for your hard work, love and sleepless nights that both of you put into helping me get where I am today. My sincere gratitude to my wife Mrs Parishan Hasan for her continuous support, encouragement, quiet patience, and love. There are no words which can express my honour and respect I have for you. I would like to express my deepest gratitude to my children, Sema, Sahand, and Sahen for their patience during my hard work. Thanks also to my brothers, sisters, and my wife’s family who helped and contacted us during my study. Last but not least, thanks to everyone who taught and helped me during my life, even by one word.
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta)</td>
<td>Chemical shifts</td>
</tr>
<tr>
<td>(^{\circ} \text{C})</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>(^{13}\text{C-}\text{NMR})</td>
<td>Carbon-13 nuclear magnetic resonance</td>
</tr>
<tr>
<td>(^{1}\text{H-}\text{NMR})</td>
<td>Proton nuclear magnetic resonance</td>
</tr>
<tr>
<td>2-Thiohydantoin</td>
<td>2-Thioxoimidazolidin-4-one</td>
</tr>
<tr>
<td>Ac, TH</td>
<td>5-Substituted 1-acetyl-2-thiohydantoins</td>
</tr>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>ACN-D(_3)</td>
<td>Deuterated acetonitrile</td>
</tr>
<tr>
<td>Aq.</td>
<td>Aqueous</td>
</tr>
<tr>
<td>Ar</td>
<td>Aryl</td>
</tr>
<tr>
<td>B</td>
<td>Base</td>
</tr>
<tr>
<td>Benz</td>
<td>Benzyl</td>
</tr>
<tr>
<td>calcd</td>
<td>Calculated</td>
</tr>
<tr>
<td>CD</td>
<td>Circular dichroism spectroscopy</td>
</tr>
<tr>
<td>CD(_3)CN</td>
<td>Deuterated acetonitrile</td>
</tr>
<tr>
<td>CDCl(_3)</td>
<td>Deuterated chloroform</td>
</tr>
<tr>
<td>D(_2)O</td>
<td>Deuterated water</td>
</tr>
<tr>
<td>D(_3)O(^+)</td>
<td>Hydronium ion</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DEP</td>
<td>Diethylpropione</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-Dimethylaminopyridine</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>DMSO-d<sub>6</sub></td>
<td>Deuteriated dimethylsulfoxide</td>
</tr>
<tr>
<td>dt</td>
<td>Double triplet</td>
</tr>
<tr>
<td>DZ</td>
<td>Diazepam</td>
</tr>
<tr>
<td>E</td>
<td>The temperature in °C</td>
</tr>
<tr>
<td>e.e.</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>EI-MS</td>
<td>Electron impact - mass spectrum</td>
</tr>
<tr>
<td>ε<sub>r</sub></td>
<td>Dielectric constant</td>
</tr>
<tr>
<td>ES</td>
<td>Electrospray - mass spectrum</td>
</tr>
<tr>
<td>Et<sub>2</sub>O</td>
<td>Diethyl ether</td>
</tr>
<tr>
<td>EtOD</td>
<td>Deuterated ethanol</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>f</td>
<td>force constant of the bond</td>
</tr>
<tr>
<td>g</td>
<td>Grams</td>
</tr>
<tr>
<td>GA</td>
<td>General acid</td>
</tr>
<tr>
<td>GB</td>
<td>General base</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography-mass spectrometry</td>
</tr>
<tr>
<td>H</td>
<td>Hour(s)</td>
</tr>
<tr>
<td>h</td>
<td>Planck’s constant</td>
</tr>
<tr>
<td>H/D exchange</td>
<td>Proton deuterium exchange</td>
</tr>
<tr>
<td>H<sub>2</sub>SO<sub>4</sub></td>
<td>Sulphuric acid</td>
</tr>
<tr>
<td>H<sub>3</sub>O<sup>+</sup></td>
<td>Hydronium ion</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High pressure liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>High resolution mass spectrometry</td>
</tr>
<tr>
<td>Hydantoin</td>
<td>Imidazolidine-2,4-dione</td>
</tr>
</tbody>
</table>
Hz Hertz

I Ionic strength

IPA Isopropanol

IR Infra-red

J Coupling constant

k₀ Rate constant for non-catalysed processes

k_B the catalytic constant of the reaction catalysed by general base B

k_b Boltzmann constant

k_{enant} The rate constant of enantiomerisation

k_H the second-order rate constant for the reaction catalysed by H₂O⁺

k_{H/D} and k_{deut} Rate constant for H/D exchange

k_{HP04⁻²} Rate constant for racemisation catalysed by the basic component of the phosphate buffer

k_{hyd} Rate constant for hydrolysis

k_{in} Rate constant obtained from the intercept

kJ Kilojoule

k_{obs} Observed rate constant

k_{OD} Rate constant for deuteroxide-catalysed processes

k_{OH} Rate constant for the hydroxide-catalysed reaction

k_{rac} Rate constant for racemisation

k₀ Rate constant for loss of ellipticity 0

M Multiplet

m The reduced mass of the particles

m/z Mass over charge ratio

MeCN Acetonitrile

MeOH Methanol
mg Milligram
MHz Mega hertz
ml Millilitres
mM Millimolar
Mp. Melting point
MS Mass spectrometry
NH₃ Ammonia
nm Nanometer
NMR Nuclear magnetic resonance
NSAIDS Non-steroidal anti-inflammatory drugs
p- para
Pd/C Palladium on carbon
pH Reading of a pH-meter for an H₂O-based sample at 20 °C
Ph Phenyl group
pH* Reading of a pH-meter for a D₂O-based sample at 20 °C.
pKₐ -log Kₐ
ppm Parts per million
Pyr Pyridine
Q Quartet
R Substituents
r.t Room temperature
rac- racemic compounds
Rhodanine 2-Thioxothiazolidin-4-one
s singlet
SE Electrophilic substitution
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td>Nucleophilic substitution</td>
</tr>
<tr>
<td>Su.</td>
<td>Substrate</td>
</tr>
<tr>
<td>T</td>
<td>Triplet and the absolute temperature (in K)</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethylamine</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>TFE</td>
<td>Trifluoroethanol</td>
</tr>
<tr>
<td>TH</td>
<td>5-Substituted 2-thiohydantoin</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>Tic</td>
<td>Tetrahydroisoquinoline</td>
</tr>
<tr>
<td>TMZ</td>
<td>Temazepam</td>
</tr>
<tr>
<td>TRIS</td>
<td>Tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-violet</td>
</tr>
<tr>
<td>ν</td>
<td>The vibrational frequency</td>
</tr>
<tr>
<td>vis</td>
<td>Visible</td>
</tr>
<tr>
<td>WR</td>
<td>The free energy of formation of reaction complex</td>
</tr>
<tr>
<td>α</td>
<td>The Brønsted parameter associated with the reaction catalysed by general bases</td>
</tr>
<tr>
<td>β</td>
<td>The Brønsted parameter associated with the reaction catalysed by general bases</td>
</tr>
<tr>
<td>ΔG^‡</td>
<td>The standard molar free energy of the proton transfer</td>
</tr>
<tr>
<td>ΔH^‡</td>
<td>Enthalpy of activation for loss of ellipticity</td>
</tr>
<tr>
<td>ΔS^‡</td>
<td>Entropy of activation for loss of ellipticity</td>
</tr>
<tr>
<td>θ</td>
<td>Ellipticity</td>
</tr>
</tbody>
</table>
List of contents

1 INTRODUCTION ... 1

1.1 Racemisation .. 2
 1.1.1 Enantiomers and racemisation ... 2
 1.1.2 Optical rotation .. 3
 1.1.3 Circular dichroism ... 3
 1.1.4 Racemisation ... 4
 1.1.5 Role of racemisation in optically active drugs 6
 1.1.6 Configuration instability and selected examples of racemising drugs .. 7
 1.1.7 General mechanisms of racemisation 14

1.2 Derivatives of hydantoin and structurally related compounds 17
 1.2.1 Therapeutic agents ... 17
 1.2.2 Synthesis .. 18
 1.2.3 Hydrolysis ... 21
 1.2.4 Racemisation of hydantoin derivatives 25

1.3 Comparison of racemisation and H/D exchange kinetics 30

1.4 Kinetic and equilibrium isotope effects ... 33

1.5 Acid and base catalysis of reactions involving proton transfer 37
 1.5.1 Acid catalysis hydrolysis and racemisation 37
 1.5.2 Base catalysis in selected hydrolysis and racemisation reactions .. 39
 1.5.3 Brønsted plots .. 40
 1.5.4 Enzyme catalysed hydrolysis and racemisation of hydantoin derivatives ... 43

1.6 Mechanistic studies of racemisation reactions 45

1.7 Aims and Objectives .. 50

1.8 References .. 51
SYNTHESIS OF SUBSTITUTED 2-THIOHYDANTOINS AND RELATED COMPOUNDS

2.1 Introduction

2.2 Results and discussion

2.2.1 Synthesis of 5-substituted derivatives of 2-thioxoimidazolidin-4-one

2.2.2 Synthesis of 5-substituted derivatives thiazolidine-2,4-dione and 2-thioxothiazolidin-4-one

2.2.3 The reduction reaction of 5-substituted derivatives of 2-thiohydantoin, thiazolidine-2,4-dione and 2-thioxothiazolidin-4-one

2.2.4 Synthesis of 5-substituted 2-thiohydantoin under solvent free conditions

2.2.5 Synthesis of 5-substituted 1-acetyl-2-thiohydantoin

2.2.6 The enantiomeric excess and intensity of enantioenriched compounds

2.2.7 Synthesis of racemic 5-substituted 3-phenyl-2-thiohydantoin

2.2.8 Synthesis of trisubstituted 2-thiohydantoin

2.3 Conclusions

2.4 Experimental section

2.5 Experimental techniques

2.6 Methods

2.7 References
HYDROLYSIS OF SUBSTITUTED 2-THIOHYDANTOINS AND RELATED COMPOUNDS

3.1 Introduction
3.1.1 Hydrolysis of hydantoins
3.1.2 Hydrolysis of 1-acetyl 2-thiohydantoins
3.1.3 Hydrolysis of 2-thiohydantoin

3.2 Results and discussion
3.2.1 Kinetics and mechanism of base-catalysed hydrolysis of 5-substituted 1-acetyl-2-thiohydantoins
3.2.2 Kinetics and mechanism of base-catalysed hydrolysis of 5-substituted 2-thioxoimidazolidin-4-ones
3.2.3 Kinetics and mechanism of base-catalysed hydrolysis of 3, 5-di-substituted 2-thiohydantoins

3.3 Conclusions

3.4 Experimental

3.5 References

4 Kinetics and mechanism for racemisation of substituted 2-thiohydantoins
4.1 Introduction
4.2 Results and discussion
4.2.1 Racemisation of 5-substituted 1-acetyl-2-thiohydantoins
4.2.1.1 Determination of rate constants for loss of ellipticity
4.2.1.2 Relation between base-catalysed hydrolysis and racemisation
4.2.1.3 Solvent kinetic isotope effects on the racemisation of 5-substituted 1-acetyl-2-thiohydantoins
4.2.1.4 Brønsted plot for proton transfer
4.2.1.5 The effect of ionisation at the N-3 position on the rate constant of racemisation
6 Epilogue

6.1 General conclusion

6.2 Future work

6.3 References

Appendix

Appendix

Appendix

Appendix

Appendix
CHAPTER 1

INTRODUCTION
1.1 Racemisation

1.1.1 Enantiomers and racemisation

The geometric property of molecules or drug-like molecules of not being superimposable with their mirror images is called chirality.\(^1\) The two distinct mirror images of chiral isomers are termed enantiomers. Two enantiomers are said to differ in their sense of chirality or handedness in the same way as a right hand differs from a left hand.\(^2\) Optical activity results from the refraction of right and left circularly polarised light to different extents by chiral molecules.\(^3\) Since enantiomers are usually optically active, they turn the plane of polarised light to an equal degree but in opposite directions, which is why enantiomers are also called optical isomers.\(^2\) Some molecules rotate the plane to the right (clockwise), while others rotate the plane to the left (anticlockwise). For example, the two enantiomers (+) and (-) lactic acid (Scheme 1.1) are mirror images of each other. They have identical physical and chemical properties; for example, both have the same melting points in achiral environments. The carbon atom at the centre of lactic acid is attached to four different atoms and is called an asymmetric or stereogenic carbon atom.\(^4\)

![Scheme 1.1: Structures of (+) and (-) lactic acid](image)

\(\text{(S)-2-hydroxypropanoic acid} \quad \text{L-} (+)-\text{lactic acid}\)

\(\text{(R)-2-hydroxypropanoic acid} \quad \text{D-} (-)-\text{Lactic acid}\)
1.1.2 Optical rotation

When polarised light passes through (a solution containing) chiral molecules, the medium has indices of refraction for both left and right circularly polarised light. The speed of the left circularly polarised light is not equal to the speed of the right polarised light ($n_L \neq n_R$). The difference in refractive indices is expressed by Fresnel’s equation 1.1.3

$$\varphi = \frac{\pi}{\tau} (n_L - n_R)$$ \hspace{1cm} \text{Equation 1.1}

where φ is the rotation of the plane of polarisation in radians per unit length, τ is the wavelength of the incident light, and n_L and n_R are the indices of refraction for both components of polarised light.

1.1.3 Circular dichroism

Optically active compounds have non-zero specific rotation.3 The angle of rotation (α) can be measured using a polarimeter and the specific rotation is defined as in equation 1.2.3,5

$$[\alpha]^E_D = \frac{\alpha_{obs}}{lc}$$ \hspace{1cm} \text{Equation 1.2}

where $[\alpha]^E_D$ is the specific rotation determined at temperature E (in °C) using D-line of sodium light, α_{obs} is the observed plane of polarisation, l is the length of the cell in decimetres, E is the temperature in °C, and c is the concentration of the substance being examined in grams per millilitre of solution.

The difference in the absorption of right and left circularly polarised light can be expressed as ‘circular dichroism’ where the molar absorption coefficient (ℓ) of the R molecule is different from the L molecule.
1.1.4 Racemisation

An equal amount of two enantiomers is called a racemic mixture. Both enantiomers in equal amounts cancel out each other and the mixture is optically inactive.\(^4\) The term racemisation can be described as the total loss of optical activity of a molecule through the irreversible formation of a racemic mixture. The rate of racemisation can be described as the rate of formation of a racemate, which has reversible first-order kinetics (Scheme 1.2).\(^6,7\)

\[
\begin{align*}
(S) & \xrightleftharpoons[k_1]{k_{-1}} (R)
\end{align*}
\]

Scheme 1.2: Illustration of enantiomerisation.

The first-order rate law can be written by Equation 1.3

\[
-\frac{d[S]}{dt} = k_1[S] - k_{-1}[R]
\]

Equation 1.3

where \([S]\) and \([R]\) are the concentrations of the enantiomers S and R, \(k_1\) and \(k_{-1}\) are the interconversion constants for the S and R enantiomer respectively, and \(t\) is time. Initially, when one of the enantiomers dominates, a chiral medium is present and \(k_1\) may be different from \(k_{-1}\). However, if sufficiently dilute, \(k_1 = k_{-1}\) can be assumed.\(^6\)

When racemisation begins with pure S, under first-order conditions, \([S]_0 = [S]_t = [R]_t\)

\[
\ln\left[\frac{[S]_t}{2[S]_t - [S]_0}\right] = 2kt
\]

Equation 1.4

where \([S]_t\) and \([S]_0\) are the concentrations of enantiomer S at time \(t\) and time zero, respectively.

The rate of racemisation can be described as the rate of the formation of a racemate, racemisation is an irreversible first-order reaction, contrary to enantiomerisation (Scheme 1.3).
Scheme 1.3: Illustration of racemisation.

When pure enantiomer starts to form a racemate mixture, Equation 1.5 can be used

\[\frac{d[S]}{dt} = k'[S]_t \] \hspace{1cm} \text{Equation 1.5} \]

In the case where \([S]_0 - [S]_t\) is equal to \(2[SR]_t\), then Equation 1.5 can be described as

\[\ln \left(\frac{[S]_0}{[S]_t} \right) = \ln \left(\frac{[S]_0}{[S]_0 - 2[SR]_t} \right) = k' \] \hspace{1cm} \text{Equation 1.6} \]

where \(k'\) is the rate constant for racemisation, and \([SR]\) is the concentration of the racemate.\(^6\)

Following the racemisation by the loss in optical activity can transform Equation 1.6 into Equation 1.7.\(^6\)

\[\ln \left(\frac{\alpha_0}{\alpha_t} \right) = k' t \] \hspace{1cm} \text{Equation 1.7} \]

where \(\alpha_t\) is the optical activity at time \(t\), and \(\alpha_0\) is the optical activity at time zero.

The observed phenomenological pseudo-first-order rate constants for the loss of ellipticity \(k_o\) were obtained by plotting the ellipticity versus time in terms of the first-order-rate equation (Equation 1.8).
Equation 1.8

\[\theta_t = \theta_{\text{fin}} + \Delta \theta \times e^{-k_\theta \times t} \]

Here, \(\theta_t \) is the ellipticity at time \(t \), \(\theta_{\text{fin}} \) is the final ellipticity, \(\Delta \theta \) represents the difference between the ellipticity at time zero and \(\theta_{\text{fin}} \), and \(k_\theta \) is the observed pseudo-first-order rate constant for loss of ellipticity.

1.1.5 Role of racemisation in optically active drugs

Drug stereoisomerism is recognised as an issue having clinical and regulatory implications in drug development. In the case of optically active drugs, the enantiomers can have different potency, and/or pharmacological activity. If a non-racemising drug is designed to interact with a chiral receptor, then racemic drug mixtures essentially contain 50% of the enantiomer that is pharmaceutically active, the so-called “eutomer”\(^8,^9\) Single enantiomers are therefore expected to have a better effect than racemate drugs on the body because the effective dose of the active drug is higher. The undesired enantiomer may also have undesired effects. In this case, administering a single enantiomer becomes crucial. Finally, even if the target of a drug is not enantioselective, the pharmacokinetics of the enantiomers may still differ as a result of enantioselectivity in the process involved.\(^10\) Even if an enantiopure drug is administered, however, this drug may still racemise. Therefore, it is important to investigate the single enantiomer’s configurational stability.\(^11\)

The story of the risk of drug racemisation started with the thalidomide tragedy in the late 1950s. Thalidomide was taken by pregnant women as an anti-nausea treatment between week 5 and 8 after conception. Teratogenic effects were caused by side-effects of the S-thalidomide (Scheme 1.4).\(^12,^13\)
The study of racemic mixtures in drug development is more complicated in pharmacokinetic and biological systems than for single enantiomers. The biological activity of two enantiomers in a racemic mixture is often different. Because many biomacromolecules are chiral and occur as only one enantiomer (e.g. proteins and DNA), these interactions are not identical because of diastereomeric binding. For example, if we assume that our target is an R enantiomer, the interactions are (R...R) versus (R.....S). The difference between the Gibbs free energy change involved in the two diastereometrical binding processes is called enantiomer-discrimination. Due to the stronger binding interaction of one enantiomer with a receptor, the difference in Gibbs free energy change upon binding (ΔG°) is not equal to zero, i.e. $\Delta_{RS}\Delta G^\circ \neq 0$. To calculate the free energy ΔG° change related to each individual equilibrium constant, the following equation can be used15,16

$$\Delta G^\circ = -2.303 RT \log K$$

Equation 1.9

At the physiological condition ($T = 310$ K), the equilibrium constant can be observed (in kcal mol-1) and ΔG° is obtained using Equation 1.9 ($\Delta G^\circ = -1.4 \log K$). A drug binding with a K_d of 10^{-4} M (i.e. $K = 10^4$ M-1) at 310 K corresponds to a change in standard molar Gibbs energy of 5.6 kcal mol-1 required to dissociate the drug from the receptor.16

1.1.6 Configuration instability and selected examples of racemising drugs

It is very important to study drug racemisation because many optically active drugs racemise in vivo, which can lead to various side effects.17 Many articles have been published studying

Scheme 1.4: Structures and interconversion of thalidomide enantiomers.
drug racemisation and also describing factors affecting racemisation such as pH, temperature, solvent and ionic strength. Danel et al.18 studied the racemisation of an N-imidazole derivative (Scheme 1.5) in TRIS buffer pH 7.4 at 30, 50 and 70 °C with the corresponding $t_{1/2}$ of 117.8, 15.4 and 6.6 h, respectively. Chiral inversion could occur through base-induced deprotonation of the labile benzylic proton at the stereogenic carbon, resulting in a planar carbanion. For example, it has been shown that adding TEA increases the rate constant for racemisation of N-imidazole derivatives. The rate constant for racemisation of thiazole-substituted 1.2 (when X = S) has been reported to be twice as fast as that for oxazole (when X = O) (Scheme 1.5).

\begin{center}
\begin{tikzpicture}
 \node (x) at (0,0) {X= O or S};
 \node (a) at (-1,1) {O=};
 \node (b) at (1,1) {CN};
 \node (c) at (0.5,0.75) {N};
 \node (d) at (0.5,0.25) {N};
 \node (e) at (-1,0) {\text{Scheme 1.5: Structures of N-imidazole derivatives}};
\end{tikzpicture}
\end{center}

The racemisation of ketorolac (Scheme 1.6) was studied in aqueous buffer solutions at different pH and temperature. Brandl et al.19 reported that 20% racemisation of ketorolac tromethamine can be achieved after 8 months in 0.04 M of TRIS buffer at pH 7.4 at room temperature (25 °C). The proposed mechanism suggests that racemisation occurs with acid/base through the formation of an enol following protonation on the ketone on one side and transfer of hydrogen on the other.

\begin{center}
\begin{tikzpicture}
 \node (a) at (0,0) {1.3 a};
 \node (b) at (0,2) {1.3 b};
 \node (c) at (0,1) {stepwise or concerted};
 \node (d) at (0,0.5) {AH};
 \node (e) at (0,1.5) {B};
 \node (f) at (0,2) {COO-};
 \node (g) at (0,0) {\text{Scheme 1.6: Proposed mechanism for the racemisation of ketorolac}};19
\end{tikzpicture}
\end{center}
Mey et al.20 reported the racemisation of (+)- and (−)-diethylpropion (Scheme 1.7 a) in aqueous solution under physiological conditions. The racemisation was studied with and without cyclodextrins, both in organic solvent and human plasma. In aqueous solution, the racemisation of (+)- and (−)-diethylpropion became faster with increasing pH, temperature and phosphate buffer concentration, while the rate constant decreased with increasing ionic strength. The rate constant of racemisation increased by increasing the polarity of the organic solvent in the case of (−)-DEP. The pseudo-first-order rate constant for (+) - and (−)-DEP was reported to be unaffected by the presence of cyclodextrins and could be slowed down by human plasma. The racemisation of ketoprofen (Scheme 1.7, compound 1.4 b) has been suggested to be very fast and to involve reversible chiral inversion in mice.21

\begin{center}
\includegraphics[width=0.8\textwidth]{structures.png}
\end{center}

\textbf{Scheme 1.7:} Structures of 1.4 a) (R)-diethylpropion, and b) (R)-ketoprofen

Chiral stability and degradation, including the sulphonation of adrenalin (Scheme 1.8), were studied by Stepensky \textit{et al.}22 using chiral HPLC at different pH. It was determined during the storage of metabisulphite stabilised adrenaline injections that the degradation process takes place for the pharmacologically active L-adrenaline isomer involving racemisation oxidation and sulphonation.
Scheme 1.8: degradation of L-adrenaline.

The base-catalysed racemisation of \(R,S-2-(4\text{-isobutylphenyl}) \) propionic acid (ibuprofen) (Scheme 1.9), which is an important example of non-steroidal anti-inflammatory drugs “NSAIDs”, has been studied by Xie et al.\(^\text{23}\) The rate of dynamic equilibrium tautomerism leads to racemisation of the ibuprofen isomers in DMSO-water (4:1, v: v). The racemisation reaction suggested a pseudo-first-order rate constant which depends on the concentration of base catalyst rather than the concentration of the substrate. It has also been reported that using DMSO with base catalyst increases the rate constant of racemisation of ibuprofen while the single enantiomer is highly stable in DMSO without NaOH. The enantiomeric excess (ee) of 75.4\% after 6 h racemisation reaction was obtained in DMSO-water mixed medium containing 80\% DMSO at 100 °C. The \(R \)-ibuprofen racemisation has been suggested to involve keto-enol tautomerism, in which the rate determining step is the enolisation of ibuprofen.\(^\text{23}\)
Scheme 1.9: Racemisation of ibuprofen enantiomers by keto-enol tautomerism.23

Oğuz and Doğan24 studied the mechanism of the thermal racemisation of 5,5-dimethyl-1-(o-aryl)barbituric and 2-thiobarbituric acid derivatives (Scheme 1.10). The keto-enol tautomerism and variable tautomerism at different positions were suggested as possible mechanisms for the racemisation of the barbituric and 2-thiobarbituric acid derivatives. The lower reported activation energy for the racemisation of the thione derivatives compared to the oxo derivatives was unexpected. Similarly, the racemisation rate constants of thiohydantoin derivatives have been found to be higher than for hydantoin derivatives (vide infra). Substituents at the asymmetric carbon greatly influence increases or decreases in activation energy. The ring opening of 1.7 (Scheme 1.10) was also expected to compare with the racemisation of 3-aryltiazoline-2-thione 1.7 and their oxygen analogue, as suggested by Roussel et al. (Scheme 1.10).25

Scheme 1.10: Possible tautomers of barbituric and 2-thiobarbituric acid derivatives in ethanol.24

Lambert \textit{et al.}26 reported the cyclisation and racemisation mechanism for ibutilide (Scheme 1.11) at 70 °C to involve an intramolecular substitution reaction. Lambert \textit{et al.} observed
acid- and base-catalysis and also suggested that the rate-determining step for this reaction changes as a function of pH, as suggested by a U-type rate of racemisation as a function of pH. In acidic medium, racemisation takes place by the protonation of the hydroxyl. The racemisation of ibutilide is suggested to occur via a carbocation intermediate. The formation of a cyclic side product resulting from a nucleophilic attack on the intermediate cation by the internal amine is proposed as evidence for the existence of the intermediate carbocation (Scheme 1.11a). However, the S_{N}1-type mechanism suggested by reference26 is unlikely to be followed by 1.8 because the carbocation intermediate is likely too high in energy to be a viable reaction intermediate. An alternative mechanism can be drawn as shown in scheme 1.11b.

\[
\begin{align*}
\text{OH} & \quad \text{H}_3\text{C}-\text{CH}_2 \\
\text{R} & \quad \text{N} & \quad \text{(CH}_2)_6\text{CH}_3
\end{align*}
\]

\[R = \text{-C}_6\text{H}_4\text{NH}_2\text{SO}_2\text{CH}_3 \]
Yang27 reported the racemisation of temazepam 1.9 (TMZ) (Scheme 1.12) in acidic methanol and ethanol. The author reported the rate of racemisation observed by CD spectroscopy and the rate of reaction of rac-TMZ to form rac-MeTMZ (or rac-EtTMZ) obtained by ultraviolet-visible spectrophotometry. Ring opening/closing as a possible mechanism for racemisation of R-TMZ 1.9a was reported by Yang in alcoholic solvent. The proposed mechanism involves a hydrogen-bonded intermediate 1.9b resulting from solvation, which reacts to form 1.9c by opening the C3-N4 bond of the TMZ ring (Scheme 1.12). The rate constant for acid-catalysed alcoholysis in ethanol ($t_{1/2} = 3.0$ minutes) was higher than in methanol ($t_{1/2} = 4.29$ minutes) containing 0.5 M H$_2$SO$_4$ at 50 °C. However, MeTMZ was reported to be more easily decomposed than EtTMZ. It was also indicated that the rate for racemisation of the N$_4$-protonated form of TMZ increases with increasing acid concentration and the rate of racemisation for the un-protonated form of TMZ decreases with increasing acid concentration. Therefore, the N$_4$-protonated form of TMZ has a lower rate constant for racemisation than the un-protonated form.27 Using strong base for the racemisation study for TMZ produces 2-(methylamino)-5-chlorobenzophenone due to hydrolysis of TMZ (Scheme 1.12).28
Scheme 1.12: Proposed mechanism of racemisation of (R)-7-chloro-3-hydroxy-1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (temazepam TMZ) in alcohol solvent by Yang.27

General-base catalysis of the racemisation of amfepramone and cathinone at pH 7.4 was proposed by M. Reist \textit{et al.}27

1.1.7 General mechanisms of racemisation

Good leaving groups which detach from stereogenic centres of optically active compounds produce carbocations. The carbocation is achiral because of its planar form and a racemic mixture is formed through recombination of the cation with the anion or solvent (Scheme 1.13).2

\[
\begin{array}{c}
\text{R}^+ \text{Cl}^- + \text{SbCl}_5^- \rightleftharpoons \text{R}^+ \text{Cl}^- \text{SbCl}_5^- \rightleftharpoons \text{R}^+ \text{Cl}^- + \text{SbCl}_5^- \\
\end{array}
\]

\textbf{Scheme 1.13:} Racemisation mechanism of optically active molecule through formation of a planar carbocation intermediate.
Compounds that can form a carbanion on the stereogenic centre can also racemise because of rapid inversion or planarity of the carbanion. Compounds with a ketone function attached to the stereogenic centre can racemise through keto-enol equilibria (Scheme 1.14). In the case of keto-enol tautomerism, the proton transfer takes place between carbon and oxygen. The interconversion of enantiomers occurs by abstraction of a proton on the stereogenic centre by base, resulting in an enolate intermediate which binds a proton with a pair of electrons on the enolate oxygen to produce an enol-form species.\(^{29}\)

![Scheme 1.14: Keto-enol tautomerism mechanism of racemisation.](image)

The carbanion can be formed in suitable solvents in the absence of base when the proton attached to the stereogenic centre is very acidic, for instance in the case of disulphone (Scheme 1.15).\(^{2}\)

![Scheme 1.15: Carbanion formation of optically active disulphone derivative.](image)

Ketones with attached α-hydrogen may racemise in mineral acid through enol intermediates (Scheme 1.16).\(^{2}\)

![Scheme 1.16: Acid racemisation mechanism of ketone through intermediate formation.](image)
Complete racemisation occurs in the so-called bimolecular S_{E1} reaction in which hydrogen attached to the stereogenic centre is removed first in a rate-determining step to give a planar carbanion. Then, an incoming electrophile attaches to either face (Scheme 1.17). Each carbanion is deuterated with equal rate constants from the front and back side in the case of an S_{E1} reaction. Therefore, $k_{H/D}/k_{rac}$ approaches unity (See Section 1.3).

\[k_{rac} = 2k_{enant} \]

Scheme 1.17: S_{E1} mechanism of racemisation.

The ‘push-pull’ mechanism of racemisation is another possible mechanism for optically active $R_1R_2R_3H$ compounds. The termolecular S_{E2} mechanism consists of an incoming electrophile (Y^+) initiating the reaction from the back, while simultaneously a proton leaves the molecule from the front, resulting in a chiral inversion of configuration (Scheme 1.18). The H/D exchange rate in an S_{E2} reaction is half the rate of racemisation and equal to the rate of enantiomerisation. Therefore, $k_{H/D}/k_{rac} = 0.5$ (See also Section 1.3).

\[\frac{1}{2} k_{rac} = k_{enant} \]

Scheme 1.18: S_{E2} mechanism of racemisation.
Two more racemisation mechanisms relying on formation of ion pairs will be discussed in Section 1.3.

1.2 Derivatives of hydantoin and structurally related compounds

Several five-membered heterocyclic rings have been recognised as chiral molecules and their activity studied by the medicinal chemistry community (Scheme 1.19).

Scheme 1.19: Structures of 1.10 (a) 2-thiohydantoin, (b) thiazolidine-2, 4-dione (c) 2-thioxothiazolidin-4-one and (d) hydantoin

1.2.1 Therapeutic agents

The compounds shown in Scheme 1.19 have the ability to interact with a variety of biological targets and are so-called “frequent hitters” or privileged scaffolds.\(^{32}\) Substituted five-membered ring heterocyclic molecules have therefore been used widely in the field of therapeutic agents.\(^{33}\) Using a single enantiomer is essential because drug enantiomers differ in terms of toxicity, and pharmacodynamics.\(^{34}\) Different hydantoin derivatives have been used in the treatment of epilepsy,\(^{35}\) as antiarrhythmic agents\(^ {36}\) or anticonvulsants.\(^ {37}\) Thiohydantoin derivatives are known as being hypolipidemic, anticarcinogenic and antimutagenic and have been used in a wide range of applications.\(^ {38-40}\) 2,4-thiazolidinedione derivatives have been marketed as insulin-sensitising agents\(^ {41}\) and also for use in the treatment of different diseases.\(^ {42}\)
1.2.2 Synthesis

It can be difficult to obtain a high optically active drug-like molecules because racemisation can occur during synthesis, particularly if concentrated acid or base conditions and high temperature are required.

The reaction of α-amino acids with isocyanate generally takes place in basic aqueous solution to produce ureido acids. The cyclisation occurs by adding mineral acids to obtain the corresponding hydantoins 1.11 (Scheme 1.20). 43

\[
\text{R} \quad \text{NH}_2 \quad \text{OH} \quad + \quad \text{R}'\text{NCO} \quad \rightarrow \quad \text{HN} \quad \text{N} \quad \text{R} \quad \text{R}' \quad \rightarrow \quad \text{HCl} \quad \rightarrow \quad \text{HN} \quad \text{N} \quad \text{R} \quad \text{R}'
\]

Scheme 1.20: The condensation of amino acids with isocyanate.

It has also been reported that urea can be used with amino acids to give the corresponding hydantoin 1.12 with a yield of 15-20%. 43 The condensation of urea with amino acids in the absence of solvent needs high temperature. Therefore, the corresponding hydantoin would be a mixture of racemic compounds rather than enantiopure hydantoin (Scheme 1.21).

\[
\text{R} \quad \text{NH}_2 \quad \text{OH} \quad + \quad \text{H}_2\text{N} \quad \text{NH}_2 \quad \rightarrow \quad \text{HN} \quad \text{N} \quad \text{R} \quad \text{NH}_3 \quad \rightarrow \quad \text{H}_2\text{O}
\]

Scheme 1.21: The condensation of amino acids with urea.

It is also possible to use thiourea instead of urea to prepare the corresponding 2-thiohydantoins (Chapter 2). 38 High temperature during the reaction leads to racemic 5-substituted 2-thiohydantoin rather than an enantioenriched product. Narduolo 31 has used L-amino acid amides with carbonyldiimidazole (CDI) as a coupling agent dissolved in
dichloromethane to prepare (S)-5-benzylhydantoin 1.13 (Scheme 1.22). The author reported that (S)-5-benzylhydantoin showed a strong negative Cotton effect in CD spectra at 230 nm.

Scheme 1.22: Synthesis of (S)-5-benzylhydantoin as proposed by Narduolo.

The synthesis of 2-thiohydantoin acetylated at the N-1 position has been reported by Johnson44, 45 by using amino acid with the ammonium thiocyanate in acetic acid and acetic anhydride. This procedure was a successful way to synthesise 5-substituted 1-acetyl-2-thiohydantoin. However, there was no mention of the optical activity of the product. However, in 1932, Csonka and Nicolet46 reported the synthesis of both racemic and D-1-acetyl-5-methyl-2-thiohydantoin starting from enantiomerically pure D-alanine. The temperature during the reaction was not mentioned by the author. The optically active compound can be prepared by using 5 parts acetic anhydride containing 10% of acetic acid with ammonium thiocyanate. The large excess of acetic anhydride causes the rapid formation of azlactone (1.14 a) and produces highly optically active 5-substituted 1-acetyl-2-thiohydantoin (1.14 b). In the absence of isothiocyanate, the active azlactone racemises rapidly in half an hour or less. Therefore, sufficient isothiocyanate in the reaction is necessary (Scheme 1.23).46
Scheme 1.23: Johnson’s suggested mechanism for the formation of 5-substituted 1-acetyl-2-thiohydantoin.s47

During the reaction, the carboxyl group is activated by the hydrogen of a strong acid used with acetic anhydride. The carboxyl group becomes more liable to be attacked by the nucleophilic isothiocyanate ion in an acid catalysed reaction. Therefore, ammonium thiocyanate is not the best reagent to use without strong acid for the acetylation of thiohydantoin.s48

Johnson did not report the optical activity of 1-acetyl-2-thioxoimidazolidin-4-one in his publication.

No articles were found to show the synthesis of enantioenriched 5-substituted thiazolidine-2,4-diones and 2-thioxothiazolidin-4-ones.

The condensation of hydantoin with benzaldehyde was first used by Wheeler and Hoffmann in 1911 to prepare 5-benzylidene hydantoin.s49 This method has been applied successfully to achieve the base-catalysed condensation of hydantoin with different aldehydes 1.15 a (Scheme 1.24).50,51,51 Similarly, condensation catalysed by bases such as triethylamine or piperidine has been used for the synthesis of thiohydantoins with different substituents 1.15 b (Scheme 1.24).52,53
Scheme 1.24: Synthesis of 5-substituted hydantoins and 2-thiohydantoins

Narduolo used the Knoevenagel condensation of the appropriate aldehydes with hydantoin to prepare 5-arylideneimidazolidine-2,4-dione and suggested that the Z isomer for 5-benzylideneimidazolidine-2,4-dione is formed.31 Similarly, Waldemar et al.54 suggested the formation of the Z isomer of 5-benzylidene-2-thioxoimidazolidin-4-one when benzylaldehyde reacts with 2-thiohydantoin.

1.2.3 Hydrolysis

Despite the fact that hydantoic acids can cyclise under acidic conditions to produce hydantoin, hydantoin can also hydrolyse under basic conditions.55 Bergon and Calmon55 studied the alkaline hydrolysis of 5-aryl and 3-arylimidazolidine-2,4-diones to produce 5- and 3-arylhydantoic acids in aqueous solutions over the pH range 8-14 at 25 °C. The authors showed a straight-line correlation of increasing logk versus pH in the pH range from 8 to 12, followed by a plateau at pH >12. The ionisation of the substrate and the formation of the unreactive anion 1.16b can account for the levelling off of the straight line, resulting in the plateau at high pH.55 The hydrolysis takes place by attack of OH- on the unionised substrate 1.16a to form an intermediate (Scheme 1.25).56
Scheme 1.25: Base-catalysed hydrolysis mechanism of 5-substituted hydantoin, as proposed by Blagoeva et al.56

Blagoeva et al.56 elucidated the mechanism of alkaline hydrolysis of five ring compounds such as hydantoin 1.17 a and 3-methylhydantoin 1.17 b, as well as six-membered rings such as 3-methylidihydrouracil 1.18 (Scheme 1.26). The effect of ring size was examined and it was shown that angle strain in the ring is important. The rate of the addition of hydroxide to the six-membered ring is 2-3 times faster than the rate of the addition to hydantoin and 3-methylhydantoin.56

Scheme 1.26: The chemical structures of 1) hydantoin, 2) 5-methylhydantoin, 3) dihydropyrimidine-2,4(1H,3H)-dione (dihydrouracil) and 4) 3-methylidihydrouracil.

At high concentrations of OH−, breakup of the tetrahedral intermediate can be expected as the rate-determining step. In this case, the reaction is catalysed by OH− and H\textsubscript{2}O, which can be
interpreted as either a specific acid-base catalysed or a general acid-base catalysed mechanism of hydrolysis (section 1.5 and Chapter 3). The same mechanism is expected for the alkaline hydrolysis of dihydropyrimidines.57

Congdon and Edward58 reported the mechanism of base-catalysed hydrolysis of 5-substituted 1-acetyl-2-thiohydantoins (Scheme 1.27). The acyl linkage degradation for thiohydantoin can be related to the base-catalysed deacetylation of polypeptide reported previously. Schlack and Kumpf59 published an article in 1926 indicating that the acyl group in polypeptide degrades under mild acid or base conditions. 1- acetyl-2-thiohydantoins can ionise as weak acids and have pK\textsubscript{a} values of 6.5-7.0, creating a negative charge at the N-3 position (Scheme 1.27).

\begin{center}
\begin{tikzpicture}
\begin{scope}[scale=0.6]
\node (A) at (0,0) {1};
\node (B) at (2,0) {K_{AH}};
\node (C) at (4,0) {2};
\node (D) at (0,-2) {3};
\node (E) at (2,-2) {4};
\node (F) at (4,-2) {5};
\node (G) at (6,-2) {6};
\draw (A) -- (B) -- (C);
\draw (D) -- (B) -- (E);
\draw (E) -- (B) -- (F);
\draw (F) -- (B) -- (G);
\end{scope}
\end{tikzpicture}
\end{center}

\textbf{Scheme 1.27}: The mechanism of base-catalysed hydrolysis of 5-substituted 1-acetyl-2-thiohydantoins, as proposed by Congdon and Edward.58

The effect of substituents at the C-5 position on the acid and base-catalysed hydrolysis of 5-substituted 1-acetyl-2-thiohydantoins has been reported by Congdon and Edward.58 Substituents at the C-5 position retard the base-catalysed hydrolysis much more than the acid catalysed hydrolysis. The authors also suggested the possibility of the hydrogen bond between the partially negative sulphur and the hydroxyl group as being important in the mechanism (Scheme 1.28).
Scheme 1.28: Hydrogen bond formation between the partially negative sulphur and the hydroxyl group for 1.19.

The conversion of 2 to 3 (Scheme 1.27) leads to “eclipsing” between the R group at the C-5 position by the solvated O- and R group of the tetrahedral intermediate (Scheme 1.27). As a result, the steric hindrance for the buffer catalysed hydrolysis of 5-substituted 1-benzoyl-2-thiohydantoin has a large effect on the retardation of the rate of hydrolysis (Table 1.1).

Table 1.1: Buffer catalysed hydrolysis of 5-substituted 1-benzoyl-2-thiohydantoin in aqueous phosphate buffer pH 11.2, 0.45 I, at 25.3 °C.

<table>
<thead>
<tr>
<th>1-benzoyl-2-thiohydantoin</th>
<th>$k_{\text{hydrolysis}}$ / 10^4 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsubstituted</td>
<td>31.40 ± 0.40</td>
</tr>
<tr>
<td>5-methyl</td>
<td>12.70 ± 0.21</td>
</tr>
<tr>
<td>5-phenyl</td>
<td>10.20 ± 0.66</td>
</tr>
<tr>
<td>5-isopropyl</td>
<td>4.77 ± 0.18</td>
</tr>
<tr>
<td>5-isobutyl</td>
<td>6.64 ± 0.15</td>
</tr>
<tr>
<td>5-sec.butyl</td>
<td>4.65 ± 0.16</td>
</tr>
<tr>
<td>5,5-dimethyl</td>
<td>2.38 ± 0.06</td>
</tr>
</tbody>
</table>
Edward and Nielsen61 studied the alkaline hydrolysis of 5-substituted 2-thiohydantoin to produce thioureido-acids. Substituents at N-3 speed up hydrolysis because of the lack of ionisation of a more acidic hydrogen.61

Benke62 reported the basic hydrolysis of arylidene-rhodanine 1.20 (Scheme 1.29) supported by recent literature63 that interpreted rhodanine hydrolysis as being catalysed by base to produce the salt of a thioxo-acid followed by tautomerism to give the thioenolate 1.21 (Scheme 1.29).

\textbf{Scheme 1.29:} The hydrolysis product of (Z)-5-benzylidene-2-thiothiazolidin-4-one.

\subsection*{1.2.4 Racemisation of hydantoin derivatives}

Hydantoins and related compounds, including imidazolidine-2,4-dione, 2-thioxoimidazolidin-4-one (2-thiohydantoin), thiazolidine-2,4-dione and 2-thiothiazolidin-4-one (rhodanine), are subject to racemisation in the presence of a buffer or base. In 1910, Mendel and Dakin64 published a paper explaining the racemisation of optically active hydantoin in the presence of base. The authors proposed that the proton attached to the stereogenic carbon was transferred by base and produced a planar carbanion, leading to the tautomeric compound forming racemic mixtures.64 Dudley and Bius65 reported the mechanism of the interconversion of 5-phenylhydantoin by divalent phosphate \textit{in vivo} without a specific racemase (Scheme 1.30). The change in optical rotation was recorded over time using a spectropolarimeter and the pseudo-first-order rate constants were obtained in pH range 6.0-7.5. It was determined that the rate constant increases linearly with increasing buffer concentration and increasing pH, which suggests general-base catalysis. In this article, it was concluded that the abstraction of a proton at the asymmetric carbon was the rate-determining step. This was also suggested by Dakin.66 After correcting the kinetic data for the ionisation at the N-3 position at each pH, the authors suggested that the rate constants for racemisation of 5-phenylhydantoin were almost
the same as those for racemisation of 3-methyl-5-phenylhydantoin. The experimentally
determined pseudo-first-order rate constant for the racemisation of 5-phenylhydantoin of
$(47.20 \pm 1.30) \times 10^3$/minutes was reported in 0.1 M phosphate buffer (pH 7.5, 0.35 M I). After
correction, the value was adjusted to $(54.90 \pm 1.30) \times 10^3$/minutes (Scheme 1.30).

![Scheme 1.30: Mechanism of racemisation of optically active 5-phenylhydantoin or 3-methyl-
5-phenylhydantoin by di-valent phosphate, as proposed by Dudley and Bius.]

Aryl and alkyl groups at the N-1 or N-3 position were suggested by Bovarnic and Clarice to
retard the racemisation, and substituents at both positions may even prevent it. Keto-enol
tautomerism is essential for hydantoin and thiohydantoin to undergo racemisation. Bovarnic
and Clarice proposed two possible bond displacements between the nitrogen at the 1 and 3
positions with the carbonyl at the 2 position and between the hydrogen attached to the
asymmetric carbon with the carbonyl at the 4 position (Scheme 1.31).

![Scheme 1.31: The keto-enol tautomeration and bond displacement of 5-substituted hydantoins,
as suggested by Bovarnic and Clarice.]

Keto-enol tautomerism has also been detailed for allantoin (5-ureidohydantoin) by Kahn and Tipton68 and the S\textsubscript{E}1 mechanism is expected to be favoured for the base-catalysed racemisation of allantoin (\textit{vide infra}).

Reist \textit{et al.}69 studied the racemisation of 5-substituted hydantoin (Scheme 1.32) as a model compound in phosphate buffer pH 7.4 at different temperatures. The effect of substituents on the rate constants of racemisation at the C-5 position were also discussed.

\textbf{Scheme 1.32:} Racemisation of 5-substituted hydantoin studied as a model for chiral drugs by Reist \textit{et al.}69

The pseudo-first-order rate constants of racemisation and H/D exchange were determined for compounds 1.22-1.28 and the effect of substituents on the rate constant is quite obvious. A general-base catalysed racemisation was also concluded for the 5-substituted hydantoin racemisation. Narduolo31 studied the racemisation of hydantoin with different substituents at the C-5 and N-3 positions in aqueous solution (Scheme 1.33) and explained the effect of cosolvents on the rate of racemisation. As can be seen, the methyl group at the N-3 position in compound 1.29 (Scheme 1.33) decreased the rate constant of racemisation compared to compound 1.25 as reported by Narduolo. This retardation in the rate constant of racemisation by the N-3 substituent was also found by Bovarnic and Clarice67 for hydantoin racemisation.
Scheme 1.33: Structures of several 3-substituted hydantoins studied with different 5-substituted hydantoin by Narduolo.

Pseudo-first-order rate constants for racemisation of \((167.3 \pm 1.3) \times 10^{-6} \text{ s}^{-1}\) and \((114.4 \pm 0.5) \times 10^{-6} \text{ s}^{-1}\) were reported for compounds 1.25 and 1.29, respectively in H\(_2\)O phosphate buffers (0.25 M, pH 7.2, 0.5 M \(I\), at 60 °C). Similarly, the second-order rate constant for racemisation was shown to be lower for compound 1.29 by approximately 34% by Lazarus\(^70\) in comparison with compound 1.25. Lazarus studied the racemisation of 1.25 and 1.29 under physiological conditions and proposed general-base catalysed racemisation in which the rate constant of racemisation was increased by increasing the concentration of buffer. Electronegative substituents on the asymmetric carbon or amino group promote the rate constants of racemisation, as suggested previously.\(^66\) Therefore, the rate constants of racemisation for compounds which have electonegative substituents attached to the asymmetric carbon have higher rate constants for racemisation than methyl, isopropyl and benzyl substituted compounds. Cabrera et al.\(^71\) studied the enantiomerisation of 5-benzyl-3-phenyl-2-thioxoimidazolidin-4-one 1.33 (Scheme 1.34) using chiral HPLC in methanol-triethylammonium acetate buffer (pH 4.1) (2:98, v/v), 0.8 ml/min at different temperatures. The authors reported the values for the rate constants of enantiomerisation \(k_1\) to be 0.0096, 0.0153 and 0.023 minute\(^{-1}\) at 25, 30 and 35 °C, respectively.
Scheme 1.34: Racemic 5-benzyl-3-phenyl-2-thioxoimidazolidin-4-one studied by Cabrera et al. 34

Cabordery et al.34 published an important article which reported the mechanism of the racemisation of tetrahydroisoquinoline hydantoin and thiohydantoin (Scheme 1.35) studied using HPLC and capillary electrophoresis. The rate constants, half-lives and energy barrier for racemisation of the different substituted- hydantoin and thiohydantoin compounds were reported. The pseudo-first-order rate constants for racemisation of thiohydantoin 1.34a and hydantoin 1.34b in ethanolic-aqueous medium show a linear increase with the concentration of the phosphate buffer and expected temperature dependence.

Scheme 1.35: Tetrahydroisoquinoline a) thiohydantoin, and b) hydantoin studied by Cabordery et al.34

The replacement of the oxygen by sulphur increases the rate constant of racemisation, which also increases the chiral instability of the enantiomers. Cabordery et al. reported that the enantiomer of compound 1.34a needs less than one hour to racemise completely, while the enantiomer of compound 1.34b requires 270 days for complete racemisation (Scheme 1.35).
1.3 Comparison of racemisation and H/D exchange kinetics

The carbanion intermediate was first studied by Wilson et al.72, 73 who investigated the mechanism of racemisation of 1-phenyl-2-methyl-1-butanol by comparing the rate of racemisation with the hydrogen-deuterium exchange rate. Wilson observed equal rates for racemisation and hydrogen-deuterium exchange of optically active 2-methyl-1-phenyl-1-butanol in a solution of dioxane-deuterium oxide-sodium deuterium butanone. It was proposed that a proton was transferred to the base in the rate-determining step, followed by deuteration or protonation of the resulting symmetrical anion on either the oxygen or carbon.30 The pyramidal inversion of the optically active tetrahedral carbanion $R_2R_1RC^-$ in the racemisation is important to show that both pyramidal configurations are mirror images or enantiomers. The cleavage of the proton from the asymmetric carbon by base to form carbanion is followed by deuterium exchange in the deuterium containing medium.29, 30 It has previously been shown that a comparison of the rate constants for base-catalysed racemisation and rate constants for hydrogen-isotope exchange of the optically active carbon acids can be used to determine the mechanism of racemisation (Scheme 1.3).30

![Scheme 1.36: Base-catalysed racemisation and H/D exchange](image)

If a planar carbanion is formed as a result of deprotonation then proton-deuterium exchange occurs with complete racemisation because each carbanion is deuterated with equal rate constants from the front and from the back. Hence, $k_{H/D}/k_{rac}$ approaches unity.29, 30 Even if the anion is not planar the reprotonation rate of the pyramidal configuration of the carbanion is typically much slower than the rate of inversion of the carbanion, and deuterium exchange will be followed by racemisation. The reaction is therefore expected to follow the S_E1 mechanism if $k_{H/D}$ is equal to k_{rac} (Scheme 1.37).69
In the case of exchange with complete net inversion, on the back side, each carbanion will be captured simultaneously to deprotonation at the front to produce an inverted molecule. Therefore, the exchange rate is half that of racemisation and \(k_{\text{H/D}} / k_{\text{rac}} = 0.5 \) (equal that of enantiomerisation) (Scheme 1.38).

If racemisation in a deuterated solvent occurs without H/D exchange, then \(k_{\text{H/D}} / k_{\text{rac}} \) approaches 0, also called isoracemisation (Scheme 1.39). Isoracemisation was proposed to occur in two main ways. First, the proton of the asymmetric carbon might be moved from the front side to the backside by external proton donors through intramolecular proton transfer. Second, the proton which was attached to the carbon acid becomes reconnected with the carbanion and produces a racemic molecule without the isotopic exchange because of the absence of sufficiently strong acid to provide protons for the carbanion (Scheme 1.39). For this to occur the carbanion simply rotates 180° while remaining in an ion pair with its counterion, i.e. the protonated base (Scheme 1.39). In some cases, moisture can lead to small amounts of deuteration to take place. For example, a value of 0.23 was obtained for \(k_{\text{H/D}} / k_{\text{rac}} \) for 9-deuterio-(or protio)-9-methylfluorene by Cram by heating at 145 °C in dry tetrahydrofuran containing 0.5 M trimethylamine.
Cram indicated that isoracemisation takes place only when k_1 and $k_2 \geq k_3$.\cite{30} It can be concluded that the reaction medium, including the type of base and solvent used, can change the mechanism of racemisation.\cite{77}

The exchange process occurs with complete retention if the carbanion is pyramidal and protonation is faster than inversion. Complete or predominant retention depends on the relative rate of racemisation.\cite{29} k_{HD} / k_{rac} approaches infinity for complete retention and $k_{HD} / k_{rac} > 1$ in the predominant retention of configuration. Using ammonia as a base in the presence of t-butyl alcohol with optically active compound \textbf{1.35} leads to a high retention of configuration ($k_{HD} / k_{rac} > 50$ at 200 °C) (Scheme 1.40).\cite{79} The values of k_{HD} / k_{rac} obtained were equal to 10 or higher in the presence of non-dissociating solvents and potassium oxide bases used as a catalyst for the racemisation of 2-phenylbutane and 2-(N,N-dimethylamido)-9-methylfluorene.\cite{80} Using a high concentration of ammonia in tetrahydrofuran decreases the value of k_{HD}/k_{rac} for \textbf{1.35} because ammonia promotes the reaction rate and ion-pair dissociation. The retention mechanism occurs when k_2 and $k_1 > k_3$. The dissociation of the ions becomes faster than ammonium ion rotation if dimethylsulphoxide is used ($k_3 > k_2$). This can form the symmetrical carbanion, with the value of k_{HD} / k_{rac} going to unity (Scheme 1.40).\cite{30, 79, 80}
1.4 Kinetic and equilibrium isotope effects

The contribution of rotational, translational and electronic motion to the overall energy of a molecule does not depend significantly on isotopic substitution. On the other hand, the vibrational contribution to the energy depends significantly on the isotopic substitution. Therefore, changing the isotope of an atom can have an effect on equilibrium and rate constants. Primary kinetic isotope effects take place when a bond involving the isotope is broken in the transition state. Secondary kinetic isotope effects occur when the bond involving the isotopic substitution is not broken in the transition state, but breaking of another (adjacent) bond changes the vibrational frequency of the bond involving the isotope substitution. The zero point vibrational energy is given by
\[\varepsilon_\circ = \frac{1}{2} (\hbar \nu) \] \hspace{1cm} \text{Equation 1.10}

where \(h \) is Planck’s constant and \(\nu \) is the vibrational frequency of the bond concerned.

With the vibration frequency \(\nu \) given by Equation 1.11
\[\nu = \frac{1}{2\pi} \sqrt{\frac{f}{\mu}} \] \hspace{1cm} \text{Equation 1.11}

where \(f \) is the force constant of the bond and \(\mu \) is the reduced mass of the atoms involved in the bond.

The force constants are equal for both isotopes \(f_H = f_D \) and \(\mu \) is the reduced mass given by Equation 1.12.
\[\mu_{HX} = \frac{m_1 m_2}{(m_1 + m_2)} \] \hspace{1cm} \text{Equation 1.12}

where \(m_1 \) and \(m_2 \) are the masses of the atoms linked by the covalent bond.

From Equation 1.11 and Equation 1.12, the reduced mass of the deuterium attached to a much heavier atom becomes 2 and hydrogen attached to a much heavier atom becomes 1. Then the frequency ratio becomes \(\sqrt{2} \) (Equation 1.13).
\[\frac{\nu_{HX}}{\nu_{DX}} = \sqrt{\frac{\mu_{DX}}{\mu_{HX}}} \approx \sqrt{2} \approx 1.4 \] \hspace{1cm} \text{Equation 1.13}

The kinetic isotope effect is obtained from the ratio between the rate constants of two reactions that differ in the isotope composition of the reactants (Equation 1.14).83
where \(k_{\text{light}} \) is the rate constant for the reaction of the light isotope and \(k_{\text{heavy}} \) is the rate constant for reaction of the heavy isotope.

In the solvent kinetic isotope effect, the vibration frequencies of H\(_2\)O and H\(_3\)O\(^+\) are different from those of D\(_2\)O and D\(_3\)O\(^+\). When the solvent is involved in the reaction mechanism, a kinetic isotope effect can arise. The isotope effect can be primary, secondary, normal or inverse depending on the role of the solvent. As a result of D\(_3\)O\(^+\) being a stronger acid than H\(_3\)O\(^+\), reactants in D\(_2\)O solution are protonated more at the same acid concentration (pD) than reactants in H\(_2\)O at the same acid concentration (pH). Therefore, a reaction requiring a protonated substrate proceeds faster in D\(_2\)O than in H\(_2\)O. The ratio \(k_{\text{H}_2\text{O}} / k_{\text{D}_2\text{O}} < 1 \), therefore an inverse solvent kinetic isotope effect is observed. Inverse solvent kinetic isotope effects happen when solvent is not involved as a proton donor in the rate determining step in the reaction. However, the reaction in H\(_2\)O will be observed to be faster than D\(_2\)O when the proton abstraction is part of the rate determining step and obtain the normal kinetic isotope effect.\(^{84}\) Normal solvent kinetic isotope effects happens when the proton transfer is part of the rate–determining step and the reaction is faster in H\(_2\)O than D\(_2\)O.\(^{85}\)

Proton abstraction from carbon acids in hydantoin and thiohydantoin derivatives has been studied previously. Reist \textit{et al.}\(^{69}\) observed a small solvent kinetic isotope effect for the racemisation of 5-substituted hydantoins. Solvent kinetic isotope effect values (1.13 \(\pm\) 0.05) and (1.24 \(\pm\) 0.08) were observed for the racemisation of (\(S\))-5-phenylimidazolidine-2,4-dione (1.22) and (\(S\))-5-benzylimidazolidine-2,4-dione (1.25), respectively, in a 50/50 (v/v) mixture of phosphate buffer and DMSO. A negligible solvent kinetic isotope effect on racemisation was also obtained for 1.22 and 1.25 by Narduolo\(^{31}\) in D\(_2\)O- and H\(_2\)O-phosphate buffers (0.25 M, 0.5 M \(I\), at 60 °C). Solvent and primary kinetic isotope effects were also determined by Narduolo for the compounds shown in Scheme 1.41.
Scheme 1.41: (S)-5-H- and (S)-5-D- pyridin-2-ylmethyl)imidazolidine-2,4-dione (1.36, and 1.37), and (S)-5-H- and (S)-5-D- (1-methyl-1H-pyrrol-2-yl)methyl)imidazolidine-2,4-dione (1.38, and 1.39) studied by Narduolo.

Negligible solvent kinetic isotope effects were obtained for compounds 1.36 and 1.38. Normal primary kinetic isotope effects for racemisation of 1.36 and 1.38 were observed suggesting breaking of the C-H(D) bond in the rate-determining step (Table 1.2).

Table 1.2: Rate constants for racemisation of hydantoins 1.36-1.39 in H$_2$O- and D$_2$O-phosphate buffers 0.5 M, 1 M I, pH and pH* 7.2, at 60 °C, and related primary kinetic isotope effects studied by Narduolo.

<table>
<thead>
<tr>
<th>Buffer</th>
<th>k_o / 10^6 s$^{-1}$</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.36</td>
<td>1.37</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>494.0 ± 16.0</td>
<td>------</td>
</tr>
<tr>
<td>D$_2$O</td>
<td>498.8 ± 6.1</td>
<td>150.5 ± 4.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buffer</th>
<th>k_o / 10^6 s$^{-1}$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.38</td>
<td>1.39</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>208.0 ± 10.0</td>
<td></td>
</tr>
<tr>
<td>D$_2$O</td>
<td>303.5 ± 5.3</td>
<td>61.9 ± 7.2</td>
</tr>
</tbody>
</table>

a) k_o is the rate constant for the loss of ellipticity determined by CD spectroscopy (See chapter 4).

Cabordery et al.34 obtained the value of the solvent kinetic isotope effect (k_{H_2O}/k_{D_2O}) of 0.78 for 2-(3-(benzyl(methyl)amino)propyl)-3-thioxo-2,3,10,10a-tetrahydroimidazo[1,5-b]isoquinolin-1(5H)-one 1.34a (Scheme 1.35) in 33 mM of H$_2$O- and D$_2$O-phosphate buffer and EtOH and EtOD 75/25 (v/v), pH, and pH* 2.5, and 2.6, respectively, at 15 °C. As mentioned, Narduolo observed the absence of significant solvent kinetic isotope effects for
the general-base catalysed racemisation of substituted hydantoin, which suggests no involvement of the solvent in proton abstraction or donation.

1.5 Acid and base catalysis of reactions involving proton transfer

Acid and base catalysis are important in racemisation and other reactions of drug-like molecules involving proton transfer. There are two major types of acid/base catalysis, namely specific and general catalysis.

1.5.1 Acid catalysis hydrolysis and racemisation

The hydrolysis of 5-substituted 1-acetyl-2-thiohydantoin was studied by Congdon and Edward86 in sulphuric acid. The acid-catalysed hydrolysis takes place by a mechanism named A\textsubscript{2}. Deprotonation may take place for the tetrahedral intermediate to produce the neutral tetrahedral intermediate. There is also another possibility to reprotoonate the other oxygen giving a charged intermediate by direct intramolecular proton transfer.87 This type of mechanism is called specific acid catalysis and is reported for the hydrolysis of ethyl acetate,87 amide hydrolysis and the cleavage of primary ethers.82 The observed pseudo-first-order rate constants \(k_{\text{obs}} \) in specific-acid catalysis has been observed to be linearly dependent upon hydronium ion concentration \([H_3O^+]\) (Equation 1.15).

\[
- \frac{d[E]}{dt} = k_2 [E] + k_\text{H} [H_3O^+] [E] \quad \text{Equation 1.15}
\]

which can be rewritten as a first-order rate law (Equation 1.16).

\[
- \frac{d[E]}{dt} = k_{\text{obs}} [E] \quad \text{Equation 1.16}
\]
The specific-acid catalysed rate constant can then be calculated using Equation 1.17.

\[k_{\text{obs}} = k_0 + k_H [\text{H}_3\text{O}^+] \] \hspace{1cm} \text{Equation 1.17}

where \(k_{\text{obs}} \) is the experimental pseudo-first-order rate constant, \(k_0 \) is the first-order rate constant for the uncatalysed reaction and \(k_H \) is the second-order catalytic rate constant for the reaction catalysed by \(\text{H}_3\text{O}^+ \).

In a general-base catalysed reaction, the reaction is catalysed not only by \(\text{H}_3\text{O}^+ \) but also by any additional weak acid \(\text{A-H} \) (Equation 1.18).

\[k_{\text{obs}} = k_0 + k_H [\text{H}_3\text{O}^+] + \sum k_{\text{AH}} [\text{AH}] \] \hspace{1cm} \text{Equation 1.18}

where \(k_{\text{obs}} \) is the experimental pseudo-first-order rate constant, \(k_0 \) is the first-order rate constant for the un-catalysed reaction, \(k_H \) is the second-order catalytic constant for the reaction catalysed by \(\text{H}_3\text{O}^+ \), \(k_{\text{AH}} \) is the second-order catalytic constant for the reaction catalysed by the general acid \(\text{A-H} \), and \(\sum k_{\text{AH}} [\text{AH}] \) is the sum over the contributions of all catalytically active acids present.

General-acid catalysis can occur when rate determining proton transfer takes place from acids other than from the solvated proton.84 Acid-catalysed racemisation of catecholamines 1.40 (Scheme 1.42) was reported by Venter88 who suggested that racemisation occurs via the formation of a quinoidal intermediate rather than via an S\textsubscript{N}1-type reaction. The proposed mechanism involves the loss of the hydroxide group resulting in the formation of a highly stable achiral intermediate and thus loss of optical activity. Stabilisation of the compound may occur by the formation of a quinonoid intermediate.88
Scheme 1.42: Acid-catalysed racemisation mechanism of (S)-2-hydroxy-2-(4-hydroxyphenyl)-N-methylethan-1-aminium (1.40a) and (S)-N-(2-hydroxy-2-(4-methoxyphenyl)ethyl)propan-2-aminium (1.40b), proposed by Venter.

For comparison, the mechanism shown in Scheme 1.8 was also proposed for the acid-catalysed racemisation of the structurally similar L-adrenaline 1.5 (Scheme 1.8).

1.5.2 Base catalysis in selected hydrolysis and racemisation reactions

The first-order rate constants for a reaction undergoing specific-base catalysis, \textit{i.e.} the reaction is not catalysed by any other bases, vary linearly with [OH-] according to Equation 1.19.

\[
 k_{\text{obs}} = k_0 + k_{\text{OH}[OH^-]} \quad \text{Equation 1.19}
\]

where \(k_{\text{obs}} \) is the experimental pseudo-first-order rate constant, \(k_0 \) is the first-order rate constant for the uncatalysed reaction and \(k_{\text{OH}} \) is the second-order rate constant for the reaction catalysed by OH-.

Reaction involving fast proton transfer from the molecule to a base, followed by a slow step involving the deprotonated substrate molecule exhibits a specific-base catalysis rate law.

In the general-base catalysis of hydrolysis and racemisation, the reaction is catalysed by OH- and any base B. The observed rate constant for a reaction undergoing general-base catalysis is given by Equation 1.20.
\[k_{obs} = k_0 + k_{OH}[OH^-] + \sum k_B[B] \quad \text{Equation 1.20} \]

where \(k_{obs} \) is the experimental pseudo \(n \)-th order rate constant, \(k_0 \) is the rate constant for the uncatalysed reaction, \(k_{OH} \) is the catalytic constant of the hydroxide catalysed reaction, \(k_B \) is the catalytic constant of the reaction catalysed by general base B, and \(\sum k_B[B] \) is the sum over the contributions of all catalytically active bases present.\(^{87} \) The base-catalysed hydrolysis of the hydantoin and thiohydantoin derivatives have been reported previously.\(^{58, 89, 90} \) The base-catalysed racemisation of substituted hydantoins and thiohydantoins has also been studied in buffer which catalyses the abstraction of the acidic hydrogen at the asymmetric carbon and buffer therefore racemises the compounds.\(^{31, 34, 69, 70} \)

1.5.3 Brønsted plots

The proton transfer of the carbon has an important role in racemisation which depends on the acidity of the CH which in turn depends on the polar reaction involving the charge delocalisation, bond formation and cleavage.\(^{91} \) The enolisation of hydantoin derivatives is subject to general-base catalysis as mentioned by Lazarus\(^{70} \) and the catalysing power of the base is related to the equilibrium base strength, as expressed by Equation 1.21.

\[\log k_B = \beta \times pK_a + C \quad \text{Equation 1.21} \]

where \(k_B \) is the second-order catalytic constant for the reaction catalysed by the general base B, \(\beta \) is the Brønsted parameter associated with the reaction catalysed by general-bases which show the sensitivity of the reaction to change in structure of the catalysing base, and \(pK_a \) is the dissociation constant of the conjugate acid of the catalytic base B.\(^{92} \)

The values of \(\alpha \) and \(\beta \) in general-acid and base catalysis, respectively, can be determined from the slope of the logarithm of observed rate constant versus \(pK_a \) of the conjugated-acid or base. The Brønsted coefficient is typically interpreted as the degree of proton transfer in the transition state, falling between 0 and 1 for most reactions.\(^{82, 84} \) When the Brønsted coefficient equals 0, it suggests that the transition state is close to the reactant; when it is equal to 1, it suggests a transition state close to the product.\(^{82} \) As mentioned before, isotope effects also probe proton transfer and can be considered alongside the Brønsted coefficient to show if
proton transfer is involved in the rate-determining step or not. In the solvent kinetic isotope effect, \(k_{H_2O} / k_{D_2O} \) can be obtained as normal or inverse based on the mechanism of the proton transfer. In the normal kinetic isotope effect, the proton transfer is part of the rate determining step and rapid equilibrium protonation in the inverse kinetic isotope effect. Lazarus\(^{70} \) reported a \(\beta \)-value of 0.59 for the base-catalysed racemisation of L-5-benzylhydantoin and 0.51 for L-5-benzyl-3-methylhydantoin. These values suggest that the proton is only half-transferred in the rate determining step. Narduolo\(^{31} \) obtained a \(\beta \)-value for L-5-benzyl-3-methylhydantoin of 0.57 and 0.59 at 25 and 60 \(^\circ \)C, respectively.

The Brønsted coefficient and solvent kinetic isotope effect have been calculated for acetone enolisation at 25 \(^\circ \)C.\(^{92} \) A correlation between \(\beta \) and \(k_{H_2O} / k_{D_2O} \) was reported with the largest isotope effects associated with values of \(\beta \) close to 0.5 and the smallest isotope effect correlated with \(\beta \) equal to 0.82.\(^{92} \)

A general Marcus-type mechanism can be proposed for proton abstraction in aqueous solution in which formation of a hydrogen bond between the acid and base formally proceeds proton transfer. Following proton transfer, the conjugate base of the acid and the protonated base are hydrogen bonded. Reaction is completed by breaking this hydrogen bond (HBC\(_1\) and HBC\(_2\) in Scheme 1.43).\(^{93} \)

\[
\begin{align*}
&\text{HA} + \text{B} \xrightleftharpoons[k_1]{k_{-1}} \text{AH} \cdots \cdots \text{B} \xrightleftharpoons[k_2]{k_{-2}} \text{A}^- \cdots \cdots \text{HB}^+ \xrightleftharpoons[k_3]{k_{-3}} \text{A}^- + \text{BH}^+ \\
\text{HBC}_1 & \hspace{1cm} \text{HBC}_2
\end{align*}
\]

Scheme 1.43: proton transfer mechanism.

The observed rate constant of the proton transfer in Scheme 1.43 from HA to B is given by equation 1.22.\(^{93} \)

\[
k_{obs} = \frac{k_1 k_2 k_3}{[k_{-1}(k_{-2} + k_3) + k_2 k_3]}
\]

\textbf{Equation 1.22}
Assuming the intermediates are present in low concentration, two main mechanisms are possible. First, when \(k_2 > k_2 \), the formation of \(H_1 \) is the rate-determining step and \(k_{\text{obs}} = k_1 \), when \(k_2 < k_2 \), the \(k_{\text{obs}} \) for the cleavage of hydrogen bond (HBC_1 and HBC_2 in Scheme 1.43) is \(k_{\text{obs}} = (k_1/k_1) (k_2/k_2) k_3 \). In this case, the proton transfer between the HBC_1 and HBC_2 is fast. Second, proton abstraction is the rate-determining step when the interconversion of the complex is slow; then \(k_2 < k_1 \) and \(k_3 > k_2 \), and therefore, \(k_{\text{obs}} = (k_1/k_1) k_2 \) (Scheme 1.44).

\[\Delta G_R^0 \begin{cases} > 0 & \text{exothermic} \\ = 0 & \text{endothermic} \\ < 0 & \text{endothermic} \end{cases} \]

Scheme 1.44: Standard free energy change of proton abstraction reaction and transition state structure differences.

From Schemes 1.43 and 1.44, the reaction becomes exothermic when HA is a much stronger acid than BH^+, and the transition state lies towards the reactant, with \(G^\neq \) closer to \(G_R^\neq \) than to \(G_p^\neq \). Then, the deprotonation reaction will have a Brønsted \(\beta \) of 0. On the other hand, the reaction would be endothermic if HA is a much weaker acid than BH^+ and the transition state lies to the product with \(G^\neq \) closer to \(G_p^\neq \). In this case the reaction catalysed by A^- will have \(\beta = 1 \).
Since $\beta = 1 - \alpha$, $\Delta G^* = G^* - G_R^*$ and $\Delta G = G_p^* - G_R^*$, the Brønsted coefficient can be expressed as a function of the free energy according to Equations 1.23, 1.24 and 1.25 to obtain 1.26.

$$\delta G^* = \alpha \delta G_p^* + \beta \delta G_R^*$$ \text{Equation 1.23}

$$\delta G^* = \alpha \delta G_p^* + \delta G_R^* - \alpha \delta G_R^*$$ \text{Equation 1.24}

$$\delta G^* - \delta G_R^* = \alpha (\delta G_p^* - \delta G_R^*)$$ \text{Equation 1.25}

$$\alpha \text{ or } \beta = (\delta G^*)/(-\delta G_R^*)$$ \text{Equation 1.26}

where ΔG^* is the free energy of the reaction and ΔG^* is the free energy of activation.

When the acidity strength of HA and BH$^+$ is similar, then α and β values will be between 0 and 1. Therefore, changing the strength of B changes ΔG^* and ΔG_R^*, and according to Equation 1.19, the values of α and β will also change. It can be concluded from Scheme 1.44 that for the symmetrical proton transfer when $\Delta G_R^* = 0$, the value of $\beta = 0.5$, for $\Delta G_R^* < 0$, the value of β will be less than 0.5, and β will be higher than 0.5 in the case of $\Delta G_R^* > 0$.93

1.5.4 Enzyme catalysed hydrolysis and racemisation of hydantoin derivatives

5-Substituted hydantoins can be considered as amino acids that are cyclised (vide supra). Some enzymes can hydrolyse the substituted hydantoins to the carbamoyl amino acid and in some cases produce amino acids.95,96 Some bacteria can be used to prepare enantiopure amino acids from racemic 5-substituted hydantoins (Scheme 1.45).97 The rate constant of racemisation plays an important role in the production of enantiopure L- and D-N-carbamoyl amino acids followed by the formation of L- and D-amino acids. If the rate constant of hydantoin racemisation is quite slow in comparison with the rate constant of the hydrolysis, then the optically active hydrolysed compound can be prepared.98 On the other hand, the optically active hydrolysed compounds are impossible to prepare when the racemisation process takes place faster than the hydrolysis. Therefore, the substituents at the C-5 position...
have an important role in controlling the rate constant of racemisation rather than hydrolysis as discussed for the racemisation and hydrolysis rate constant of thiohydantoin derivatives (Scheme 1.45).

Scheme 1.45: Synthesis of optically active \(\alpha \)-amino acids with enantioselective hydantoinase–carbamoylase with \textit{in situ} racemisation, proposed by Servi \textit{et al}.97

Lee and Fan98 studied the enzymatic hydrolysis and racemisation of 5-phenylhydantoin and 5-(p-hydroxyphenyl)hydantoin to produce N-carbamoyl amino acid, as catalysed by hydantoinase. The authors observed an increase in the rate constant for hydrolysis with increasing pH. It has also been observed that the rate constant for racemisation of 5-(p-hydroxyphenyl)hydantoin is higher than the 5-phenylhydantoin racemisation rate constant. The enzymatic synthesis of hydantoin is documented as a well-established process to prepare optically active hydantoin without a toxic chemical compound. The keto-enol tautomerism was also mentioned to be affected by more electronegative hydroxyl substituents at the para position which can stabilise the enolate structure and promote the rate constant of the racemisation.
1.6 Mechanistic studies of racemisation reactions

Narduolo31 reported a $k_{\text{rac}} / k_{\text{H/D}}$ between 1.2-1.3 for S-5-benzylhydantoin which supports the S_E1 rather than the S_E2 mechanism (25°C using 0.1 and 0.5 M of D$_2$O-phosphate buffer, pH* 7.2, 1 M I). The S_E1 mechanism is illustrated in Scheme 1.46.

\[X = S \text{ or } O \]

\textbf{Scheme 1.46:} Proposed S_E1 mechanism for hydantoin derivatives.

Cabordery \textit{et al.}34 proposed the S_E1 mechanism for Tic-hydantoin (1.34 b) racemisation in 33 mM, pD 7.3 deuterated-phosphate buffers / EtOD- 75/25 (v/v) at 25°C which $k_{\text{H/D}} / k_{\text{rac}} \sim 1$ and the deuteration occurring with complete racemisation (Scheme 1.35). Similarly, the racemisation of amfepranone and cathinone have been reported to proceed via the S_E1 mechanism in D$_2$O-phosphate buffer (pD 7.4, 0.43 M I).99

Reist \textit{et al.}69 found $k_{\text{H/D}} / k_{\text{rac}}$ for 5-benzylhydantoin (1.25) (Scheme 1.32) to vary between 0.6 and 0.7 in a mixture of D$_2$O-phosphate buffer (pD 7.4, 0.1 M, 0.22 M I) with 1:1 D$_6$-DMSO (v:v) between 50°C to 80°C. Cabordery \textit{et al.}34 proposed the S_E2 mechanism for thiohydantoin 1.34 a (Scheme 1.35) in 33 mM, pD 2.6 deuterated phosphate buffers / EtOD-75/25 (v/v) at 15°C based on the observation that the rate constant for deuteration was about half the rate constant for racemisation, suggesting that deuteration occurs with an inversion of configuration. The push-pull S_E2 mechanism for thiohydantoin proposed by Reist \textit{et al.} is show in Scheme 1.47 where H or D can be transferred by base or OD on one side and attack by the H or D from the other side, producing the inverted configuration (Scheme 1.47).
The kinetics and mechanism of allantoin racemisation was reported by Kahn and Tipton\(^\text{68}\) in D\(_2\)O-phosphate buffer at pH between 5.7 and 10 at 22 °C. The authors proposed three possible mechanisms for the racemisation of (S)-5-ureido-hydantoin (1.40): \(S_E1\), \(S_E2\) and \(S_N2\). The rate constants for H/D exchange \((k_{H/D})\) increase with increasing phosphate buffer concentration. There was no clear explanation to favour the \(S_E1\) mechanism over the \(S_E2\) mechanism or vice versa by Kahn and Tipton for allantoin racemisation. Therefore, only a general \(S_E\) mechanism was suggested which could be either \(S_E1\) or \(S_E2\) for the general-base catalysed racemisation of allantoin 1.41 (Scheme 1.48). This was in agreement with the \(S_E1\) mechanism proposed by Narduolo\(^\text{31}\) and Cabordery et al.\(^\text{34}\) and also the \(S_E2\) mechanism suggested by Reist et al.\(^\text{69}\) for the racemisation of substituted-hydantoin (\textit{vide supra}). Allantoin can racemise via an \(S_N2\)-like mechanism, as shown in Scheme 1.48, via the formation of a symmetrical bicyclic intermediate formed between the primary amide and C4. This mechanism is not possible for other 5-substituted hydantoins because of the absence of suitable substituents at the C-5 position of hydantoin.

\[\text{Scheme 1.47: proposed } S_E2 \text{ mechanism for thiohydantoin and hydantoin derivatives.} \]
There is no practical evidence available to show the mechanism of the racemisation of thiazolidine-2,4-dione (1.10 b) and 2-thioxothiazolidin-4-one (1.10 c) (Scheme 1.19). Jamali et al.100 reported keto-enol tautomerism, an unsurprising way to convert R enantiomers to S enantiomers and vice versa for 5-substituted thiazolidine-2,4-dione (Scheme 1.49). Similarly, the keto-enol tautomerism has also been suggested for hydantoin, as mentioned in 1912 by Dakin.101

\begin{equation}
\begin{array}{c}
\text{S enantiomer} \\
\text{R enantiomer}
\end{array}
\end{equation}

\textbf{Scheme 1.49:} The keto-enol tautomerism of 5-substituted- thiazolidine-2,4-dione.

A theoretical study of the racemisation mechanism and the factors which promote the base-catalysed racemisation of thiazolidine-2,4-dione (1.10 b) was conducted by Bharatam and Khanna.102 The authors suggested that the possibility of keto-enol tautomerism of thiazolidine-2,4-dione is very low in comparison with acetaldehyde. It is known that the
sulphur, phosphorus and electron-withdrawing groups at the \(\alpha \)-carbon accelerate H/D exchange and stabilise carbanion formation.29 Computationally, it has been illustrated that the thiazolidine-2,4-dione ring is liable to be planar and deprotonated at the asymmetric carbon through increased \(\pi \)-delocalisation.102 The sulphur can be oxidised, which increases the acidity of substituted thiazolidine-2,4-dione. Furthermore, different tautomeric formations of substituted thiazolidine-2,4-dione have been suggested by Bharatam and Khanna which are less favourable in acid-base catalysed racemisation (Scheme 1.50).

\[
\text{Scheme 1.50: Oxidation and keto-enol tautomerism of substituted-thiazolidine-2,4-dione.}
\]

Taxak \textit{et al.}103 have also suggested that S-oxidation for thiazolidine-2,4-dione increases the acidity of the asymmetric carbon and promotes racemisation. This sulphur-oxidation increases the rate constant of racemisation, which is a major factor for promoting racemisation (Scheme 1.51).

\[
\text{Scheme 1.51: Oxidation and keto-enol tautomerism proposed by Taxak \textit{et al.}}
\]
Scheme 1.51 illustrates that direct keto-enol tautomerism from C to D is more likely to take place for the racemisation of 5-substituted thiazolidine-2,4-dione than B to A as expected by Taxak et al. No H/D exchange rate constant studies have been carried out for 5-substituted thiazolidine-2,4-diones and 2-thioxothiazolidin-4-ones to compare with the rate constants of racemisation. Hence, it has been thus far impossible to assign a mechanism for these reactions similar to Narduolo’s work on hydantoin and Reist et al.69 Jamali et al.100 studied the racemisation of the enantiomers of pioglitazone 1.42 and rosiglitazone 1.43 in 25 mM phosphate buffer (pH 2.5, 7.4, and 9.3 at 37 °C). Full racemisation was observed for 1.42 and 1.43 within 48 hours at pH 7.4 and 24 hours at pH 9.3 (Scheme 1.52).

Scheme 1.52: Structures of pioglitazone and rosiglitazone studied by Jamali et al.100

Welch et al.104 studied the racemisation of 5-arylthiazolidine-2,4-dione (Scheme 1.53) in different solvents and observed fast racemisation of compound 1.44 in various media including dog plasma.

Scheme 1.53: 5-Arylthiazolidine-2,4-dione studied by Welch et al.104
The racemisation half-life, $t_{1/2}$, of 1.44 in ethanol at 10-14 hours showed rapid racemisation to reach 50% ee. Using 0.2 eq of trimethylamine caused 1.44 to racemise in a few minutes. However, using 0.2 eq. of acetic acid increases the half-life $t_{1/2} > 20$ h, and in chloroform the compound needs more than a week to racemise. The racemisation of 1.44 has also been studied in a mixture of ethanol and pH 9 buffer, where 1.44 can be racemised in less than 2 h.

1.7 Aims and Objectives

The main goal of this work is to measure the racemisation rate constants for 2-thioxoimidazolidin-4-ones (thiohydantoins), 2-thioxoimidazolidin-4-ones, and 2-thioxothiazolidin-4-ones (rhodanines) as drug-like molecules under physiological conditions. The hydrolysis of these molecules is one of the possible side reactions which may affect the observed kinetics and it is therefore important to study and compare the hydrolysis with the racemisation reaction. There are many factors influencing the rate of racemisation and hydrolysis that should be studied, such as temperature, pH, and the presence of acids and bases. The effect of various substituents at the asymmetric carbon and different position of the molecules on the rate of racemisation and hydrolysis will be investigated. The H/D exchange reaction of the molecules will be studied. The observed rate constants for H/D exchange can be divided by the corresponding rate constants for racemisation. Together with solvent kinetic isotope effects, the kinetic data will allow us to propose a mechanism for the racemisation of chiral substituted 2-thioxoimidazolidin-4-ones (thiohydantoins), 2-thioxoimidazolidin-4-ones, and 2-thioxothiazolidin-4-ones (rhodanines).
1.8 References

31. S. Narduolo, Thesis (Ph D) - Cardiff University, 2011.
43. E. Ware, *Chemical Reviews*, 1950, 46, 403-470.
60. W. I. Congdon, Thesis (PhD) - McGill University, 1970.
Chapter 2

Synthesis of substituted 2-thiohydantoins and related compounds
2.1 Introduction

2.1.1 Five-membered heterocyclic rings in medicine

Five-membered multi-heterocyclic rings play important roles in medicinal chemistry and many have biological activity.1,2,3 Drugs based on five-membered heterocycles include hydantoin, 2-thiohydantoin, thiazolidine-2,4-dione and thioxothiazolidin-4-one, and these motifs are widely used in drug discovery (Scheme 2.1).3

\begin{center}
\begin{tabular}{cccc}
\textbf{a} & \textbf{b} & \textbf{c} & \textbf{d} \\
\end{tabular}
\end{center}

\textbf{Scheme 2.1:} Structures of (a) 2-thiohydantoin1(a) (2-thioimidazolidin-4-one), (b) thiazolidine-2, 4-dione1(b) (c) 2-thioxothiazolidin-4-one1(c) (rhodanine), and (d) hydantoin1(d) (imidazolidin-2,4-dione).

For many drugs, it is known that their biological activity is related to their chirality. Therefore, both the synthesis and configurational stability of single enantiomers of drugs are important for investigation in research studies.4,5

1) In this thesis, various nomenclatures for the studied compounds have been used, viz. the common and IUPAC names as follows:

\begin{itemize}
 \item[a)] 2-Thioxoimidazolidin-4-one is the same as 2-thiohydantoin.
 \item[b)] 2-Thioxothiazolidin-4-one is the same as rhodanine.
 \item[c)] Thiazolidine-2,4-dione is always mentioned called as such.
 \item[d)] Hydantoin is the same as imidazolidine-2,4-dione.
\end{itemize}
2.1.2 Synthesis of thiohydantoins

The simplest preparation of thiohydantoin involves heating the hydrochloride salt of ethyl amino acetate with potassium thiocyanate at 140-150 °C and was reported by Peter Klasen in 1890. The resulting product is a basic thiohydantoin which has been used as a starting material in reactions with different aldehydes to prepare 5-arylidene-2-thiohydantoins (Scheme 2.2).

\[\text{Scheme 2.2: Condensation and reduction process of 2-thiohydantoin.} \]

Different aromatic aldehydes have been condensed with thiohydantoin in the presence of triethylamine or triethanolamine to prepare arylidene derivatives. The reduction of such arylidene thiohydantoin derivatives (Scheme 2.2) has been carried out using Pd / C dissolved in THF. However, for thiohydantoins, this reaction typically produces poor yields, in contrast to hydantoin derivatives. Instead, using zinc dust in acetic acid to reduce the double bond has been successful in the preparation of a wide range of racemic 5-substituted 2-thiohydantoins with good yields, as reported by Garst. Furthermore, 5-substituted 2-thiohydantoins have been synthesised, including with alkyl substituents at the 5-position by mixing various amino acids with thiourea and melting together at 180 °C in a solvent-free process. Using high temperatures to melt the reactants led to formation of non-optically active products.

The acetylation of 2-thiohydantoin at the N-1 position was developed by Johnson in 1911. Johnson et al. published an initial article showing the preparation of 1-acetyl-2-thiohydantoin using the amino acid glycine and ammonium thiocyanate in the presence of acetic acid, and acetic anhydride produces 1-acetyl-2-thiohydantoins (Scheme 2.3). Further amino acids were used to prepare 1-acetyl-2-thiohydantoin subsequently.
Scheme 2.3: Johnson’s suggested mechanism for the formation of 1-acetyl-2-thiohydantoin

The reaction between amino acids and acetic anhydride produces acetyl amino acids, as suggested by Johnson13. These are transformed directly during the reaction to the corresponding lactone-anhydrides by reacting with extra acetic anhydride (Scheme 2.3). The corresponding lactone-anhydride then reacts with the thiocyanic acid which is formed from ammonium thiocyanate by the action of acidic anhydride to produce the corresponding acyl isothiocyanate. Finally, 1-acetyl-2-thiohydantoin is obtained by the intramolecular rearrangement of unstable acyl isothiocyanate (Scheme 2.3).13, 15, 16 On the other hand, Johnson did not mention the optical activity of his compounds which is important for the research described in this thesis. Csonka and Nicolet17 prepared an optically active 1-acetyl-5-methyl-2-thioxoimidazolidin-4-one by following Johnson’s method, using acetic anhydride and acetic acid. Furthermore, racemic 3,5-disubstituted 1-acetyl-2-thiohydantoin can also be prepared followed LeTiran’s method,18 as confirmed by Reyes and Burgess.14

The cyclisation process is one of the most interesting ways to prepare a library of hydantoins or thiohydantoins substituted at all three sites. A range of aromatic aldehydes in the presence of phenyl isothiocyanate and methyl esters of various amino acids together with triethylamine and triacetoxyborohydride were used to obtain the corresponding substituted 2-thiohydantoins with substituents at the 1,3, and 5 positions.19 This method has been reported for the preparation of a library of 1,3,5 trisubstituted 2-thiohydantoins by cyclative cleavage in solid phase synthesis.19, 20

The condensation reaction between different aromatic aldehydes with thiazolidine-2,4-dione and 2-thioxothiazolidin-4-one was performed by the Knoevenagel condensation.21 Commercially available thiazolidine-2,4-dione and 2-thioxothiazolidin-4-one were condensed
with aldehydes in ethanol, containing piperidine, to prepare several 5-arylidenethiazolidine-2,4-diones and 5-arylidene-2-thioxothiazolidin-4-ones.22

The reductions of 5-arylidenethiazolidine-2,4-diones were carried out using zinc dust in acetic acid.9 Garst \textit{et al.}9 prepared 5-benzyl-2-thioxoimidazolidin-4-one from 5-benzylidene-2-thioxoimidazolidin-4-one. Lithium borohydride in THF in the presence of pyridine was also used to reduce (Z)-5-arylidenethiazolidine-2,4-dione to prepare the corresponding chiral compounds.23,24

\section*{2.2 Results and discussion}

\subsection*{2.2.1 Synthesis of 5-substituted derivatives of 2-thioxoimidazolidin-4-one}

5-Benzylidene-2-thiohydantoin was synthesised following the methods previously used for 5-benzylinedinehydantoin by using commercially available hydantoin dissolved in ethanol in the presence of benzaldehyde and triethylamine (this was done following the success of a test reaction).25,8 The same procedure was used to prepare different substituted thiohydantoins at the 5-position by using different aldehydes (Scheme 2.4).9

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) \[\text{HN-} \text{S-} \text{NH-} \text{O-} \text{C-} \text{O} \];
\node (b) at (2,0) \[\text{HN-} \text{S-} \text{NH-} \text{O-} \text{C-} \text{O} \];
\node (c) at (0.5,0) \[\text{R} \];
\node (d) at (1.5,0) \[\text{R} \];
\node (e) at (1,0) \[\text{reflux overnight} \];
\node (f) at (1.5,0) \[\text{triethylamine} \];
\node (g) at (0,1) \[\text{H}_2\text{O} \];
\node (h) at (2,1) \[\text{H}_2\text{O} \];
\node (i) at (0,2) \[\text{H}_2\text{O} \];
\node (j) at (2,2) \[\text{H}_2\text{O} \];
\end{tikzpicture}
\end{center}

\textbf{Scheme 2.4}: Synthesis of 5-substituted 2-thiohydantoins

Several aromatic aldehydes were used with commercially available 2-thiohydantoin and the procedure was employed to prepare unsaturated 5-substituted 2-thiohydantoin (see experimental section).
2.2.2 Synthesis of 5-substituted derivatives thiazolidine-2,4-dione and 2-thioxothiazolidin-4-one

The Knoevenagel condensation was also used for the condensation of aldehydes with thiazolidine-2,4-dione26,21 in ethanol in the presence of piperidine to prepare (Z)-5-benzyldenetiazolidine-2,4-dione, (Z)-5-(pyridin-2-ylmethylene)thiazolidine-2,4-dione and (Z)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione (Scheme 2.5, X=O). Likewise, the Knoevenagel condensation was successfully applied to commercially available thioxothiazolidin-4-one with benzaldehyde and 2-pyridine-carboxaldehyde to synthesise the corresponding 5-substituted- 2-thioxothiazolidin-4-ones (X=S) (Scheme 2.5).

\[\text{Scheme 2.5: Knoevenagel condensation reaction of aromatic aldehydes with thiazolidine-2,4-dione and 2-thioxothiazolidin-4-one} \]

The Z isomer of 5-(pyridin-2-ylmethylene)-2-thioxothiazolidin-4-one was obtained through a Knoevenagel condensation reaction in the present work. The 3D structure of representative 5-(pyridin-2-ylmethylene)-2-thioxothiazolidin-4-one was determined using X-ray crystal structure analysis (Figure 2.1).
Figure 2.1: The molecular structure of compound 18 determined by X-ray crystallography.

Many derivatives of 2-thioxoimidazolidin-4-one, thiazolidine-2,4-dione and 2-thioxothiazolidin-4-one with substituents at the 5-position were prepared. 1H-NMR spectra for all compounds showed a typical signal for the hydrogen on the double bond (CH=C) in the range of 5.6-7.6 ppm for thioxoimidazolidin-4-one, and in the range of 7.75-7.9 ppm for thiazolidine-2,4-dione and 2-thioxothiazolidin-4-one. No overlaps were seen in 1H-NMR spectra between a typical signal for the hydrogen on the double bond and aromatic ring signals for thiazolidine-2,4-dione and 2-thioxothiazolidin-4-one.

2.2.3 The reduction reaction of 5-substituted derivatives of 2-thiohydantoin, thiazolidine-2,4-dione and 2-thioxothiazolidin-4-one

The reduction of the double bond in (Z)-5-benzylidene-2-thioxoimidazolidin-4-one was carried out using Pd/C as a catalyst and THF as a solvent. 8 The product was obtained, but in poor yield. The use of Zn dust with acetic acid was previously used just for (Z)-5-benzylidene-2-thioxoimidazolidin-4-one.9 Using this procedure, we were able to reduce not only compound 1 but also all other unsaturated 2-thioxoimidazolidin-4-ones, except compound 7 (Scheme 2.6).
Scheme 2.6: Synthesis of racemic 5-substituted 2-thiohydantoins.

The reduction procedure in Scheme 2.6 was used for compound 7; however, we obtained an unknown product. The reduction procedure by zinc and acetic acid was repeated using a longer reaction time to reduce compound 7. Despite this, no clear result was obtained (Scheme 2.7).

Scheme 2.7: Attempted synthesis of compound 7.

Fortunately, the adjacent hydrogen on the stereogenic centre and diastereotopic protons on the CH₂ for all compounds, except compound 7, were clearly visible in ¹H-NMR spectra, confirming the reduction process, and thus generation of the stereogenic centre.

Similarly, the catalysed reduction using zinc dust was also tried for 5-substituted thiazolidine-2,4-diones. However, its success depends on the types of substituents involved. The reduction process by zinc dust was not accomplished for 5-benzylidene-thiazolidine-2,4-dione 12 in the attempted synthesis of 13 (Scheme 2.8).

Scheme 2.8: Attempted synthesis of compound 13.
The reduction process by zinc and acetic acid was successful for 5-(pyridin-2-ylmethylene) thiazolidine-2, 4-dione 14 and pure 15 was obtained in good yield. The zinc acid catalysed reduction also worked for 16 and 18 to produce compounds 17 and 19, respectively (Scheme 2.9).

![Scheme 2.9: Reduction of compounds 14, 16 and 18.](image)

As an alternative, reduction using LiBH₄ in THF was tried for (Z)-5-benzylidenethiazolidine-2,4-dione 12. The reduction of the double bond at room temperature and purification by column chromatography produced the desired 5-benzylthiazolidine-2, 4-dione 13 (Scheme 2.10).

![Scheme 2.10: Reduction of 5-benzylidenethiazolidin-2,4-dione.](image)

Finally, microwave heating (300 W, 120 °C, max pressure 300 psi) was also used to synthesise 5-benzylthiazolidine-2,4-dione using the LiBH₄ procedure, as previously reported,²³ and this procedure was successful.
2.2.4 Synthesis of 5-substituted 2-thiohydantoin under solvent free conditions

The condensation of thiourea with different amino acids serves as an excellent starting point in the preparation of 5-substituted 2-thiohydantoins.27,10 We have used several amino acids with thiourea to synthesise the corresponding 5-substituted 2-thioxoimidazolidin-4-ones under solvent free conditions. Compounds 20-25 were synthesised using thermal heating between 180-200 °C, i.e. in liquid thiourea. The required reaction time ranged from 15 to 25 min, with 14.0-42.0 % yields obtained (Scheme 2.11).

\begin{center}
\includegraphics[width=0.7\textwidth]{scheme_211.png}
\end{center}

\textbf{Scheme 2.11}: Conditions proposed by Wang and co-workers for the synthesis of racemic 5-substituted 2-thiohydantoins10

The use of high temperature during the reaction resulted in all products being non-optically active compounds, i.e. racemic mixtures. We tried quenching the products in organic solvent without adding water, followed by washing with water at room temperature and evaporation of the organic solvent. Our efforts failed to produce enantioenriched compounds, although the literature suggested this should be possible10 by the condensation of thiourea with enantiopure amino acids under solvent free conditions. The authors reported that this procedure is safe to prepare, even for enantiopure 5-substituted 2-thiohydantoins, but this was reported without the confirmation of optical activity. Unfortunately, all products prepared were non-optically active compounds, as confirmed by either polarimetry or CD spectroscopy. All 5-substituted 2-thiohydantoins were characterised by 1H-NMR, 13C-NMR and MS.
2.2.5 Synthesis of 5-substituted 1-acetyl-2-thiohydantoin

We started the synthesis of 5-substituted 1-acetyl-2-thiohydantoin from different amino acids and ammonium thiocyanate with acetic acid and acidic anhydride, as previously reported (Scheme 2.12, and see section 2.1.2).9,7

Scheme 2.12: Synthesis of 5-substituted 1-acetyl-2-thiohydantoins by the reaction of amino acid derivatives with ammonium thiocyanate including acetic acid and acetic anhydride.

We follow the post-1907 nomenclature for 2-thiohydantoins according to which the acetyl group in Scheme 2.12 is substituted at the N-1 position. The same compound, 1-acetyl-2-thioxoimidazolidin-4-one, has also been named 3-acetyl-2-thioxoimidazolidin-4-one by Davis \textit{et al.}28 who used the same synthetic procedure as Johnson. 2-D COSY NMR spectroscopy confirmed that the acetyl group was substituted at the NH-1 rather than the NH-3. Unfortunately, the change in nomenclature has affected several publications where an incorrect nomenclature is used.9,28

We followed the procedure of Csonka and Nicolet17 for the synthesis of optically active 5-substituted 1-acetyl-2-thioxoimidazolidin-4-ones, with various changes (see Chapter 1). However, the temperature of the reaction was not indicated by the authors. Generally, the same amount of acetic anhydride and acetic acid was used to prepare several 5-substituted 1-acetyl-2-thiohydantoins by using the corresponding enantiopure amino acids and different reaction times. Essentially, the temperature and the reaction time were decreased to synthesise as much as possible of the high optically active compounds (Scheme 2.13).
Scheme 2.13: Synthesis of optically active 5-substituted 1-acetyl-2-thiooximidazolidin-4-ones.

L-phenyl alanine, L-valine, L-tryptophan and L-methionine were reacted gently with ammonium thiocyanate, acetic anhydride and acetic acid to produce the corresponding optically active 5-substituted 1-acetyl-2-thiooximidazolidin-4-ones (See experimental section). Using L-phenyl glycine produces racemic 1-acetyl-5-phenyl-2-thiooximidazolidin-4-one. All reactions involving amino acids as starting material were successful in producing products, although as the racemates. The reaction involving histidine failed to produce the required product altogether. The preparation of thiohydantoin from histidine was unsuccessful, despite trying different temperatures and concentrations of ammonium thiocyanate, acetic anhydride and acetic acid. This procedure was previously tried by Swan29 in 1952, who used histidine and N-acetyl histidine and warming with acetic anhydride and ammonium thiocyanate to produce an unstable compound. At the end, the unstable products are converted by dilute acetic acid into a mono-acetyl compound, such as 5-(1-acetyl-4-iminazolyimethyl)-2-thiohydantoin, rather than 1-acetyl compounds.11 Using an excess of acetic anhydride causes racemisation and produces racemic compounds,30 and the formation of lactone anhydride (azlactone) destroys the second mole of acetic anhydride (see Scheme 2.3). Therefore, active intermediate azlactone might prevent the racemisation if formed rapidly.17 Column chromatography was performed over silica gel using hexane and diethyl ether as eluents to purify the compounds. The structures of all compounds prepared by my own procedure and those of Johnson were confirmed by 1H-NMR, 13C-NMR, FTIR and MS. Furthermore, for further verification, the GC-MS was recorded. The spectra obtained showed products to be pure with the correct molecular structures.

The deacylation process was done for compound \textbf{27} by dissolving in 12 M HCl and heating for 1 hour at 60 °C. Pure \textbf{2} was collected (Scheme 2.14).31
Scheme 2.14: The deacetylation of compound 27 to prepare compound 2.

The product was extracted by ethyl acetate and then dried. There was no acetyl peak observed in 1H-NMR and 13C-NMR spectra and the yield was 73.5% 5-benzyl-2-thiohydantoin.

2.2.6 The enantiomeric excess and intensity of enantioenriched compounds

The specific rotations of 27-32 were recorded using a polarimeter and were found to be different from one another. During the synthesis of 5-substituted 1-acetyl-2-thiohydantoins from the corresponding amino acids, acetic acid and acetic anhydride with ammonium isothiocyanate was used. Csonka and Nicolet17 reported the high specific rotation of compound 29 ($\alpha^{D}_{20} = 118.5^\circ$) in 1% alcohol solution for white light filtered through 2 cm by using a similar procedure to the one we used with some modification. However, the specific rotation we found was lower ($\alpha^{D}_{20} = +83.9^\circ$), recorded in 0.3% acetonitrile solution. However, it should be noted that Csonka and Nicolet used a higher concentration of 29 in their measurements. The specific rotations of 27-32 at different concentrations are shown in Table 2.1.
Table 2.1: Specific rotation of 27-32 in different solvents and at different concentrations determined by polarimetry.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>$[\alpha]_{D}^{20}$</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>+94.5°</td>
<td>0.25 g / 100 ml (Acetonitrile)</td>
</tr>
<tr>
<td>29</td>
<td>+83.9°</td>
<td>0.29 g / 100 ml (Acetonitrile)</td>
</tr>
<tr>
<td>30</td>
<td>+116.8°</td>
<td>0.40 g / 100 ml (Acetone)</td>
</tr>
<tr>
<td>31</td>
<td>+94.5°</td>
<td>0.4 g / 100 ml (Acetone)</td>
</tr>
<tr>
<td>32</td>
<td>+118.6°</td>
<td>0.40 g / 100 ml (Acetone)</td>
</tr>
</tbody>
</table>

Reetz et al.32 described how to determine enantiomeric excess (ee %) by using the anisotropy factor obtained by dividing the ellipticity by absorbance (Equation 2.1).

$$g = \frac{\theta}{A}$$ \hspace{1cm} \textbf{Equation 2.1}

where g is the anisotropy factor, θ is the ellipticity and A is the UV absorbance.33

By using Equation 2.1, the anisotropy factor was calculated for 27-32 by using the maximum ellipticity and absorbance in 10 % water and 90 % of 0.2 M phosphate buffer (0.9 M I, pH 7.4) and 37 °C (Table 2.2).

Table 2.2: The specific rotation of 27-32 in different solvents and at different concentrations determined by polarimetry. The compounds were dissolved in 10 % water and 90 % 0.2 M phosphate buffer (0.9 M I, pH 7.4) at 37 °C.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Con./ mM</th>
<th>Maximum Ellipticity</th>
<th>Absorbance</th>
<th>g/ factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>0.081</td>
<td>-15.722 (265 nm)</td>
<td>1.013 (291 nm)</td>
<td>-15.528</td>
</tr>
<tr>
<td>29</td>
<td>0.017</td>
<td>-7.216 (262 nm)</td>
<td>0.925 (288 nm)</td>
<td>-7.800</td>
</tr>
<tr>
<td>30</td>
<td>0.025</td>
<td>-9.910 (266 nm)</td>
<td>0.758 (288 nm)</td>
<td>-13.067</td>
</tr>
<tr>
<td>31</td>
<td>0.012</td>
<td>-5.590 (260 nm)</td>
<td>0.716 (287 nm)</td>
<td>-7.696</td>
</tr>
<tr>
<td>32</td>
<td>0.011</td>
<td>-4.953 (263 nm)</td>
<td>0.855 (290 nm)</td>
<td>-5.796</td>
</tr>
</tbody>
</table>
The enantiomeric excess of 27-32 (Table 2.2) is unknown and pure enantiomers were not identified by either HPLC or GC-MS. Therefore, it is impossible to determine the enantiomeric excess for 27-32.

2.2.7 Synthesis of racemic 5-substituted 3-phenyl-2-thiohydantoin

For studies of the effect of substituents at the N-3 position of 2-thiohydantoin, several disubstituted 2-thiohydantoins were required. These have been prepared from the corresponding amino acids esters. The substituent at the 3-position originating from the use of phenyl isothiocyanate or allyl isothiocyanate with phenylalanine methyl ester HCl using the procedure was previously reported for the synthesis of 3-benzyl-5-methyl-2-thioxoimidazolidin-4-one.14 The reaction between hydrochloride salts of amino acid methyl ester and phenyl or alkyl isocyanate / isothiocyanate (X = O or S) in the presence of triethylamine or pyridine proceeds in two steps. The first step is a condensation process which produces 3-substituted (thio) ureido-phenyl acetic acid. The following step is the cyclisation of the acid derivative upon refluxing in basic medium (Scheme 2.15).34

![Scheme 2.15](image-url)

Scheme 2.15: Synthesis of racemic 5-substituted 3-phenyl-2-thioxoimidazolidin-4-ones by the reaction of amino acid methyl ester HCl derivatives with phenyl isothiocyanate in basic medium.

This procedure was used to synthesise the 3,5-disubstituted 2-thiohydantoins 33-36 in this project in good yields. All these thiohydantoin derivatives were optically inactive products if prepared under basic conditions. It is difficult to dissolve amino acid methyl ester HCl in DCM, but by adding triethylamine the mixture becomes completely soluble. To address this, acidified water was used to remove the excess of trimethylamine and amino acid methyl ester HCl, while hexane is a very good solvent to remove the remaining phenyl isothiocyanate from the solution.
Very good yields of 84.0-96.8% were obtained for compounds 33-35 and a yield of 46.3% was obtained for 36 using this procedure. Clear analytical NMR, MS and FTIR data was obtained.

2.2.8 Synthesis of tri-substituted 2-thiohydantoin

2.2.8.1 Synthesis of rac-tri-substituted 2-thiohydantoin

Sim and Ganesan35 prepared a library of trisubstituted 2-thiohydantoins from α-amino ester, aromatic aldehydes and phenyl isothiocyanate, which was followed in the present work to prepare compounds 37-41. The reductive amination reaction of amino esters with aromatic aldehydes in the presence of sodium triacetoxyborohydride containing triethylamine was done in the first step. After one hour stirring, the cyclisation was carried out by adding isothiocyanate and extra triethylamine for another hour under stirring. The product was purified by column chromatography (Scheme 2.16).

Scheme 2.16: Synthesis of racemic trisubstituted 2-thiohydantoin19

The α-amino acid ester reacts with the aromatic aldehyde to produce an iminium ion followed by reduction using sodium triacetoxyborohydride (Scheme 2.17). The electron-withdrawing capacity and steric effects of the three acetoxy groups stabilise the boron-hydrogen bond and both properties are responsible for the reduction process.36 Compound I reacts with isothiocyanate to form compound II in the presence of base (Scheme 2.16) after the reductive amination process (Scheme 2.17).
Several compounds were prepared by this procedure showing clear analytical data by using different aromatic aldehydes. There was no obvious product from the reaction using DL-serine methyl ester HCl with 4(5)-imidazolcarboxaldehyde in the attempt to synthesis cyclised trisubstituted 2-thiohydantoin. Unfortunately, all thiohydantoin derivatives were optically inactive under these conditions. Adding extra triethylamine resulted in the product being optically inactive without finding a critical time to end cyclisation. An alternative way to synthesise optically active trisubstituted 2-thiohydantoin is presented in the next section.

2.2.8.2 Synthesis of enantiomerically-enriched trisubstituted 2-thiohydantoin

(S)-5-isopropyl-3-phenyl-1-(pyridin-2-ylmethyl)-2-thioxoimidazolidin-4-one 38 was synthesised following Sim and Ganesan’s procedure35 by slightly changing the amount of reagents and reaction time. A mixture of products 38 and 34 was detected by GC-MS spectroscopy. The products were separated using column chromatography (Scheme 2.18).
Scheme 2.18: Synthesis of enantiomerically-enriched 38 and racemic 34

The mixture of 38 and 34 was separated using column chromatography. Compounds 38 and 34 were collected separately after purification with yields of 60.4 and 18.1 %, respectively. Unfortunately, thiohydantoin 34 is completely optically inactive. On the other hand, compound 38 is optically active and has been used for kinetic studies. The formation of 34 in this procedure shows that the reaction between α-amino ester derivatives I with isothiocynate (Scheme 2.15) occurs on the same timescale as the cyclisation of intermediate I (Scheme 2.16). The ring closed compounds 34 and 38 racemise much faster in the presence of triethylamine than the compounds before cyclisation.

Similarly, (R)-5-benzyl-3-phenyl-1-(pyridin-2-ylmethyl)-2-thioxoimidazolidin-4-one 37 (Scheme 2.19) has been prepared by a variation of the method of Sim and Ganesan³⁵ by decreasing the reaction time and amount of triethylamine. It was found that adding triethylamine, which causes the product to be racemic, is not essential in both steps. However, triethylamine was just added in the first step, and instead of stirring for two hours in both steps, the solution was stirred for 35 minutes. TLC showed that the reaction had finished (Scheme 2.19).
Scheme 2.19: Combination synthesis of enantiomerically-enriched compound 37

GC-MS showed that 37 was pure. In comparison, the NMR and MS data for racemic 37, which had been prepared previously (Scheme 2.16), and enantioenriched thiohydantoin were similar (for CD data for enantioenriched 37, see Chapter 4).

2.3 Conclusions

2-Thioxoimidazolidin-4-ones derivatives with substituents at the 1, 3 and 5 positions have been prepared as racemic and enantioenriched compounds by different procedures (Chapter 2). Knoevenagel condensation worked successfully to react different aldehydes with 2-thioxoimidazolidin-4-ones to prepare the corresponding unsaturated 5-substituted-2-thioxoimidazolidin-4-ones derivatives. Knoevenagel condensation was also successful in preparing unsaturated 5-substituted thiazolidine-2,4-diones and 5-substituted 2-thioxothiazolidin-4-one derivatives. To prepare saturated 5-substituted 2-thioxoimidazolidin-4-ones, zinc and acetic acid were used to reduce the double bond to a single bond and prepare racemic 5-substituted 2-thioxoimidazolidin-4-ones. The reduction process worked well for all unsaturated 2-thioxoimidazolidin-4-ones prepared, except for (Z)-5-(furan-2-ylmethylene)-2-thioxoimidazolidin-4-one 7, which produced an unknown product. Zn/acetic acid were also successful in reducing (Z)-5-(pyridin-2-ylmethylene)thiazolidine-2,4-dione 14, but not (Z)-5-benzylidenethiazolidine-2,4-dione 12, the reason being unclear. As an alternative, LiBH₄ in the presence of pyridine, for catalytic reduction in THF, was tried for (Z)-5-benzylidenethiazolidine-2,4-dione 12 and found to be successful. The reduction process was successful in preparing racemic 5-substituted 2-thioxothiazolidin-4-one by using zinc/acetic acid on one hand, and LiBH₄ with pyridine as a catalytic reduction in THF on the other. Our attempts to prepare enantioenriched 5-substituted 2-thioxoimidazolidin-4-ones derivatives starting from enantiopure amino acids with thiourea failed because of the high reaction
temperature. However, several enantioenriched 5-substituted 1-acetyl-2-thioximidazolidin-4-one derivatives were synthesised using the corresponding amino acids with ammonium thiocyanate, including acetic acid and acetic anhydride. Several racemic tri-substituted 2-thioximidazolidin-4-ones were prepared using the pure enantiomer of amino acid methyl ester HCl. Using the same procedure for racemic tri-substituted 2-thioximidazolidin-4-ones with various changes to reaction time and amount of base, two enantioenriched tri-substituted 2-thioximidazolidin-4-ones were prepared. In this way, N-acetyl substituted 2-thioximidazolidin-4-ones could be obtained with some enantiomeric excess.

2.4 Experimental section

Chemicals

All reagents were purchased from Fisher Scientific, Sigma-Aldrich, Alfa Aesar, Fluorochem, Acros Organic, Applichem, BDH, and Lancaster Synthesis and used without purification.

2.5 Experimental techniques

Infra-Red spectra (IR)

Infrared spectra were recorded in the range 4000-600 cm\(^{-1}\) using a SHIMADZU CORP series FTIR instrument. Samples were either thin films or powders. All absorptions are quoted in cm\(^{-1}\).

Nuclear Magnetic Resonance (NMR)

\(^1\)H-NMR and \(^{13}\)C-NMR spectra were recorded on a Bruker DPX 400 (400 MHz) or DPX 500 (500 MHz) spectrometer. Chemical shifts are expressed in parts per million downfield from tetramethylsilane as an internal standard. NMR spectra were recorded in solutions in deuterated-dimethylsulfoxide (DMSO-d\(_6\)) or chloroform (CDCl\(_3\)). HMBC and HSQC experiments were used on the same spectrometers to confirm assignments when necessary.
Melting Point

Melting points were recorded using a Gallenkamp Melting Point Apparatus.

Mass spectrometry

LCMS experiments were performed using a Waters 2790 liquid chromatography system and a Waters ZQ mass spectrometer. Samples were loaded using a Gilson 232XL auto-sampler. Low-resolution mass spectrometric data were determined using a Fisons VG Platform II quadrupole instrument using electrospray ionisation (ES), unless otherwise stated. High-resolution mass spectrometric data were obtained in electrospray (ES) mode unless otherwise reported, on a Waters Q-TOF micro-mass spectrometer.

Polarimetry

Optical rotations were measured with a Schmidt-Haensch Polartronic I in a 5.00 cm path length cell. The solvent and concentration (expressed in g/100 ml) of the solutions used for the measurements are reported in the individual sections.

X-ray crystallography

A Bruker CCD diffractometer with graphite-mono-chromatised Mo-K radiation (λ =0.71073 Å) was used for X-Ray crystallographic studies, carried out at by the X-Ray Crystallography Service. The structures were solved by direct methods and refined using the SHELXTL software package.
2.6 Methods

All compounds were prepared according to one of the following general methods.

Method 1

Commercially available 2-thiohydantoin was placed with the required aldehydes in a round bottom flask equipped with a magnetic stirrer and reflux condenser under a nitrogen atmosphere in triethylamine and water. The mixture was stirred overnight at room temperature and the pH was adjusted to 3 by adding 3 M HCl. The solid product was filtered off and washed with diethyl ether and water. The pure compounds were collected and dried.

Method 2

Thiazolidine-2, 4-dione or 2-thioxothiazolidin-4-one and the appropriate aldehydes were added to 20 ml ethanol containing piperidine. The mixture was refluxed under nitrogen for 3 h. The precipitate was filtered off, washed with ethanol and dried.

Method 3

The compounds used in method 2 were dissolved in 10 ml anhydrous THF containing 10 ml pyridine at room temperature. Lithium borohydride was slowly added to the mixture causing bubbles to form during the addition. The stirred mixture was refluxed for 4 days. When the reaction was finished, the mixture was cooled on an ice bath to 5 °C and 8 ml of 12 N hydrochloric acid and 50 ml of deionised water were added. The mixture was refluxed again for 1 h. The residue formed after evaporation of the solvent was dissolved in chloroform, washed with 3 x 150 ml of water and dried over MgSO4.

Method 4

The condensation products prepared according method 1 and 2 were dissolved in acetic acid in a round bottom flask under nitrogen atmosphere, stirrer and refluxed. Zinc dust was added to the solution and the mixture was heated for 3 hours at 130 °C under reflux. The mixture
was then allowed to cool down to 50 °C and 50 ml of methanol was added to the solution. The temperature was then returned to 115 °C for about 5 minutes. The mixture was allowed to cool to 63 °C and filtered. The liquid was concentrated under reduced pressure. The resulting paste was mixed with 3:7 isopropanol DCM and filtered again. The solution was washed with 100 ml of water and 50 ml of brine. The combined organic layer was filtered through filter paper and the solvent was evaporated under reduced pressure. The product was dried under high vacuum.

Method 5a

Acetylated 2-thiohydantoins were synthesised by reacting ammonium thiocyanate with several amino acids. The amino acids were mixed with ammonium isothiocyanate and dissolved in 9:1 acetic anhydride / acetic acid at 100 °C under nitrogen atmosphere and refluxed for 30 minutes. The solution was poured into 20 ml of an ice/water mixture and stored in a fridge overnight. The solid was filtered and dried using a freeze dryer. Racemic products were obtained.

Method 5b

Enantioenriched 5-substituted 1-acetyl-2-thiohydantoins were synthesised by the method described above (method 5a) with the slight variation of dissolving the mixture at 70 °C in a sonication bath for 5 -10 minutes and reducing the temperature to 35 °C. The mixture was heated at 35 °C for a further 25 minutes. The mixture was cooled down, washed with 50 ml of water and mixed with ethyl acetate. The reaction mixtures were washed twice with brine. All compounds were purified by column chromatography over silica using 50:50 diethyl ether and hexane. Significant optical activity was found for the resulting products.

Method 6

In a round bottom flask, 1:2 amino acid and thiourea was mixed together under reflux and nitrogen atmosphere at 180 °C using an oil bath. When the mixture started to melt, the temperature was increased to 190 °C and a yellow vapour was observed inside the condenser. The mixture was allowed to heat under reflux at the same temperature for 25 minutes. Water
was then added to the mixture after reducing the temperature to about 80 °C. The mixture was then put in a refrigerator for the product to precipitate.

Method 7

Different α-amino acid methyl esters HCl were dissolved in a mixture of CH₂Cl₂ and triethylamine. Phenyl isothiocyanate was slowly added to the solution and stirred for 1 hour at 25 °C. The temperature was then raised to 40 °C under reflux and continued to be stirred for another hour. The solution was cooled down to room temperature and evaporated under reduced pressure. The residue was redissolved in CH₂Cl₂ and washed twice with acidified water (pH 3.0) to remove triethylamine and amino acid methyl ester HCl. The solution was then washed with brine and dried over Na₂SO₄. The solid product was triturated with hexane until an excess of phenyl isothiocyanate was removed.

Method 8

Different amino acid methyl ester hydrochlorides were dissolved in a mixture of CH₂Cl₂ (10 ml) and triethylamine. Aldehyde and sodium triacetoxyborohydride were added to the solutions and stirred at room temperature (ca. 20 °C). Phenyl isothiocyanate or allylisothiocyanate were added to the mixture and stirred for another hour. The solution was treated with glycine solution and extracted with CH₂Cl₂. The organic solvent was evaporated and an oily compound was obtained. All compounds were purified by column chromatography over silica.
Synthesis of 5-benzilidine-2-thiohydantoin (1)

\[
\text{HN} \quad \text{HN}
\]
\[
\text{S}
\]

\[
1
\]

Utilising method 1, thiohydantoin (2.0 g, 17.2 mmol), trimethylamine (4.9 ml, 37 mmol) and benzaldehyde (1.9 ml, 19 mmol) were added to 50 ml of water.

Yield= 69.9 %, Mp 270-272 °C, HRMS calculated for C\text{10}H\text{8}N\text{2}OS m/z [M+H]^{+} 204.0358; found 204.0358; 1H-NMR (400 MHz, DMSO-\text{d}_6): \delta 12.41 (s, H, NH), \delta 12.19 (s, H, NH), \delta 7.74 (d, J = 7.4 Hz, 2H, phen), \delta 7.45-7.37 (m, 3H, phenyl), \delta 6.49 (s, H, CH=CH).13C-NMR (101 MHz, d\textsubscript{6}-DMSO): \delta 177.3 (C=S), \delta 164.0 (CO), \delta 130.5 (C=CH), \delta 128.6 (2xCH), \delta 127.3 (C), \delta 127.0 (2xCH), \delta 126.0 (CH), \delta 109.7 (CH=CH). IR (neat): vmax= 3225 cm-1 (NH), 1723 cm-1 (C=O), 1475 cm-1 (C=S), 1643 cm-1 (C=C). (File reference: NMR: 400_HA_exp 1A DFA).

Synthesis of 5-benzyl-2-thiohydantoin (2)

\[
\text{HN} \quad \text{HN}
\]
\[
\text{S}
\]
\[
2
\]

Utilising method 4, 5-benzilidine-2-thiohydantoin (1.5 g, 7.4 mmol) was dissolved in acetic acid (10 ml, 175 mmol) and zinc dust (1.18 g, 18 mmol) was added.

Yield= 29.5 %, Mp 168-170 °C, HRMS calculated for C\text{10}H\text{10}N\text{2}OS m/z [M+H]^{+} 206.0517; found 206.0517; 1H-NMR (400 MHz-d\textsubscript{6}-DMSO): \delta 11.45 (s, 1H, NH), \delta 10.10 (s, 1H, NH), \delta 7.34 – 7.16 (m, 5H, phenyl), \delta 4.56 (apparent t, J = 5.3 Hz, 1H, CH), \delta 2.99 (m, 2H, CH\textsubscript{2}).13C NMR (101 MHz, DMSO): \delta 182.5 (C=S), \delta 176.1 (CO), \delta 135.39 (C), \delta 130.3 (2xCH), \delta 128.5 (2xCH), \delta 127.2 (CH), \delta 61.7 (CHCH\textsubscript{2}), \delta 36.0 (CHCH\textsubscript{2}). IR (neat): vmax = 1738 cm-1 (C=O), 1543 cm-1 (C=S). (File reference: NMR: 400_HA_exp 1B DFA).
Synthesis of (Z)-5-(pyridin-2-ylmethylene)-2-thioxoimidazolidin-4-one (3)

Utilising method 1, thiohydantoin (2.0 g, 17.2 mmol), triethylamine (4.8 ml, 37 mmol) and 2-pyridinecarboxaldehyde (1.8 ml, 22 mmol) were added to 50 ml of water.

Yield= 86.7 %, M.p. 262-263 °C, HRMS calculated for C₉H₇N₃OS m/z [M+H]+ 205.0310; found 205.0311; ¹H-NMR (400 MHz, DMSO): δ 8.74 (d, J = 3.8 Hz, 1H, CHN), δ 7.89 (td, J = 7.7, 1.8 Hz, 1H, CHCHCHN), δ 7.72 (d, J = 7.9 Hz, 1H, CHCN), δ 7.38 (dd, J = 7.6, 4.9 Hz, 1H, CHCHCHN), δ 6.61 (CH=). ¹³C-NMR (101 MHz, d₆-DMSO): δ 179.2 (C=S), δ 165.8 (CO), δ 153.6 (CN), δ 150.2 (CHN), δ 137.7 (C=CH), δ 131.4 (CHCHCN), δ 126.3 (CHCN), δ 123.9 (CHCHCN), δ 107.5 (CH=C).IR (neat): vmax=1719 cm⁻¹ (C=O), 1660 cm⁻¹ (C=C), 1489 cm⁻¹ (C=S). File reference: ¹H-NMR: 400_hiwa-5PT-333.¹³C-NMR: 400_HA_exp 3A DFA 1).

Synthesis of 5-(pyridin-2-ylmethyl)-2-thioxoimidazolidin-4-one (4)

Utilising method 4, (Z)-5-(pyridin-2-ylmethylene)-2-thioxoimidazolidin-4-one (1.5 g, 7.3 mmol) was dissolved in 30 ml of methanol and acetic acid (12 ml, 210 mmol) and zinc dust (1.0 g, 15.3 mmol) were added (the product was recrystallised using ethanol).

Yield= 30.5 %, M.p. 211-213 °C, HRMS calculated for C₉H₉N₃OS m/z [M+H]+ 207.0466; found 207.0463; ¹H-NMR (400 MHz DMSO): δ 11.62 (s, 1H, NH), δ 9.96 (b, 1H, NH), δ 8.49 (d, J = 4.3 Hz, 1H, CHN), δ 7.77 (td, J = 7.7, 1.8 Hz, 1H, CHCHCHN), δ 7.30 (dd, J = 11.2, 6.4 Hz, 2H, CHCN and CHCHN), δ 4.66 (apparent t, J = 5.4 Hz, 1H, CHCH₂CN), δ 3.20 (qd, J = 14.9, 5.8 Hz, 2H, CHCH₂CH₂CN). ¹³C-NMR (101 MHz, d₆-DMSO): δ 183.0
\[
(C=S), \delta 176.7 (CO), \delta 156.0 (CN), \delta 149.4 (CHN), \delta 136.9 (CHCHCHN), \delta 124.6 (CHCN), \delta 122.4 (CHCHN), \delta 60.4 (CHCH_{2}), \delta 38.2 (CHCH_{2}). \text{IR (neat): } \nu_{\text{max}}=1711 \text{ cm}^{-1} (C=O), 1519 \text{ cm}^{-1} (C=S). \text{ File reference: } ^{1}H\text{-NMR: 400_HA_exp_3B_5pt_FDA.}^{13}C\text{-NMR: 400_hiwA-5PT-444)}.
\]

Synthesis of (Z)-5-(1-methyl-1H-pyrrol-2-yl) methylene)-2-thioxoimidazolidin-4-one (5)

![Diagram of the molecule](image)

Utilising method 1, thiohydantoin (2.3 g, 19.8 mmol), triethylamine (5.9 ml, 42.3 mmol) and 1-methyl pyrrole-2-carboxaldehyde (2.0 ml, 18.6 mmol) were added to 50 ml of water.

Yield = 64.3 \%, M.p. 263-265 °C, HRMS calculated for C_{9}H_{9}N_{3}OS m/z [M+H]^{+} 207.0466; found 207.0463; \(^{1}\)H-NMR (400 MHz, DMSO): \(\delta 7.24 \text{ (dd, } J=4.03, 1.28 \text{ Hz, 1H, CHN}), \delta 7.08 \text{ (t, } J=2.2 \text{ Hz, 1H, CHCHN}), \delta 6.43 \text{ (s, 1H, C=H=C}), \delta 6.20 \text{ (dd, } J=3.9, 2.6 \text{ Hz, 1H, CHCN}), \delta 3.71 \text{ (s, 3H, H}_{3}\text{CN}).^{13}C\text{-NMR (126 MHz, d}_{6}\text{-DMSO): } \delta 177.3 \text{ (C=S), } \delta 165.92 \text{ (CO), } \delta 128.5 \text{ (CHCHC}_{3}\text{N}), \delta 125.8 \text{ (C}_{3}\text{N}), \delta 122.9 \text{ (CHNCH}_{3}), \delta 115.3 \text{ (CHC}_{3}\text{NCH}_{3}), \delta 110.1 \text{ (CH=), } \delta 101.7 \text{ (CHCHNCH}_{3}), \delta 33.4 \text{ (C}_{3}\text{N}). \text{IR (neat): } \nu_{\text{max}}=1712 \text{ cm}^{-1} (C=O), 1633 \text{ cm}^{-1} (C=C), 1431\text{cm}^{-1} (C=S). \text{ File reference: } ^{1}H\text{-NMR: 400}_\text{hiwa-5MPT-555.}^{13}C\text{-NMR: 500}_\text{HA_exp_4A_C13).}
Synthesis of 5-((1-methyl-1H-pyrrol-2-yl) methyl)-2-thioxoimidazolidin-4-one (6)

Utilising method 4, 5-((1-methyl-1H-pyrrol-2-yl) methyl)-2-thioxoimidazolidin-4-one (2.0 g, 7.3 mmol) was dissolved in 75 ml of methanol, acetic acid (30 ml, 524 mmol) and Zn dust (1.2 g, 18.4 mmol) was added.

Yield= 27.3 %, M.p. 203-205 °C, HRMS calculated for C₉H₉N₃OS m/z [M+H]+ 209.0623; found 209.0622; ¹H-NMR (500 MHz DMSO): δ 10.01 (b, 1H, NH) δ 6.59 (t, J = 2.2 Hz, 1H, CHNCH₃), δ 5.84 (t, J = 3.1 Hz, 1H, CHCNCH₃), δ 5.77 (m, 1H, CHCN), δ 4.66 (apparent t, J = 4.9, Hz, 1H, CHCH₂CN), δ 2.97 (d, J = 4.9 Hz, 1H, CHCH₃CH₂CN).¹³C-NMR (126 MHz, d₆-DMSO): δ 182.2 (C=S), δ 175.3 (CO), δ 125.8 (CNCH₃), δ 121.9 (CHN), δ 107.5 (CHCNCH₃), δ 106.3 (CHCNCH₃), δ 60.7 (CHCH₂), δ 33.3 (CH₃N), δ 26.3 (CH₂CH). IR (neat): vmax=1737 cm⁻¹ (C=O), 1548 cm⁻¹ (C=S). File reference: ¹H-NMR: 500_HA_exp 4 B,¹³C-NMR: 500_HA_ exp 4B C13F).

Synthesis of (Z)-5-(furan-2-ylmethylene)-2-thioxoimidazolidin-4-one (7)

Utilising method 1, thiohydantoin (2.0 g, 17.2 mmol), triethylamine (5.7 ml, 40.9 mmol) and furan-2-carbaldehyde (1.8 ml, 21.7 mmol) were added to 25 ml of water.

Yield= 92.9 %, M.p. 223-225 °C, HRMS calculated for C₈H₆N₂O₂S m/z [M+H]+ 194.0150; found 194.0150; ¹H-NMR (400 MHz DMSO): δ 7.85 (d, J = 1.5 Hz, 1H, CHO), δ 7.12 (d, J= 3.51 Hz, 1H, CHCO), δ 6.76 (dd, J = 3.5, 1.8 Hz, 1H, CHCHO), δ 6.76 (s, 1H, CH=H).¹³C-NMR (101 MHz, d₆-DMSO): δ 178.4 (C=S), δ 165.7 (CO), δ 149.2 (CHCO), δ 146.2 (C=CH), δ 125.8 (CHCHO), δ 115.9 (CHCHO), δ 113.6 (CHCHO), δ 99.4 (CH=). IR (neat):
vmax=1722 cm⁻¹ (C=O), 1651 cm⁻¹ (C=C), 1592 cm⁻¹ (C=S). File reference: ¹H-NMR: 400_HA_exp 5A_DF, ¹³C-NMR: 400_hiwa-5-furT-7777).

Synthesis of (Z)-5-(4-methoxybenzylidene)-2-thioxoimidazolidin-4-one (8)

![Chemical Structure](https://example.com/structure8.png)

Utilising method 1, thiohydantoin (2.0 g, 17.2 mmol), triethylamine (6.0 ml, 43.0 mmol), and 4-methoxybenzaldehyde (2.6 ml, 21.3 mmol) were added to 25 ml of water.

Yield = 52.73 %, M.p. 267-269 °C, HRMS calculated for C₁₁H₁₀N₂O₂S m/z [M+H]+ 234.0463; found 234.0467; ¹H-NMR (400 MHz, DMSO): δ 7.73 (2 x CH, d, J = 8.7 Hz, 2H, CHCOCH), δ 6.99 (2x CH, d, J = 8.7 Hz, 2H, CHCCH), δ 6.47 (s, 1H, CH=CH), δ 3.81 (s, 3H, CH₃). ¹³C-NMR (101 MHz, d₆-DMSO): δ 179.1 (C=S), δ 165.9 (CO), δ 160.7 (H₂CCO), δ 132.2 (2xC, CHCOCH), δ 125.9 (C=CH), δ 124.9 (CHCCH), δ 114.4 (CHCCH), δ 112.2 (CH=CH), δ 55.4 (OCH₃). IR (neat): vmax=1723 cm⁻¹ (C=O), 1645 cm⁻¹ (C=C), 1596 cm⁻¹ (C=S). File reference: NMR: 400_hiwa-anis-BT-999).

Synthesis of 5-(4-methoxybenzyl)-2-thioxoimidazolidin-4-one (9)

![Chemical Structure](https://example.com/structure9.png)

Utilising method 4, (Z)-5-(4-methoxybenzylidene)-2-thioxoimidazolidin-4-one (1.5 g, 6.4 mmol) was dissolved in 50 ml of methanol, and acetic acid (23 ml, 401.8 mmol) and Zn dust (1.0 g, 15.3 mmol) were added.
Yield = 37.7\%, M.p. 192-194 °C, HRMS calculated for C\textsubscript{11}H\textsubscript{12}N\textsubscript{2}O\textsubscript{2}S m/z [M+H]+ 236.0619; found 236.0617;1H-NMR (400 MHz DMSO): \(\delta\) 11.43 (s, 1H, NH), \(\delta\) 10.07 (s, 1H, NH), \(\delta\) 7.086 (2x CH, \(d, J = 8.8\) Hz, 2H, CHCOCH), \(\delta\) 6.82 (2 x CH, \(d, J = 8.5\) Hz, 2H, CHCCH), \(\delta\) 4.49 (apparent t, \(J = 4.6\) Hz, 1H, CH\textsubscript{A}CH\textsubscript{B}CH), \(\delta\) 3.60 (s, 3H, OCH\textsubscript{3}), \(\delta\) 2.92 (d, \(J = 4.7\) Hz, 2H, CH\textsubscript{A}CH\textsubscript{B}CH).

13C-NMR (101 MHz, d\textsubscript{6}-DMSO): \(\delta\) 182.7 (C=S), \(\delta\) 176.3 (CO), \(\delta\) 158.4 (\textsubscript{H}3C=O), \(\delta\) 131.3 (2 x CHO), \(\delta\) 127.1 (CH\textsubscript{2}CH), \(\delta\) 113.9 (2 x CHC), \(\delta\) 62.0 (CHCH\textsubscript{2}), \(\delta\) 55.5 (OCH\textsubscript{3}), \(\delta\) 34.8 (CH\textsubscript{2}CH).

IR (neat): \(v_{\text{max}} = 1727\) cm-1 (C=O), 1523 cm-1 (C=S).

File reference: 1H-NMR: 400\textunderscore HA\textunderscore exp 6B DFA1.13C-NMR: 400\textunderscore hiwa\textunderscore 5\textunderscore anis\textunderscore BT\textunderscore 101010).

Synthesis of (Z)-5-((tetrahydrofuran-3-yl) methylene)-2-thioxoimidazolidin-4-one (10)

![Chemical structure](image)

Utilising method 1, thiohydantoin (3.0 g, 25.9 mmol), triethylamine (5.5 ml, 39.5 mmol) and tetrahydrofuran-3-carbaldehyde (4.0 ml, 42.4 mmol) were added to 25 ml of water.

Yield = 39.1\%, M.p. 223-225 °C, HRMS calculated for C\textsubscript{8}H\textsubscript{10}N\textsubscript{2}O\textsubscript{2}S m/z [M+H]+ 198.0463; found 198.0466;1H-NMR (400 MHz DMSO): \(\delta\) 5.61 (d, \(J = 10.2\) Hz, 1H, CH=), \(\delta\) 3.86 - 3.79 (m, 2H, CH\textsubscript{A}H\textsubscript{B}O + CH\textsubscript{2}CH\textsubscript{A}H\textsubscript{B}O), \(\delta\) 3.72 (dd, \(J = 14.9, 7.6\) Hz, 1H, CH\textsubscript{A}H\textsubscript{B}O), \(\delta\) 3.41-3.26 (m, 2H, CH\textsubscript{A}H\textsubscript{B}O+CH\textsubscript{2}CH\textsubscript{A}H\textsubscript{B}O), \(\delta\) 2.16-2.08 (m, 1H, CH\textsubscript{A}H\textsubscript{B}CH\textsubscript{2}), \(\delta\) 1.77 (m, 1H, CH\textsubscript{A}H\textsubscript{B}CH\textsubscript{2}). 13C-NMR (101 MHz, d\textsubscript{6}-DMSO): \(\delta\) 178.6 (C=S), \(\delta\) 164.7 (CO), \(\delta\) 131.5 (C=CH), \(\delta\) 116.9 (CH=CH), \(\delta\) 72.2 (CH\textsubscript{2}O), \(\delta\) 67.8 (CH\textsubscript{2}O), \(\delta\) 37.2 (CH\textsubscript{2}CH), \(\delta\) 32.9 (CH\textsubscript{2}CH). IR (neat): \(v_{\text{max}} = 1725\text{cm}^{-1}\) (C=O), 1672 cm-1 (C=C), 1534 cm-1 (C=S). File reference: 1H-NMR: 400\textunderscore hiwa\textunderscore 5\textunderscore hydro\textunderscore fur\textunderscore yl\textunderscore 2\textunderscore thiohydamin.13C-NMR: 400\textunderscore hiwa\textunderscore hydro\textunderscore f\textunderscore 111111).
Synthesis of 5-((tetrahydrofuran-3-yl) methyl)-2-thioxoimidazolidin-4-one (11)

Utilising method 4, (Z)-5-((tetrahydrofuran-3-yl)methylene)-2-thioxoimidazolidin-4-one (2.0 g, 10.0 mmol) was dissolved in 50 ml methanol, and acetic acid (10 ml, 174.6 mmol) and zinc dust (1.0 g, 15.3 mmol) were added.

Yield= 24.8 %, M.p. 166-168 °C, HRMS calculated for C₈H₁₂N₂O₂S m/z [M+H]⁺ 200.0619; found 200.0621; ¹H-NMR (400 MHz, DMSO-d₆): δ 11.74 (s, 2x1H, NH), δ 10.11, 10.07 (2 x s, 2 x 1H, NH), δ 4.26-4.21 (m, 2 x 1H, COCH₂CH₂), δ 3.77- 3.67 (m, 2 x 2H, CHCH₂H₂O + CH₂CH₂H₂O), δ 3.63-3.57 (m, 2 x 1H, CH₂CH₂H₂O), δ 3.25 (t, J = 7.8 Hz) and 3.18 (t, J = 7.8 Hz) (CHCH₂H₂O), δ 2.30-2.20 (m, 2 x 1H, CH₂CH₂H₂O), δ 1.74-1.63 (m, 2 x 2H, CHCH₂H₂CH), δ 1.52-1.41 (m, 2 x 1H, CH₂CH₂H₂CH).¹³C-NMR (126 MHz, d₆-DMSO): δ 182.2 (2 x C=S), δ 176.3, 176.2 (2 x CO), δ 72.0, 71.7 (2 x OCH₂CH₂), δ 66.7, 66.5 (OCH₂CH₂), δ 59.7 (br, 2 x COCH₂CH₂), δ 34.8, 34.7 (2 x CH₂CH₂CH₂), δ 33.8, 33.6 (2 x CH₂CH₂CH₂), δ 31.9, 31.2 (2 x CH₂CH₂CH₂). Rf = 1.5 (ethyl acetate: dichloromethane 2:1); FTIR vmax = 1747 cm⁻¹ (C=O), 1531 cm⁻¹ (C=S). File reference: ¹H-NMR: 400_HA_exp 14 DFA.¹³C-NMR: 500_hiwa 5 THf M 2 thiohydantoin 500).

Synthesis (Z)-5-benzylidenethiazolidine-2, 4-dione (12)

Utilising method 2, benzaldehyde (0.95 ml, 9.35 mmol) and thiazolidine-2, 4-dione (1.0 g, 8.53 mmol) were together suspended in ethanol (20 ml). Piperidine (0.2 ml, 2.02 mmol) was then added.
Yield = 74.5 %, M.p. 195-197°C, HRMS calculated for C_{10}H_{7}NO_{2}S m/z [EI]^+ 205.0198; found 2045.0196; \(^1\)H-NMR (500 MHz DMSO): δ 7.79 (s, 1H, H_{C=C}), δ 7.60 (d, J = 7.5 Hz, 2H, CHCCCH), δ 7.53 (t, J = 7.5 Hz, 2H, CHCHCH), δ 7.48 (t, J = 7.1 Hz, 1H, CHCHCH). \(^{13}\)C-NMR (126 MHz, d6-DMSO): δ 167.8 (SC=O), δ 167.3 (CCO), δ 133.0 (C=CH), δ 133.0 (C=CH), δ 130.4 (CH), δ 130.0 (2 x CH), δ 127.0 (2 x CH), δ 129.3 (CH=C). IR (neat): v_{\text{max}}=1750 \text{ cm}^{-1} (C=O), 1700 \text{ cm}^{-1} (C=O), 1608 \text{ cm}^{-1} (C=O). File reference: NMR: 500_EXP1 BT.DOBBond).

Synthesis 5-benzylthiazolidine-2,4-dione (13)

![Image of 5-benzylthiazolidine-2,4-dione](image)

Utilising method 3, (Z)-5-benzylidinethiazolidine-2, 4-dione (0.65 g, 3.17 mmol) was dissolved in the mixture of 10 ml of pyridine and 10 ml of anhydrous tetrahydrofuran (THF) at room temperature. Lithium borohydride (0.154 g, 6.98 mmol) was slowly added to a stirred solution.

Yield = 55.0 %, M.p. 98-100 °C, HRMS calculated for C_{10}H_{9}NO_{2}S m/z [EI]^+ 207.0354; found 207.0353; \(^1\)H NMR (400 MHz, CDCl3); δ 7.26 – 7.11 (m, 5H, phenyl), δ 4.43 (dd, J = 9.9, 3.9 Hz, 1H, CH), δ 3.44 (dd, J = 14.0, 3.8 Hz, 1H, CHCH\textsubscript{A}CH\textsubscript{B}), δ 3.03 (dd, J = 14.0, 9.9 Hz, 1H, CHCH\textsubscript{A}CH\textsubscript{B}). \(^{13}\)C NMR (101 MHz, CDCl3), δ 172.9 (CO), δ 169.2 (CO), δ 134.7 (C), δ 128.1 (2 x C), δ 127.9 (2 x C), δ 126.7 (CH), δ 52.4 (CHCH\textsubscript{2}), δ 37.6 (CHCH\textsubscript{2}). IR (neat): IR (neat): v_{\text{max}}=1745 \text{ cm}^{-1} (C=O), 1682 \text{ cm}^{-1} (C=O). File reference: \(^1\)H-NMR: 400_BT1. \(^{13}\)C-NMR: 400_BT c13).
Synthesis (Z)-5-(pyridin-2-ylmethylene) thiazolidine-2,4-dione (14)

![Chemical structure of 14]

Utilising method 2, 2-pyridine carboxaldehyde (1.9 ml, 19.97 mmol) and thiazolidine-2, 4-dione (2.0 g, 17.07 mmol) were together suspended in ethanol (40ml). Piperidine (0.3 ml, 3.03 mmol) was added to the mixture.

Yield= 64.0 %, M.p. 258-260 °C, HRMS calculated for C₉H₆N₂O₂S m/z [EI]⁺ 206.0150; found 206.0155; ¹H-NMR (500 MHz DMSO): δ 8.76 (d, J = 4.4 Hz, 1H, CHN), δ 7.94 (td, J = 7.7, 1.8 Hz, 1H, CHCHCN), δ 7.85 (d, J = 7.8 Hz, 1H, HCN), δ 7.82 (s, 1H, CH=), δ 7.42 (ddd, J = 7.6, 4.8, 1.1 Hz, 1H, CHCHN). ¹³C-NMR (126 MHz, d₆-DMSO): δ 171.9 (CO), δ 167.4 (CO), δ 151.3 (CN), δ 149.3 (CHN), δ 137.5 (C=CH), δ 128.0 (CHCHCN), δ 27.8 (CHCN), δ 127.7 (CHCHN), δ 123.9 (CH=C). IR (neat): vmax = 1740 cm⁻¹ (C=O), 1680 cm⁻¹ (C=O), 1620 cm⁻¹ (C=C). File reference: ¹H-NMR: 500_HA exp108pythi.¹³C-NMR: 500_HA-exp 106 C13).

Synthesis 5-(pyridin-2-ylmethyl) thiazolidine-2,4-dione (15)

![Chemical structure of 15]

Utilising method 4, (Z)-5-(pyridin-2-ylmethylene) thiazolidine-2, 4-dione (1.25 g, 60.07 mmol) was dissolved in 50 ml of acetic acid under nitrogen atmosphere. Zinc dust (1.5 g, 22.94 mmol) was added to the mixture at 130 °C.
Yield = 72.1 %, M.p. 98-100 °C, HRMS calculated for C_9H_8N_2O_2S m/z [EI]^+ 208.0306; found 208.0309; \(^1\)H-NMR (500 MHz DMSO): δ 12.10 (s, 1H, NH), δ 8.54 (d, J = 4.2 Hz, 1H, CH(N)), δ 7.81 (td, J = 7.7, 1.8 Hz, 1H, CHCH(N)), δ 7.39 (d, J = 7.8 Hz, 1H, CH(N)), δ 7.33 (dd, J = 7.1, 5.2 Hz, 1H, CH(N)), δ 4.99 (dd, J = 10.1, 3.9 Hz, 1H, CH), δ 3.69 (dd, J = 16.0, 3.9 Hz, 1H, CHCH\(_2\)), δ 3.44 (dd, J = 16.0, 10.1 Hz, 1H, CHCH\(_2\)) \(_{AB}\)) \(_{AB}\)). \(^{13}\)C-NMR (126 MHz, \(_{6}\)-DMSO): δ 176.5 (CO), δ 172.8 (CO), δ 156.7 (CN), δ 148.8 (CH(N)), δ 136.7 (CHCH(N)), δ 123.6 (CH(CN)), δ 122.0 (CHCH(N)), δ 49.7 (CHCH\(_2\)), δ 21.1 (CHCH\(_2\)). IR (neat): \(v_{\text{max}} = 3010\) cm\(^{-1}\) (NH), 1689 cm\(^{-1}\) (C=O), 1668 cm\(^{-1}\) (C=O). File reference: \(^1\)H-NMR: 500_ha-EXP 108 hmbc. \(^{13}\)C-NMR: 500_HA_exp 108 CH2).

Synthesis (Z)-5-benzylidene-2-thioxothiazolidin-4-one (16)

![Synthesis (Z)-5-benzylidene-2-thioxothiazolidin-4-one (16)](image)

Utilising method 2, benzaldehyde (3.82 ml, 37.61 mmol) and 2-thioxothiazolidin-4-one (5.0 g, 37.60 mmol) were suspended in ethanol (100 ml). Piperidine (1.0 ml, 10.12 mmol) was added to the mixture.

Yield = 90.0 %, M.p: 190-192°C, HRMS calculated for C\(_{10}\)H\(_7\)NOS\(_2\) m/z [EI]^+ 220.9969; found 220.9969; \(^1\)H-NMR (500 MHz, DMSO): δ 7.64 (s, 1H, HC=C), δ 7.61-7.48 (m, 5H, phenyl). \(^{13}\)C-NMR (126 MHz, \(_{6}\)-DMSO): δ 195.6 (C=S), δ 169.4 (CO), δ 132.9 (C=CH), δ 131.6 (C=CH(C)), δ 130.7 (CH), δ 130.4 (2 x CH), δ 129.4 (2 x CH), δ 125.5 (CH=CH). IR (neat): \(v_{\text{max}} = 1699\) cm\(^{-1}\) (C=O), 1660 cm\(^{-1}\) (C=S), 1587 cm\(^{-1}\) (C=C). File reference: NMR: 500_EXP1 BR_DOUBLEBOND).
Synthesis 5-benzyl-2-thioxothiazolidin-4-one (17)

Utilising method 4, (Z)-5-benzylidene-2-thioxothiazolidin-4-one (0.5 g, 2.22 mmol) was dissolved in 50 ml of acetic acid under nitrogen atmosphere. Zinc dust (1.5 g, 22.94 mmol) was added to the mixture at 130 °C.

Yield= 60.0 %, HRMS calculated for C_{10}H_{10}NOS_{2} m/z [ES] 222.0047; found 222.0043; ^1H NMR (400 MHz, CDCl_3); δ 7.30-7.14 (m, 5H, phenyl), δ 4.54 (dd, J = 10.1, 4.0 Hz, 1H, CH), δ 3.48 (dd, J = 14.1, 4.0 Hz, 1H, CHCH_ACH_B), δ 3.09 (dd, J = 14.1, 10.1 Hz, 1H, CHCH_ACH_B). ^13C NMR (101 MHz, CDCl_3); δ 199.2 (CS), δ 175.7 (CO), δ 134.6 (C), δ 128.0 (2 x C), δ 128.2 (2 x C), δ 126.8 (C), δ 55.7 (CHCH_2), δ 37.3 (CHCH_2). IR (neat): vmax = 1745 cm^{-1} (C=O), 1682 cm^{-1} (C=S). File reference: NMR: 400_HA_benzylrhodanine_ZN).

Synthesis (Z)-5-(pyridin-2-ylmethylene)-2-thioxothiazolidin-4-one (18)

Utilising method 2, 2-pyridinecarboxaldehyde (1.5 ml, 15.76 mmol) and 2-thioxothiazolidin-4-one (2.0 g, 15.04 mmol) were together suspended in ethanol (60 ml). Piperidine (0.2 ml, 2.02 mmol) was added to the mixture.

Yield= 85.0 %, M.p. 258-261 °C, HRMS calculated for C_{9}H_{6}N_{2}OS_{2} m/z [MS EI]^+ 221.9922; found 221.9920; ^1H-NMR (500 MHz, DMSO); δ 13.68 (s, 1H, NH), δ 8.78 (d, J = 4.6 Hz, 1H, CHN), δ 7.94 (td, J = 7.6, 1.7 Hz, 1H, CHCHNH), δ 7.88 (d, J = 7.8 Hz, 1H, CHCN), δ
7.66 (s, 1H, CH=), δ 7.43 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H, CHCHN). 13C-NMR (126 MHz, d6-DMSO): δ 201.9 (CS), δ 169.3 (CO), δ 151.0 (CN), δ 149.5 (CHN), δ 137.6 (C=CH), δ 129.7 (CHCHCN), δ 128.1 (CHCN), δ 127.4 (CHCHN), δ 124.0 (CH=C). IR (neat): vmax = 1720 cm⁻¹ (C=O), 1610 cm⁻¹ (C=S), 1579 cm⁻¹ (C=C). NMR: 500_EXP1 PYR_DouBond

Synthesis 5-(pyridin-2-ylmethyl)-2-thioxothiazolidin-4-one (19)

![Structure of 5-(pyridin-2-ylmethyl)-2-thioxothiazolidin-4-one (19)](image)

Utilising method 4, (Z)-5-(pyridin-2-ylmethylene)-2-thioxothiazolidin-4-one (0.5 g, 2.25 mmol) was dissolved in 50 ml of acetic acid under nitrogen atmosphere. Zinc dust (0.8 g, 12.23 mmol) was added to the mixture at 130 °C. Yield = 68.0 %, M.p. 100-102 °C, HRMS calculated for C₉H₈N₂O₂S₂ m/z [MS ES]⁺ 223.0002; found 223.0000; ¹H-NMR (500 MHz CDCl₃): δ 8.46 (dd, J = 5.7, 1.5 Hz, 1H, CHN), δ 7.58 (tt, J = 4.5, 2.3 Hz, 1H, CHCHCN), δ 7.13 (dd, J = 7.6, 4.5 Hz, 2H, CHCN + CHCHN), δ 4.85 (dd, J = 10.5, 3.9 Hz, 1H, CH), δ 3.73 (dd, J = 16.1, 3.9 Hz, 1H, CHCHₐCH₉), δ 3.38 (dd, J = 16.1, 10.5 Hz, 1H, CHCHₐCH₉). 13C-NMR (126 MHz, d6-DMSO): δ 205.0 (CS), δ 178.6 (CO), δ 156.4 (CN), δ 148.7 (CHN), δ 136.8 (CHCHCN), δ 123.5 (CHCN), δ 122.2 (CHCHCN), δ 52.5 (CHCH₂), δ 38.2 (CHCH₂). IR (neat): vmax = 1699 cm⁻¹ (C=O), 1593 cm⁻¹ (C=S). File reference: ¹H-NMR: 500_HA_IBRpyrhod.¹3C-NMR: 500_HA_IBRpyrhod_DMSO).
Synthesis of 5-methyl-2-thioxoimidazolidin-4-one (20)

Utilising method 6, 1:3 L-alanine (1.0 g, 11.22 mmol) and thiourea (2.56 g, 33.67 mmol) were mixed together and heated under stirring.

Yield= 30.0%, M.p. 138-140 °C, HRMS calculated for C₄H₆N₂OS m/z [EI]+ 130.0201; found 130.0199; ¹H-NMR (400 MHz DMSO): δ 10.02 (s, 1H, NH), δ 4.24 (q, J = 7.0 Hz, 1H, CH), δ 1.24 (d, J = 7.0 Hz, 3H, CH₃). ¹³C-NMR (101 MHz, d₆-DMSO): δ 182.5 (C=S), δ 177.9 (CO), δ 56.8 (CHCH₃), δ 16.27 (CH₃CH). IR (neat): vmax = 1740 cm⁻¹ (C=O), 1544 cm⁻¹ (C=S). (File reference: ¹H-NMR: 400_HA-exp 42_16-9 long.¹³C-NMR: 400_ha_EXP 42_12_9).

Synthesis of 5-isopropyl-2-thioxoimidazolidin-4-one (21)

Utilising method 6, 1:3 L-valine (1.0 g, 8.53 mmol) and thiourea (1.95 g, 25.60 mmol) were mixed together and heated under stirring.

Yield= 14.0 %, M.p. 122-123 °C, HRMS calculated for C₆H₁₀N₂OSm/z [EI]+ 158.0507; found 158.0514; ¹H-NMR (400 MHz DMSO): δ 11.76 (s, 1H, NH), δ 10.07 (s, 1H, NH), δ 4.12 (dd, J = 3.6, 1.1 Hz, 1H, CH), δ 2.10 (m, 1H, H₃CCHCH₃), δ 0.96 (d, J = 7.0 Hz, 3H, CH₃), δ 0.81 (d, J = 6.8 Hz, 3H,CH₃).¹³C-NMR (101 MHz, d₆-DMSO): δ 183.3 (C=S), δ 176.3 (C=O), δ
66.0 (NHCHCH), δ 30.4 (H$_3$CCHCH$_3$), δ 18.4 (H$_3$CCHCH$_3$), δ 16.6 (H$_3$CCHCH$_3$). IR (neat): vmax=1723 cm$^{-1}$ (C=O), 1524 cm$^{-1}$ (C=S). (File reference: NMR: 400_EXp52FD)

Synthesis of 5-((1H-indol-3-yl) methyl)-2-thioximidazolidin-4-one (22)

![Chemical Structure](image)

Utilising method 6, L-tryptophan (1.0 g, 4.89 mmol) and thiourea (1.11 g, 14.58 mmol) were mixed together and heated under stirring.

Yield= 26.7 %, M.p. 112-113°C, HRMS calculated for C$_{12}$H$_{11}$N$_{3}$OS m/z [ES] $^{+}$ 244.05465; found 244.0540; 1H-NMR (400 MHz DMSO): δ 11.28 (s, 1H, NH), δ 10.93 (s, 1H, HCNH), δ 10.08 (s, 1H, NH), δ 7.54 (d, J = 7.9 Hz, 1H, CHCC), δ 7.32 (d, J = 8.1 Hz, 1H, CHCNH), δ 7.10 (d, J = 2.4 Hz, 1H, CHN), δ 7.05 (t, J = 7.0 Hz, 1H, CHCHCNH), δ 6.97 (t, J = 6.9 Hz, 1H, CHCHCC), δ 4.53 (apparent t, J = 4.7 Hz, 1H, CHCH$_2$), δ 3.12 (qd, J = 15.1, 4.7 Hz, 2H, CH$_4$CH$_8$CH).13C-NMR (101 MHz, d$_6$-DMSO): δ 182.4 (C=S), δ 176.3 (CO), δ 135.6 (CNH), δ 127.6 (CCNH), δ 124.0 (CHNH), δ 121.0 (CHCHCNH), δ 118.5 (CHCHCC), δ 111.3 (CHCC), δ 109.4 (CHCNH), δ 107.4 (CCHNH), δ 61.8 (CHCH$_2$), δ 27.4 (CHCH$_2$). IR (neat): vmax = 1744 cm$^{-1}$ (C=O), 1524 cm$^{-1}$ (C=S). (File reference: 1H-NMR: 400_ha_EXP 54df2.13C-NMR: 400_HA_exp 54).
Synthesis of 3-thioxohexahydro-1H-pyrrolo [1, 2-c] imidazol-1-one (23)

Utilising method 6, 1:3 L-proline (1.4 g, 12.16 mmol) and thiourea (2.8 g, 36.48 mmol) were mixed together and heated under stirring.

Yield = 42.2 %, M.p. 133-135 °C, HRMS calculated for C₆H₈N₂O₅ m/z [MS EI]+ 156.0357; found 156.0361, ¹H-NMR (500 MHz DMSO): δ 4.39 (dd, J = 10.01, 6.3 Hz, 1H, NCH₂), δ 3.74-3.65 (m, 1H, CH₂N), δ 3.43 (ddd, J = 11.4, 8.2, 2.9 Hz, 1H, CH₃N), δ 2.18-2.02 (m, 3H, CH₃CH₂N + CH₂CH₂N), δ 1.72-1.57 (m, 1H, CH₃CH₂N), δ 186.30 (C=S), δ 175.58 (CO), δ 66.55 (NCH₂CH₃), δ 47.59 (CH₃N), δ 27.02 (CH₂CH₂N), δ 26.16 (CH₂CH₂N). IR (neat): vmax = 1750 cm⁻¹ (C=O), 1554 cm⁻¹ (C=S). (File reference: NMR: 500_hiwa_proline 2thio last).

Synthesis of 5-(2-(methylthio) ethyl)-2-thioxoimidazolidin-4-one (24)

Utilising method 6, 1:3 L-methionine (1.4 g, 12.16 mmol) and thiourea (2.8 g, 36.48 mmol) were mixed together and heated under stirring.

Yield= 25.0 %, M.p. 81-82°C, HRMS calculated for C₆H₁₀N₂O₂S m/z [MS EI]+ 190.0235; found 190.02235;¹H-NMR (500 MHz DMSO): δ 11.70 (s, 1H, NH), δ 10.80 (s, 1H, NH), δ 4.30 (dd, J = 7.5, 4.9 Hz, 1H,CH₂CH₃), δ 2.56 – 2.52 (m, 2H, CH₂S), δ 2.03 (s, 3H, CH₃S), δ
1.99 (m, 1H, CH₃CH₆CH), δ 1.96 (m, 1H, CH₃CH₆CH).¹³C-NMR (126 MHz, d₆-DMSO): δ 183.0 (C=S), δ 176.4 (CO), δ 59.5 (CHCH₂), δ 30.2 (CH₂CH₂S), δ 28.5 (CH₂CH₂S), δ 14.40 (SCH₃). IR (neat): v max = 1738 cm⁻¹ (C=O), 1541 cm⁻¹ (C=S). (File reference: NMR: 500_HA_exp 58 _C13).

Synthesis of 5-((1H-imidazol-4-yl) methyl)-2-thioximidazolidin-4-one (25)

![Image of compound 25]

Utilising method 6, D-histidine (0.5 g, 3.22 mmol) and thiourea (1.0 g, 13.13 mmol) were mixed together and heated under stirring.

Yield = 16.0%, HRMS calculated for C₇H₈N₄O₄S m/z [MS EI]⁺ 196.0419; found 196.0413;¹H-NMR (500 MHz DMSO): δ 11.57 (s, 1H, SCN), δ 9.92 (s, 1H, HCN), δ 7.71 (s, 1H, NH), δ 6.87 (s, 1H, NH), δ 4.45 (apparent t, J = 5.5 Hz, 1H, CH₂C), δ 2.89 (dd, J = 15.2, 5.0, 1H, CH₃CH₂C), δ 2.89 (dd, J = 15.2, 6.0, 1H, CH₃CH₂C).¹³C-NMR (126 MHz, d₆-DMSO): δ 182.8 (C=S), δ 176.2 (CO), δ 134.8 (NHCH₂N), δ 131.5 (CH₂CH₂C), δ 116.3 (NHCH₂), δ 60.6 (CH₂CH₂C), δ 28.20 (CH₂CH₂C). (File reference:¹H-NMR: 500_hiwa_histidin dilute_2.¹³C-NMR: 500_hiwa_histidin 2 thio 0005).

Synthesis of 1-acetyl-2-thioximidazolidin-4-one (26)

![Image of compound 26]

Utilising method 5a, glycine (1.0 g, 13.3 mmol) and NH₄SCN (1.038 g, 13.3 mmol) were ground together. A mixture of 9 ml acetic anhydride and 1 ml of acetic acid was added.
Yield= 73.28 %, M.p. 170-172°C, HRMS calculated for C₅H₆N₂O₂S m/z [MS EI]+ 158.0150; found 158.0150; ¹H-NMR (400 MHz DMSO): δ 4.40 (s, 2H, CH₂), δ 2.68 (s, 3H, CH₃). ¹³C-NMR (101 MHz, d₆-DMSO): δ 181.9 (C=S), δ 170.0 (CO), δ 168.9 (H₃COCO), δ 51.7 (CH₂), δ 26.1 (H₃COCO). IR (neat): vmax = 1755 cm⁻¹, 1661 cm⁻¹ (C=O), 1645 cm⁻¹ (C=S). (File reference: NMR: 400_HA_exp 16 DFA).

Synthesis of (S)-1-acetyl-5-benzyl-2-thioxoimidazolidin-4-one (27)

![image]

Utilising method 5b, L-phenyl alanine (1.0 g, 6.0 mmol) and NH₄SCN (1.0 g, 13.2 mmol) were ground together. A mixture of 4.5 ml of acetic anhydride and 0.5 ml of acetic acid was added.

Yield= 35.9 %, M.p. 124-125 °C, [α]²₀° = +94.5° (0.25 g/100 ml in acetonitrile), HRMS calculated for C₁₂H₁₂N₂O₂S m/z [M+H]+ 248.0619; found 248.0624; ¹H-NMR (500 MHz DMSO): δ 7.30-7.23 (m, 3H, phen), δ 6.99 - 6.97 (m, 2H, phen), δ 4.99 (dd, J = 5.9, 2.57 Hz, 1H, CH), δ 3.41-3.37 (dd, J = 13.9, 5.8 Hz, 1H, CHACH₆CH), δ 3.14-3.11 (dd, J = 13.9, 2.57 Hz, 1H, CH₆CH₆CH), δ 2.69 (s, 1H, CH₃).¹³C-NMR (126 MHz, d₆-DMSO): δ 182.1 (C=S), δ 172.3 (CO), δ 169.8 (H₃COCO), δ 134.2 (CCH₂), δ 129.0 (2XCHCH), δ 128.2 (2 x CHC), δ 127.05 (CH), δ 63.30 (CHCH₂), δ 34.3 (CHCH₂), δ 27.0 (H₃COCO). IR (neat): vmax = 1761 cm⁻¹, 1699 cm⁻¹ (C=O), 1456 cm⁻¹ (C=S). (File reference: ¹H-NMR: 500_hiwa_acetyl_5_benzyl_2_thiohydantoin. ¹³C-NMR: 500_hiwa_acetyl_5BT1001).
Synthesis of (S)-1-acetyl-5-phenyl-2-thioxoimidazolidin-4-one (28)

Utilising method 5b, L-phenyl glycine (1.0 g, 6.0 mmol) and NH$_4$SCN (1.0 g, 13.2 mmol) were ground together. A mixture of 4.5 ml of acetic anhydride and 0.5 ml of acetic acid was added.

Yield = 64.0%, $[\alpha]_{D}^{20} = +14.0^\circ$ (0.43 g/l00 ml in methanol), HRMS calculated for C$_{11}$H$_{10}$N$_2$O$_2$S m/z [EI]$^+$ 234.0463; found 234.0463; 1H-NMR (400 MHz DMSO): δ 7.44-7.33 (m, 3H, phen), δ 7.26 (d, $J = 7.3$ Hz, 2H, phen), δ 5.71 (s, 1H, CH), δ 2.72 (s, 1H, CH$_3$). 13C-NMR (101 MHz, d$_6$-DMSO): δ 183.0 (C=S), δ 171.7 (CO), δ 169.5 (H$_3$CCO), δ 134.8 (CCH), δ 129.3 (2 x CHCH), δ 128.8 (2 x CHC), δ 126.7 (CH), δ 66.4 (CHCH$_2$), δ 27.6 (H$_3$CCO). IR (neat): $\nu_{\text{max}} = 1761$ cm$^{-1}$, 1699 cm$^{-1}$ (C=O), 1456 cm$^{-1}$ (C=S). (File reference: 1H-NMR: 400_HA_exp49 last in DMSO.13C-NMR: 400_HA_exp49).

Synthesis of (S)-1-acetyl-5-methyl-2-thioxoimidazolidin-4-one (29)

Utilising method 5b, L-alanine (1.0 g, 11.2 mmol) and NH$_4$SCN (1.0 g, 13.2 mmol) were ground together. A mixture of 4.5 ml of acetic anhydride and 0.5 ml of acetic acid was added.

Yield = 14.6 %, M.p. 161-162 °C, $[\alpha]_{D}^{20} = +83.9^\circ$ (0.29 g/l00 ml in acetonitrile), HRMS calculated for C$_6$H$_8$N$_2$O$_2$S m/z [M+H] $^+$ 171.0228; found 171.0223, 1H-NMR (500 MHz, d$_6$-
DMSO): δ 12.62 (s, 1H, NH), δ 4.69 (q, J = 6.8 Hz, 1H, CHCH$_3$), δ 2.72 (s, 1H, COCH$_3$), δ 1.44 (d, J = 6.9 Hz, 1H, CHCH$_3$). 13C-NMR (126 MHz, d$_6$-DMSO): δ 182.5 (C=S), δ 174.2 (CO), δ 169.7 (H$_3$CCO), δ 58.9 (CHCH$_3$), δ 27.3 (H$_3$CCO), δ 15.9 (CHCH$_3$). (File reference: 1H-NMR: 500_HA_exp 46 DFD.13C-NMR: 500_HA_exp 46 CDF3).

Synthesis of (S)-1-acetyl-5-isopropyl-2-thioimidazolidin-4-one (30)

![Chemical Structure](image)

Utilising method 5b, L-valine (1.0 g, 8.5 mmol) and NH$_4$SCN (1.0 g, 13.2 mmol) were ground together. A mixture of 4.5 ml of acetic anhydride and 0.5 ml of acetic acid was added.

Yield= 35.0%, M.p. 96-97°C, [α]$_D^{20}$ = +116.8° (0.40 g/100 ml in acetone), HRMS calculated for Cs$_8$H$_{12}$N$_2$O$_2$S m/z [AP]$^+$ 199.0535; found 199.0541; 1H-NMR (400 MHz, d$_6$-DMSO): δ 12.64 (s, 1H, NH), δ 4.57 (d, J = 3.4 Hz, 1H, CH), δ 2.71 (s, 3H, H$_3$CCO), δ 2.45-2.39 (m, 1H, H$_3$CCHCH$_3$), δ 1.08 (d, J = 7.1 Hz, 3H, CH$_3$), δ 0.75 (d, J = 6.9 Hz, 3H, CH$_3$).'$_{13}$C-NMR (101 MHz, d$_6$-DMSO): δ 182.6 (C=S), δ 171.9 (CO), δ 169.5 (H$_3$CCO), δ 66.3 (CHCH$_2$), δ 28.7 (H$_3$CCHCH$_3$), δ 27.6 (H$_3$CCO), δ 17.2 (H$_3$CCHCH$_3$), δ 15.2 (H$_3$CCHCH$_3$). IR (neat): v max = 1757 cm$^{-1}$(C=O), 1703 cm$^{-1}$(C=O), 1460 cm$^{-1}$(C=S). (File reference: NMR: 400_HA_exp 47 DFM).
Synthesis of 5-((1H-indol-3-yl) methyl)-1-acetyl-2-thioxoimidazolidin-4-one (31)

Utilising method 5b, L-tryptophan (0.5 g, 2.4 mmol) and \(\text{NH}_4\text{SCN} \) (0.5 g, 6.6 mmol) were ground together. A mixture of 2250 \(\mu \)l of acetic anhydride and 250 \(\mu \)l of acetic acid was added.

Yield = 42.0 \%, M.p. 153-154 °C, \([\alpha]^{20}_D = +94.5^\circ \) (0.4 g/100 ml in acetone), HRMS calculated for \(\text{C}_{14}\text{H}_{13}\text{N}_3\text{O}_2\text{S} \) \(\text{m/z} \) \([\text{ES}] \) 286.0650; found 286.0640; \(^1\text{H}-\text{NMR} \) (400 MHz, \(\text{d}_6\text{-DMSO} \)): \(\delta \) 12.29 (s, 1H, \(\text{NH} \)), \(\delta \) 10.95 (s,1H, \(\text{HCNH} \)), \(\delta \) 7.35 (d, \(J = 7.9 \) Hz, 1H, \(\text{CHCC} \)), \(\delta \) 7.31 (d, \(J = 8.1 \) Hz, 1H, \(\text{CHCNH} \)), \(\delta \) 7.07-7.031 (t, \(J = 7.5 \) Hz, 1H, \(\text{CHCHCNH} \)), \(\delta \) 6.98 (m, 2H, \(\text{CHCHCC} + \text{CHNH} \)), \(\delta \) 4.99 (dd, \(J = 5.5, 2.6 \) Hz, 1H, \(\text{CHCH}_2 \)), \(\delta \) 3.57-3.52 (dd, \(J = 14.6, 5.6 \) Hz, 1H, \(\text{CH}_3\text{CH}_2\text{CH} \)), \(\delta \) 3.29 (dd, \(J = 14.8, 3.8 \) Hz, 1H, \(\text{CH}_3\text{CH}_2\text{CH} \)), \(\delta \) 2.68 (s, 3H, \(\text{H}_3\text{CCO} \)).\(^{13}\text{C}-\text{NMR} \) (101 MHz, \(\text{d}_6\text{-DMSO} \)): \(\delta \) 181.3 (C=S), \(\delta \) 171.8 (CO), \(\delta \) 169.0 (H\(_3\)CCO), \(\delta \) 134.6 (CNH), \(\delta \) 126.0 (CCNH), \(\delta \) 122.8 (CHNH), \(\delta \) 120.0 (CHCHCNH), \(\delta \) 117.5 (CHCHCC), \(\delta \) 117.9 (CHCC), \(\delta \) 110.2 (CHCNH), \(\delta \) 104.9 (CCHNH), \(\delta \) 63.6 (CHCH\(_2\)), \(\delta \) 27.3 (CHCH\(_2\)), \(\delta \) 24.6 (H\(_3\)CCO). IR (neat): \(v_{\text{max}} = 1750 \text{ cm}^{-1} \) (C=O), 1688 cm\(^{-1}\) (C=O), 1456 cm\(^{-1}\) (C=S). (File reference: NMR: 400_HA_exp 53 DFM).
Synthesis of (S)-1-acetyl-5-((methylthio) methyl)-2-thioxoimidazolidin-4-one (32)

Utilising method 5b, L-methionine (0.5 g, 3.4 mmol) and NH$_4$SCN (0.5 g, 6.6 mmol) were ground together. A mixture of 2250 µl of acetic anhydride and 250 µl of acetic acid was added.

Yield = 38.0 %, M.p. 81-82°C, [α]$^D_{20}$ = +118.6° (0.40 g/100 ml in acetone), HRMS calculated for C$_8$H$_{12}$N$_2$O$_2$S$_2$ m/z [MS ES] 231.0262; found 231.0266; 1H-NMR (400 MHz, d$_6$-DMSO): δ 12.69 (s, 1H, NH), δ 4.76 (dd, J = 7.1, 3.2 Hz, 1H, CHCH$_2$), δ 2.68 (s, 3H, OCCH$_3$), δ 2.51 – 2.41 (m, 1H, overlapped with DMSO, CH$_A$CH$_B$S), δ 2.34 (m, 1H, CH$_A$CH$_B$S), δ 2.24 – 2.06 (m, 2H, CH$_2$CH), δ 1.96 (s, 3H, SCHR). 13C-NMR (101MHz, d$_6$-DMSO): δ 183.3 (C=S), δ 173.5 (CO), δ 170.3 (H$_3$CCO), δ 61.8 (CHCH$_2$), δ 28.4 (CH$_3$S), δ 27.9 (CH$_2$CH$_2$CH), δ 27.81 (CH$_3$CO), δ 14.80 (SCHR). IR (neat): vmax = 1761 cm$^{-1}$ (C=O), 1704 cm$^{-1}$ (C=O), 1446 cm$^{-1}$ (C=S). (File reference: 1H-NMR: 400_HA_exp 57 after CC_01.13C-NMR: 400_HA_exp 57 DFCH).

Synthesis of 5-benzyl-3-phenyl-2-thioxoimidazolidin-4-one (33)

Utilising method 7, to a mixture of L-phenyl alanine methyl ester hydrochloride salt (1.0 g, 4.35 mmol) and Et$_3$N (1.5 ml, 10.76 mmol) in 25 ml of CH$_2$Cl$_2$, phenylisothiocyanate (1.5 ml, 12.56 mmol) was slowly added.
Yield = 84.0 %, M.p. 178-179°C, HRMS calculated for C16H14N2OS m/z [EI]+ 282.0827; found 282.0825; 1H-NMR (500 MHz, d6-DMSO): δ 10.62 (s, 1H, NH), δ 7.42-6.76 (m, 10H, phenyl), δ 4.78 (apparent t, J = 4.5, 1H, CH), δ 3.13 (d, J = 4.5 Hz, 2H, CHA\textsubscript{A}CH\textsubscript{B}CH\textsubscript{C}). 13C-NMR (126 MHz, d6-DMSO): δ 181.9 (C=S), δ 173.3 (CO), δ 134.0 (CN), δ 132.8 (CCH\textsubscript{2}), δ 129.4 (2 x CH), δ 128.6 (2 x CH), δ 128.5 (CH), δ 128.0 (2 x CH), δ 127.7 (2 x CH), δ 126.6 (CHCHCH\textsubscript{2}), δ 59.7 (CHCH\textsubscript{2}), δ 35.7 (CHCH\textsubscript{2}). IR (neat): vmax = 1746 cm-1 (C=O), 1494 cm-1 (C=S). (File reference: NMR: 500_hiwa_5benz3phe2thio).

Synthesis of 5-isopropyl-3-phenyl-2-thioxoimidazolidin-4-one (34)

Utilising method 7, to a mixture of L-valine methyl ester hydrochloride salt (1.0 g, 5.96 mmol) and Et\textsubscript{3}N (1.5 ml, 10.76 mmol) in 25 ml of CH\textsubscript{2}Cl\textsubscript{2}, phenylisothiocyanate (1.5 ml, 12.56 mmol) was slowly added.

Yield = 90.5 %, M.p. 159-161 °C, HRMS calculated for C\textsubscript{12}H\textsubscript{14}N\textsubscript{2}OS m/z [EI]+ 234.0827; found 234.0832; 1H-NMR (400 MHz, d6-DMSO): δ 10.59 (s, 1H, NH), δ 7.52-7.22 (m, 5H, phenyl), δ 4.33 (d, J = 3.6 Hz, 1H, CH), δ 2.19 (m, 1H, H\textsubscript{3}CCHCH\textsubscript{3}), δ 1.05 (d, J = 6.9 Hz, 3H, CH\textsubscript{3}), δ 0.92 (d, J = 6.6 Hz, 3H, CH\textsubscript{3}). 13C-NMR (126 MHz, d6-DMSO): δ 182.6 (C=S), δ 173.4 (CO), δ 133.1 (CN), δ 129.6 (2 x CH), δ 128.5 (2 x CH), δ 129.1 (CH), δ 64.1 (CHCH\textsubscript{2}), δ 30.3 (H\textsubscript{2}CCHCH\textsubscript{3}), δ 17.9 (H\textsubscript{2}CCHCH\textsubscript{3}), δ 15.9 (H\textsubscript{2}CCHCH\textsubscript{3}). IR (neat): vmax = 1756 cm-1 (C=O), 1514 cm-1 (C=S). (File reference: NMR: 500_hiwa_5_valin3 phenyl 2 thio).
Synthesis of 5-methyl-3-phenyl-2-thioxoimidazolidin-4-one (35)

![Chemical Structure](image)

Utilising method 2, to a mixture of L-alanine methyl ester hydrochloride salt (1.0 g, 7.16 mmol) and Et₃N (1.4 ml, 10.04 mmol) in 25 ml of CH₂Cl₂, phenylisothiocyanate (1.5 ml, 12.56 mmol) was slowly added.

Yield= 96.8%, M.p. 154-156 °C, HRMS calculated for C₁₀H₁₀N₂O₅ m/z [MS EI]^+ 206.0514; found 206.0518; ¹H-NMR (400 MHz, d₆-DMSO): δ 10.53 (s, 1H, NH), δ 7.54-7.25 (m, 5H, phenyl), δ 4.47 (q, J = 6.7 Hz, 1H, CH₃CH₂), δ 1.40 (d, J = 6.8 Hz, 3H, CH₃). ¹³C-NMR (101 MHz, d₆-DMSO): δ 182.0 (C=S), δ 174.9 (CO), δ 133.5 (CN), δ 128.8 (2 x CH), δ 128.6 (2 x CH), δ 128.4 (CH), δ 55.0 (CH₂CH₃), δ 16.1 (CH₂CH₃). IR (neat): vmax= 1750 cm⁻¹ (C=O), 1498 cm⁻¹ (C=S). (File reference: ¹H-NMR: 400_HA_exp 25 C13).

Synthesis of 3-allyl-5-benzyl-2-thioxoimidazolidin-4-one (36)

![Chemical Structure](image)

Utilising method 7, to a mixture of L-alanine methyl ester hydrochloride salt (0.2 g, 0.87 mmol) and Et₃N (0.2 ml, 1.44 mmol) in 5 ml of CH₂Cl₂, phenylisothiocyanate (0.2 ml, 2.0 mmol) was slowly added.

Yield= 46.3 %, M.p. 107-108 °C, HRMS calculated for C₁₃H₁₄N₂O₅ m/z [MS EI]^+ 245.0749; found 245.0742; ¹H-NMR (400 MHz, d₆-DMSO): δ 10.45 (s, 1H, NH), δ 7.31-7.09 (m, 5H,
phenyl), δ 5.50 – 5.37 (m, 1H, CH=CHCHB), δ 4.85 (dd, J = 10.4, 1.3, 1H, CH=CHCHB), δ 4.65 (dd, J = 4.8, 3.7 Hz, 1H, CHCH2), δ 4.48 (dd, J = 17.3, 1.3, 1H, CH=CHCHB), δ 4.08 (m, 2H, CH2CH=CH2CHB), δ 3.04 (d, J = 4.8 Hz, 2H, CH2CHB).

\[^{13}C\text{-NMR (101 MHz, d}_6\text{-DMSO): } \delta 182.5 \text{(C=S)}, \delta 174.0 \text{(CO)}, \delta 135.0 \text{(CCH2CH)}, \delta 131.6 \text{(CH=CHCHB)}, \delta 130.2 \text{(2 x CH)}, \delta 128.6 \text{(2 x CH)}, \delta 127.3 \text{(CH)}, \delta 116.4 \text{(CH2CHB)}, \delta 59.9 \text{(CCH2CH)}, \delta 45.9 \text{(NCH2CH=CH2)}, \delta 36.0 \text{(CHCH2)}. \]

IR (neat): \(v_{\text{max}} = 1739 \text{ cm}^{-1} \text{(C=O), 1495 cm}^{-1} \text{(C=S)}. \)

(File reference: \(^1\text{H-NMR: 400_HA_exp 200 dry HV.}^{13}\text{C-NMR: 400_HA_exp 200_13C1}). \)

Synthesis of (R)-5-benzyl-3-phenyl-1-(pyridin-2-ylmethyl)-2-thioxoimidazolidin-4-one (37)

Utilising method 8, D-phenylalanine methyl ester hydrochloride salt (0.25 g, 1.16 mmol) was dissolved in dichloromethane (5 ml) in the presence of triethylamine (0.08 ml, 0.57 mmol). 2-pyridinecarboxaldehyde (0.15 ml, 1.6 mmol) and sodium triacetoxyborohydride (0.40 g, 1.89 mmol) were added and the mixture allowed to stir for 10 minutes at room temperature. Phenyl isothiocyanate (0.15 ml, 1.26 mmol) was added to the mixture and stirred for another 25 minutes. The solution was washed with acidic water 3 times to remove the base and amino acid methyl ester. The organic phase was evaporated under reduced pressure and 3x10 ml of hexane was added to the solid to extract all impurities. The product was dried by high vacuum and NMR spectra were recorded.

Yield = 46.2%, Mp. 104-105 °C, \([\alpha]_D^{20} = +55.0^\circ \) (0.41 g/100 ml in acetone), HRMS calculated for \(\text{C}_{22}\text{H}_{19}\text{N}_{3}\text{OS} \) m/z [M]+ 374.1327; found 374.1320; \(^1\text{H-NMR (500 MHz, CDCl3): } \delta 8.52 \text{(d, J = 4.0 Hz, 1H, CHN)}, \delta 7.7 \text{(t, J = 7.6 Hz, 1H, CHCHN)}, \delta 7.5 \text{(d, J = 7.8 Hz, 1H, CHCN)}, \delta 7.31-7.18 \text{(m, 7H, phenyl+ pyridine)}, \delta 7.07 \text{(m, 2H, phenyl)}, \delta 6.71 \text{(m, 2H, phenyl)}, \delta 5.81 \text{(d, J = 15.1 Hz, 1H, CHACHB)}, \delta 4.75 \text{(apparent t, J = 4.3 Hz, 1H, CHCHB)}, \delta 4.63 \text{(d, J = 15.1 Hz, 1H, CHACHB)}, \delta 3.42 \text{(dd, J = 14.5, 4.4 Hz, 1H, CHACHB)}, \delta 3.25 \text{(dd, J = 14.5, 4.1 Hz, 1H, CHACHB)}. \]

\[^{13}\text{C-NMR (126 MHz, CDCl3): } \delta 182.4 \text{(C=S)}, \delta 173.1 \text{(CO),} \]

102
δ 155.4 (CH₂CN), δ 149.8 (CHN), δ 137.4 (CNCS), δ 134.5 (CHCHN), δ 133.8 (CCH₂CH), δ 130.0 (2x CH), δ 129.3 (2x CH), δ 128.9 (4x CH), δ 127.5 (CH), δ 123.3 (CHCN), δ 122.9 (CHCHN), δ 63.9 (CHCH₂), δ 49.6 (NCH₂), δ 34.4 (CHCH₂). IR (neat): \(\text{v_{max} = 1746 cm}^{-1} (C=O), 1593 cm^{-1} (C=S) \). (File reference: NMR: 500_hiwa_exp 33 CC 002).

Synthesis of (S)-5-isopropyl-3-phenyl-1-(pyridine -2-ylmethyl)-2-thioximidazolidin-4-one (38)

Utilising method 8, L-valine methyl ester hydrochloride salt (1.00 g, 5.97 mmol) was dissolved in dichloromethane (40 ml) in the presence of triethylamine (0.91 ml, 6.52 mmol). 2-pyridinecarboxaldehyde (0.62 ml, 6.56 mmol) and sodium triacetoxyborohydride (1.9 g, 8.96 mmol) were added to the mixture, allowing stirring for 1 hour at room temperature. Phenyl isothiocyanate (0.97 ml, 6.56 mmol) and triethylamine (0.83 ml, 5.97 mmol) were added to the mixture and allowed to stir for another hour. The yellow oily product was washed with ethanol (4 x 10 ml) and subjected to column chromatography (40% acetone: 60% hexane). The mixture of compounds 34 (R_f = 1.8) and 38 (R_f = 1.3) was collected and characterised by GC-MS. The mixture was again subjected to column chromatography (90% diethyl ether: 10% hexane). The pure compounds of 34 and 38 were collected separately with yields of 18.1 % and 60.4 %, respectively.

Yield= 60.4%, M.p. 88- 89°C, \([\alpha]^{20}_D = -27.0^\circ\) (0.37 g/100 ml in acetone), HRMS calculated for C_{18}H_{19}N_{3}OS m/z [ES] 324.1171; found 324.1164; \(^1\)H-NMR (400 MHz, CDCl₃): δ 8.49 (d, \(J = 4.8 \text{ Hz}, 1 \text{H}, \text{CHN}\)), δ 7.6 (dd, \(J = 7.7, 5.9 \text{ Hz}, 1 \text{H}, \text{CHCHN}\)), δ 7.4-7.10 (m, 7H, phenyl+pyridine), δ 5.69 (d, \(J = 15.4 \text{ Hz}, 1 \text{H}, \text{CH}_3\text{CH}_3\text{N}\)), δ 4.60 (d, \(J = 15.4 \text{ Hz}, 1 \text{H}, \text{CH}_3\text{CH}_3\text{N}\)), δ 4.17 (d, \(J = 7.0 \text{ Hz}, 1 \text{H}, \text{CH}_3\text{CH}_3\text{N}\)).
CH_3CHCH_3), δ 0.86 (d, $J = 6.9$ Hz, 1H, CH$_3$CHCH$_3$). 13C-NMR (101 MHz, CDCl$_3$): δ 183.0 (C=S), δ 172.0 (CO), δ 155.1 (CH$_2$CN), δ 150.2 (CHN), δ 137.0 (CNCS), δ 133.8 (CHCHCN), δ 129.8 (2 x CH), δ 129.0 (CH), δ 128.5 (2 x CH), δ 123.1 (CHCHCN), δ 122.9 (CHHN), δ 67.6 (CHCHCH$_3$), δ 50.1 (CHCH$_3$), δ 28.8 (NCH$_2$), δ 17.6 (CH$_3$CHCH$_3$), δ 15.8 (CH$_3$CHCH$_3$). IR (neat): ν_{max} = 1750 cm$^{-1}$ (C=O), 1618 cm$^{-1}$ (C=S).

Yield = 18.1 %; 1H-NMR (400 MHz, CDCl$_3$): δ 7.47–7.37 (m, 3H, phenyl), δ 7.25–7.20 (m, 2H, phenyl), δ 4.11 (d, $J = 3.7$, 1 Hz, 1H, CH), δ 2.32 (m, 1H, H$_3$CCCH$_3$), δ 1.08 (d, $J = 7.0$ Hz, 3H, CH$_3$), δ 0.98 (d, $J = 6.8$ Hz, 3H, CH$_3$). 13C-NMR (101 MHz, CDCl$_3$): δ 184.7 (C=S), δ 173.5 (CO), δ 133.0 (CN), δ 129.8 (2 x CH), δ 129.7 (2 x CH), δ 128.6 (CH), δ 65.3 (CHCH$_2$), δ 31.6 (H$_3$CCHCH$_3$), δ 19.3 (H$_3$CCHCH$_3$), δ 16.6 (H$_3$CCHCH$_3$). File reference: NMR: 400_HA_exp 51A spot 1).

Synthesis 1-(furan-2-ylmethyl)-5-isopropyl-3-phenyl-2-thioxoimidazolidin-4-one (39)

![Chemical Structure](image)

Utilising method 8, L-valine methyl ester hydrochloride salt (1.00 g, 5.97 mmol) was dissolved in dichloromethane (30 ml) in the presence of triethylamine (0.62 ml, 4.44 mmol). 2-furancarboxaldehyde (0.51 g, 5.3 mmol) and sodium triacetoxyborohydride (1.9 g, 8.96 mmol) were added to the mixture, allowing stirring for 1 hour at room temperature. Phenyl isothiocyanate (0.83 ml, 6.94 mmol) and triethylamine (0.80 ml, 5.73 mmol) were added and the mixture was stirred for another hour.

Yield = 53.0 %, M.p. 90–92°C, HRMS calculated for C$_{17}$H$_{18}$N$_2$O$_2$S m/z [ES] 313.1011; found 313.1015; 1H-NMR (400 MHz, CDCl$_3$): δ 7.46–7.31 (m, 4H, phenyl + CHO furan), δ 7.22–7.15 (m, 2H, phen), δ 6.38 (d, $J = 3.1$ Hz, 1H, CHCHO), δ 6.31 (dd, $J = 3.2$, 1.9 Hz, 1H, CHCO), δ 5.65 (d, $J = 15.7$ Hz, 1H, NCH$_3$CH$_2$CO), δ 4.46 (d, $J = 15.7$ Hz, 1H,
NCH₃CH₃CO), δ 3.97 (d, J = 3.4 Hz, 1H, CHCHCH₃), δ 2.45 (m, 1H, CH₂CHCH₃), δ 1.17 (d, J = 7.0 Hz, 3H, CH₂CHCH₃), δ 0.91 (d, J = 6.9 Hz, 3H, CH₃CHCH₃). ¹³C-NMR (101 MHz, CDCl₃): δ 183.0 (C=S), δ 172.3 (CO), δ 148.7 (CHCO), δ 143.4 (CHO), δ 133.8 (CN), δ 129.7 (CHCHCHCN), δ 129.6 (2 x CH), δ 128.9 (2 x CH), δ 111.2 (CHCO), δ 110.6 (CHCHO), δ 66.7 (CHCHCH₃), δ 41.8 (CH₂N), δ 29.8 (CH₂CHCH₃), δ 17.8 (CH₃CHCH₃), δ 16.1 (CH₃CHCH₃). IR (neat): vmax = 1749 cm⁻¹ (C=O), 1499 cm⁻¹ (C=S). (File reference: NMR: 400_HA_exp 51 D).

Synthesis 1-benzyl-5-isopropyl-3-phenyl-2-thioximidazolidin-4-one (40)

Utilising method 8, L-valine methyl ester hydrochloride salt (1.00 g, 5.97 mmol) was dissolved in dichloromethane (40 ml) in the presence of triethylamine (0.91 ml, 6.52 mmol). Benzaldehyde (0.67 ml, 6.56 mmol) and sodium triacetoxyborohydride (1.9 g, 8.96 mmol) were added and the mixture was allowed to stir for 1 hour at room temperature. Phenyl isothiocyanate (0.97 ml, 6.95 mmol) and triethylamine (0.83 ml, 5.97 mmol) were added and the mixture was stirred for another hour.

Yield= 71.7%, M.p. 124-125 °C, HRMS calculated for C₁₉H₂₀N₂OS m/z [ES]⁺; found; ¹H-NMR (400 MHz, CDCl₃): δ 7.50 –7.22 (m, 10H, phenyl), δ 5.89 (d, J = 15.1 Hz, 1H, NCH₃CH₃CCH₃), δ 4.33 (d, J = 15.1 Hz, 1H, NCH₃CH₃CCH₃), δ 3.84 (d, J = 3.4 Hz, 1H, CHCHCH₃), δ 2.40-2.30 (m, 1H, CH₂CHCH₃), δ 1.12 (d, J = 7.1 Hz, 3H, CH₃CHCH₃), δ 0.92 (d, J = 6.9 Hz, 3H, CH₃CHCH₃). ¹³C-NMR (101 MHz, CDCl₃): δ 183.6 (C=S), δ 172.4 (CO), δ 135.3 (CNCS), δ 133.9 (CNCH₂N), δ 129.6 (CH), δ 129.6 (2 x CH), δ 129.5 (2 x CH), δ 128.9 (2 x CH), δ 128.8 (CH), δ 128.7 (2 x CH), δ 65.9 (CHCHCH₃), δ 48.9 (CH₂), δ 29.7 (CHCHCH₃), δ 17.8 (H₂CCHCH₃), δ 16.3 (H₂CCHCH₃). IR (neat): vmax = 1748 cm⁻¹
(C=O), 1501 cm⁻¹ (C=S). (File reference: ¹H-NMR: 400_HA_exp 51B.¹³C-NMR: 400_HA_exp 51B_C13).

Synthesis 3-(3, 5-bis(trifluoromethyl)phenyl)-5-methyl-1-((1-methyl-1H-pyrrol-2-yl)methyl)-2-thioxoimidazolidin-4-one (41)

![Chemical structure of 41](image)

Utilising method 8, L-alanine methyl ester hydrochloride salt (1.00 g, 7.16 mmol) was dissolved in dichloromethane (16 ml) in the presence of triethylamine (0.93 ml, 6.3 mmol). 1-methyl-1H-pyrrole-2-carbaldehyde (0.80 ml, 7.40 mmol) and sodium triacetoxyborohydride (2.1 g, 9.91 mmol) were added and the mixture, allowing stirring over night at room temperature. 1-isothiocyanato-3,5-bis (trifluoromethyl) benzene (2.60 ml, 14.23 mmol) and triethylamine (0.20 ml, 1.43 mmol) were added and the mixture was stirred for another hour.

Yield = 64.0 %, M.p. 173-174°C, HRMS calculated for C₁₇H₁₂F₆N₃OS m/z [EI]+ 435.0840; found 435.0840; ¹H-NMR (500 MHz, CDCl₃): δ 7.86 (s, 1H, CHCF₃), δ 7.79 (s, 2H, CHCCH), δ 6.61 (t, J = 3.2 Hz, 1H, CHNCH₃), δ 6.16 (dd, J = 3.5, 1.7 Hz, 1H, CHCHNCH₃), δ 6.04 (t, J = 3.2 Hz, 1H, CHCNCH₃), δ 5.69 (d, J = 15.6 Hz, 1H, CH₆CH₆N), δ 4.49 (d, J = 15.6 Hz, 1H, CH₆CH₆N), δ 3.98 (q, J = 7.2 Hz, 1H, CHCH₃), δ 3.60 (s, 3H, NCH₃), δ 1.51 (d, J = 7.2 Hz, 3H, CHCH₃), ¹³C-NMR (126 MHz, CDCl₃): δ 179.3 (C=S), δ 172.5 (CO), δ 134.3 (CNCH₃), δ 132.2 (CHN), δ 124.3 (2xCHN), δ 124.2 (CHCCF₃), δ 122.7 (CHCHN), δ 121.7 (CHCN), δ 111.3 (2 x CCF₃), δ 107.7 (2 x CF₃), δ 57.2 (CHCH₃), δ 40.8 (NCH₃), δ 34.8 (CH₂NCH₃), δ 15.5 (CHCH₃). IR (neat): vmax = 1756 cm⁻¹ (C=O), 1480 cm⁻¹ (C=S). ¹H-NMR: 500_hiwa_exp 34 13C.¹³C-NMR: 500_HIWA_EXP 34 003).
Acknowledgements

I would like to thank Ben Davies for the synthesis of compounds 38 and 40, and David Tucker for preparing compound 39. I thank Ibrahim Bala for the preparation of 12, 13 and 16-19. Dr Benson Kariuki is acknowledged for the determination of the X-ray structure of 18. I gratefully acknowledge Dr Rob Jenkins for his invaluable help in conducting NMR experiments. I am grateful to Mr Robin Hicks, Mr Simon Waller and Mr Tom Williams for recording mass and GC-mass spectra.

2.7 References

8. S. Narduolo, Thesis (Ph D) - Cardiff University, 2011.
15. E. Ware, *Chemical Reviews*, 1950, 46, 403-470.

33. A. Ballard, Thesis (Ph D) - Cardiff University, 2011.

Chapter 3

Hydrolysis of substituted 2-thiohydantoins and related compounds
3.1 Introduction

3.1.1 Hydrolysis of hydantoins

Hydantoin derivatives decompose either by base-catalysed or acid-catalysed hydrolysis to the urido-acid. Enzyme catalysis is another way to hydrolyse hydantoin in particular, and other drugs more generally, in the body (Scheme 3.1).¹

![Scheme 3.1: Enzyme hydrolysis of hydantoin derivatives.²](image)

3.1.2 Hydrolysis of 1-acetyl 2-thiohydantoins

5-Substituted 1-acetyl-2-thiohydantoins are hydrolysed by acid- or base-catalysed processes. De-acetylation is the first step to produce 5-substituted 2-thiohydantoins by acid ³,⁴ or base.⁵ Cleavage of 5-substituted 1-acetyl-2-thiohydantoins was originally reported by Schlack and Kumpf, followed by Nicolet⁶ in connection with the degradation of peptides and proteins under basic conditions. Congdon and Edward⁵ reported that 1-acetyl-5-methyl-2-thiohydantoin starts to be hydrolysed under alkaline conditions and the negative charge on the 3-position N⁻ is not delocalised over the 1-acetyl-carbonyl group, allowing hydrolysis to take place (Scheme 3.2). Similarly, Kjaer and Eriksen⁷ reported the hydrolysis of 1-acetyl-2-thiohydantoin and 1-benzoyl-2-thiohydantoin by using dilute base which was deacetylated rapidly to form 2-thiohydantoin.
The negative charge at N-3 position (2) (Scheme 3.2) can reduce the reactivity of 5-substituted 1-acetyl-2-thiohydantoin because the hydrolysis must proceed by the attack of the hydroxide ion on anion. Congdon8 reported the hydrolysis of some 1-acetyl-2-thiohydantoins and 1-benzoyl-2-thiohydantoins which were slowly hydrolysed at low pH and rapidly hydrolysed at high pH. It has been explained that the benzoyl on the N-1 position is lost as a result of hydrolysis more quickly than acetyl because of the co-planarity effect of acetyl. The acyl carbonyl and the thiocarbonyl groups can be in a coplanar conformation, but will be separated as much as possible (the parallel coplanar conformation involves strong dipolar repulsion). On the contrary, to avoid the dipolar repulsion in 1-benzoyl-2-thiohydantoin, the benzene ring twists about 90° out of the plane of the acyl group. Congdon and Edward5 reported the pseudo-first-order rate constant of 1-benzoyl-2-thiohydantoins with C-5 substituent in phosphate buffer (pH 11.2, 0.45 M I, at 25 °C). The authors reported the pseudo-first-order rate constants for different 1-benzoyl-2-thiohydantoins and the effect of C-5 substituents on the hydrolysis in the order un-substituted > 5-methyl > 5-phenyl > 5-isobutyl > 5-isopropyl5.

Scheme 3.2: Mechanism of base-catalysed hydrolysis of 5-substituted 1-acetyl-2-thiohydantoins, as suggested by Congdon8
3.1.3 Hydrolysis of 2-thiohydantoin

The following step after the deacetylation process of 1-acetyl-2-thiohydantoin involves converting 5-substituted 2-thiohydantoin to thioureido-acids\(^9\) which are finally hydrolysed to amino acids.\(^{10}\) The base-catalysed hydrolysis of peptides proceeds to form substituted 2-thioureidopropanoic acid, reducing the yield of C-terminal thiohydantoin derivatives (Scheme 3.3).\(^{11}\) Edward and Nielsen\(^{12}\) suggested the mechanism for the base-catalysed hydrolysis of 5-substituted 2-thiohydantoins to produce thioureido-acids.

![Scheme 3.3: Mechanism of base-catalysed hydrolysis of 5-substituted 2-thiohydantoins proposed by Edward and Nielsen.\(^{12}\)](image)

3.2 Results and discussion

3.2.1 Kinetics and mechanism of base-catalysed hydrolysis of 5-substituted 1-acetyl-2-thiohydantoins

3.2.1.1 UV-visible spectroscopy

Several acetylated 2-thiohydantoins were selected to study their kinetics and mechanism of hydrolysis (Scheme 3.4).
Scheme 3.4: The chemical structure of compounds 3.1-3.7

To study the hydrolysis of 5-substituted 1-acetyl-2-thiohydantoins, different concentrations of phosphate buffer were used (pH 7.4, 0.9 M I at 37 °C). The kinetics of hydrolysis for all compounds was studied in aqueous solution without the use of a co-solvent. The acetyl group at the N-1 position is deacetylated to form 5-substituted 2-thiohydantoin and acetic acid. The UV-visible spectrum of 5-substituted 1-acetyl-2-thiohydantoins 3.1-3.7 exhibits a strong absorption band at around 287-291 nm. In the presence of different concentrations of buffer, the absorption spectrum of the compounds decrease as a function of time and the new absorption spectrum increases in intensity (Figure 3.1).
Figure 3.1: Typical UV–visible spectra of (S)-1-acetyl-5-methyl-2-thioximidazolidin-4-one 3.7 at 37 °C, recorded during a kinetic run in non-deuterated phosphate buffer, pH 7.4, 0.27 M, 0.9 M I.

Figure 3.1 shows that the absorbance at 255 and 290 nm of 3.7 decreases as a function of time in non-deuterated buffer solution (pH 7.4, 0.27 M, 0.9 M I). There is no clear isosbestic point between the peaks at 190 nm and 255 nm, suggesting that more than one hydrolysis process has taken place (*vide infra*). Nevertheless, the largest absorbance band at 290 nm decreases in intensity in a process following a first-order rate law. We therefore attribute this absorbance to 1-acetyl-2-thiohydantoins with negligible contributions from potential downstream reaction intermediates and products. This assignment is in agreement with the UV-visible spectra observed for the deacetylated compounds (see section 3.2.2). The absorbance spectra of 3.7 in different phosphate buffers (0.045, 0.09, 0.18, 0.27 and 0.36, pH 7.4, 0.9 M I, at 37 °C) were plotted versus time to obtain the pseudo-first-order rate constants for hydrolysis (Figure 3.2). Similarly, the absorbance spectra of 3.1-3.6 were plotted versus time (see appendix).
Figure 3.2: Fits of experimental data from hydrolysis experiments of (S)-1-acetyl-5-methyl-2-thiooximidazolidin-4-one 3.7 hydrolysis at 290 nm in (■) 0.045 M, (●) 0.09 M, (▲) 0.18 M, (▼) 0.27 M, and (♦) 0.36 M, non-deuterated phosphate buffer (pH 7.4, 0.9 M I, at 37 °C).

Figure 3.2 shows the hydrolysis of 3.7 in 0.045, 0.09, 0.18, 0.27 and 0.36 M phosphate buffer (pH 7.4, 0.9 M I at 37 °C) and a fit of the data with a pseudo-first-order kinetic rate law. Similarly, the same conditions were used for compounds 3.1-3.6, with a decrease in absorbance as a function of time also observed.

The decrease of absorbance with time at the selected wavelengths was reproduced well by the pseudo-first-order kinetic rate law (Equation 3.1).

$$A_t = A_{\text{fin}} + \Delta A e^{-k_{\text{obs}}t}$$

Equation 3.1

Here A_t is the absorbance at time t, A_{fin} is the final absorbance, ΔA represents the difference between the absorbance at time zero and A_{fin}, and k_{obs} is the observed pseudo-first-order rate constant for hydrolysis.

Equation 3.1 was used to obtain pseudo-first-order rate constants for hydrolysis of 3.1-3.7 at every single concentration of buffer. The data for 3.1-3.7 were reproduced very well by the pseudo-first-order rate law (see appendix).
The rate constants for hydrolysis of 3.1-3.7 were plotted versus the concentration of the basic component of phosphate buffer in different total concentrations of phosphate buffer (pH 7.4, 0.9 M I, at 37 °C) (Figure 3.3)

![Figure 3.3: Observed rate constants of hydrolysis of a) (■) 3.1, (●) 3.2, (▲) 3.3, (▼) 3.4 and b) (▲) 3.5, (●) 3.6, (■) 3.7 as a function of the concentration of the basic component of H₂O-based phosphate buffer (37 °C, 0.9 M I, pH 7.4) with total phosphate concentration of 0.45 M, 0.36 M, 0.27 M, 0.18 M and 0.09 M.](image)

Figure 3.3 shows a linear increase in the first-order rate constants for hydrolysis of 3.1-3.7 as a function of the concentration of the basic component of the buffer, i.e. HPO_{4}^{2-}, at pH 7.4. The data show that not only is the concentration of base important, but also that the linear increase suggests that the hydrolysis reaction is subject to general-base catalysis by the phosphate dianion. The experimentally observed rate constants follow the rate law given by Equation 3.2.

\[
k_{obs} = k_0 + k_{OH^-}[OH^-] + k_{H_3O^+}[H_3O^+] + k_{buffer}[HPO_4^{2-}] \quad \text{Equation 3.2}
\]

where \(k_0\) is the rate constant of the non-catalysed reaction, \(k_{OH^-}\) and \(k_{H_3O^+}\) are the rate constants for the catalysed reaction by hydroxide and hydronium ion, respectively, obtained together from the intercept (\(k_{in}\)), \(k_{buffer}\) is the second-order rate constant for buffer catalysed hydrolysis obtained from the slope, and \(k_{obs}\) is the observed rate constant for hydrolysis.
The observed second-order rate constants for the HPO$_4^{2-}$-catalysed hydrolysis of 3.1-3.7 k_{hyd} and the observed rate constant k_{in} obtained from the slope and intercept, respectively, are shown in Table 3.1.

Table 3.1: Second-order rate constants for hydrolysis k_{hyd} of 3.1-3.7 in H$_2$O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate buffer, and 0.29 M, 0.22 M, 0.14 M, 0.072 M and 0.036 M HPO$_4^{2-}$, respectively, with ionic strength of 0.9 M I, pH 7.4 at 37 °C.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>R</th>
<th>k_{hyd} / 106 s$^{-1}$ M$^{-1}$</th>
<th>k_{in} / 106 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>H</td>
<td>73.2 ± 7.1</td>
<td>11.3 ± 0.9</td>
</tr>
<tr>
<td>3.2</td>
<td>Bz</td>
<td>10.2 ± 0.5</td>
<td>4.5 ± 0.07</td>
</tr>
<tr>
<td>3.3</td>
<td>Ph</td>
<td>20.2 ± 0.3</td>
<td>4.6 ± 0.04</td>
</tr>
<tr>
<td>3.4</td>
<td>3-Met-indole</td>
<td>10.5 ± 0.6</td>
<td>3.7 ± 0.09</td>
</tr>
<tr>
<td>3.5</td>
<td>i-Pr</td>
<td>23.3 ± 0.08</td>
<td>4.8 ± 0.1</td>
</tr>
<tr>
<td>3.6</td>
<td>CH$_2$CH$_2$SCH$_3$</td>
<td>30.7 ± 0.7</td>
<td>6.6 ± 0.09</td>
</tr>
<tr>
<td>3.7</td>
<td>Me</td>
<td>29.9 ± 1.0</td>
<td>9.9 ± 0.2</td>
</tr>
</tbody>
</table>

Table 3.1 shows the differences in the second-order rate constants k_{hyd} for 3.1-3.7. The presence of substituents on C-5 was found to affect the rate of hydrolysis and decrease the reactivity. The substituents might impede the change from trigonal 2 to tetrahedral 3 by a non-bonded interaction (Scheme 3.2). Compound 3.1, which is non-substituted at position 5, is hydrolysed faster than the other C-5 substituted 1-acetyl-2-thiohydantoins 3.2-3.7. The rate constants in Table 3.1 thus show the steric hindrance for attack on the acetyl group at the N-1 position exerted by different groups at the C-5 position.

The order of decreasing rate constants for base-catalysed hydrolysis, and thus increasing stability in Table 3.1 is 3.1, 3.6, 3.7, 3.5, 3.3, 3.4 and 3.2. The highest rate constant is found for 3.1, which does not carry any group substituents on the 5-position, as a result of the absence of steric effects compared with the 5-substituted 1-acetyl-2-thiohydantoins (Table 3.1).
The reaction proceeds by attack of OH\(^-\) on the acetyl moiety and the hydrolysis rate is decreased due to an increase of the steric strain for the tetrahedral intermediate in combination with a hindered approach of the nucleophile. The comparison between aromatic substituents on the 5-position and aliphatic substituents is obvious. The linear aliphatic substituents on the 5-position of 1-acetyl-2-thiohydantoins \(3.6\) and \(3.7\) display the highest rate constants for hydrolysis after the non-substituted compound, showing the effect of substituent size and steric hindrance. The branched isopropyl group in \(3.5\) leads to a slower reaction than observed for \(3.6\) and \(3.7\) with unbranched the aliphatic substituents. The phenyl group in \(3.3\) appears to have a similar effect as the isopropyl group in \(3.5\) which is not unreasonable considering the similar “branching” and the fact that the reaction centre is not in direct conjugation with the aromatic ring. When larger groups are attached to the C-5 position it becomes more difficult for the nucleophile to reach the carbonyl carbon to produce the tetrahedral intermediate.\(^{14}\)

Compounds \(3.2\) and \(3.4\) are therefore hydrolysed more slowly than the other compounds. An additional effect of substituents may affect the acidity of the reactant. It has been shown that 1-acetyl-2-thiohydantoin is able to ionise to produce compound \(2\) (Scheme 3.2), with \(pK_a\) values of 6.5-7.0.\(^5\) The rate constant of hydrolysis will be different when base-catalysed attack takes place on the un-ionised compound (1) and ionised compound (2) (Scheme 3.2). The rate constant of hydrolysis is faster by factor \(10^3\) when the base attacks the unionised compound (1) rather than the ionised compound (2), as previously reported.\(^8\) \(pK_a\) values of 7.03 and 6.95 for \(3.1\) and \(3.7\) have been reported in water, respectively. \(N\)-1-acetylated thiohydantoins compounds \(3.1\) and \(3.7\) are thus slightly stronger acids than the corresponding non-acetylated hydantoins.\(^8,\,15\) Similarly, the \(pK_a\) of 2-thiohydantoin is 8.5, making it a slightly stronger acid than corresponding hydantoin (\(pK_a = 9.0\)).\(^{15,\,16}\)

3.2.1.2 Determination of the rate constant for hydrolysis of 1-acetyl-5-isopropyl-2-thiohydantoin by NMR spectroscopy

The absence of an isosbestic point in the overlay spectra for hydrolysis (Figure 3.1) suggests that multiple reactions are occurring. To explore this behaviour further, we plotted the absorbance at 260 nm as a function of time (Figure 3.4).
Figure 3.4: Absorbance of 3.5 as a function of time at 260 nm in deuterated-phosphate buffer (pH 7.4, 0.36 M, 0.9 M I).

Figure 3.4 shows that at 260 nm, the absorbance increased and subsequently decreases. This suggests that two reactions occur.

To confirm if the process followed in Section 3.2.1.1 corresponds to a loss of acetate, the hydrolysis of compound 3.5 was also studied using 1H-NMR spectroscopy in 0.36 M phosphate buffer (0.9 M ionic strength at 37 °C). It was noticed during 1H-NMR studies that one of the hydrolysis products of 3.5 is not soluble in aqueous solution and precipitates. In order to observe the peak of 3.5 in 1H-NMR, a higher concentration of compound compared to that used in the UV-visible studies was used. Therefore, the precipitation was noticed during the hydrolysis process. The hydrolysis of 3.5 is slow and the area of all peaks relative to methyl and CH in 3.5 decreases during the hydrolysis. Therefore, tetramethylammonium bromide was used as an internal reference with the peak at 3.02 ppm (Figure 3.5).
Figure 3.5: Time resolved 1H-NMR spectra of 3.5 by using 0.36 M of total D$_2$O-phosphate buffer (0.9 M I, pH 7.4 at 37 °C with no d$_3$-acetonitrile).

Figure 3.5 shows the disappearance of peaks for 3.5 and the appearance of new peaks for new compounds. It is clear that the acetyl peak has decreased over time and a new peak of acetate is observed at 1.75 ppm. To confirm that the new peak belongs to acetate, sodium acetate was added to the solution after the hydrolysis reaction had taken place. The 1H-NMR spectrum of the resulting solution confirmed that the new peak corresponded to acetate. The relative area of the peak for the methyl group in the acetylated thiohydantoin at 2.65 ppm decreases and the relative area of the peak for the methyl at 1.75 ppm increases. Both peaks are referenced against tetramethylammonium bromide. The relative peak areas were plotted as a function of time and suggest pseudo-first-order behaviour of hydrolysis of 3.5 (Figure 3.6).
Figure 3.6: The hydrolysis process of 3.5 in 0.36 M D$_2$O-phosphate buffer (0.9 M I, pH 7.4 at 37 °C). a) (■) the relative area 3H of H$_3$CCO decreases over time, and (●) the relative area of 3H of H$_3$CCO (one hydrogen disappears with integration) increases over time.

Figure 3.6 shows the plot for the relative integration of decreasing acetyl CH$_3$ at the N-1 position of 3.5 at 2.65 ppm and increasing the acetate CH$_3$ at 1.75 ppm as a function of time. Both peaks were fitted to the pseudo-first-order rate constant and the rate constant of hydrolysis obtained by using Equation 3.1. It is important to note that the integration of three hydrogens has appeared at 2.65 ppm from 0 hour in 1H-NMR (Figure 3.6). However, the peak of CH$_3$ of acetate after hydrolysis at 152 hours at 1.75 ppm shows just two hydrogens which might be because of the precipitation of acetate or evaporation of acetic acid. An alternative reason for the reduced relative signal observed for acetate formed in the hydrolysis reaction might be an additional H/D exchange process on the acetyl methyl group. This H/D exchange process, if occurring, would presumably take place before hydrolysis because the negative charge on the acetate anion would strongly inhibit the H/D exchange process after hydrolysis. The pseudo-first-order rate constants for the hydrolysis of 3.5 by 1H-NMR are shown in Table 3.2 by the relative area of the disappearance and appearance of the methyl group during the deacetylation process.
Table 3.2: Pseudo-first-order rate constants for hydrolysis k_{hyd} of (S)-1-acetyl-5-isopropyl-2-thioxoimidazolidin-4-one (3.5) in D$_2$O-phosphate buffer at 0.36 M total phosphate buffer with ionic strength of 0.9 M I, pH 7.4 at 37 °C (No d$_3$-acetonitrile), and using 80% of 0.01 M of total phosphate buffer, 0.9 M I, pH 7.4 at 37 °C, with 20% of d$_3$-acetonitrile, determined by 1H-NMR spectroscopy.

<table>
<thead>
<tr>
<th>Conc./M</th>
<th>k_{hyd} (D$_2$O) / 10^6 s$^{-1}$ (■)</th>
<th>k_{hyd} (D$_2$O) / 10^6 s$^{-1}$ (●)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.36</td>
<td>11.3 ± 0.4</td>
<td>9.9 ± 0.3</td>
</tr>
<tr>
<td>0.008</td>
<td>0.5 ± 0.03</td>
<td>0.5 ± 0.03</td>
</tr>
</tbody>
</table>

Table 3.2 shows the pseudo-first-order rate constants for hydrolysis k_{hyd} in aqueous 0.36 M total phosphate buffer with precipitation. In order to solve the precipitation problem, a solution of 20 % d$_3$-acetonitrile with 80% 0.01 M D$_2$O-phosphate buffer pH 7.4, 1 M I, was used (Table 3.2) (see appendix). Interestingly, though the amount of precipitation decreased, solid particles were still observed indicating that the hydrolysis product of 3.5 has limited solubility in aqueous solution. The isopropyl and methyl substituents at the C-5 position of 1-acetyl-2-thiohydantoin have higher solubility than other substituents such as benzyl and phenyl. Therefore, experiments with further compounds were not attempted.

3.2.1.3 Brønsted plot for hydrolysis of (S)-1-acetyl-5-methyl-2-thioxoimidazolidin-4-one

The hydrolysis of 3.7 was studied in aqueous solution in a series buffers with different pH. Pseudo-first-order rate constants for hydrolysis were determined as before (Section 3.2.1.1). The hydrolysis was studied using acetate, phosphate, TRIS, borate and methylamine buffers over the pH range 5.0-9.7 at 37 °C. The second-order rate constants for hydrolysis in the different buffers were determined by plotting the pseudo-first-order rate constants of hydrolysis versus the concentration of the basic component of each buffer (Figure 3.7).
Figure 3.7: Observed pseudo-first-order rate constants for the hydrolysis of 3.7 in 0.45 M, 0.36 M, 0.27 M, 0.18 M and 0.09 M of total acetate, phosphate, TRIS and methyl amine, 0.9 M I of a) (■) acetate buffer pH 5.0 (●), phosphate buffer pH 7.4 (▲) TRIS buffer pH 8.2 and b) (■) methyl amine pH 9.7, all buffers are H$_2$O-based and experiments were carried out at 37 °C; data are plotted as a function of the concentration of the basic buffer component.

A good linear correlation between k_{hyd} with the basic component of the buffer is observed. This linear correlation suggests general base catalysis of hydrolysis. The second-order rate constants for hydrolysis were obtained using Equation 3.2 for every buffer at constant ionic strength from Figure 3.6 a, and b and these are reported in Table 3.3.

Table 3.3: The pK_a and the second-order rate constants for hydrolysis k_{hyd} of 3.7 in acetate, phosphate, TRIS, and methyl amine buffers at 0.9 M I, pH 5.0, 7.4, 8.2 and 9.7, respectively, at 37 °C.

<table>
<thead>
<tr>
<th>Buffers</th>
<th>pK_a</th>
<th>pH</th>
<th>k_{hyd} / 10$^{-6}$ s$^{-1}$ M$^{-1}$</th>
<th>k_{int} / 10$^{-6}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetate</td>
<td>4.59a</td>
<td>5.0</td>
<td>0.4 ± 0.1</td>
<td>2.6 ± 0.02</td>
</tr>
<tr>
<td>phosphate</td>
<td>6.8b</td>
<td>7.4</td>
<td>29.9 ± 1.0</td>
<td>9.9 ± 0.2</td>
</tr>
<tr>
<td>TRIS</td>
<td>7.88a</td>
<td>8.2</td>
<td>187 ± 14</td>
<td>9.8 ± 1.2</td>
</tr>
<tr>
<td>Methyl amine</td>
<td>10.4a</td>
<td>9.7</td>
<td>24100 ± 1140</td>
<td>-14.9 ± 28.1</td>
</tr>
</tbody>
</table>

a) pK_a at 37 °C.17,18

b) The value reported previously at 37 °C.19,20
Table 3.3 shows that the second-order rate constants for hydrolysis increase with increasing buffer pKₐ, as expected for general-base catalysis.

To measure the sensitivity of the reaction to the basicity of the catalytic base, the following equation was used:²¹

\[\log k_{obs} = \beta \cdot pK_a + C \]

Equation 3.3

where, \(\log k_{obs} \) is the logarithm of the observed second-order rate constant \(k_{hyd} \) in different buffers determined using UV-visible spectroscopy, pKₐ is the dissociation constant of the acidic component of every buffer for the given ionic strength at 37 °C and \(\beta \) is the measure of the sensitivity of the hydrolysis reaction to change in the strength of the base.

The logarithm of second-order rate constants for the hydrolysis of 3.7 in acetate, phosphate, TRIS and methylamine was plotted versus the pKₐ of acetate, phosphate, TRIS and methylamine buffers (Figure 3.8).

Figure 3.8: Brønsted plot for the base-catalysed hydrolysis of 3.7 (data from Table 3.3).

The least-squares-calculated values of the intercept (C) and the Brønsted slope (\(\beta \)) were found to be -10.03 ± 0.091 and 0.81 ± 0.011, respectively. The intercept (C) has no physical significance beyond an intrinsic reactivity, which is not relevant here. The slope in Figure 3.7 corresponds to \(\beta^{14} \) and is close to unity, which suggests that the proton is almost fully transferred in the transition state.²² Unless the reaction takes place by nucleophilic catalysis,
at least one water molecule is involved in the transition state in general-base catalysed hydrolysis reactions (Scheme 3.5).23

Scheme 3.5: Proton transfer mechanism for general-base catalysis of hydrolysis of 1-acetyl-2-thioxoimidazolidin-4-one 3.7

The high value of Brønsted β of 0.81 ± 0.011 suggests that proton-transfer in the rate-determining step of hydrolysis of 3.7 is almost complete. From the mechanism in Scheme 3.5 it can be surmised that the tetrahedral intermediate is formed by the general-base catalysed nucleophilic attack of a water molecule on 3.7. The unstable intermediate (3) breaks down to the product (5) (Scheme 3.5).

3.2.1.4 Kinetics of acid- and base-catalysed hydrolysis of 1-acetyl-5-phenyl-2-thioxoimidazolidin-4-one

The deacetylation process discussed in Chapter 2 was done using 12 M HCl to remove the acetyl group and obtain 5-substituted 2-thioxoimidazolidin-4-ones. To study in more detail
the acid and base catalysis of hydrolysis of 3.3, acyl cleavage was followedspectrophotometrically at different concentrations of HCl and NaOH at 37 °C (Figure 3.9).

Figure 3.9: a) UV–visible spectra of 1-acetyl-5-phenyl-2-thiooximidazolidin-4-one 3.3 recorded in 0.9576 M HCl at 37 °C and b) fits of the first-order rate law to experimental data from hydrolysis experiments of 1-acetyl-5-phenyl-2-thiooximidazolidin-4-one at 37 °C in (■) 0.24 M, (●) 0.48 M, (▲) 0.72 M and (▼) 0.96 M HCl.

Figure 3.8 shows a clear drop in the intensity of the band at 279 nm and the formation of a new band at 260 nm. The presence of isosbestic points suggests that only one reaction is taking place and this reaction is expected to produce 5-phenyl-2-thiooximidazolidin-4-one. For comparison, in base-catalysed hydrolysis using buffer (vide supra) and sodium hydroxide (vide infra), an increase in absorbance at 260 nm followed by a decrease was observed, indicating that (at least) two reactions were taking place. The apparent rate constant for hydrolysis of 3.3 was determined by taking the maximum absorbance at 279 nm and plotting it as a function of time. The pseudo-first-order rate constant of hydrolysis was determined by fitting Equation 3.1 to the data, as shown in Table 3.4.
Table 3.4: Pseudo-first-order rate constants for hydrolysis k_{hyd} determined using UV-visible spectroscopy for 1-acetyl-5-phenyl-2-thioxoimidazolidin-4-one (3.3) in 0.96 M, 0.72 M, 0.48 M and 0.24 M HCl at 37 °C.

<table>
<thead>
<tr>
<th>Acid concentrations /M</th>
<th>k_{hyd} / 10^{-6} s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24</td>
<td>89.7 ± 1.8 (± 0.6)a</td>
</tr>
<tr>
<td>0.48</td>
<td>197.0 ± 3.9 (± 0.2)a</td>
</tr>
<tr>
<td>0.72</td>
<td>296.5 ± 5.9 (± 0.7)a</td>
</tr>
<tr>
<td>0.96</td>
<td>395.9 ± 7.9 (± 0.8)a</td>
</tr>
</tbody>
</table>

a) Where the error from the data fit is reported to be less than 2% of the rate constant, an error of 2% was assumed. The values in brackets are the errors from the data fit, which are less than 2%.

Table 3.4 shows that the pseudo-first-order rate constants for hydrolysis increase with increasing concentration of hydrochloric acid, suggesting acid catalysis. The second-order rate constant for hydrolysis was obtained by plotting the pseudo-first-order rate constants against the concentrations of hydrochloric acid (Figure 3.10).

Figure 3.10: Observed pseudo-first-order rate constants for hydrolysis of 3.3 in acid versus hydrochloric acid concentration at 37 °C.
The straight line in Figure 3.10 suggests acid catalysis for the hydrolysis of 3.3 with HCl. The observed second-order rate constant for hydrolysis was determined from the slope of the straight line fit in Figure 3.10 using Equation 3.4.

\[k_{obs} = k_0 + k_{hyd,H}[HCl] \]

Equation 3.4

Where \(k_H \) is the rate constant for the hydrogen ion catalysed reaction and \(k_0 \) is the uncatalysed rate constant of hydrolysis.

The second-order rate constant for the hydrolysis of 3.3 is shown in Table 3.5 at 37 °C.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(k_{hyd,H}) HCl / (10^{-6}) s(^{-1}) M(^{-1})</th>
<th>(k_{in}) / (10^{-6}) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>431.5 ± 6.3</td>
<td>-13.1 ± 2.4</td>
</tr>
</tbody>
</table>

Table 3.5: Second-order rate constant of the acid catalysed hydrolysis \(k_{hyd,H} \) of 3.3 in different concentrations of HCl at 37 °C.

The rate constant for the uncatalysed reaction \(k_{in} \) of 3.3 is a negative value, which is impossible. We assume that an apparently significant negative value has been obtained due to underestimating the margin of error margin for the first-order rate constants (Figure 3.10).

To study the differences between acid catalysis and base-catalysed hydrolysis of 3.3, different concentrations of sodium hydroxide were used (Figure 3.11).
Figure 3.11: a) Typical UV–visible spectra of 1-acetyl-5-phenyl-2-thioxoimidazolidin-4-one 3.3 recorded during a kinetic run in 0.0025 M NaOH at 37 °C, and b) the absorbance of a solution of 3.3 as a function of time at (■) 290 and (●) 260 nm in 0.0025 M of NaOH at 37 °C.

Figure 3.11 shows that the absorbance of 3.3 decreases as a function of time at 290 nm and initially increases at 260 nm. This suggests deacetylation in the first step to produce 5-phenyl-2-thioxoimidazolidin-4-one. There is a second decrease at 260 nm after the initial deacetylation process which indicates that the base has further hydrolysed the 5-phenyl-2-thioxoimidazolidin-4-one. Similarly, the increase and decrease of the peak at 260 nm is also seen when using phosphate buffer (vide supra), suggesting two reactions take place during the hydrolysis reaction.

The absorbance at 290 nm corresponding to the deacylation process for different concentrations of NaOH was plotted versus time (Figure 3.12).
Figure 3.12: Fits of experimental data from hydrolysis experiments of 1-acetyl-5-phenyl-2-thioxoimidazolidin-4-one 3.3 at 37 °C in (■) 0.0017 M, (●) 0.0025 M, (▲) 0.0033 M, (▼) 0.0042 M and (◆) 0.005 M NaOH at 290 nm.

Figure 3.12 shows that the plots for all concentrations are reproduced well by the pseudo-first-order rate law. The pseudo-first-order rate constants for the hydrolysis of 3.3 were obtained using Equation 3.1 (Table 3.6).

<table>
<thead>
<tr>
<th>Base concentration/ M</th>
<th>(k_{\text{hyd}} / 10^{-6} \text{ s}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0017</td>
<td>514 ± 10 (± 1.2)(^a)</td>
</tr>
<tr>
<td>0.0025</td>
<td>669 ± 13 (± 0.5)(^a)</td>
</tr>
<tr>
<td>0.0033</td>
<td>983 ± 20 (± 1.4)(^a)</td>
</tr>
<tr>
<td>0.0042</td>
<td>1176 ± 24 (± 2.3)(^a)</td>
</tr>
<tr>
<td>0.0050</td>
<td>1390 ± 28 (± 2.2)(^a)</td>
</tr>
</tbody>
</table>

\(^a\) Where the error from the data fit is reported to be less than 2% of the rate constant, an error of 2% was assumed. The values in brackets are the errors from the data fit which are less than 2%.
As can be seen from Table 3.6, upon increasing the concentration of sodium hydroxide, the rate constants of hydrolysis increase. This agrees with both base catalysis and direct nucleophilic attack by OH\(^-\). The second-order rate constant for basic hydrolysis was determined by plotting the observed pseudo-first-order rate constants for hydrolysis versus the concentration of sodium hydroxide (Figure 3.13).

![Figure 3.13: Observed pseudo-first-order rate constants of hydrolysis of 3.3 in sodium hydroxide obtained from Table 3.6 at 37 °C versus the concentrations of sodium hydroxide.](image)

The second-order rate constant of hydrolysis for compound 3.3 was expressed using the following equation:

\[
k_{\text{obs}} = k_H[H^+] + k_\cdot + k_{\text{hyd,OH}}[\text{OH}^-]
\]

Equation 3.5

where \(k_H\) is the rate constant for the hydronium ion catalysed reaction, \(k_\cdot\) is the rate constant for uncatalysed hydrolysis and \(k_{\text{OH}}\) is the rate constant for the hydroxide catalysed reaction.

The second-order rate constant for the base-catalysed hydrolysis \(k_{\text{hyd}}\) was determined from the slope and the combined rate constant for hydronium catalysed hydrolysis and uncatalysed hydrolysis of 3.3 \(k_{\text{in}}\) was obtained from the intercept (Table 3.7).
Table 3.7: Second-order rate constants of the hydrolysis k_{hyd} of 3.3 in different concentrations of sodium hydroxide at 37 °C.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>$k_{\text{hyd, OH}}$ / $10^{-6} \text{ s}^{-1} \text{ M}^{-1}$</th>
<th>k_{in} / 10^{-6} s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>267471 ± 9295</td>
<td>53 ± 53</td>
</tr>
</tbody>
</table>

Table 3.7 shows that the second-order rate constant for base-catalysed hydrolysis of 3.3 is significantly higher than the rate constant for acid catalysed hydrolysis. As the intercept is zero within error, in the presence of base, deacetylation will be catalysed by base and depends on the strength of the base or acid.

3.2.2 Kinetics and mechanism of base-catalysed hydrolysis of 5-substituted 2-thioxoimidazolidin-4-ones

To study the continued hydrolysis of the non-acetylated 2-thioxoimidazolidin-4-one, different 5-substituted 2-thioxoimidazolidin-4-ones (Scheme 3.6) have been prepared (Chapter 2).

Scheme 3.6: Structures of compounds 3.8-3.15
Scheme 3.6 shows the structures of the different 5-substituted 2-thioxoimidazolidin-4-ones which allow us to analyse the effect of the groups attached to C-5 on the base-catalysed hydrolysis of 3.8-3.15. In alkaline solution, 5-substituted thioxoimidazolidin-4-ones act as weak acids and ionise. The 5-substituted 2-thioxoimidazolidin-4-ones are also quite slowly hydrolysed to produce the salt of thioureido-acids.12, 24, 25 The change in absorption spectrum was used to determine the rate constant of hydrolysis (Figure 3.14).

Figure 3.14: UV-visible spectra recorded for a solution of (S)-5-methyl-2-thioxoimidazolidin-4-one 3.14 at 37 °C in non-deuterated-phosphate buffer (pH 7.4, 0.36 M, 0.9 M I).

Figure 3.14 shows a decrease at 260 and an increase at 235 nm in the absorbance of compound 3.14 over time. The obvious presence of isosbestic points for the hydrolysis is in contrast to the base-catalysed hydrolysis of 5-substituted 1-acetyl-2-thioxoimidazolidin-4-ones which did not show any (Figure 3.1). For example, for compound 3.7 (Figure 3.1), the band at 260 nm first increases and then decreases at 260 nm while the band at 235 nm increases. The spectra here confirm that compound 3.7 has hydrolysed quite fast to produce 3.14 and that the hydrolysis has continued to produce thioureido-acids.

The absorbances at 260 nm for the hydrolysis of 3.14 in the presence of different concentrations of phosphate buffer (pH 7.4, 1 M I) were plotted versus time (Figure 3.15). Similarly, the absorbances of 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, and 3.15 at various wavelengths were plotted as a function of time in different concentrations of phosphate buffer (pH 7.4, 1 M I) (see appendix).
Figure 3.15: Fits of a first-order rate law to the experimental data from hydrolysis k_{hyd} experiments of (S)-5-methyl-2-thioxoimidazolidin-4-one 3.14 at 37 °C in non-deuterated phosphate buffer, pH 7.4, (■) 0.045, (○) 0.09, (▲) 0.18, (▼) 0.27, and (◄) 0.36 M total phosphate concentration (0.9 M I) at 264 nm.

The first-order rate constants for the hydrolysis of 3.14 in Figure 3.15 were determined using Equation 3.1. The values of pseudo-first-order rate constants for the hydrolysis of 3.8-3.15 are summarised in the appendix. The second-order rate constants for the hydrolysis of 3.8-3.15 were determined by plotting the pseudo-first-order rate constants for hydrolysis against the concentration of the basic component of the phosphate buffer according to Equation 3.2 (Figure 3.16).
Figure 3.16: Observed rate constants for hydrolysis k_{hyd} of a) (■) 3.8, (●) 3.9, (▲) 3.10, and (▼) 3.11, and b) (■) 3.12, (●) 3.13, (▲) 3.14, and (▼) 3.15 versus the concentration of the basic components of H$_2$O-based phosphate buffer at 37 °C, 0.9 M I, pH 7.4 (0.45 M, 0.36 M, 0.27 M, 0.18 M, and 0.09 M total phosphate concentration).

Equation 3.2 was used to determine the second-order rate constants for the HPO$_4^{2-}$-catalysed hydrolysis k_{hyd} of 3.8-3.15 from the slope and $k_{\text{aq}} + k_{\text{OH}} [OH^-] + k_{\text{H}_2\text{O}} [H_3O^+]$ from the intercept (Table 3.8). The linear correlation of pseudo-first-order rate constants and the concentration of the basic component of the buffer for compounds 3.8-3.15 are not as a good as the linear correlation observed for the deacetylation of compounds 3.1-3.7.
Table 3.8: Second-order rate constants for hydrolysis k_{hyd} of 3.8-3.15 in H$_2$O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate buffer and 0.29, 0.22, 0.14, 0.072 and 0.036 M of HPO$_4^{2-}$, respectively, with ionic strength of 0.9 M I, pH 7.4 at 37 °C.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>k_{hyd} / 10^{-6} s$^{-1}$ M$^{-1}$</th>
<th>k_{in} / 10^{-6} s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>124 ± 31</td>
<td>22.6 ± 4.1</td>
</tr>
<tr>
<td>3.9</td>
<td>76.8 ± 8.7</td>
<td>9.9 ± 1.1</td>
</tr>
<tr>
<td>3.10</td>
<td>36.0 ± 13.0</td>
<td>10.6 ± 1.9</td>
</tr>
<tr>
<td>3.11</td>
<td>26.0 ± 2.4</td>
<td>39.0 ± 0.4</td>
</tr>
<tr>
<td>3.12</td>
<td>17.7 ± 4.5</td>
<td>7.0 ± 0.8</td>
</tr>
<tr>
<td>3.13</td>
<td>27.8 ± 1.1</td>
<td>51.9 ± 0.2</td>
</tr>
<tr>
<td>3.14</td>
<td>82.0 ± 12.8</td>
<td>15.6 ± 1.7</td>
</tr>
<tr>
<td>3.15</td>
<td>65.3 ± 9.2</td>
<td>10.6 ± 1.2</td>
</tr>
</tbody>
</table>

Table 3.8 shows that substituted 2-thioxoimidazolidin-4-ones undergo base-catalysed hydrolysis more slowly than the parent compound 3.8. Table 3.8 shows that 2-thioxoimidazolidin-4-ones with aliphatic substituents on the C-5 have higher second-order rate constants k_{hyd} for HPO$_4^{2-}$-catalysed hydrolysis than k_{hyd} for 2-thioxoimidazolidin-4-ones with aromatic substituents on the 5-position. It has previously been mentioned that substitution, particularly in the 5-position of 5-membered ring compounds, such as hydantoins, and thiohydantoins, leads to decreased reactivity. The substituents in the 5-position impede the change from a trigonal to tetrahedral configuration at the C-4 of thiohydantoin by non-bonded interactions. The effect of steric hindrance and size attached substituents at the C-5 position as observed for hydrolysis leading to deacetylation of 3.1-3.7, also plays a role in the hydrolysis of compounds 3.8-3.15. Some factors should be taken into consideration for the hydrolysis of hydantoins, dihydrouracils and open-chain acylurea including the configuration of the open chain derivative and angle strain in the ring systems. In the case of hydantoin and thiohydantoin, as explained before, N-3 can be deprotonated forming an anion because it is more acidic than N-1. There is another possibility to deprotonate both hydrogens on O-H in the tetrahedral intermediate, as mentioned previously for the base-catalysed hydrolysis of allantoin (Chapter 1). For this mechanism, the plot of
the rate constant of hydrolysis of hydantoin and allantoin has been reported to display a plateau in the intermediate region.

Scheme 3.7: Mechanism for base-catalysed hydrolysis of 5-substituted 2-thiohydantoin mechanism based on the slow breakdown of the tetrahedral intermediate as a mono and di-anion to the product.

3.2.3 Kinetics and mechanism of base-catalysed hydrolysis of 3,5-di-substituted 2-thiohydantoins

To avoid complications resulting from deprotonation at N-3, the rate constants for hydrolysis of 3.16 were also studied using UV-visible spectroscopy (Scheme 3.8).

Scheme 3.8: The chemical structure of 3.16

Because the H/D exchange of compound 3.16 was extremely fast by 1H-NMR spectroscopy (See chapter 5) in comparison with compounds 3.1-3.5, low concentrations of buffers were
used in the studies of the hydrolysis of 3.16 so that the data also serve to compare with the H/D exchange process. The absorbance of 3.16 decreases over time at different concentrations of phosphate buffer (pH 7.4, 0.9 M I) (Figure 3.17).

Figure 3.17: Typical UV–visible spectra of 3.16 in non-deuterated phosphate buffer, pH 7.4, 0.009 M total phosphate buffer, 0.9 M I at 37 °C, and b) the absorbance of 3.16 as a function of time at (■) 265 and (●) 248 nm in non-deuterated phosphate buffer (pH* 7.4, 0.009 M, 0.9 M I, 37 °C).

As can be seen from Figure 3.17, the absorbance of 3.16 gradually decreases at 265 nm over time and simultaneously increases at 248 and 375 nm. The absorbance increase at 375 nm is a new observation which has not been seen for compounds 3.1-3.15. The decrease in absorbance for the hydrolysis of 3.16 at 265 nm has been plotted versus time at different concentrations of phosphate buffers (pH 7.4, 1 M I) (Figure 3.18).
Figure 3.18: Fits of the first-order rate law to experimental data for hydrolysis of 5-benzyl-3-phenyl-2-thioxoimidazolidin-4-one 3.16 at 37 °C in non-deuterated phosphate buffer in pH 7.4, (■) 0.009 M, (●) 0.018 M, (▲) 0.027 M, and (▼) 0.036 M total phosphate buffer (0.9 M I) at 265 nm.

The pseudo-first-order rate law was fitted to the data in Figure 3.17 and as can be seen, the rate constants increase with increasing concentration of phosphate buffer. The observed pseudo-first-order rate constants of hydrolysis were plotted versus the concentration of the basic component of the phosphate buffer (Figure 3.19). From the slope, the second-order rate constant for the HPO$_4^{2-}$-catalysed hydrolysis of 3.16 was observed and $k_0 + k_{OH^-}[OH^-] + k_{H,O}[H_3O^+]$ was obtained from the intercept using Equation 3.2, as done previously (Figure 3.19).
Figure 3.19: Observed rate constants for hydrolysis of 3.16 as a function of the concentration of H$_2$O-based phosphate buffer at 37 °C, 0.9 M I, pH 7.4, basic phosphate concentrations correspond to (0.045 M, 0.036 M, 0.027 M, 0.018 M, and 0.009 M total phosphate).

The observed rate constants are (19.6 ± 3.8) 10^{-6} s$^{-1}$ for k_{in} and (1030.0 ± 202) 10^{-6} M$^{-1}$s$^{-1}$ for the second-order rate constant for HPO$_4^{2-}$-catalysed hydrolysis.

The second-order rate constant for the hydrolysis of 5-benzyl-3-phenyl-2-thioxoimidazolidin-4-one 3.16 is approximately 14 times higher than the rate constant for the hydrolysis of 5-benzyl-2-thioxoimidazolidin-4-one 3.9. The substituents on 2-thioxoimidazolidin-4-ones clearly have an effect on the reactivity of the neutral molecule possibly through eliminating ionisation leading to a change in the rate of hydrolysis.12 The alkaline hydrolysis of 2-thioxoimidazolidin-4-ones substituted at the N-3 position might be comparable with the hydrolysis of dihydropyrimidines31 substituted at the 3-position to form a tetrahedral intermediate and breakdown to the product (Scheme 3.9).
Scheme 3.9: Mechanism of base-catalysed hydrolysis of 3,5-di-substituted 2-thiohydantoin.

The methyl group on N-3 alone decreases the rate constant of hydrolysis in five-membered rings such as hydantoin but increases the rate constant of hydrolysis in six-membered rings such as 3-methylidihydrouracil. Steric hindrance is expected to affect the rate of hydrolysis. Furthermore, the endocyclic bond angles of the tetrahedral intermediate become smaller, leading to the methyl group being shifted away from the neighbouring oxygen. The second-order rate constants for hydrolysis of 3,5-di-substituted 2-thiohydantoin were found to be higher than 5-substituted 2-thiohydantoin. Despite the substitution at N-3 stabilising the neutral molecule, the lack of ionisation at N-3 leads to an increase in the hydrolysis of 3-substituted 2-thiohydantoin.

3.3 Conclusions

The kinetics of hydrolysis of compounds 3.1-3.16 with different substituents at C-5, N-1, and N-3 with mono-, and di- substitution were studied in buffers mimicking physiological conditions. The pseudo-first-order and second-order rate constants of hydrolysis were obtained. From these results and comparison with different substituted 2-thiohydantoin, the following conclusions can be made.

First, the acetyl substituent on the N-1 position can be removed by acid or base rapidly. Two processes were identified to have taken place during the hydrolysis of 3.1-3.7 using buffer: deacetylation to form 5-substituted 2-thiohydantoin followed by further hydrolysis.

Second, the various substitutions on the C-5 of 2-thiohydantoin also have a strong influence on the rate constant of hydrolysis. The rate constant of hydrolysis is lower in comparison to
the C-5 of un-substituted 2-thiohydantoin. C-5 substituents impede the conversion from trigonal to tetrahedral configuration by non-bonded interaction at C-4.

Third, the second-order rate constants for hydrolysis of 3.3 are significantly higher when using sodium hydroxide compared to hydrochloric acid.

Fourth, compound 3.16 was hydrolysed more rapidly than 3.9 and 3.7. This shows the effect of the phenyl at the N-3 position on the rate constant of hydrolysis. This result shows that rate constants of hydrolysis can be increased by phenyl substituents at the N-3 position.

3.4 Experimental

General Experimental

Materials

All chemicals and reagents were purchased from commercial sources and used without further purification. Sodium dihydrogen orthophosphate and sodium hydroxide were purchased from Fisher Scientific. Sodium hydroxide was purchased from BDH and anhydrous sodium acetate was purchased from CALBIOCHEM. Tris-(hydroxymethyl)-aminomethane (molecular biology grade, >99.9%) was purchased from Melford. CAPS buffer was purchased from Sigma Aldrich. Methyl amine 40 wt. % in H2O was purchased from Sigma Aldrich. Water used for the preparation of buffers and solutions was demineralised by means of a PureLab Option water purification system from Elga.

Buffer preparation

H2O-phosphate buffers (pH 7.4) were prepared by dissolving the appropriate amounts of sodium di-hydrogen ortho-phosphate dihydrate and sodium chloride in water followed by adjusting the pH to 7.4 by adding sodium hydroxide. Sodium acetate tri-hydrate was dissolved to prepare acetate buffers (pH 5.0) with 1 M I and acetic acid used to adjust the pH. Tris-(hydroxymethyl)-amino methane was used to prepare TRIS buffer (pH 8.2, 1 M I), the pH was adjusted to the desired value by the addition of hydrochloric acid. To prepare borate buffers (pH 9.3, 1 M I), the appropriate amount of sodium tetraborate-decahydrate was dissolved and hydrochloric acid was added to adjust the pH. The CAPS buffer (pH 9.7, 1 M I) was prepared by dissolving N-cyclohexyl-3-aminopropanesulphonic acid in water and sodium hydroxide was added to adjust to the desired pH. A 40% methyl amine solution in water was
used to prepare methyl amine buffer (pH 9.7, 1 M I) and the pH was adjusted to the desired value by adding HCl. Sodium chloride was used for all buffer solutions to adjust the ionic strength. The basic and acidic component of buffers were calculated by using the Henderson–Hasselbalch equation.

General kinetic measurements

Hydrolysis experiments were carried out by preparing stock solutions of compounds 3.1-3.15 in water. All compounds had enough absorbance in water to allow UV-visible spectroscopy to be used for the kinetic studies, except compound 3.16, which has low absorbance and is difficult to dissolve in water. An ultrasonic bath sonicator was used to speed up dissolution of all compounds in water. The stock solutions were transferred to plastic Eppendorfs and centrifuged for 7 minutes two times at 13.3 rpm on a Jencons-pls Spectrafuge 24.D centrifuge. The clear supernatant was transferred to a new vial and diluted to appropriate absorbance for UV-visible spectroscopy. The stock solution of thiohydantoins was then mixed with the concentration of buffer in a 10%-90% (v-v) ratio. Experiments were carried out in 1 cm path length quartz cuvettes containing 3.4 ml of the aqueous solution of interest. The hydrolysis reactions were followed at 286, 289, 291, 283, 288, 290 and 290 nm for 3.1-3.7, and at 264, 263, 264, 262, 264, 262,260, 263 and 265 nm for 3.8-3.16, respectively, at 37 °C. For 1H-NMR studies, a stock solution of compound 3.5 in D₂O was prepared by dissolving 0.0106 g of 3.5 in 100 µl D₂O and 900 µl of deuterated-phosphate buffer (0.4 M, 1 M I, pH* 7.55). The solution was transferred to the ultrasound sonicator bath to dissolve and was centrifuged for 7 minutes two times to avoid precipitation during the kinetic experiments. The solution was placed in an NMR tube and kept at 37 °C in a Fisher Scientific circulating water bath. 1H-NMR spectra were recorded over time.

Instruments

Hydrolysis reactions were monitored by parallel kinetic measurements using a JASCO V650 UV-visible spectrophotometer with an Auto Peltier thermostatting unit with six-position cell changer PAC-743R. A JASCO V630 UV-visible spectrophotometer was also used for some experiments. Materials were weighed on an analytical balance Fisher Brand PS-100 (Max 100 g, d=0.1 mg). Volumes of solutions were measured by means of Gilson or Eppendorf
Research micropipettes. pH measurements were carried out at room temperature using a Hanna Instruments pH 210 pH meter. The pH meter was calibrated before each measurement with certified traceable NIST buffers at pH 7.00±0.01 (at 25 °C) (from Fisher), pH 10.01±0.02 (at 25 °C) (from Fisher) and pH 4.00±0.01 (at 25 °C) (from Fisher). A thermostatic water bath Julabo MB-5 Heating Circulator (temperature stability ± 0.2 °C) was used to control the temperature of solutions if not kept in thermostated cell holders in the NMR machine.

3.5 References

18. http://www.liv.ac.uk/buffers/buffercalc.html
24. E. Ware, *Chemical Reviews*, 1950, 46, 403-470.
Chapter 4

Kinetics and mechanism for racemisation of substituted 2-thiohydantoins
4.1 Introduction

Enantiomers of drugs may exhibit different pharmacological profiles and toxicity, e.g. one enantiomer may be active while the other is inactive or even toxic.1,2-4 Single enantiomer drugs improve the clinical effect and decrease drug toxicity. Indeed, in 1997, 54 % of the world’s best-selling drugs were single enantiomers.5 For chiral drugs the potential for racemisation should be studied in order to determine if enantiomers are configurationally stable under physiological conditions.6 Substituted hydantoins, thiohydantoins, thiazolidines and rhodanines are molecules of pharmaceutical interest which are characterised by the presence of a stereogenic centre at the C-5 position. Reist \textit{et al.}7 and Narduolo8 have studied the kinetics and mechanism of racemisation of 5-substituted hydantoin under physiological-like conditions. Cabordery \textit{et al.}6 studied the kinetics and mechanism of racemisation of Tic-hydantoins, including Tic-thiohydantoin, while Cabera \textit{et al.}9 determined the enantiomerisation barrier of 3-phenyl-5-benzyl-2-thiohydantoin. Typically, substituents at the stereogenic carbon in the chiral molecule have a strong effect on the reactivity in racemisation reactions. Previous authors reported that the chemical racemisation of hydantoin proceeds via keto-enol tautomerism10,11 by forming a planar enolate intermediate (Scheme 4.1).

![Scheme 4.1: Proposed keto-enol tautomerism of 5-subsituted 2-thiohydantoin.12](image)

Mendil and Dakin12 proposed keto-enol tautomerism as the mechanism for hydantoin racemisation forming optically inactive hydantoin (see Chapter 1). During the keto-enol tautomerism, the labelled hydrogen on the α-carbon is lost to form an inactive tautomeric-enolate salt which is reprotonated to produce racemised products.13 Tian \textit{et al.}14 reported the role of water to facilitate proton transfer and act as a catalyst to reduce the enantiomerisation barrier by \approx 30 kcal mol$^{-1}$.
Divalent phosphate catalysis as reported by Dudley and Bius15 (Chapter 1) for the mechanism of racemisation of 5-phenylhydantoin is also a possibility for racemisation of thiohydantoin derivatives \textit{in vivo} without a specific racemase (Scheme 4.2).

![Scheme 4.2: Possible mechanism for the racemisation of 5-substituted 1-acetyl-2-thiohydantoin by divalent phosphate for hydantoin based on the mechanism proposed by Dudley and Bius15 for 5-phenylhydantoin.]

4.2 Results and discussion

4.2.1 Racemisation of 5-substituted 1-acetyl-2-thiohydantoin

4.2.1.1 Determination of rate constants for loss of ellipticity

In order to study the racemisation of chiral thiohydantoin, enantioenriched 5-substituted 1-acetyl-2-thiohydantoin were synthesised from the corresponding amino acids (Chapter 2). The loss of optical activity, as quantified by the loss of ellipticity of compounds 4.1-4.5 (Scheme 4.3), was monitored using circular dichroism spectroscopy in aqueous systems under mimicked physiological conditions using different concentrations of buffer at pH 7.4.
Scheme 4.3: The chemical structures of compounds 4.1-4.6

As Scheme 4.3 shows, compounds 4.1-4.6 have different substituents at the stereogenic centre and an acetyl group at the N-1 position. Each compound was dissolved in water or D₂O and the resulting solution mixed with phosphate buffer and centrifuged two times to avoid precipitation. Kinetic studies of the loss of ellipticity for all enantioenriched compounds 4.1-4.5 was carried out in different concentrations of both non-deuterated and deuterated phosphate buffers using CD spectroscopy at pH 7.4 and 0.9 M I at 37 °C. Changes in ellipticity as a function of time for 4.1-4.5 in 0.27 M non-deuterated-phosphate buffer (pH 7.4, 0.9 M I at 37 °C) are shown in Figure 4.1. For all further experiments of 4.1-4.5 in H₂O- and D₂O-phosphate buffers pH 7.4 (a) and pH⁺ 7.4 (a) and 0.9 M I at 37 °C, see the Appendix.

a) Buffers pH 7.4: A series of concentrations of phosphate buffer in H₂O were prepared by adjusting pH₂⁰°C to 7.4. Buffers pH⁺ 7.55: the H₂O-phosphate buffers were evaporated three times and D₂O subsequently added to prepare deuterated-phosphate buffers with pH²⁰°C 7.55. This procedure ensures that the buffer ratio is the same in our H₂O based and D₂O based buffers.
Figure 4.1: Change in ellipticity over time for solutions of a) 4.1, b) 4.2, c) 4.3, d) 4.4, and c) 4.5 at 37 °C. For every experiment, 10 vol% of a stock solution of each compound in water was mixed with 90 vol% of a 0.3 M non-deuterated-phosphate buffer (pH 7.4, 1 M I).
Figure 4.1 shows that the ellipticity of solutions of compounds 4.1-4.5 decreased as a function of time. The ellipticities at the wavelength of maximum ellipticity of compounds 4.1-4.5 in 0.27 M of phosphate buffer (pH 7.4, 1 M I at 37 °C) were plotted versus time (Figure 4.2). For kinetic traces at other buffer concentrations, see Appendix.

Figure 4.2: The ellipticities of a) 4.1 at 262 nm, b) 4.2 at 265 nm, c) 4.3 at 268 nm, d) 4.4 at 290 nm and e) 4.5 at 263 nm versus time. Solid lines are fits in terms of the first-order rate law.
Figure 4.2 shows that the first-order rate law reproduces the data for all compounds well. The observed phenomenological pseudo-first-order rate constants for loss of ellipticity k_o were obtained by plotting the ellipticity versus time in terms of the first-order-rate equation (Equation 4.1).

$$\theta_t = \theta_{\text{fin}} + \Delta \theta * e^{-k_\theta t} \tag{Equation 4.1}$$

Here θ_t is the ellipticity at time t, θ_{fin} is the final ellipticity, $\Delta \theta$ represents the difference between the ellipticity at time zero and θ_{fin}, and k_θ is the observed pseudo-first-order rate constant for loss of ellipticity.

Using Equation 4.1, the pseudo-first-order rate constants k_o for loss of ellipticity of compounds 4.1-4.5 in aqueous solution were determined and these are listed in the Appendix. By using different concentrations of buffer (pH 7.4, 0.9 M I), it was found that by increasing the concentration of buffer the rate constant k_o also increases. Therefore, the racemisation proceeds via a general-base catalysed pathway (Equation 4.2).

$$k_{\text{obs}} = k_0 + k_{\text{OH}^-} [\text{OH}^-] + k_{\text{H}^+} [\text{H}_3\text{O}^+] + k_{\text{buffer}} [\text{buffer}] \tag{Equation 4.2}$$

where k_0 is the rate constant for the non-catalysed reaction, k_{OH^-} and k_{H^+} are the rate constants for the catalysed reaction by base and hydronium, respectively, which is obtained from the intercept (k_{in}), while k_{buffer} is the second-order rate constant for the buffer catalysed loss of ellipticity, which is obtained from the slope, and k_{obs} is the rate constant for the observed reaction.

4.2.1.2 Relation between base-catalysed hydrolysis and racemisation

The rate constants for the loss of ellipticity of acetylated 2-thiohydantoins were determined by CD spectroscopy in phosphate buffer. The acetyl group on the N-1 position is liable to be hydrolysed even in mild acid and base medium. During the racemisation process, it was noticed that the absorbance of enantioenriched compounds 4.1-4.5 in CD spectroscopy decreases over time (Figure 4.3). Therefore, it was important to study the hydrolysis under the same conditions as those used for the racemisation studies (Chapter 3).
Figure 4.3: Time-resolved a) ellipticity and b) absorbance of 4.4.

From Figure 4.3 it is clear that the loss of ellipticity is complete before the hydrolysis process is completed. Furthermore, the rate constant for loss of ellipticity is higher than the rate constant for hydrolysis of 4.1, 4.2, 4.4 and 4.5. However, the loss of ellipticity of 4.3 is quite slow, though still faster than its hydrolysis. Scheme 4.4 illustrates the relation between the racemisation and hydrolysis processes.

Scheme 4.4: Competition between hydrolysis and racemisation.

From Chapter 3, it has been explained that compounds 4.1-4.6 undergo base-catalysed hydrolysis to produce 5-substituted 2-thiohydantoin (B) and these continue to undergo
hydrolysis to obtain a ring-opened compound (C) (Scheme 4.4). In fact, the rate constants of racemisation of 5-substituted 2-thiohydantoins (B) are much faster than those of the 5-substituted 1-acetyl-2-thiohydantoins (A) \(k_{\text{rac (TH)}} \gg k_{\text{rac (AcTH)}} \).\(^{16}\) To identify the real rate constants of racemisation of each 5-substituted 1-acetyl-2-thiohydantojin, the rate constants for the loss of ellipticity, which have been obtained by CD spectroscopy, have to be corrected for the effect of the hydrolysis process. For \(k_{\text{rac (TH)}} \gg k_{\text{rac (AcTH)}} \), \(k_\theta \) is the sum of the rate constants of racemisation and the rate constants of hydrolysis (Equation 4.3).

\[
k_\theta = k_{\text{rac}} + k_{\text{hyd}}
\]

Equation 4.3

From Equation 4.3

\[
k_{\text{rac}} = k_\theta - k_{\text{hyd}}
\]

Equation 4.4

Where \(k_\theta \) is the rate constant for the loss of ellipticity, corresponding to racemisation and hydrolysis together, \(k_{\text{rac}} \) is the rate constant for racemisation and \(k_{\text{hyd}} \) is the rate constant for hydrolysis.

Using Equation 4.1, the pseudo-first-order rate constants for loss of ellipticity in different concentrations of phosphate buffer \(k_\theta \) and the rate constant of hydrolysis \(k_{\text{hyd}} \) at the same conditions were determined. Equation 4.4 was subsequently used to calculate \(k_{\text{rac}} \) for every single concentration of phosphate buffer by calculating the margin of error. \(k_{\text{rac}} \) for \(4.1-4.5 \) were then plotted versus the concentration of the basic component of the H\(_2\)O-phosphate buffer to determine the slope and intercept by fitting a straight line to the data (Figure 4.4).
Figure 4.4: Observed pseudo-first-order rate constants for racemisation of 4.4 calculated by Equation 4.4 for every single concentration of buffer, and plotted versus the concentration of the basic component of H₂O-phosphate buffer (0.9 M I, pH 7.4 at 37 °C).

The pseudo-first-order rate constants \(k_\circ \), \(k_{\text{rac}} \) and \(k_{\text{hyd}} \) for 4.1 were plotted versus the basic component of phosphate (Figure 4.5). In the previous section the \(k_\circ \) in H₂O and D₂O-phosphate buffers were plotted, therefore here the \(k_\circ \) in D₂O is not included. However, Figure 4.5 shows that \(k_{\text{rac}} \) is determined by \(k_\circ \) for 4.1. The same is true for 4.2-4.5.

Figure 4.5: The relation between rate constants of (■) \(k_\circ \), (●) \(k_{\text{rac}} \) and (▲) \(k_{\text{hyd}} \) for buffer catalysed racemisation of 4.1 in H₂O phosphate buffers (0.9 M I, pH 7.4 at 37 °C).
Figures 4.4 and 4.5 show that the rate constants for the loss of ellipticity k_Θ, racemisation k_{rac} and hydrolysis k_{hyd} increase linearly versus the concentration of the basic component of phosphate buffer (0.9 M I, pH 7.4 at 37 °C). The hydrolysis process discussed in Chapter 3 for 4.1, 4.2, 4.4 and 4.5 are slow in comparison with the racemisation. This is obvious from Figure 4.5 in that k_{rac} is slightly less than k_Θ for 4.1 and the same is true for 4.2, 4.4 and 4.5. On the other hand, the rate constants for racemisation, k_{rac}, of 4.3 is quite low in comparison with the rest of the 5-substituted 1-acetyl-2-thiohydantoins, and the difference between the rate constants for hydrolysis and racemisation is less. The second-order rate constants k_Θ, k_{hyd} and $k_{rac}(=k_{obs}-k_{hyd})$, which were determined from the slopes for 4.1-4.5, and k_{in} from the intercept of k_{rac}, are shown in Table 4.1.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>k_Θ (H2O) / 10^{-6} s^{-1} M^{-1}</th>
<th>k_{hyd}, H2O / 10^{-6} s^{-1} M^{-1}</th>
<th>k_{rac}, H2O / 10^{-6} s^{-1} M^{-1}</th>
<th>k_{in} (rac.) / 10^{-6} s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>763 ± 29</td>
<td>29.9 ± 1.0</td>
<td>735 ± 30 (^a)</td>
<td>6.5 ± 2.5</td>
</tr>
<tr>
<td>4.2</td>
<td>1356 ± 86</td>
<td>10.2 ± 0.5</td>
<td>1347 ± 86 (^a)</td>
<td>9.3 ± 6.7</td>
</tr>
<tr>
<td>4.3</td>
<td>61.3 ± 9.4</td>
<td>23.3 ± 0.08</td>
<td>45.0 ± 9.0 (^a)</td>
<td>0.4 ± 1.7</td>
</tr>
<tr>
<td>4.4</td>
<td>646 ± 19.4</td>
<td>10.5 ± 0.6</td>
<td>636 ± 19 (^a)</td>
<td>5.7 ± 1.4</td>
</tr>
<tr>
<td>4.5</td>
<td>2495 ± 131</td>
<td>30.7 ± 0.7</td>
<td>2465 ± 131 (^a)</td>
<td>35.0 ± 9.0</td>
</tr>
</tbody>
</table>

\(^a\) Standard errors calculated according to Equation 4.8

From Table 4.1, the hydrolysis processes are being affected by substituents at the C-5 position which is explained in terms of the effect of steric hindrance on the hydrolysis.\(^{17}\) There is a big difference between the rate constants for base-catalysed hydrolysis and base-catalysed racemisation of 4.1-4.5, as can be seen in Table 4.1. Generally, because the rate constants for loss of ellipticity are much higher than the rate constants for hydrolysis, the rate constants for racemisation similarly increase or decrease depending on substituents. The order of the rate constants for racemisation k_{rac} is 4.5>4.2>4.1>4.4>4.3. For comparison, the order of the rate constants for hydrolysis is 4.1>4.5>4.4>4.3>4.2.
Because the acetyl group at the N-1 position is present on all compounds, the effect of acetyl on the racemisation for all compounds is similar. However, the variable substituents on the stereogenic centre have an effect on the rate constant for loss of ellipticity, as can be clearly seen in Table 4.2. The rate constants for racemisation is also dependent on the bulkiness and electronic effect of substituents at the stereogenic centre. The combined effects of substituents are analogous to the effects on the rate constants for the racemisation of amino acids which follow the order Ala>Leu>Ile>Val.18

Compounds 4.1 and 4.3 with methyl and isopropyl substituents at the C-5 position, respectively, display rate constants for racemisation 4.1 > 4.3, which is similar to the order for corresponding amino acids Ala > Val. The compound racemising fastest is 4.5, which is also substituted with an aliphatic substituent with the presence of a sulphur atom. It is clear that the sulphur atom promotes the racemisation of compound 4.5 during the proton transfer reaction in the presence of base. The sulphur will accelerate the deprotonation because of its inductive electronegative contribution.19 Likewise, sulphur can promote C-H acidity, as reported by Barber and Jones20 for base-catalysed racemisation of methionine. The authors also explained the reason for the increase in racemisation by sulphur in methionine by proposing that the π orbital of the delocalised enolate overlaps with the d orbital of sulphur.19,20

Benzyl-substituted thiohydantoin 4.2 racemises two times faster than 4.4. The aryl group, substituted at the 5-position, can act as an electron sink to stabilise the developing carbanion in the transition state, reducing $\Delta H^\#$.21 Unfortunately, compound 4.6 racemised during the preparation, confirming how the different substituent groups affect the racemisation. The phenyl group on the asymmetric α-carbon accelerates the racemisation because of resonance processes which stabilise the carbanion.22

The H/D exchange process for compound 4.6 was studied using 1H-NMR spectroscopy and was shown to be much faster than for other compounds (vide infra). Reist et al.7 reported the rate constants for racemisation of 5-phenylhydantoin in deuterated-phosphate buffer to be 188, 342 and 1883 times faster than 5-benzyl-, 5-methyl- and 5-isopropylhydantoin, respectively. The k_{in} for 4.1, 4.2, 4.4 and 4.5 are zero within the margin of error in deuterated-phosphate buffer pH* 7.4. 4.3 racemises too slowly and k_{in} is not so different from the values found for the other compounds in the series. Therefore, specific base catalysis can be discounted in deuterated phosphate buffer pH* 7.4. However, the k_{in} is significant within the margin of error in the non-deuterated phosphate buffer pH 7.4 and higher than in the deuterated phosphate buffer pH* 7.4.
4.2.1.3 Solvent kinetic isotope effects on the racemisation of 5-substituted 1-acetyl-2-thiohydantoins

The solvent kinetic isotope effect for the racemisation of hydantoins has been reported previously.7,8 The rate constants for loss of ellipticity of compounds 4.1-4.5 were determined using CD spectroscopy in different concentrations of phosphate buffer at pH 7.4 in both H\textsubscript{2}O and D\textsubscript{2}O. The pseudo-first-order rate constants for loss of ellipticity were obtained using varying concentrations of buffer. Upon increasing the concentration of buffer, the rate constant \(k_0 \) increased, confirming general-base catalysis for loss of ellipticity. The solvent kinetic isotope effect can be estimated by dividing the second-order rate constants for loss of ellipticity in non-deuterated phosphate buffer (\(k_0 (\text{H}_2\text{O}) \)) by the second-order rate constants for loss of ellipticity in deuterated phosphate buffer (\(k_0 (\text{D}_2\text{O}) \)), for compounds where \(k_{\text{hyd}} \ll k_0 \).

Therefore, the second-order rate constants for loss of ellipticity were obtained by plotting the observed rate constants of racemisation versus the concentration of the basic component of phosphate buffer in H\textsubscript{2}O and D\textsubscript{2}O based buffers (Figure 4.6).

![Figure 4.6](image-url)

Figure 4.6: Second-order rate constants for the buffer catalysed loss of ellipticity for 4.4 in (■) H\textsubscript{2}O and (●) D\textsubscript{2}O phosphate buffers (0.9 M \(I \), pH and pH* 7.4 at 37 °C).

Figure 4.6 shows the linear increases of pseudo-first-order rate constants \(k_o \) for 4.4 against the concentration of basic component of phosphate buffer. The slopes in Figure 4.7 for compound
4.4 and the rest of the compounds in H$_2$O and D$_2$O phosphate buffer represent the second-order rate constants k_α (figures shown in Appendix of Chapter 4). The intercept gives the sum of the contribution of $k_{\text{in}} = k_0 + k_{\text{OH}_2} \left[\text{OH}^- \right] + k_{H_3O^+} \left[H_3O^+ \right]$ which represent the uncatalysed, specific-base-catalysed, and specific-acid-catalysed rate constants for the loss of optical activity. The comparison of rate constants in non-deuterated and deuterated medium illustrates the solvent kinetic isotope effect on racemisation of 4.1-4.5, as shown in Table 4.2. For the results of the solvent kinetic isotope effect, we used the phenomenological rate constants k_α to approximate the mechanistic rate constants k_{rac}.

Table 4.2: Second-order rate constants for buffer catalysed loss of ellipticity for the combined uncatalysed, deuteroxide catalysed and hydronium catalysed racemisation of 4.1-4.5 in H$_2$O and D$_2$O phosphate buffers (0.9 M I, pH and pH* 7.4 at 37 °C).

<table>
<thead>
<tr>
<th>Subs</th>
<th>k_α H$_2$O / 10^6 S$^{-1}$ M$^{-1}$</th>
<th>k_{in} H$_2$O / 10^6 S$^{-1}$</th>
<th>k_α D$_2$O / 10^6 S$^{-1}$ M$^{-1}$</th>
<th>k_{in} D$_2$O / 10^6 S$^{-1}$</th>
<th>$k_{\alpha, H_2O}/k_{\alpha, D_2O}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>763 ± 29</td>
<td>16.5 ± 2.3</td>
<td>811.44 ± 66.37</td>
<td>8.86 ± 8.38</td>
<td>0.94 ± 0.03a</td>
</tr>
<tr>
<td>4.2</td>
<td>1356 ± 86</td>
<td>14.0 ± 6.7</td>
<td>1579 ± 78</td>
<td>-10.2 ± 9.2</td>
<td>0.86 ± 0.02a</td>
</tr>
<tr>
<td>4.3</td>
<td>61.3 ± 9.4</td>
<td>6.6 ± 1.5</td>
<td>53.5 ± 4.0</td>
<td>3.4 ± 0.8</td>
<td>1.15 ± 0.20a</td>
</tr>
<tr>
<td>4.4</td>
<td>646 ± 19</td>
<td>9.3 ± 1.4</td>
<td>715 ± 43</td>
<td>4.9 ± 4.9</td>
<td>0.90 ± 0.03a</td>
</tr>
<tr>
<td>4.5</td>
<td>2495 ± 131</td>
<td>41.7 ± 9.0</td>
<td>3007 ± 19</td>
<td>-2.4 ± 2.0</td>
<td>0.83 ± 0.04a</td>
</tr>
</tbody>
</table>

a) Standard errors calculated using Equation 4.7

Table 4.2 shows small inverse solvent kinetic isotope effects for compounds 4.1, 4.2, 4.4 and 4.5 and a small normal kinetic isotope effect for 4.3 with a bigger margin of error than for the rest of the compounds. The solvent kinetic isotope effect describes the involvement of the solvent in the rate determining step of the reaction. The rate constants of racemisation in deuterated phosphate buffer and non-deuterated phosphate buffer had been determined for 5-substituted hydantoin previously.23,8,7

Narduolo8 has reported the pseudo-first-order rate constants for racemisation of 5-benzylhydantoin in non-deuterated and deuterated phosphate buffer pH and pH* 7.2 (Table 4.3). The phenomenological rate constants k_α for hydantoins can be assumed to be equal to the mechanistic rate constants k_{rac} for racemisation of substituted hydantoin because no hydrolysis
process has been identified during the racemisation of substituted hydantoin, as reported by Reist et al. and Narduolo.

Table 4.3: Rate constants of racemisation of \((S)\)-5-benzylhydantoin in D\(_2\)O and H\(_2\)O phosphate buffers pH and pH* 7.2, respectively (0.25 M, 0.5 M \(I\), at 60 °C).

<table>
<thead>
<tr>
<th>Hydantoin C(5) Substituent</th>
<th>(k_{\text{racH}} / 10^{-6} \text{S}^{-1})</th>
<th>(k_{\text{racD}} / 10^{-6} \text{S}^{-1})</th>
<th>(k_{\text{H}}/k_{\text{D}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCH(_2)</td>
<td>167.3 ± 1.3</td>
<td>175.0 ± 0.2</td>
<td>0.96 ± 0.01</td>
</tr>
</tbody>
</table>

Table 4.2 and 4.3 show small differences for the rate constants of thiohydantoin and hydantoin in non-deuterated and deuterated phosphate buffers. Reist et al.\(^7\) reported the solvent kinetic isotope effect \((k_{\text{H}2\text{O}} / k_{\text{D}2\text{O}})\) to be 1.13 ± 0.05 and 1.24 ± 0.08 for \((S)\)-5-phenylhydantoin and \((S)\)-5-benzylhydantoin, respectively, in a 50/50 (v/v) mixture of phosphate buffer and DMSO. The inverse solvent kinetic isotope effects for 4.1-4.5 in Table 4.2 indicate no involvement of solvent as a proton donor in the rate determining step in the reaction, indicating that the \(S\)\(_{E2}\) mechanism is unlikely.

4.2.1.4 Brønsted plot for proton transfer

The proton transfer from the chiral carbon of thiohydantoin to the base and the effect of buffer strength on the rate constants for racemisation of 4.1 were studied. The racemisation was studied using acetate, phosphate, TRIS, borate and methyl amine buffer over the pH 5.0-9.7 at 37 °C. Furthermore, racemisation was studied in the same conditions as those used to study hydrolysis for 4.1 (Chapter 3). Pseudo-first-order rate constants for racemisation were determined in the same conditions as those used for non-deuterated phosphate buffer (0.9 M \(I\), pH 7.4 at 37 °C). The second-order rate constants for loss of optical activity were obtained using Equation 4.2. Equation 4.4 was used to determine the rate constants for racemisation corrected for hydrolysis (Chapter 3) in acetate pH 5.0, phosphate pH 7.4, TRIS buffer pH 8.2 and methyl amine pH 9.7. Pseudo-first-order rate constants of racemisation, obtained by Equation 4.1, were plotted versus the concentration of basic component of acetate, phosphate, TRIS and methyl amine buffers (Figure 4.7).
Figure 4.7: Dependence of the apparent first-order rate constants of 4.1 on the concentration of the basic component of (■) acetate (pH 5.0), (●) phosphate (pH 7.4) (▲) TRIS (pH 8.2) and (▼) methyl amine (pH 9.7) buffers.

Figure 4.7 shows that the pseudo-first-order rate constants for the racemisation of 4.1 plotted versus the concentration of the basic component of acetate, phosphate, TRIS and methylamine buffers increase linearly with straight line fits passing through the origin. This indicates that general-base catalysis of racemisation occurs in all four buffers. The second-order rate constants for racemisation k_{rac} were determined for acetate, phosphate and TRIS buffer from the slope of the linear plot using Equation 4.2 (Table 4.4). Equation 4.4 could not be used to determine k_{rac} in methyl amine buffer (pH 9.7) because k_{hyd} was slightly higher than k_o.
Table 4.4: The pKₐ and second-order rate constants for racemisation 4.1 in acetate, phosphate, TRIS and methyl amine buffers (0.9 M I) at, pH 5.0, 7.4, 8.2 and 9.7, respectively

<table>
<thead>
<tr>
<th>Buffers</th>
<th>pKₐ</th>
<th>k_rac (H₂O) / 10⁻⁶ s⁻¹ M⁻¹</th>
<th>k_int / 10⁻⁶ s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetate</td>
<td>4.59ᵃ</td>
<td>253.5 ± 13.0</td>
<td>-0.9 ± 2.3</td>
</tr>
<tr>
<td>phosphate</td>
<td>6.8ᵇ</td>
<td>735 ± 30</td>
<td>6.5 ± 2.5</td>
</tr>
<tr>
<td>TRIS</td>
<td>7.88ᵃ</td>
<td>1248 ± 139</td>
<td>10.2 ± 9.3</td>
</tr>
</tbody>
</table>

ᵃ) pKₐ at 1 M ionic strength at 37 °C.²⁴,²⁵
ᵇ) As reported previously.¹¹,²⁶

To quantify the sensitivity of the general-base catalysis to changing the strength of the catalytic base, the Brønsted equation (Equation 4.5) was used.

\[
\log k_{obs} = \beta \times pK_a + C
\]

Equation 4.5

where \(\log k_{obs} \) is the logarithm of the observed second-order rate constant in different buffers determined using CD spectroscopy, pKₐ is the dissociation constant of every buffer at ionic strength 0.9 M, according to Table 4.4 at 37 °C, and \(\beta \) is the measure of the sensitivity of the racemisation reaction to change in the strength of the base. Therefore, the logarithm of the second-order rate constants for racemisation of 4.1 in acetate, phosphate, TRIS and methylamine were plotted versus the dissociation constants of 4.1 in these same buffers (Figure 4.9).

The second-order rate constants for ellipticity loss of 4.1 and for hydrolysis in acetate, phosphate, TRIS and methyl amine buffers were plotted versus the dissociation constant of the buffers (Figure 4.8).
Figure 4.8: Brønsted plot for base catalysis for (■) loss of ellipticity and (●) hydrolysis of 4.1 (0.9 M I, 37 °C).

Figure 4.8 shows overlapping of the second-order rate constants for ellipticity loss and the second-order rate constant of hydrolysis at pH 9.7 in trimethylamine buffer. Therefore, Equation 4.4 gives negative results for the determination of the second-order rate constant of racemisation in methyl amine buffer. The logarithm of the second-order rate constants of racemisation of 4.1 in acetate, phosphate and TRIS were plotted versus the dissociation constants of acetate, phosphate and TRIS buffers (Figure 4.9).
Figure 4.9: Brønsted plot for base-catalysed racemisation of 4.1.

Figure 4.9 shows an increase in second-order rate constants for racemisation with increasing pKₐ. A Brønsted β of 0.21 ± 0.0008 was determined from the slope of the second-order rate constants for racemisation versus pKₐ of buffers. A β-value of 0.21 ± 0.0008 indicates an early transition state. Lazarus¹¹ reported a β-value of 0.59 for the base-catalysed racemisation of L-5-benzylhydantoin and 0.51 for L-5-benzyl-3-methylhydantoin. Narduolo obtained β-values for L-5-benzyl-3-methylhydantoin of 0.57 and 0.59 at 25 and 60 °C, respectively. Our value is thus significantly lower, which we attribute to deprotonation of thiohydantoin at the N-3 position. The β-value for neutral 4.1 will be calculated in the next section according to the dissociation constant of 4.1.

Different concentrations of borate buffer were used and the rate constants for racemisation of 4.1 were determined. The pseudo-first-order rate constant for loss of ellipticity were plotted versus the concentration of the basic component of borate buffer (Figure 4.10).
Figure 4.10: First-order rate constants for racemisation against the basic component of borate buffer for 4.1 in H$_2$O-phosphate buffers (0.9 M I, pH 9.3 at 37 °C).

Figure 4.10 shows that the racemisation is apparently not catalysed by the basic components of borate buffer; in fact we obtained a slope of $(\text{-}6.301 \pm 2.972) \times 10^{-5}$ s$^{-1}$ M$^{-1}$. In contrast, general-base catalysis was observed for substituted hydantoin by Narduolo8 in borate buffer.

4.2.1.5 The effect of ionisation at the N-3 position on the rate constant of racemisation

The reason for the low Brønsted β for the racemisation of 4.1 may be due to the acidity of the N-3 of thiohydantoin, leading to the possibility of ionisation (Scheme 4.5). Lazarus27 has described the kinetic equivalence of general-base catalysis of the neutral form and rate determining protonation of the anionic form of 5-benzylhydantoin, which must be taken into consideration.11
Scheme 4.5: Ionisation of 5-substituted 1-acetyl-2-thiohydantoins at the N-3 position.

In Scheme 4.5, the negative charge at N-3 impedes racemisation compared to the protonated compound and the acidity of the proton at the stereogenic centre decreases because of the presence of the negative charge.17 All second-order rate constants of racemisation in acetate, phosphate, TRIS and methyl amine were determined without taking deprotonation into account. The dissociation constant pK_a^{NH} of 6.95 has been previously reported for 4.1 in water, which was used in the present work.17 This value was used to correct k_{rac} for the deprotonation of thiohydantoin (Table 4.5).
Table 4.5: The pKₐ and second-order rate constants for racemisation of total and protonated 4.1 in acetate, phosphate, TRIS and methyl amine buffers (0.9 M I) at pH 5.0, 7.4, 8.2 and 9.7, respectively.

<table>
<thead>
<tr>
<th>Buffer pKₐ</th>
<th>pH</th>
<th>krac / 10⁶ s⁻¹ M⁻¹</th>
<th>Fraction protonated</th>
<th>krac, corrected / 10⁶ s⁻¹ M⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.59ᵃ</td>
<td>5.0</td>
<td>253.5 (c ± 13.0) ¹ᵈ</td>
<td>98.9%</td>
<td>256.3 ± 13.2</td>
</tr>
<tr>
<td>6.8ᵇ</td>
<td>7.4</td>
<td>734.8 (c ± 30.1) ¹ᵈ</td>
<td>26.2%</td>
<td>2806 ± 115</td>
</tr>
<tr>
<td>7.88ᵃ</td>
<td>8.2</td>
<td>1248 (c ± 139) ¹ᵈ</td>
<td>5.3%</td>
<td>23400 ± 2600</td>
</tr>
</tbody>
</table>

а) pKₐ at 1 M ionic strength at 37 °C.³¹, ³²
b) The value reported previously.¹¹, ²⁶
c) Values obtained using Equation 4.4.
d) Standard errors according to Equation 4.8.

The methyl amine buffer was not used in Table 4.5 because Equation 4.4 cannot be applied when the second-order rate constant of hydrolysis is higher than the rate constant of loss of ellipticity. Therefore, the logarithm of the corrected second-order rate constants for racemisation of neutral 4.1 were plotted as a function of buffer pKₐ for acetate, phosphate and TRIS only (Figure 4.11).

Figure 4.11: Brønsted plot for base-catalysed racemisation of protonated 4.1.
The Brønsted β for racemisation of the protonated form of 4.1 was found to be 0.51 ± 0.085, in agreement with general-base catalysis of racemisation and suggests that the proton at the 5-position is half way between thiohydantoin and the buffer in the transition state (Scheme 4.6).

![Scheme 4.6: Transition state of general-base catalysis of 4.1 based on the Brønsted β-value from Figure 4.11.](image)

4.2.2 Racemisation of tri-substituted 2-thiohydantoins

In order to show the effects of the different substituents on the three positions of thiohydantoin on the rate constants for racemisation, different substituted 2-thiohydantoins were prepared (Chapter 2). The previous literature reported that the N3-H group on hydantoin and thiohydantoin is more acidic than N1-H. Therefore, the substituents on the N-3 or N-1 or both change the pKₐ and the observed rate constants of racemisation. The solvent kinetic isotope effect of tri-substituted 2-thiohydantoin was also studied.

4.2.2.1 Determination of the rate constant for racemisation

Two enantioenriched trisubstituted thiohydantoin derivatives were prepared to study the rate of racemisation in deuterated and non-deuterated buffer (Scheme 4.7).
To deal with the lack of solubility of both thiohydantoins 4.7 and 4.8, 10 vol-% acetonitrile and acetonitrile-d$_3$ were used to be able to observe sufficient signals in CD spectroscopy. The kinetics for the loss of ellipticity for 4.7 and 4.8 were followed using a physiological buffer at pH and pH° 7.4 (0.9 M ionic strength at 37 °C). Low concentrations of total phosphate buffer were used because if the same conditions were used as those for compounds 4.1-4.5, 4.7 and 4.8 would racemise extremely fast. The kinetic study of all enantioenriched compounds was carried out in non-deuterated and deuterated phosphate buffer in mixtures consisting of 90 vol-% phosphate buffer (0.01M, 0.02 M, 0.03 M, 0.04 M, and 0.05 M total phosphate buffer, pH and pH° 7.4) or 10 vol-% of acetonitrile or acetonitrile-d$_3$. Reactions were monitored at 37 °C using CD spectroscopy (Figure 4.12).

Figure 4.12: CD spectra observed for racemisation of a) 4.7 and b) 4.8. A stock solution of each compound in acetonitrile and 0.01 M non-deuterated phosphate buffer (10 vol-% and 90 vol-% ratio, respectively; pH 7.4, 1 M I) were mixed and the ellipticity was followed at 37 °C as a function of time.
Figure 4.12 shows that ellipticity decreases over time. The ellipticity at 248 and 272 nm for compound 4.7 and at 247 and 271 nm for 4.8 were plotted versus time for every buffer concentration according to Equation 4.1 (Figure 4.13 and Appendix 3).

Figure 4.13: Ellipticity as a function of time for compounds a) 4.7 at (■) 248 and (●) 272 nm and b) 4.8 at (■) 247 and (●) 271 nm by using 10 % acetonitrile and 90 % 0.01 M non-deuterated phosphate buffer (pH 7.4, 1 M I, at 37 °C).

Figure 4.13 shows that the ellipticity at 248 and 272 nm of compound 4.7 decreases over time. For compound 4.8, the ellipticity at 247 and 271 nm increases with time. Pseudo-first-order rate constants k_o were determined for the five different concentrations of 0.009 M, 0.018 M, 0.027 M, 0.036 M and 0.045 M total phosphate buffer (0.9 M I, pH and pH* 7.4 of non-deuterated and deuterated phosphate buffer). The second-order rate constants were determined by plotting the pseudo-first-order rate constants versus the basic component of the phosphate buffers, as discussed below.

4.2.2.2 Solvent kinetic isotope effect of racemisation

The kinetics of racemisation of compounds 4.7 and 4.8 were studied in non-deuterated and deuterated phosphate buffer to study the mechanism of proton transfer. The racemisation took place rapidly in comparison with compounds 4.1-4.5 if the same phosphate buffer concentrations were used (pH 7.4, 09 M I, at 37 °C). Therefore, lower concentrations of phosphate buffer were used with constant ionic strength at 37 °C. The pseudo-first-order rate constants for racemisation in non-deuterated and deuterated phosphate buffer pH and pH* 7.4,
(0.9 M I at 37 °C) were obtained according to Equation 4.1 (Section 4.2.2.1). The second-order rate constants of racemisation were determined by plotting the observed rate constants for loss of ellipticity in non-deuterated and deuterated phosphate buffer versus the concentration of the basic component of the phosphate buffers (Figure 4.14).

Figure 4.14: Pseudo first-order rate constants for loss of ellipticity for a) 4.7 and b) 4.8 in (■) H2O and (●) D2O phosphate buffers (0.9 M I, pH and pH* 7.4 at 37 °C).

Figure 4.14 shows a linear correlation of the observed pseudo-first order rate constants for racemisation of 4.7 and 4.8 with the concentration of the basic component of phosphate buffer, suggesting general-base catalysis of racemisation. The solvent kinetic isotope effect was obtained by dividing the second-order rate constants for racemisation in deuterated and non-deuterated phosphate buffer (Table 4.6).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>k_0 H2O / 10^{-6} s$^{-1}$ M$^{-1}$</th>
<th>k_0 D2O / 10^{-6} s$^{-1}$ M$^{-1}$</th>
<th>k_H/k_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>78700 ± 12700</td>
<td>72400 ± 9800</td>
<td>1.09 ± 0.23^a</td>
</tr>
<tr>
<td>4.8</td>
<td>60 ± 980</td>
<td>4650 ± 320</td>
<td>1.17 ± 0.22^a</td>
</tr>
</tbody>
</table>

a) Standard errors calculated using Equation 4.7
Table 4.6 shows significant second-order rate constants for loss of ellipticity for 4.7 and 4.8 which are drastically higher than the corresponding rate constants for 4.1-4.5. The high rate constants indicate the effect of substituents at the N-3 position, which is free of substituents in 4.1-4.6. It is also interesting to note that the isopropyl substituent at the C-5 position of 4.8 has a strong rate-retarding effect in comparison with the benzyl substituent of 4.7. This stronger rate-retarding effect of isopropyl over benzyl was also observed for the rate constant of loss of ellipticity for 4.2 (1356 ± 86). 10⁻⁶ s⁻¹ M⁻¹, which was much higher than the rate constant for 4.3 ((61.3 ± 9.4). 10⁻⁶ s⁻¹ M⁻¹) (Table 4.1). Compound 4.7, with an additional substituent at the 3-position loses ellipticity 58 times faster than di-substituted 4.2. Compound 4.8 loses ellipticity 89 times faster than 4.3. Bovarnick and Clarke 30 suggested the possibility of conjugation influencing the ease of racemisation. 30

The solvent kinetic isotope effects for racemisation of 4.7 and 4.8 are 1.09 ± 0.2 and 1.2 ± 0.2, respectively, both are within error from 1. As shown before, the solvent kinetic isotope effects on the racemisation of compounds 4.1, 4.2, 4.4 and 4.5 were inverse kinetic isotope effects due to (de) protonation at N-3. The main difference between compounds 4.1-4.5 on the one hand and 4.7-4.8 on the other hand is that the more acidic position N-H is free of the substituent for 4.1-4.6, while in compound 4.7 and 4.8 the N-H position is substituted by a phenyl group. The partial deprotonation of 4.1-4.5 causes the rate of racemisation in H₂O phosphate buffer to be slower and shows an inverse solvent kinetic isotope effect. Similarly, Cabordery et al. 23 reported a solvent kinetic isotope effect of 0.77 for 2-(3-(benzyl(methyl)amino)propyl)-3-thioxo-2,3,10,10a-tetrahydroimidazo[1,5-b]isoquinolin-1(5H)-one in 75/25 phosphate buffer pH 2.5 and pHD 2.6 and ethanol at 15 °C. There is no deprotonation at the N-3 position in 4.7 and 4.8 in H₂O-phosphate buffer, therefore, no inverse solvent kinetic isotope effects were observed. In an attempt to explore the significance of the kinetic isotope effect even further, the weighted average of the second-order rate constant for loss of ellipticity as studied at 248 and 271 nm for compound 4.7 and as studied at 247 and 271 for compound 4.8 were calculated. The weighted average of the second-order rate constants k₀ in H₂O and D₂O phosphate buffer at 248 and 272 nm for 4.7 are (83800 ± 8900). 10⁻⁶ s⁻¹ M⁻¹ and (70700± 7700). 10⁻⁶ s⁻¹ M⁻¹, respectively. The solvent kinetic isotope effect for loss of ellipticity then become 1.18 ± 0.18 i.e. within error margin of 1. This observation suggests no involvement of a proton transfer from water or from the buffer to the substrate in the rate determining step.

From previous literature, the rate constants for racemisation of hydantoin have been reported at both different pH and temperature. It is interesting to compare the rate constants of
substituted 2-thiohydantoin racemisation in the present work with substituted hydantoin rate constants of racemisation from previous work. It has been reported that the sulphur atom in thiohydantoin increases the chiral instability of the enantiomer. Narduolo reported the rate constants of racemisation for various substituted hydantoin in D$_2$O phosphate buffer (pH 7.2 at 60 °C) (Scheme 4.8).

![Scheme 4.8: Substituted hydantoin studied by Narduolo.](image_url)

The racemisation of 4.9 was also studied by Reist et al. Narduolo reported the second-order rate constants for racemisation of 4.9-4.13 in deuterated phosphate buffer (pH 7.2, 1 M I, at 60 °C) (Table 4.7).
Table 4.7: Rate constants for buffer catalysed and for the combined uncatalysed and deuterioxide catalysed racemisation of substituted hydantoins 4.9-4.13 in D$_2$O phosphate buffer (pH 7.2, 1 M I, at 60 °C).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>k_0 D$_2$O / 10^{-6} s$^{-1}$ M$^{-1}$</th>
<th>k_{in} / 10^{-6} s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>542.2 ± 2.5</td>
<td>17.7 ± 0.5</td>
</tr>
<tr>
<td>4.10</td>
<td>342.6 ± 0.9</td>
<td>15.1 ± 0.1</td>
</tr>
<tr>
<td>4.11</td>
<td>231.2 ± 1.7</td>
<td>8.6 ± 0.5</td>
</tr>
<tr>
<td>4.12</td>
<td>2127.0 ± 9.0</td>
<td>51.1 ± 0.8</td>
</tr>
<tr>
<td>4.13</td>
<td>1106.0 ± 19.0</td>
<td>58.3 ± 2.8</td>
</tr>
</tbody>
</table>

From Table 4.7, it is clear that the methyl group substituted at the N-3 position of hydantoin in 4.10 retards racemisation in comparison with unsubstituted hydantoin 4.9. Similarly, the hydrogen replacement of N-3 by (2-methoxyethyl) (4.11) and (2-(dimethylamino) ethyl) (4.12) also reduces the rate of racemisation. The phenyl substituent on the N-3 position enhances the rate of racemisation of hydantoin, as previously reported.\(^{30}\)

Reist \textit{et al.}\(^{7}\) also determined the pseudo-first-order rate constants for racemisation of compounds 4.9 and 4.14 in H$_2$O and D$_2$O phosphate buffer with 50% DMSO (Table 4.8).

Table 4.8: Pseudo-first-order rate constants for buffer catalysed racemisation of 4.9 and 4.14 in 50 % H$_2$O and D$_2$O phosphate buffers (0.1 M, 0.22 M I, pH and pH$^+$ 7.4 and 50% of dimethyl-sulphoxide at 50 °C).

<table>
<thead>
<tr>
<th></th>
<th>k_{rac (buffer) H$_2$O / h$^{-1}$</th>
<th>k_{rac (buffer) D$_2$O / h$^{-1}$</th>
<th>k_{H/k_D}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>0.12 ± 0.006</td>
<td>0.09 ± 0.02</td>
<td>1.27 ± 1.26</td>
</tr>
<tr>
<td>4.14</td>
<td>23.7 ± 3.0</td>
<td>21.1 ± 1.4</td>
<td>1.12 ± 1.12</td>
</tr>
</tbody>
</table>

It is obvious that 4.14 (with phenyl substituent) racemises 199 times faster than 4.9, showing the differences between the benzyl and phenyl group on the asymmetric carbon. There is also no solvent kinetic isotope effect within the margin of error for 4.9 and 4.14.
4.2.2.3 Relation between base-catalysed hydrolysis and racemisation

For compounds 4.1-4.6, rate constants for racemisation were determined from the rate constants for loss of ellipticity by correcting for the effect of hydrolysis. For compound 4.7, the absorbance was not noted to decrease during the kinetic experiments because the decrease of ellipticity over time was extremely fast. However, the ellipticity of compound 4.8 decreases more slowly in the buffer at 37 °C, and therefore, the decrease of absorbance in the CD measurements was noted (Figure 4.15). The rate constants for hydrolysis have therefore also been measured by UV-visible spectroscopy under the same conditions as those used for racemisation.

Figure 4.15: CD observation for loss of ellipticity of 4.7 (a) and 4.8 (c) and absorbance of 4.7 (b), and 4.8 (d) as a function of time. A solution of each compound in 10 % acetonitrile was mixed with 90% 0.01 M phosphate buffer (pH 7.4, 1 M I at 37 °C) over time.

Figure 4.15 shows very slow hydrolysis for compounds 4.7 and 4.8 during the loss of ellipticity in phosphate buffer (pH 7.4, 0.9 M I at 37 °C). The rate constants of hydrolysis
were determined for compounds 4.7 and 4.8 by following the reaction using UV-visible spectroscopy under the same conditions as those used in CD measurements.

The rate constants for the loss of ellipticity \(k_{\text{rac}} \) were plotted for 4.7 and 4.8 versus the concentration of the basic component of phosphate buffer to determine the slope and intercept by fitting the straight line (Figure 4.16).

Figure 4.16: Pseudo-first-order rate constant \(k_{\text{rac}} \) determined by Equation 4.4 for a) 4.7 and b) 4.8 without the effect of hydrolysis and in H\(_2\)O phosphate buffers (0.9 M \(I \), pH 7.4 at 37 °C).

Compounds 4.7 and 4.8 lose optical activity drastically fast in comparison with compound 4.1-4.5 in phosphate buffer (pH 7.4, 0.9 M \(I \), at 37 °C) and with only slight hydrolysis during the process (Table 4.9). The second-order rate constants for loss of ellipticity \(k_o \) and second-order rate constants for hydrolysis \(k_{\text{hyd}} \) are compared in Table 4.9.

Table 4.9: Second-order rate constants \(k_o \) and \(k_{\text{hyd}} \) for 4.7 and 4.8 in H\(_2\)O phosphate buffers (0.9 M \(I \), pH and pH 7.4 at 37 °C).

<table>
<thead>
<tr>
<th></th>
<th>(k_o) / (10^{-6} \text{ s}^{-1} \text{ M}^{-1})</th>
<th>(k_{\text{hyd}}) / (10^{-6} \text{ s}^{-1} \text{ M}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>78700 ± 12700</td>
<td>372 ± 63</td>
</tr>
<tr>
<td>4.8</td>
<td>5460 ± 970</td>
<td>167 ± 25</td>
</tr>
</tbody>
</table>

Table 4.9 suggests that the hydrolysis has a negligible effect on the rate constant for the loss of ellipticity.
4.2.2.4 Activation parameters for the racemisation of (R)-5-benzyl-3-phenyl-1-(pyridin-2-ylmethyl)-2-thioxoimidazolidin-4-one

The kinetic study of compound 4.7 was carried out at different temperatures in phosphate buffer (pH 7.4, 0.9 M I) and the activation parameters for racemisation were determined using the Eyring equation. \(^{31}\)

\[
\ln \left(\frac{k_{\text{rac}}}{k_B \cdot T} \right) = - \frac{\Delta H^{\text{e}}}{R \cdot T} + \frac{\Delta S^{\text{e}}}{R}
\]

Equation 4.6

where \(k_{\text{rac}}\) is the second-order rate constant for racemisation which is assumed to be equal to the second-order rate constant for loss of ellipticity \(k_o\) (in s\(^{-1}\) M\(^{-1}\)), \(h\) is Planck's constant, \(k_B\) is the Boltzmann constant, \(R\) is the gas constant and \(T\) is the absolute temperature (in K).

The pseudo-first-order rate constants \(k_o\) were determined in different non-deuterated phosphate buffer concentration (pH 7.4) at 15, 20, 25, 30 and 37 °C, while the second-order rate constants were calculated according to Equation 4.2. The rate constants for the loss of ellipticity were observed to increase with increasing temperature. The pseudo-first-order rate constants for the loss of ellipticity were observed by CD spectroscopy at 15, 20, 25, 30 and 37 °C and plotted versus the basic component of phosphate buffer (pH 7.4, 0.9 M I) (Figure 4.17).
Figure 4.17: Pseudo-first-order rate constants for buffer catalysed racemisation for 4.7 versus basic component of H₂O phosphate buffers (pH 7.4, 0.9 M I) at (■) 15, (●) 20, (▲) 25, (▼) 30 and (♦) 37 °C.

Figure 4.17 shows that the loss of ellipticity for 4.7 is highly temperature dependent; the second-order rate constants are reported in the Appendix of Chapter 4. The second-order rate constants for loss of ellipticity were calculated by the weighted average value at 272 and 248 nm by using Equation 4.9 and 4.10. The activation parameters were then determined by plotting $\ln\left(\frac{k_{\text{rac}}}{k_B.T}\right)$ versus $1/T$ using Equation 4.6 to determine the standard enthalpy change for activation ΔH^\ddagger and standard entropy for activation ΔS^\ddagger (Figure 4.18).
Figure 4.18: Eyring plot for racemisation of 4.7 in H$_2$O phosphate buffer (0.9 M I, pH 7.4) at 15, 20, 25, 30 and 37 °C.

From the slope and intercept of Figure 4.18, the enthalpy (ΔH^\ddagger_o) and entropy of activation (ΔS^\ddagger_o) for general-base catalysed racemisation in H$_2$O phosphate buffer pH 7.4 were calculated using Equation 4.6 (Table 4.10).

<table>
<thead>
<tr>
<th></th>
<th>ΔH^\ddagger_o / kJ mol$^{-1}$</th>
<th>ΔS^\ddagger_o / J K$^{-1}$ mol$^{-1}$</th>
<th>ΔG^\ddagger_o / kJ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>47.6 ± 6.2</td>
<td>-112 ± 21</td>
<td>82 ± 22</td>
</tr>
</tbody>
</table>

The relatively low value of ΔH^\ddagger_o suggests simultaneous breaking and forming of bonds in the activated complex.32 The large negative value for the entropy of activation, ΔS^\ddagger_o, for racemisation of 4.7 indicates significant loss of translational, vibrational, and/or rotational degrees of freedom and is in line with a bimolecular reaction. In comparison with the racemisation of amino acids, aliphatic amino acids have higher enthalpies of activation than aromatic amino acids. However, for entropy, this trend is the opposite, as can be seen in the...
previous literature.18 It is attractive to compare the activation parameters of the present study with those for the deuteration of 5-substituted hydantoins, reported previously by Testa \textit{et al.} (Table 4.11).7

Table 4.11: Activation parameters for deuteration of 5-monosubstituted hydantoins from Reist \textit{et al.}7

<table>
<thead>
<tr>
<th>Hydantoin</th>
<th>ΔH^{\ddagger} / kJ mol$^{-1}$</th>
<th>ΔS^{\ddagger} / J K$^{-1}$ mol$^{-1}$</th>
<th>ΔG^{\ddagger} / kJ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Ph</td>
<td>72.3 ± 4.0</td>
<td>-68.2 ± 5.0</td>
<td>94.6 ± 11.7</td>
</tr>
<tr>
<td>-CH$_2$OH</td>
<td>76.7 ± 2.8</td>
<td>-86.6 ± 4.6</td>
<td>105.0 ± 9.6</td>
</tr>
<tr>
<td>-NHONH$_2$</td>
<td>94.1 ± 2.1</td>
<td>-39.3 ± 1.3</td>
<td>106.7 ± 5.4</td>
</tr>
<tr>
<td>-CH$_2$Ph</td>
<td>94.3 ± 2.5</td>
<td>-43.1 ± 1.7</td>
<td>108.4 ± 6.7</td>
</tr>
<tr>
<td>-CH$_3$</td>
<td>85.3 ± 2.1</td>
<td>-77.0 ± 2.9</td>
<td>110.0 ± 6.7</td>
</tr>
<tr>
<td>-CH$_2$COOH</td>
<td>98.4 ± 3.2</td>
<td>-42.3 ± 2.1</td>
<td>112.1 ± 11.7</td>
</tr>
<tr>
<td>-CH(CH$_3$)$_2$</td>
<td>80.7 ± 3.0</td>
<td>-105.4 ± 6.7</td>
<td>114.6 ± 11.7</td>
</tr>
</tbody>
</table>

Table 4.11 shows that the enthalpy of activation is between 72.3 ± 4.0 and 98.4 ± 3.2 kJ mol$^{-1}$ and the entropy for activation is between -39.3 ± 1.3 and -105.4 ± 6.7 J K$^{-1}$ mol$^{-1}$ for 5-substituted hydantoin. Unfortunately, Reist \textit{et al.} used the pseudo-first-order rate constant for deuteration to calculate activation parameters rather than second-order rate constants which are used in the present work, so we can only compare ΔH^{\ddagger} rather than ΔS^{\ddagger}. It should be noted that the values in Table 4.11 were observed by Reist \textit{et al.} for 5-substituted hydantoins by using DMSO and phosphate buffer in a 1:1 proportion. Reist \textit{et al.} indicated the partial responsibility of inductive and resonance effects on the transition state, which is reflected in the change of ΔH^{\ddagger}.33 In particular, the entropy of activation affects the rate of racemisation and deuteration strongly which prevented the author from deriving a general rule to anticipate the effect of substituents on the chiral stability of 5-substituted hydantoins. Table 4.11 shows a large negative ΔS^{\ddagger} for 5-isopropylhydantoin, which might indicate the effect of steric hindrance on racemisation. It is also important to mention that racemisation of 4.3 is quite slow in comparison with compounds 4.1, 4.2, 4.4 and 4.5 because of the steric effect (Table
4.1. Using 50% DMSO to obtain the rate of deuteration at different temperatures has also an effect on the entropy of activation.

Narduolo\(^8\) reported the values of activation parameter for base-catalysed racemisation of hydantoins with different groups at the N-3 position of hydantoin (Table 4.12).

<table>
<thead>
<tr>
<th>Hydantoin N- Substituent</th>
<th>(\Delta H^{\ddagger}) / kJ mol(^{-1})</th>
<th>(\Delta S^{\ddagger}) / J K(^{-1}) mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10</td>
<td>83.7 ± 0.8</td>
<td>-55.2 ± 2.9</td>
</tr>
<tr>
<td>4.11</td>
<td>87.9 ± 2.9</td>
<td>-44.8 ± 10.0</td>
</tr>
<tr>
<td>4.13</td>
<td>93.7 ± 2.1</td>
<td>-13.4 ± 6.7</td>
</tr>
</tbody>
</table>

From Table 4.12, it is clear that the type of substituent at the N-3 position changing the activation parameter is important as it can be seen comparing 5-benzylhydantoin 4.9 and 3-methyl-5-benzylhydantoin 4.10. The rate constant of racemisation decreased for compounds 4.10 and 4.11 in comparison with 5-benzylhydantoin 4.9 and the enthalpy of activation is also reduced. It has been argued that there is no simple relationship between the effects of substituents and the enthalpies of activation.\(^8\)

For compound 4.7, we found a higher negative value for the entropy of activation and a lower enthalpy of activation with bigger margins of error than those reported for 5-substituted hydantoins\(^7\) or even disubstituted hydantoins.\(^8\) The highly negative activation entropy for racemisation of 4.7 suggests the loss of translational and rotational degrees of freedom associated with the highly ordered transition state\(^32\) which can be interpreted as bulkiness of the substituents at the C-5, N-1 and N-3 positions. \(\Delta H^{\ddagger}\) for thiohydantoin is lower than for hydantoin while \(\Delta S^{\ddagger}\) is more negative for thiohydantoin than for hydantoin.

4.2.2.5 Effect of co-solvents on the kinetics of racemisation

Compounds 4.1-4.5 are sufficiently soluble to be able to see their peaks using CD spectroscopy. To study the effect of added co-solvent on the rate constants for racemisation of
4.2 and 4.3 the second-order rate constants for loss of ellipticity were also obtained in aqueous solution in the presence and absence of 10 vol-% acetonitrile. Solutions were prepared mixing 10 vol-% H$_2$O or D$_2$O containing either 4.2 or 4.3 with 90 vol-% H$_2$O and D$_2$O-phosphate buffers. On the other hand, solutions were also prepared in 10 vol-% acetonitrile or acetonitrile-d$_3$ and mixed with 90 vol-% H$_2$O and D$_2$O-phosphate buffers (Table 4.13).

As can be seen in Table 4.13, the rate constant for the loss of ellipticity k_\circ in 100 % H$_2$O phosphate buffer is approximately 1.1 and 1.15 times faster than k_\circ in 10% acetonitrile and 90% H$_2$O phosphate for 4.2 and 4.4, respectively. As mentioned before, water may catalyse and enhance proton transfer, reducing the enantiomerisation barrier by approximately 30 kcal mol$^{-1}$.14 Tian et al.14 also suggested that the hydroxide ion can further reduce the energy barrier to about 24 kcal mol$^{-1}$ under basic conditions by accelerating the proton transfer. The literature also reports how water can catalyse the interconversion of thalidomide by promoting the proton transfer where a one-dimensional water chain can act as a water bridge through the Grotthuss mechanism34 for the proton transfer.14 These mechanisms may also play a role in the (small) rate retardation observed here.

The kinetic studies of racemisation for 4.7 and 4.8 were undertaken by dissolving the compound in acetonitrile or acetonitrile-d$_3$ and subsequently mixing with H$_2$O and D$_2$O phosphate buffer. To investigate the effect of different co-solvents on the rate of racemisation,
other co-solvents were also used to compare with the effect of 90% acetonitrile 0.01 M phosphate buffer (pH 7.4, 1 M I at 37 °C). The pseudo-first-order rate constants \(k_\alpha\) in buffers with 10 vol-% of MeCN, DMSO, EtOH, MeOH, IPA and TFE were obtained under otherwise identical conditions (Figure 4.19).

Figure 4.19: CD observation as a function of time at 272 nm for racemisation of 4.7. 10 vol-% of compound 4.7 in acetonitrile (■), DMSO (●), ethanol (▲), isopropanol (▼), methanol (♦) trifluoroethanol (◄) was mixed with 90 vol-% 0.01 M phosphate buffer (pH 7.4, 1 M I at 37 °C).

The pseudo-first-order rate constants for loss of ellipticity \(k_\alpha\) were determined according to Equation 4.1. All pseudo-first-order rate constants \(k_\alpha\) were plotted versus co-solvent to show the effect of co-solvent on the rate constant for ellipticity loss. There is no pseudo-first-order rate constant \(k_\alpha\) in aqueous solution without added co-solvents because compound 4.7 does not dissolve in water (Figure 4.20).
Figure 4.20: Comparison of pseudo-first-order rate constants for ellipticity loss of 4.7 in a solution of 10 vol-% MeCN, DMSO, EtOH, IPA, MeOH and TFE, mixed with 90 vol-% 0.01 M phosphate buffer (pH 7.4, 1 M I at 37 °C).

From Figure 4.20, the rate constants in the presence of different co-solvents are higher than those in the presence of acetonitrile. The highest rate constant k_θ was obtained using 10 % trifluoroethanol with 90 vol-% buffer (3.55 times higher than acetonitrile). DMSO and methanol increase the rate k_θ by about 1.35 and 1.30 times, respectively. Ethanol and isopropanol have less effect on racemisation, with rate constants which are higher than those in the presence of acetonitrile by approximately 1.1 and 1.08 times when using ethanol and isopropanol, respectively (Table 4.14).
Table 4.14: Pseudo-first-order rate constants for racemisation of 4.7. 10 vol-% of a solution of each compound in acetonitrile, DMSO, ethanol, isopropanol, methanol and trifluoroethanol was mixed with 90 vol-% 0.01 M phosphate buffer (pH 7.4, 1 M I at 37 °C).

<table>
<thead>
<tr>
<th></th>
<th>k_0 (ACN) / 10^6 s^-1</th>
<th>k_0 (DMSO) / 10^6 s^-1</th>
<th>k_0 (EtOH) / 10^6 s^-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3005 ± 96</td>
<td>3951 ± 137</td>
<td>3363 ± 88</td>
</tr>
<tr>
<td>2</td>
<td>3936 ± 116</td>
<td>3246 ± 87</td>
<td>10680 ± 575</td>
</tr>
</tbody>
</table>

The effect of DMSO on the racemisation of different optically active compounds has been reported previously.35,8,36 DMSO typically accelerates racemisation. The rate of racemisation increases by increasing the volume of DMSO, which is attributed to the reduced efficiency of the solvation of the dianion in DMSO containing buffers.37 The anions in aprotic polar solvents are partially blocked and strong solvation deactivates the role of anions as basic catalyst in the racemisation process.38

It is interesting to compare the effect of co-solvent on racemisation of thiohydantoin with that on racemisation of hydantoin. Narduolo8 has used different co-solvents with non-deuterated and deuterated phosphate buffers for 4.9-4.11 and 4.13 (Table 4.15).
Table 4.15: Rate constants for racemisation of hydantoins 4.9-4.11 and 4.13, at 60 °C, in mixtures composed of 50 volume-% H2O and D2O phosphate buffers 0.5 M, 1 M / and 50 volume-% of H2O or mixtures 1:1 (v:v) of H2O non-deuterated co-solvent and D2O or mixtures 1:1 (v:v) of D2O-deuterated co-solvent, respectively, to give a total concentration of co-solvent of 25 volume-% (v:v).

<table>
<thead>
<tr>
<th>Hydantoin</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H2O buffer pH25°C 7.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>koe / 10^-6 s^-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No co-solvent</td>
<td>2-propanol</td>
<td>TFE</td>
<td>Dioxane</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>167.3 ± 1.3</td>
<td>129.9 ± 1.0</td>
<td>208.0 ± 1.8</td>
<td>134.8 ± 1.5</td>
</tr>
<tr>
<td>4.10</td>
<td>114.5 ± 0.5</td>
<td>76.3 ± 0.7</td>
<td>128.7 ± 1.0</td>
<td>89.3 ± 0.4</td>
</tr>
<tr>
<td>4.11</td>
<td>78.4 ± 0.6</td>
<td>48.8 ± 0.2</td>
<td>95.5 ± 0.3</td>
<td>57.6 ± 0.2</td>
</tr>
<tr>
<td>4.13</td>
<td>524.1 ± 13.4</td>
<td>808.5 ± 14.7</td>
<td>676.2 ± 30.1</td>
<td>947.8 ± 29.6</td>
</tr>
<tr>
<td>D2O buffer (pH* 7.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>koe / 10^-6 s^-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No co-solvent</td>
<td>2-propanol</td>
<td>TFE</td>
<td>Dioxane</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>175.0 ± 1.5</td>
<td>134.8 ± 1.9</td>
<td>191.4 ± 2.4</td>
<td>140.5 ± 1.2</td>
</tr>
<tr>
<td>4.10</td>
<td>112.8 ± 0.4</td>
<td>77.4 ± 0.4</td>
<td>107.3 ± 0.6</td>
<td>86.7 ± 0.6</td>
</tr>
<tr>
<td>4.11</td>
<td>77.0 ± 0.3</td>
<td>46.7 ± 0.1</td>
<td>82.5 ± 0.3</td>
<td>56.1 ± 0.3</td>
</tr>
<tr>
<td>4.13</td>
<td>539.7 ± 15.1</td>
<td>896.9 ± 15.5</td>
<td>615.4 ± 17.0</td>
<td>968.8 ± 21.6</td>
</tr>
</tbody>
</table>

It is obvious from Table 4.15 that trifluoroethanol accelerates and isopropanol decelerates the rate of ellipticity loss both in deuterated and non-deuterated phosphate buffer. The effect of trifluoroethanol on increasing the rate of racemisation was also found for compound 4.7 in H2O phosphate buffer (pH 7.4). Narduolo8 also reported that the pH of the phosphate buffer appeared to be higher by using 25 vol-% co-solvent increasing from 7.24 to 7.78 (IPA), 7.91 (dioxane) and 8.28 (DMSO). Furthermore, adding 25 % TFE with 75% phosphate buffer increased the pH of phosphate buffer from 7.24 to just 7.32.

4.2.3 Racemisation of 5-substituted 2-thiohydantoins

As described in Chapter 2, we were not able to synthesise enantioenriched 5-substituted 2-thiohydantoin. Even pure enantiomers of amino acids have been tried as starting material. Several racemic 5-substituted 2-thiohydantoins have been synthesised from the corresponding amino acids and aldehydes. The chirobiotic T column was tried in chiral HPLC for enantioseparation for several 5-substituted 2-thiohydantoins in different conditions (see
Chapter 2). The enantiomers of the two compounds were collected by chiral column HPLC (Scheme 4.9).

![Chemical structures](image)

Scheme 4.9: The chemical structure of 5-benzyl-2-thioxoimidazolidin-4-one (4.15) and 5-(pyridin-2-ylmethyl)-2-thioxoimidazolidin-4-one (4.16)

We collected multiple enantioenriched fractions of 4.15 and 4.16 to have enough absorbance and ellipticity to be measurable in CD spectroscopy. To confirm separation of the enantiomers, we recorded CD spectra to confirm the inverse peaks for both enantiomers. Both enantiomers of 4.16 were observed by CD spectroscopy which showed opposite CD spectra for both enantiomers with low intensity. Unfortunately, it was found that 4.15 and 4.16 racemised completely during the process of HPLC sample collection and subsequent solvent evaporation. Bovarnick and Clarke\(^{30}\) have explained that the replacement of hydrogen at the N-1 position of hydantoin by substituents will decrease the rate constants of racemisation. It is notable that the acetyl group on the N-1 retards the rate of ellipticity loss for 4.1-4.5.

4.3 Conclusion

The kinetics of racemisation of thiohydantoins were studied in physiological like buffer to obtain the rate constants of racemisation. Firstly, it was observed that the acetyl group substituted at the N-1 position has a rate retarding effect on racemisation. It is known that during racemisation, the cleavage of the acetyl bond occurs which influences the observed rate constant for ellipticity loss. Therefore, the rate constant for ellipticity loss determined using CD spectroscopy is higher than the rate constant for racemisation. Secondly, the solvent kinetic isotope effect was also studied and suggested negligible solvent kinetic isotope effect for the racemisation of 4.1-4.5, 4.7 and 4.8. Thirdly, the corresponding amino acid substituents on the asymmetric C-5 carbon influenced the rate of racemisation of thiohydantoin, which varied between increasing and decreasing the rate of 4.1-4.5. Finally,
our data suggest the S_{E1} mechanism for the racemisation of thiohydantoin rather than the S_{E2} mechanism.

4.4 Experimental

4.4.1 General Experimental

4.4.1.1 Apparatus

All solvents used were HPLC grade and purchased from Fischer Scientific or Sigma Aldrich. All materials used were weighed out on an analytical Fisher Brand PS-100 balance (Max 100 g, d=0.1 mg). For every buffer concentration, the required buffer was mixed with a freshly prepared stock solution of thiohydantoin. The volumes for all stock solutions were measured by Gilson or Eppendorf Research micropipettes. The stock solutions of thiohydantoin were centrifuged three times to avoid precipitation inside the stock solution. The pH measurements for all concentrations of buffer in non-deuterated and deuterated buffer were carried out at 20 °C using a Hanna Instruments pH 210 pH meter. The pH meter was calibrated before each measurement with certified traceable NIST buffers at pH 10.01+0.02 (at 20 °C) (from Fisher) and pH 4.00+0.01 (at 20 °C) (from Reagecon). Kinetic experiments of racemisation were carried out on a Chirascan CD spectrometer equipped with a temperature controlled sample holder for circular dichroism (temperature stability: ± 0.02 °C) in 1.00 cm path length quartz cuvettes, unless otherwise stated.

4.4.1.2 Preparation of solutions

All non-deuterated buffers were prepared by the procedures described in Chapter 3. Deuterated phosphate buffers were prepared by evaporating the different concentrations of H$_2$O phosphate buffer (pH* 7.4, 1 M I) by freeze dryer and adding D$_2$O three times to guarantee the exchange of deuteron. The measurement of pH of the above described solutions gave values of pH$^{20\text{oC}}$ (D$_2$O) = 7.55 and pH$^{20\text{oC}}$ (H$_2$O) = 7.44. For the stock solutions, 5-substituted 1-acetyl-2-thiohydantoins were dissolved in H$_2$O and D$_2$O and placed in an ultrasonic bath sonicator for approximately 5 minutes. The solutions were subsequently put in plastic Eppendorfs and centrifuged for 8 minutes at 13.3 rpm on a Jencons-pls Spectrafuge 24.D centrifuge. Every buffer concentration was mixed with a freshly prepared stock solution.
of thiohydantoin. The supernatants were transferred to new Eppendorfs and centrifuged 2 times. The supernatants were collected and measured in a UV-visible spectrophotometer to confirm appropriate absorbance even with the dilution.

4.4.1.3 Error calculation

Error propagation in the present work was calculated in different ways. For the pseudo-first and second-order rate constants, the errors were obtained using the Origin 9.0 program. For the slope and intercept, the errors appeared in origin without having to calculate manually. However, the errors of solvent kinetic isotope effect ($k_{\text{H2O}}/k_{\text{D2O}}$) on racemisation and rate constants in deuterated phosphate buffer divided by hydrogen-deuterium exchange process ($k_{\text{D2O}}/k_{\text{HD}}$) were calculated using the following equation:

$$\text{Error } k_{\text{H}}/k_{\text{D}} = \sqrt{\frac{1}{k_{\text{D}}^2} (\text{error in } k_{\text{H}})^2 + \left[\frac{k_{\text{H}}}{k_{\text{D}}}\right]^2 \left(\text{error in } k_{\text{H}}/k_{\text{D}}\right)^2}$$

Equation 4.7

k_{H} and k_{D} were determined using CD spectroscopy in different concentrations of non-deuterated and deuterated phosphate buffer. The error in k_{H} and k_{D} were obtained in Origin 9.0.

The error margins for $k_{\theta} - k_{\text{hyd}}$ were calculated using the following equation:

$$\text{Error}(k_{\theta} - k_{\text{hyd}}) = \sqrt{(1)^2 (\text{error in } k_{\theta})^2 + (-1)^2 (\text{error in } k_{\text{hyd}})^2}$$

Equation 4.8

The errors in the k_{θ} and k_{hyd} were obtained using Origin 9.0.

Weighted averaged data were used to calculate the rate constant for loss of ellipticity at different wavelengths for 4.7 (see Section 4.2.2.2). Two rate constants for racemisation of 4.7 were observed at different wave length. To calculate the weighted average of two rate constants, the following equation was used:

$$\text{Error } k_{\theta} - k_{\text{hyd}} = \sqrt{(1)^2 (\text{error in } k_{\theta})^2 + (-1)^2 (\text{error in } k_{\text{hyd}})^2}$$
Weight Average rate = \[\frac{1}{(\text{error } k_1)^2 \ast k_1} + \frac{1}{(\text{error } k_2)^2 \ast k_2} \]
\[\frac{1}{(\text{error } k_1)^2} + \frac{1}{(\text{error } k_2)^2} \]
\[\text{Equation 4.9} \]

Here, all rate constants were obtained using either CD spectroscopy, with the exception of \(k_{\text{HD}} \) for H/D exchange which was obtained using \(^1\text{H-NMR spectroscopy}. \) The error margins for individual \(k \) in the equation were obtained using Origin 9.0.

To calculate the error margin of the weight average, the following equation was used\(^{40} \)

\[\text{Error of weight average rate constant} = \frac{1}{\sqrt{\left(\frac{1}{(\text{error } k_1)^2} + \frac{1}{(\text{error } k_2)^2}\right)}} \]
\[\text{Equation 4.10} \]

Here, all errors for the rate constants were obtained in Origin 9.0.

The error propagation equation has been used for the data in the Eyring plots to obtain the error margins on activation enthalpy and entropy.\(^{40,41} \)

\[4.4.1.4 \quad \text{Standard state} \]

The usual choice of 1 mol dm\(^{-3} \) has been used as the reference state for concentration.

Acknowledgment

I would like to thank Professor Rudolf Allemann for access to CD spectroscopy and his group for their kind help. I also thank Dr Rob Jenkins and Mr Robin Hicks for their kind help with NMR studies.
4.5 References

8. S. Narduolo, Thesis (PhD) - Cardiff University, 2011.
16. Chiral HPLC has been used to separate both enantiomers for 5-benzyl-2-thiohydantoin and 5-pyridinemethyl-2-thiohydantoin. We have been able to separate both enantiomers but unfortunately, after the solvent evaporation process, those compounds were racemised.
25. http://www.liv.ac.uk/buffers/buffercalc.html
Chapter 5

Kinetics of H/D exchange and racemisation for substituted 2-thiohydantoins and related compounds
5.1 Introduction

The mechanism of racemisation can be studied by comparing the rate constant of racemisation \(k_{\text{rac}} \) with the rate constant of hydrogen-deuterium exchange \(k_{\text{deut}} \). Wilson et al.\(^1\) proposed the mechanism of racemisation of optically active 2-methyl-1-phenyl-1-butanone in this way. If \(k_{\text{deut}}/k_{\text{rac}} \) approaches unity, the exchange occurs with complete racemisation.\(^2\) \(SE_1 \) and \(SE_2 \) mechanisms have been suggested for the racemisation of 5-substituted hydantoins by Narduolo\(^3\) and Reist et al.\(^4\) Narduolo\(^3\) reported \(k_{\text{rac}} / k_{\text{H/D}} \) to be between 1.2 and 1.3 for \(S_E-5 \)-benzylhydantoin (25 °C using 0.1 and 0.5 M of D\(_2\)O-phosphate buffer, pH\(^+\) 7.2, 1 M \(I \)), which is close to unity, therefore indicating \(S_E-1 \) rather than \(S_E-2 \). This was further supported by a wealth of additional data. The racemisation of amfepranone and cathinone have also been reported to proceed via the \(S_E-1 \) mechanism in D\(_2\)O-phosphate buffer (pH\(^+\) 7.4, 0.43 M \(I \)).\(^5\) However, Reist et al. suggested the \(S_E-2 \) mechanism for the racemisation of 5-substituted hydantoins in 50% DMSO and 50% buffer with rate constants of deuteration half those of racemisation, and \(k_{\text{deut}} / k_{\text{rac}} \) approaching 0.5. Cabordery et al.\(^6\) proposed the \(S_E-2 \) mechanism for the racemisation of thiohydantoin (33 mM, pD 2.6 deuterated phosphate buffers / EtOD-75/25 (v/v) at 15 °C), where the rate constant for deuteration was about half that for racemisation, suggesting that deuteration occurs with inversion of configuration. Both \(S_E-1 \) and \(S_E-2 \) mechanisms were suggested for the racemisation of 5-substituted hydantoin by Narduolo and Reist et al., respectively, as shown in Scheme 5.1.
The S_{E2} mechanism was suggested for thiohydantoin racemisation by Cabordery et al.5 because the isotopic exchange occurring with k_{dend}/k_{rac} is equal to 0.68 at pH 2.6 with complete net inversion of configuration (Scheme 5.2).2

Scheme 5.1: S_E1 and S_E2 mechanisms of racemisation

The S_{E2} mechanism was suggested for thiohydantoin racemisation by Cabordery et al.5 because the isotopic exchange occurring with k_{dend}/k_{rac} is equal to 0.68 at pH 2.6 with complete net inversion of configuration (Scheme 5.2).2
Scheme 5.2: S_{E2} mechanism for thiohydantoin racemisation proposed by Cabordery et al.6

5.2 Results and discussion

5.2.1 The hydrogen/deuterium exchange of 5-substituted 1-acetyl-2-thiohydantoin

5.2.1.1 Determination of hydrogen/deuterium exchange of 5-substituted 1-acetyl-2-thiohydantoin

To study the mechanism of racemisation, 1H-NMR experiments in D$_2$O-phosphate buffers (pH $^+$ 7.4, 0.9 M I, at 37 °C) were performed for the deuteration of labile hydrogen at the chiral centre of compounds 5.1-5.5 (Scheme 5.3) to complement the racemisation experiments described in Chapter 4.
Scheme 5.3: The chemical structures of compounds 5.1-5.6

Scheme 5.3 shows different groups attached at the C-5 position with acetyl substituted at N-1. Their racemisation was discussed in Chapter 4 in non-deuterated and deuterated phosphate buffer pH (pH$^+$ 7.4, 0.9 M I, at 37 °C). Compounds 5.1 and 5.3 had sufficient solubility in aqueous buffers for peaks in their 1H-NMR spectra to be observed. Different concentrations of D$_2$O-phosphate buffer were used for 5.1 and 5.3 and 1H-NMR spectra were recorded as a function of time (Figure 5.1). Because of the lack of solubility in aqueous solution of compounds 5.2, 5.4 and 5.5, 10 vol-% of d$_3$-acetonitrile was used to dissolve sufficient quantities of these compounds.
Figure 5.1: 1H-NMR spectra of 5.3 between 0 and 167 h in 0.36 M D$_2$O-phosphate buffer (pH 7.4, 0.9 M I, at 37 °C).

Figure 5.1 shows hydrolysis and a decrease in the signal for the labile hydrogen at the stereogenic centre for compound 5.3. This is in agreement with the observation for the loss of ellipticity of 5.1-5.5 in Chapter 4. We discussed how the rate constants for the loss of ellipticity are not equal to the rate constants for racemisation because hydrolysis occurs during the reaction. Therefore, to determine k_{rac}, the equation $k_{o} - k_{\text{hyd}} = k_{\text{rac}}$ was used to obtain the rate constants of racemisation of 5.1-5.5 (vide supra) in H$_2$O and D$_2$O-phosphate buffer. Similarly, the rate constant observed from the decrease of the relative integration of the hydrogen at the stereogenic centre over time does not represent the rate constants for H/D exchange because of the hydrolysis of 5.1-5.5, as can be seen in Figure 5.1. As a result, the equation $k_{\text{H,obs}} - k_{\text{hyd}} = k_{\text{H/D}}$ can be used to obtain the rate constants for H/D exchange $k_{\text{H/D}}$. However, we have not carried out hydrolysis experiments for 5.1-5.5 in D$_2$O-phosphate buffer using UV-visible spectroscopy (as we did to determine k_{hyd} in H$_2$O-phosphate buffer, Chapter 4). Therefore, $k_{\text{H/D}}$ cannot be compared with k_{rac} but can be compared with k_{o}. Nevertheless, $k_{\text{H,obs}}$ is represented as $k_{\text{H/D}}$ in this chapter, i.e. $k_{\text{H,obs}} \approx k_{\text{H/D}}$.

198
\(^1\)H-NMR spectroscopy, using tetramethylammonium bromide as a reference, indicates that the signal for the labile hydrogen on the stereogenic centre decreases for 5.3 in deuterated-phosphate buffer (pH* 7.4) (Figure 5.1). The reason for using tetramethylammonium bromide as a reference is because the \(k_{\text{H, obs}}\) of 5.3 is low, approximately twice \(k_{\text{hyd}}\).

In contrast, the \(k_{\text{H, obs}}\) are much higher than \(k_{\text{hyd}}\) for the rest of compounds 5.1, 5.2, 5.4 and 5.5 (\textit{vide infra}). The reaction was followed using \(^1\)H-NMR spectroscopy in D\(_2\)O-phosphate buffer pH* 7.4 for compounds 5.1, 5.2, 5.4, 5.5 and 5.6. The integrated peak areas, relative to a reference signal, for the hydrogens at the stereogenic centres were calculated over time (see appendix).

For these compounds, integrations were normalised relative to a signal for non-exchanging protons in the compounds themselves. The relative integration areas of the hydrogen signal were plotted versus time for 5.1-5.6 to determine the pseudo-first-order rate constants of H/D exchange (Figure 5.2 and Appendix).

![Figure 5.2](image)

\textbf{Figure 5.2}: a) The relative area of labile hydrogen on the stereogenic centre of 5.3 over time in 0.36 M D\(_2\)O-phosphate buffer (pH* 7.4, 0.9 M \(I\), at 37 °C), and b) the relative integration area (●) increasing and (■) decreasing of the acetyl methyl group over time in 0.36 M D\(_2\)O-phosphate buffer (pH* 7.4, 0.9 M \(I\), at 37 °C). Solid lines are fits in terms of the first order rate law.

The pseudo-first-order rate constant for H/D exchange, \(k_{\text{H/D}}\), of 5.3 (21.1 ± 0.5). \(10^6\) s\(^{-1}\) (Figure 5.2 a) is higher than \(k_{\text{hyd}}\) for 5.3 as quantified by both the rate constant for loss of the N-acetyl-CH\(_3\) of (11.3 ± 0.4).\(10^6\) s\(^{-1}\) and the rate constant observed for formation of the acetate-CH\(_3\) of (9.9 ± 0.3). \(10^6\) s\(^{-1}\) (Figure 5.2 b). Rate constants for hydrolysis in D\(_2\)O-phosphate buffer were not determined for every compound by UV-visible spectroscopy (only H\(_2\)O-phosphate buffers were used in Chapter 3). There are two possibilities for the signal of the proton at the stereogenic centre in the hydrolysed product: 1) it overlaps with the signal of
the starting material or 2) it is found elsewhere. However, considering that H/D exchange for the deacetylated compound is much faster than for the acetylated compound, the signal is unlikely to contribute significantly to the relative integral for the proton on the stereogenic centre in 5.3. Therefore, the rate constant of H/D exchange here also contains the rate constant for hydrolysis. The highest rate constant of hydrolysis of 5.3 was observed by 1H-NMR spectroscopy in D$_2$O-phosphate buffer, which is approximately half of the rate constant of H/D exchange (Figure 5.2 b). This value can be considered reasonable because in the case of the racemisation in H$_2$O-phosphate buffer, k_{hyd} also approaches half of the rate constant for the racemisation (see appendix).

The pseudo-first-order rate constants for H/D exchange were determined for 5.1 and 5.3 by using Equation 5.1 (Experimental Section) in different concentrations of D$_2$O-phosphate buffer (pH* 7.4 at 37 °C) without using co-solvent. However, 10% d$_3$-ACN was used with the D$_2$O–phosphate buffer for compounds 5.2, 5.4, 5.5 and 5.6 to record 1H-NMR data. From Figure 5.2a for 5.3, the data is reproduced well by the pseudo-first-order rate law. Similarly, the pseudo-first-order rate law was fit to the data for the H/D exchange of the rest of the compounds, as illustrated in the Appendix. To show the effect of the basic component of the buffer on the hydrogen-deuterium replacement, different concentrations of D$_2$O-phosphate buffer were used for 5.1 and 5.3. The second-order rate constants for H/D exchange were obtained by plotting the pseudo-first-order rate constant versus the concentration of the basic component of the phosphate buffers (Figure 5.3).

![Figure 5.3: First-order rate constants for buffer catalysed H/D exchange of a) 5.1 and b) 5.3 in D$_2$O-phosphate buffers (0.9 M I, pH* 7.4 at 37 °C).](image)

Figure 5.3 shows a good linear correlation, confirming general-base catalysis for H/D exchange. The rate constants of racemisation for 5.1-5.6 also increased by increasing the
buffer concentration (Chapter 4). The second-order rate constants for 5.1 and 5.3, observed in D$_2$O-phosphate buffer (pH 7.4 at 37 °C), are shown in Table 5.1.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>$k_{H/D}$ / 106 s$^{-1}$ M$^{-1}$</th>
<th>k_{in} / 106 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>880 ± 12</td>
<td>19.8 ± 1.7</td>
</tr>
<tr>
<td>5.3</td>
<td>60.4 ± 13.3</td>
<td>2.8 ± 2.6</td>
</tr>
</tbody>
</table>

Moreover, it is obvious that the substituents at the chiral centre have an influence on the rate of racemisation. It should also be noted from Table 5.1 that the substituents at the C-5 position affect the H/D exchange in a similar way to racemisation. It was reported that the aliphatic and aromatic groups at the C-5 also increase or decrease the acidity of C-H because of the inductive effect, which is not the only effect but indeed can be considered important.7

5.2.1.2 Comparison of the rate constant of racemisation and H/D exchange

The hydrogen-deuterium exchange process can be considered a useful probe in the investigation of carbanions.8 Comparison between the rate constant of H/D exchange and that of racemisation can support a proposed mechanism of racemisation. The S_E1 mechanism for hydantoin racemisation was previously suggested.3, 6 The S_E1 mechanism occurs in the racemisation when k_{deu} / k_{rac} approaches unity and deuteration takes place with complete racemisation.6 The base-catalysed hydrogen exchange reaction of 5-substituted 1-N-acetyl-2-thiohydantoin is proposed to proceed via the S_E1 mechanism, as shown in Scheme 5.4.
Scheme 5.4: The proposed S_E1 mechanism for thiohydantoin racemisation.

The rate constants for the loss of optical activity k_0 were obtained using CD spectroscopy in different concentrations of deuterated-phosphate buffer, as mentioned in Chapter 4. Under the same conditions, the pseudo-first-order rate constants for H/D exchange of 5.1 and 5.3 were determined from 1H-NMR spectroscopic data in various concentrations of phosphate buffer (Equation 5.1). The second-order rate constants of H/D exchange were determined at pH* 7.4 at 37 °C (Equation 5.2) (Table 5.2).

<table>
<thead>
<tr>
<th>Compound</th>
<th>k_0 (D$_2$O) / 10$^{-6}$ s$^{-1}$ M$^{-1}$</th>
<th>k_{HD} / 10$^{-6}$ s$^{-1}$ M$^{-1}$</th>
<th>k_0 D2O / $k{HD}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>811 ± 66</td>
<td>880 ± 12</td>
<td>0.92 ± 0.08</td>
</tr>
<tr>
<td>5.3</td>
<td>53.5 ± 4.0</td>
<td>60.4 ± 13.3</td>
<td>0.89 ± 0.21</td>
</tr>
</tbody>
</table>

From Table 5.2, the second-order rate constant for the loss of ellipticity of both 5.1 and 5.3 in D$_2$O-phosphate buffer divided by the second-order rate constant for H/D exchange are approximately equal to unity. For compound 5.1 and 5.3, the value of k_{total}/k_{deut} is approximately equal to unity within the margin of error, confirming S_E1 rather than S_E2 is the mechanism for thiohydantoin racemisation.

Compounds 5.1, 5.2, 5.4, and 5.6 were studied in 0.09 M phosphate buffer without and with 10 vol-% d$_3$-acetonitrile, respectively while compounds 5.3 and 5.5 were studied in 0.36 M phosphate buffer with and without 10 vol-% d$_3$-acetonitrile, respectively. The presence of d$_3$-
acetonitrile increased the solubility of the sample allowing us to obtain the pseudo-first-order rate constants for H/D exchange (Table 5.3).

Table 5.3: Pseudo-first-order rate constants for the loss of ellipticity \(k_o \) for solutions of 5.1, 5.2 and 5.4 and for H/D exchange \(k_{H/D} \) of 5.2, 5.4 and 5.6 in D\(_2\)O-phosphate buffer measured by \(^1\)H-NMR spectroscopy at 0.09 M total phosphate (0.072 M basic phosphate), and \(k_o \) and \(k_{H/D} \) at 0.36 M total phosphate (0.29 M basic phosphate) for 5.3 and 5.5 (ionic strength of 0.9 M \(I \), pH\(^*\) 7.4 at 37 °C).

<table>
<thead>
<tr>
<th>Compound</th>
<th>(k_o (\text{D}_2\text{O})) / 10(^-6) s(^{-1})</th>
<th>(k_{H/D}) / 10(^-6) s(^{-1})</th>
<th>(k_o (\text{D}2\text{O}) / k{H/D})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>68.5 ± 1.4(^{a})</td>
<td>83.5 ± 3.2(^{a})</td>
<td>0.82 ± 0.04</td>
</tr>
<tr>
<td>5.2</td>
<td>96.7 ± 1.2(^{b})</td>
<td>111.9 ± 3.6(^{b})</td>
<td>0.86 ± 0.03</td>
</tr>
<tr>
<td>5.4</td>
<td>48.7 ± 1.0(^{b})</td>
<td>45.3 ± 1.5(^{b})</td>
<td>1.08 ± 0.04</td>
</tr>
<tr>
<td>5.6</td>
<td>870 ± 28(^{a})</td>
<td>521 ± 13(^{b})</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>19.0 ± 0.4(^{a})</td>
<td>21.1 ± 0.4(^{a})</td>
<td>0.90 ± 0.03</td>
</tr>
<tr>
<td>5.5</td>
<td>866 ± 30(^{b})</td>
<td></td>
<td>0.97 ± 0.05</td>
</tr>
</tbody>
</table>

a) No d\(_3\)-acetonitrile used.

b) 10% acetonitrile used.

It is clear that the ratios of the rate constants of racemisation with the rate constants of H/D exchange are closer to unity than to 0.5 or 2 for 5-substituted 1-acetyl-2-thiohydrantoins. The value of \(k_{\text{rac}} / k_{H/D} \) approaching unity confirms SE1 rather than SE2, with the proposed mechanism illustrated in Scheme 5.2.

The rate constant for H/D exchange of the racemic compound 5.6 (Table 5.3) is the highest measured. This suggests a high rate constant for racemisation as well. Therefore, during the preparation, the compound racemised; this was not noticed for the other enantioenriched 5-substituted 1-acetyl-2-thiohydrantoins. Similarly, it was reported that 5-phenylhydrantoin racemised significantly faster (\(t_{1/2} \): 0.3 h) than 5-benzylhydrantoin (\(t_{1/2} \): 5 h), and 5-isopropylhydrantoin (\(t_{1/2} \): 56 h).\(^9\) The highest rate constant for racemisation and H/D exchange for 5.6 is in agreement with the results of Reist \(et \ al.\)^4 and Narduolo,\(^3\) which showed high rate constants for H/D exchange of 5-phenylhydrantoin compared with other substituted
hydantoin and hydantoin. The phenyl group on the stereogenic centre of thiohydantoin and hydantoin stabilise the intermediate carbanion by resonance.10

5.2.2 The H/D exchange process of 5-substituted 2-thiohydantoins

As mentioned before, the separation of enantiomers of \textbf{5.8} and \textbf{5.12} was attempted using chiral HPLC. However, before kinetic studies could be carried out, \textbf{5.8} and \textbf{5.12} had already racemised during solvent evaporation. We also attempted to study the racemisation of 5-(pyridin-2-ylmethyl)-2-thioxoimidazolidin-4-one \textbf{5.12}, after the separation of both enantiomers by chiral HPLC without evaporating the eluent used in the HPLC separation and observed that racemisation was quite fast in comparison with compounds \textbf{5.1-5.5}. Similarly, compounds \textbf{5.7-5.14} (Scheme 5.5) could not be obtained in enantioenriched form. As mentioned in the last section, there is a strong relationship between the racemisation and H/D exchange process, with k_{rac} approximately equal to $k_{\text{H/D}}$ for substituted 1-acetyl-2-thiohydantoins. We therefore decided to use 1H-NMR spectroscopy as an alternative way to obtain rate constants related to the rate constants for racemisation.
Scheme 5.5: The chemical structures of compounds 5.7-5.14

Such rapid racemisation indicates that the hydrogen attached to the stereogenic centre of 5-substituted 2-thiohydantoin is replaced by deuterium more rapidly than in the case of hydantoin, as reported previously.3,4

When the concentrations of buffer used in 1H-NMR spectroscopic experiments were as used for compounds 5.1-5.6, there were not enough data points obtained for 5.7-5.14 to plot the relative area versus time and obtain a rate constant. Use of lower concentrations of buffer was essential to obtain enough data points to plot relative integration areas of hydrogen on the stereogenic carbon versus time. 1H-NMR spectroscopy was used to obtain the H/D exchange rate constants of 5.7-5.14 in 10% d_3-ACN and 90% 0.01 M D$_2$O-phosphate buffer (pH* 7.4, 1 M I, at 37 °C).
Figure 5.4: 1H-NMR spectra for 5.7 from 12 to 89 min in 10% d_3-acetonitrile and 90% 0.01 M D$_2$O-phosphate buffer (pH * 7.4, 1 M I, at 37 °C).

From Figure 5.4, it is clear that the signal for the hydrogen on the stereogenic carbon (at 4.6 ppm) decreases over time and the relative integration areas of the hydrogen were plotted versus time to determine the pseudo-first-order rate constants for H/D exchange (Figure 5.5). Unfortunately, the peaks for the hydrogen at the asymmetric carbons for several of the compounds synthesised (Chapter 2) overlapped with the water peak of the solvent. Therefore, the H/D exchange process could not be measured for several of the 5-substituted 2-thiohydantoins reported in Chapter 2.
Figure 5.5: Relative integrals for the proton on the stereogenic centre of a) 5.7 and b) 5.8 in 10% d₃-acetonitrile and 90% 0.01 M D₂O-phosphate buffer (pH* 7.4, 1 M I, at 37 °C). Solid lines are fits to the first order rate law.

Fortunately, there was no precipitation while mixing the co-solvents (10%) such as d₃-ACN and d₆-DMSO with the deuterated-phosphate buffer (90%) (pH* 7.4, 0.01 M, 1 M I, at 37 °C) for 5-substituted 2-thiohydantoins. The temperature of the NMR machine was set to 37 °C and the number of scans decreased to reduce the measurement time and obtain a higher number of points. It is also important to note that the time between zero minutes and the first integration is long in comparison with the other points because it was impossible to shorten the time required for the shimming of the NMR machine at the beginning. The other figures for the compounds shown in Scheme 5.6 are illustrated in the Appendix. The pseudo-first-order rate constants were obtained by using Equation 5.1 for compound 5.7-5.14 and these are summarised in Table 5.4.
Table 5.4: Pseudo-first-order rate constants for H/D exchange, $k_{\text{H/D}}$, determined using 1H-NMR spectroscopy of 5.7-5.14 in D$_2$O-phosphate buffer at 0.009 M total phosphate (ionic strength of 0.9 M I, pH$^+$ 7.4 at 37 °C).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Total phosphate / M</th>
<th>Basic phosphate / M</th>
<th>$k_{\text{H/D}}$ (D$_2$O) / 10$^{-6}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7</td>
<td>0.009</td>
<td>0.0072</td>
<td>789 ± 23a</td>
</tr>
<tr>
<td>5.8</td>
<td>0.009</td>
<td>0.0072</td>
<td>1550 ± 103a</td>
</tr>
<tr>
<td>5.9</td>
<td>0.009</td>
<td>0.0072</td>
<td>202.9 ± 2.4b</td>
</tr>
<tr>
<td>5.10</td>
<td>0.009</td>
<td>0.0072</td>
<td>705 ± 24b</td>
</tr>
<tr>
<td>5.11</td>
<td>0.009</td>
<td>0.0072</td>
<td>2880 ± 230b</td>
</tr>
<tr>
<td>5.12</td>
<td>0.009</td>
<td>0.0072</td>
<td>3010 ± 220b</td>
</tr>
<tr>
<td>5.13</td>
<td>0.009</td>
<td>0.0072</td>
<td>3020 ± 250b</td>
</tr>
<tr>
<td>5.14</td>
<td>0.009</td>
<td>0.0072</td>
<td>1312 ± 90a</td>
</tr>
</tbody>
</table>

a 10% d$_3$-acetonitrile and 90% 0.01 M D$_2$O-phosphate buffer (pH$^+$ 7.4, 1 M I, at 37 °C).

b 10% d$_6$-DMSO and 90% 0.01 M D$_2$O-phosphate buffer (pH$^+$ 7.4, 1 M I, at 37 °C).

The rate constants for H/D exchange of 5.7-5.14 in Table 5.4 strongly depend on the substituent at the 5-position, as shown also by the rate constants of racemisation for these compounds (vide supra). As explained before, steric hindrance has a significant effect on the promotion or retardation of racemisation. Compound 5.9, with an isopropyl substituent at C-5, has the slowest rate constant for H/D exchange, analogous to the low rate constant for racemisation of 1-acetyl-5-isopropyl-2-thiohydantoin. The presence of a benzyl group in 5.8 increases the acidity of the hydrogen on the asymmetric carbon. The highest rate constants of H/D exchange were obtained for compounds 5.11-5.13 which contain oxygen, sulphur and nitrogen in the substituent at the asymmetric carbon. The protonation of the pyridine substituent of compound 5.12 makes the compound much more electron-withdrawing in comparison with 5.8 and increases the rate constant for racemisation and H/D exchange.

The rate constant for H/D exchange has previously been studied for 5-substituted hydantoins at different concentrations of buffer and at different temperatures. Reist et al.4 reported the rate constants for H/D exchange for various 5-substituted hydantoins at 50 °C, while the rate constants of H/D exchange for 5-phenylhydantoin and 5-benzylhydantoin have been reported at different temperatures. The buffer concentrations and temperatures in these studies are not
similar to the present work, making it difficult to compare the thiohydantoin and hydantoin derivatives (Table 5.5).

Table 5.5: Comparison of the pseudo-first-order rate constants of H/D exchange $k_{H/D}$ of 5-substituted hydantoin determined by Testa et al.\(^4\) and the 5-substituted 2-thiohydantoin in the present work.

<table>
<thead>
<tr>
<th>$k_{H/D}$(^a) / 10(^{-6}) s(^{-1})</th>
<th>R group</th>
<th>$k_{H/D}$(^b) / 10(^{-6}) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3140 ± 530</td>
<td>Ph</td>
<td>-----</td>
</tr>
<tr>
<td>16.7 ± 1.1</td>
<td>CH(_2)Ph</td>
<td>1550 ± 103</td>
</tr>
<tr>
<td>77.8 ± 15.3</td>
<td>CH(_3)OH</td>
<td>-----</td>
</tr>
<tr>
<td>32.8 ± 1.7</td>
<td>NH(_2)(O)NH</td>
<td>-----</td>
</tr>
<tr>
<td>(1)</td>
<td>CH(_3)</td>
<td>789 ± 23</td>
</tr>
<tr>
<td>9.2 ± 0.3</td>
<td>CH(_2)COOH</td>
<td>-----</td>
</tr>
<tr>
<td>4.7 ± 0.3</td>
<td>CH(CH(_3))(_2)</td>
<td>202.9 ± 2.4</td>
</tr>
</tbody>
</table>

\(^a\) determined in a mixture of D\(_2\)O phosphate buffer (pD 7.4, 0.1 M, $I = 0.22$) and d\(_6\)-DMSO in a 1:1 (v/v) proportion at 50 °C.

\(^b\) determined in a mixture of phosphate buffer (pH\(^+\) 7.4, 0.01 M, 1 M I) and d\(_6\)-DMSO and d\(_3\)-ACN in a 9:1 (v/v) proportion at 37 °C.

Table 5.5 shows that the pseudo-first-order rate constants for H/D exchange of 5-substituted hydantoin in the higher concentration of buffer, lower ionic strength and higher temperature are lower than the $k_{H/D}$ of the corresponding 5-substituted-2-thiohydantoin. Unfortunately, there are no exact conditions that have been reported previously for hydantoin to compare with the present conditions used for thiohydantoin. This indicates that the role of the sulphur atom in the increase in the rate of racemisation and H/D exchange occurs through increasing the stability of the carbanion.\(^6\)
5.2.3 The H/D exchange process of 3-phenyl-5-benzyl-2-thiohydantoin

As mentioned in Chapter 3, the presence of substituents at the N-3 position increased the rate constant for hydrolysis. However, it has been reported that replacing one of the hydrogen atoms at the N-3 or N-1 position may retard racemisation. Furthermore, it has been reported that replacement of both hydrogens should prevent a decrease in the rate of racemisation.\(^{11}\)

For compounds 5.16 and 5.17, the pseudo-first-order rate constants for H/D exchange were reported by Narduolo\(^3\) who showed the effect of substituents at the N-3 position. Narduolo\(^3\) and Lazarus\(^12\) reported that when the N-3 hydrogen of hydantoin was replaced by a methyl group, H/D exchange became slower (Scheme 5.6).

![Chemical structures of compounds 5.15-5.17](image)

Scheme 5.6: The chemical structures of compounds 5.15-5.17

Using 10 % d\(_3\)-ACN or d\(_6\)-DMSO caused the precipitation of 5.15 with 90 % phosphate buffer (pH* 7.4, 0.01 M, 1 M I). Sufficient concentrations of compound 5.18 were required to observe the peak in \(^1\)H-NMR spectra. Therefore, 20 % d\(_3\)-ACN was used with 80 % D\(_2\)O-phosphate buffer to avoid precipitation from taking place. The relative areas of the signal for the hydrogen at the stereogenic carbon was followed over time to determine the pseudo-first-order rate constant for H/D exchange of 5.15 (Figure 5.6).
Figure 5.6: Relative integrals for the proton on the stereogenic centre for 5.15 in 20% d₃-acetonitrile and 80% 0.01 M D₂O-phosphate buffer (pH* 7.4, 1 M I, at 37 °C).

The line in Figure 5.6 is a fit of the pseudo-first-order law to the data for H/D exchange. Equation 5.1 was used to observe the rate constant $k_{\text{H/D}}$. It is interesting to compare the rate constant for H/D exchange, $k_{\text{H/D}}$, for 5.15 (containing a 3-N-phenyl substituent) with $k_{\text{H/D}}$ for 5.8 (which is unsubstituted on N-3) to show the effect of a substituent at the N-3 position on the racemisation process (Table 5.6).

Table 5.6: Comparison of the pseudo-first-order rate constants of H/D exchange $k_{\text{H/D}}$ of 5-benzyl-3-phenylimidazolidine-2,4-dione and 5-benzylimidazolidine-2,4-dione determined by Narduolo³, and 5-benzyl-3-phenyl-2-thioxoimidazolidin-4-one and 5-benzyl-2-thioxoimidazolidin-4-one in the present work.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>$k_{\text{H/D}}$ / 10^{-6} s⁻¹</th>
<th>Substrate</th>
<th>$k_{\text{H/D}}$ / 10^{-6} s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.15</td>
<td>707 ± 28ᵃ</td>
<td>5.8</td>
<td>1550 ± 103ᵃ</td>
</tr>
<tr>
<td>5.17</td>
<td>3.4 ± 0.1ᵇ</td>
<td>5.16</td>
<td>5.4 ± 0.4ᵇ</td>
</tr>
</tbody>
</table>

ᵃ determined in D₂O-phosphate buffer (0.5 M, 1 M I, kept constant with KC1, pH* 7.2, at 25 °C).

ᵇ determined in a mixture of phosphate buffer (pH* 7.4, 0.01 M, 1 M I) and d₆-DMSO or d₃-ACN in a 9:1 (v/v) proportion at 37 °C.
Table 5.6 shows that the introduction of substituents at N-3 retards H/D exchange for both hydantoins and 2-thiohydantoins. The results in Table 5.6 are in agreement with the suggestion of Bovarnic and Clarice that the substituent at the N-3 position decreases the rate constant for racemisation k_{rac}. The k_{rac} was found to be similar to $k_{\text{H/D}}$ in the previous section for 5.1-5.4 (indicating an S_{E1} mechanism). Therefore, the substituent at the N-3 position retards the rate constant $k_{\text{H/D}}$ in a similar way to the racemisation as expected by Bovarnic. Unfortunately, there has been no data for H/D exchange reported for hydantoin derivatives under similar conditions to compare with the thiohydantoins in the present work.

5.2.4 The H/D exchange process of 5-substituted thiazolidine-2,4-diones

The racemisation of the three glitazones (also called thiazolidine-2,4-dione) balaglitazone, pioglitazone and rosiglitazone (Scheme 5.7) were reported previously.13

![Scheme 5.7: Structure of the three glitazones: (5.18) balaglitazone, (5.19) pioglitazone and (5.20) rosiglitazone. The marked carbon atom with the star (*) shows the chiral centre.13](image)

The C-5 stereogenic centre is anticipated to be relatively acidic because deprotonation induces sp^2 character to C-5 and increases π-delocalisation. Therefore, base-catalysed ionisation of thiazolidine-2,4-dione is anticipated to play an important role in the racemisation process.14 Jamali \textit{et al.}15 reported that keto-enol tautomerism is the expected pathway to convert the R
The keto-enol tautomerism of 5-substituted thiazolidine-2,4-dione

Scheme 5.8: The keto-enol tautomerism of 5-substituted thiazolidine-2,4-dione

5-Substituted thiazolidine-2,4-dione derivatives have also been prepared as racemic compounds. There is a close relation between the rate constants for H/D exchange ($k_{H/D}$) and racemisation processes (k_{rac}) (vide supra). No optically active 5-substituted thiazolidine-2,4-diones could be prepared to study the kinetics of racemisation using CD spectroscopy. Therefore, the H/D exchange process was studied as an alternative to obtaining the rate constants for racemisation (Scheme 5.9).

Scheme 5.9: The chemical structures of compounds 5.21 and 5.22

Similar conditions as those used for kinetic studies of compounds 5.1-5.5 were used for 5.21 and 5.22 because 5-substituted thiazolidine-2,4-dione racemised more slowly than 5-substituted 2-thioxothiazolidin-4-one (thiohydantoin). The relative area of the 1H-NMR signal for hydrogen at C-5 was followed over time in D$_2$O-phosphate buffer (0.09, 0.18 and 0.27 M total phosphate buffer, 0.9 M I, pH* 7.4, at 37 °C). The integrated areas were plotted against time to determine the pseudo-first-order rate constant for H/D exchange $k_{H/D}$ (Figure 5.7).
Figure 5.7: Relative integrals for the proton on the stereogenic centre of 5.24 and 5.25 in 10 vol-% d3-acetonitrile and 90 vol-% (0.2 M D2O-phosphate buffer pH 7.4, 1 M I, at 37 °C).

In Figure 5.7, the lines are fits of the pseudo-first-order rate law to the rate constant for H/D exchange $k_{H/D}$. The pseudo-first-order rate constants $k_{H/D}$ at 0.27 M, 0.18 M, and 0.09 M of total D2O-phosphate (0.9 M I, pH 7.4 and 37 °C) are shown in Table 5.7.

<table>
<thead>
<tr>
<th>Total Buffer / M</th>
<th>$k_{H/D}$ (D2O)a /106 s$^{-1}$</th>
<th>$k_{H/D}$ (D2O)a /106 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>411±16</td>
<td>1269±25</td>
</tr>
<tr>
<td>0.18</td>
<td>619±19</td>
<td>1651±49</td>
</tr>
<tr>
<td>0.27</td>
<td>800±40</td>
<td>1918±98</td>
</tr>
</tbody>
</table>

aThe data were collected by Ibrahim Bala16

The $k_{H/D}$ for 5.21 and 5.22 increased by increasing the concentration of D2O-phosphate buffer. The pseudo-first-order rate constants for H/D exchange of 5.24 and 5.25 were plotted against the concentration of the basic component of deuterated-phosphate buffer (pH 7.4, 0.9 M I, at 37 °C) (Figure 5.8).
Figure 5.8: First-order rate constants for buffer-catalysed H/D exchange followed using \(^1\)H-NMR spectroscopy of a) 5.21 and b) 5.22 in D\(_2\)O-phosphate buffer (0.9 M \(I\), pH\(^*\) 7.4 at 37 °C).

Figure 5.8 shows a linear correlation between the first-order rate constants and the basic component of the phosphate buffer. Equation 5.2 was used to obtain the second-order rate constant \(k_{H/D}\) for 5.21 and 5.22. The uncatalysed, specific acid and base-catalysed rate constants are combined in the intercept and the bimolecular rate constant \(k_{H/D}\) is obtained from the slope in Figure 5.8. The values are listed in Table 5.8.

Table 5.8: Second-order rate constants for H/D exchange \(k_{H/D}\) of 5.21 and 5.22 in D\(_2\)O-phosphate buffer determined using \(^1\)H-NMR spectroscopy at 0.27, 0.18, and 0.09 M total phosphate and 0.22, 0.14, and 0.072 M basic phosphate, respectively, (0.9 M \(I\), pH\(^*\) 7.4 at 37 °C) using 10 % d\(_3\)-ACN.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(k_{H/D}) (/ \text{10}^6\text{ S}^{-1}\text{M}^{-1})</th>
<th>(k_{in}) (/ \text{10}^6\text{ S}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.21</td>
<td>2780 ± 250</td>
<td>214 ± 30</td>
</tr>
<tr>
<td>5.22</td>
<td>4880 ± 450</td>
<td>922 ± 45</td>
</tr>
</tbody>
</table>

It is obvious from Table 5.8 that the compound with the 5-(pyridin-2-ylmethyl) substituent at the C-5 position has a higher rate constant \(k_{H/D}\) than its homologue with benzyl substituents, as also observed for the thiohydantoin derivatives.
5.2.5 The H/D exchange process of 2-thioxothiazolidin-4-one

No previous studies are available for the racemisation or H/D exchange process of 2-thioxothiazolidin-4-ones. The H/D exchange process of racemic 5-substituted 2-thioxothiazolidin-4-ones 5.23 and 5.24 (Scheme 5.10) were compared with imidazolidine-2,4-dione, 2-thioxoimidazolidin-4-one and thiazolidine-2,4-dione.

![Chemical structures of 5.23 and 5.24](image)

Scheme 5.10: The chemical structures of compounds 5.23 and 5.24

It can be expected that the 2-thioxothiazolidin-4-one derivative also racemises by keto-enol tautomerism similar to imidazolidine-2,4-dione, 2-thioxoimidazolidin-4-one and thiazolidine-2,4-dione (Scheme 5.8). The presence of the sulphur atom next to the asymmetric carbon is similar for 2-thioxothiazolidin-4-one and thiazolidine-2,4-dione and might accelerate the enolisation. We tried to study the H/D exchange for compounds 5.23 and 5.24 but during the shim of the NMR, *i.e.* 5-10 minutes, the reaction has finished (D$_2$O-phosphate buffer at 0.09 M total phosphate with ionic strength of 0.9 M, pH \approx 7.4 and 37 °C, using 10 vol-% of d$_3$-CAN as a cosolvent). Therefore, we could not collect any points to construct a plot between relative integration area and time. It can be concluded from the fast deuteration that the sulphur atom attached to the asymmetric carbon not only accelerates the racemisation and deuteration. The thiocarbonyl is also important because 2-thioxoimidazolidin-4-one (thiohydantoin) with thiocarbonyl and a nitrogen atom at the 1-position racemises faster than 2-thiazolidine-2,4-dione with carbonyl and sulphur at the 1-position. Therefore, thioxoimidazolidin-4-ones (compounds 5.23 and 5.24) containing both thiocarbonyl and sulphur have higher rate constants for deuteration and racemisation than compounds 5.1-5.22.
5.3 Conclusions

Racemisation and H/D exchange were studied. The $k_{\text{deut}} / k_{\text{rac}}$ values of approximately 1 in the present work for compounds 5.1-5.5 indicates the S_E2 mechanism for racemisation rather than the S_E1 mechanism. The H/D exchange of compound 5.6 with a phenyl substituent at the C-5 position was determined with its $k_{\text{H/D}}$ value found to be higher than the $k_{\text{H/D}}$ values for 5.1-5.5. This is because of the resonance stabilisation of the anion in 5.6.

The rate constants for H/D exchange were obtained by using 1H-NMR for racemic 5-substituted 2-thiohydantoin 5.7-5.14. The values of $k_{\text{H/D}}$ depend on the substituents at the C-5 position, which have a major influence on the rate constant of racemisation and H/D exchange.

The phenyl substituent at the N-3 position in 5.15 decreases the rate constant for H/D exchange in comparison with 5-substituted 2-thiohydantoin.

The H/D exchange for the 5-substituted thiazolidine-2,4-diones (5.21 and 5.22) was also studied and the rate constants for H/D exchange $k_{\text{H/D}}$ were determined. The 2-thiohydantoin, with thiocarbonyl at the 2-position and nitrogen at the 1-position, have higher rate constants $k_{\text{H/D}}$ than thiazolidine-2,4-dione, with carbonyl at the 2-position and sulphur at the 1-position.

For 2-thioxothiazolidin-4-ones, with thiocarbonyl at the 2-position and sulphur at the 1-position, it was impossible to collect even one data point because the H/D exchange reactions for 5.23 and 5.24 were found to finish in less than 10 minutes.

From the present study it can be concluded that the rate constants of racemisation and H/D exchange increase by increasing the sulphur atoms either with thiocarbonyl or bound to the asymmetric carbon.

The comparison of the present work with previous studies suggests decreasing rate constants in the order 2-thioxothiazolidin-4-one (rhodanine) > 2-thioxoimidazolidin-4-one (2-thiohydantoin) > thiazolidine-2,4-dione > imidazolidine-2,4-dione (hydantoin).
5.4 Experimental

General Experimental

Buffer preparation

The preparation of all H$_2$O and D$_2$O phosphate buffers used in this chapter were explained in Chapter 4. The concentrations of the acid and basic components were calculated using the Henderson-Hasselbalch equation, taking into account the effect of ionic strength and temperature (37 °C) on the pK$_a$. Stock solutions of 0.09-0.1 M of studied compounds were used containing 10% d$_3$-ACN and 90 vol-% D$_2$O-phosphate buffer for the H/D exchange process for compound 5.2, 5.4, 5.5 and 5.6. No overlap between the hydrogen attached to the stereogenic centre and water in 1H-NMR spectroscopy was found.

General methods

All non-deuterated solvents were HPLC grade obtained from commercial supplies and used without further purification. Deuterated ACN and DMSO were purchased from Fluorochem or Sigma Aldrich. Materials used were weighed on an analytical Fisher Brand PS-100 balance (Max 100 g, d = 0.1 mg). Volumes for preparing stock solutions were measured by Gilson research micropipettes. Aqueous stock solutions were centrifuged three times to avoid precipitation inside the stock solution. pH measurements for all concentrations of buffers in non-deuterated and deuterated-buffer conditions were carried out at 20 °C using a Hanna Instruments pH 210 pH meter. The pH meter was calibrated before each measurement with certified (traceable to NIST) buffers at pH 10.01+ 0.02 (at 20 °C) (from Fisher) and pH 4.00 + 0.01 (at 20 °C) (from Reagecon). Kinetic experiments of racemisation were carried out on a Chirascan CD spectrometer equipped with a temperature-controlled sample holder for circular dichroism (temperature stability: ± 0.02 °C) in 1.00 cm path length quartz cuvettes, unless otherwise stated. Kinetic experiments of H/D exchange were carried out on a Bruker Avance 400 and a Bruker Avance 500 NMR spectroscopy. Origin pro 9.0 and Mestrenova were used for data analysis.
4.4.1.5 Preparation of solutions

Stock solutions of 0.05-0.06 M of 5.1 and 5.3 were prepared by dissolving the thiohydantoin in 10 % D$_2$O and 90 % deuterated phosphate buffer. An ultrasonic bath sonicator was used to accelerate the dissolution process. Aqueous solutions of 5.1 and 5.3 were put in plastic Eppendorfs and centrifuged for 8 minutes at 13.3 rpm on a Jencons-pls Spectrafuge 24.D centrifuge. The remaining compounds were dissolved in d$_3$-ACN or d$_6$-DMSO and mixed with 90% D$_2$O- phosphate buffer.

4.4.1.6 Kinetic studies

The temperature of 5.1-5.4 samples during kinetic experiments of H/D exchange was controlled in a water bath because the reaction was slow in comparison with the other compounds. However, the temperature of the NMR holder for the other compounds was set at 37 °C because the reaction was fast.

4.4.1.7 Data analysis

1H-NMR data were analysed for all compounds by the Mestrenova NMR program and the areas were integrated. The relative areas for the asymmetric hydrogens for all compounds were plotted versus time and the pseudo-first-order rate constant of H/D exchange determined using Origin pro 9.0.

Kinetic equations

To calculate the pseudo-first-order rate constants for H/D exchange of the studied compounds, the following equation was used:

$$ R_t = R_{fin} + \Delta R \ e^{-k \times t} \quad \text{Equation 5.1} $$
Here, R_t is the relative area at time t, R_{fin} is the final relative area, ΔR represents the difference between the relative area at time zero and R_{fin}, and k is the observed pseudo-first-order rate constant of the hydrogen-deuterium exchange.

To calculate the second-order rate constants for H/D exchange, the following equation was used:

$$k_{\text{obs}} = k_0 + k_{\text{OD}^-}[OD^-] + k_{D,O^+}[D_3O^+] + k_{\text{buffer}}[\text{buffer}]$$ \hspace{1cm} \text{Equation 5.2}

where k_0 is the rate constant for the non-catalysed reaction, k_{OD^-} and k_{D,O^+} are the specific base and acid catalysed rate constants for H/D exchange, respectively, which can be obtained from the intercept (k_{in}), k_{buffer} is the second-order rate constant for the buffer catalysis of H/D exchange, which is determined from the slope, and k_{obs} is the observed rate constant of the reaction.

4.4.1.8 Error calculation

The errors of pseudo-first-order and second-order rate constants were provided by non-linear and linear equations in Origin Pro 9.0. The errors of $k_{\text{rac}}/k_{\text{deut}}$ were calculated by using Equation 4.9 in Chapter 4 (vide supra). The weighted average and its error equation (for equations, see Chapter 4) were used for compound 5.5 after obtaining two non-linear graphs, which were corrected with and without the base line in 1H-NMR spectroscopy by the Mestrenova program.

4.4.1.9 Acknowledgment

I would like to thank Dr Rob Jenkins and Robin Hicks for their kind help with NMR experiments. I also thank Ibrahim Bala who obtained rate constants for the H/D exchange of compounds 5.21 and 5.22.
5.5 References

3. S. Narduolo, Thesis (Ph D) - Cardiff University, 2011.
16. I. A. Bala, Thesis (MSc)- Cardiff University, 2014.
Chapter 6

Epilogue
6.1 General conclusions

In the present work, the kinetics and mechanism of racemisation and H/D exchange of substituted 2-thiohydantoin (2-thiooxoimidazolidin-4-ones), thiazolidine-2,4-diones and rhodanines (2-thioxothiazolidin-4-ones) have been studied under conditions mimicking physiological conditions. From the present work, the following conclusion can be drawn.

First, 2-thiooxoimidazolidin-4-one derivatives with substituents at the 1, 3 and/or 5-positions have been prepared as racemic and enantioenriched compounds (Chapter 2). Knoevenagel condensation worked successfully in reactions involving different aldehydes with the parent 2-thiooxoimidazolidin-4-ones to prepare the corresponding unsaturated 2-thiooxoimidazolidin-4-ones. Knoevenagel condensation also worked in the preparation of unsaturated 5-substituted thiazolidine-2,4-diones and 5-substituted 2-thioxothiazolidin-4-one derivatives. To prepare saturated 5-substituted 2-thiooxoimidazolidin-4-ones, zinc and acetic acid were used to reduce the double bond to a single bond and prepare racemic 5-substituted 2-thiooxoimidazolidin-4-ones. The reduction process worked well for all unsaturated 2-thiooxoimidazolidin-4-ones prepared, except for (Z)-5-(furan-2-ylmethylene)-2-thiooxoimidazolidin-4-one which produces an unknown product. Zn/acetic acid was also a good agent to reduce (Z)-5-(pyridin-2-ylmethylene)thiazolidine-2,4-dione but not (Z)-5-benzylidenethiazolidine-2,4-dione; the reason for this difference was unclear. As an alternative, LiBH₄ in the presence of pyridine for catalytic reduction in THF was tried for (Z)-5-benzylidenethiazolidine-2,4-dione and was found to be successful. Our attempts to prepare enantioenriched 5-substituted 2-thiooxoimidazolidin-4-ones derivatives starting from enantiopure amino acids with thiourea failed because of the high temperature required for the reaction. Chiral HPLC was used for the separation of 5-(pyridin-2-ylmethyl)-2-thiooxoimidazolidin-4-one R- and S- enantiomers.

Several enantioenriched 5-substituted 1-acetyl-2-thiooxoimidazolidin-4-one derivatives were synthesised from the corresponding amino acids with ammonium thiocyanate in the presence of acetic acid and acetic anhydride. N-acetyl substituted 2-thiooxoimidazolidin-4-ones could be obtained with some enantiomeric excess.

Second, during racemisation studies (Chapter 4) the buffer-catalysed hydrolysis of 2-thiooxoimidazolidin-4-one was observed. Kinetic studies of this process were described in Chapter 3. The acetyl substituent on the N-1 position of 5-substituted 1-acetyl-2-thiooxoimidazolidin-4-ones can be rapidly removed by acid or base. It was concluded that by using a base, such as sodium hydroxide and a buffer, the hydrolysis of 5-substituted 1-acetyl-2-thiooxoimidazolidin-4-ones produces 5-substituted 2-thiooxoimidazolidin-4-ones and the
subsequent continued hydrolysis produces substituted 2-thioureidopropanoic acids. On the other hand, using acids, such as hydrochloric acid, produces 5-substituted 2-thioxoimidazolidin-4-ones without continued hydrolysis. The substituents at the C-5 position change the rate constants for hydrolysis, depending on steric hindrance. It is also interesting to note that a phenyl substituent at the N-3 position increases the rate constant for the hydrolysis of 2-thioxoimidazolidin-4-ones derivatives.

Third, in Chapter 4 the rate constants for the loss of the optical activity k_o were determined directly using CD spectroscopy. The substituents at C-5 influenced the rate constants through steric hindrance and the presence of highly electronegative atoms and electron-withdrawing groups on the substituent. The k_o were observed at different concentrations of buffer and were found to increase linearly with increasing concentration of buffers, suggesting general-base catalysed racemisation. The comparison of k_o in H$_2$O- and D$_2$O-phosphate buffer showed negligible solvent kinetic isotope effect, with the rate constants within the margin of error. The rate constants for racemisation, k_{rac}, were determined by subtracting the rate constant of hydrolysis k_{hyd} from the rate constants for the loss of optical activity k_o. The sensitivity of the proton transfer for the nature of the buffer was studied using different buffers (acetate, phosphate and TRIS) and observing the rate constants k_o and k_{rac}. The β-value of 0.21 ± 0.0008 for 4.1 was obtained from the Brønsted plot, which suggests an early transition state. However, it was noted that the ionisation of the most acidic hydrogen at N-3 affects the value of β. Therefore, by using the pK_a of the substituted 2-thioxoimidazolidin-4-ones, together with the pH, the rate constants of racemisation for the protonated (S)-1-acetyl-5-methyl-2-thioxoimidazolidin-4-one were calculated and plotted versus the pK_a of buffers. The resulting β-value of 0.51 ± 0.09 for the protonated (S)-1-acetyl-5-methyl-2-thioxoimidazolidin-4-one confirmed general-base catalysis of racemisation and suggests the proton is approximately halfway between the reactant and product in the transition state. The rate constants k_o and k_{rac} in different concentrations of H$_2$O- and D$_2$O based phosphate buffers were also determined for the trisubstituted 2-thioxoimidazolidin-4-ones. Similar to the 5-substituted 1-acetyl-2-thioxoimidazolidin-4-one derivatives, a negligible solvent kinetic isotope effect on the racemisation was found. The rate constants for racemisation of trisubstituted 2-thioxoimidazolidin-4-ones were quite high in comparison with the rate constants for racemisation of 5-substituted 1-acetyl- tri-substituted 2-thioxoimidazolidin-4-ones. From the temperature dependence, the racemisation reaction of (R)-5-benzyl-3-phenyl-1-(pyridin-2-ylmethyl)-2-thioxoimidazolidin-4-one, a positive enthalpy value and negative entropy value of activation was found for the loss of optical activity. Addition of 10 vol-% of a co-solvent
with phosphate buffer changed the rate constant k_0 in comparison with 100% aqueous solution. DMSO, TFE and methanol increase the rate constant of racemisation k_0 to 4.7. It was found that 5-substituted 2-thioxoimidazolidin-4-ones racemise fast, not only in buffer, but also in water and organic solvents.

Fourth, the mechanism of racemisation for 5-substituted 1-acetyl-2-thioxoimidazolidin-4-ones was described in Chapter 5 by comparing $k_{\text{H/D}}$ (determined using 1H-NMR spectroscopy) and k_0 (obtained using CD spectroscopy) in D$_2$O based phosphate buffer. We found that $k_{\text{H/D}}/k_{\text{rac}}$ is close to unity, which confirms the $S_{\text{E}1}$ mechanism rather than the $S_{\text{E}2}$ mechanism for the racemisation of 5-substituted 1-acetyl-2-thioxoimidazolidin-4-ones. Therefore, as an alternative to studying the racemisation process, H/D exchange was studied for racemic 5-substituted 2-thioxoimidazolidin-4-one derivatives assuming $k_{\text{H/D}} = k_{\text{rac}}$. The H/D exchange process was studied for a variety of compounds with different substituents at the asymmetric carbon using 1H-NMR spectroscopy. Similar to our observations for racemisation, substituents at C-5 have a significant effect on the rate constants for H/D exchange. The rate constants $k_{\text{H/D}}$ for 5-substituted 2-thioxoimidazolidin-4-ones were high in comparison with the $k_{\text{H/D}}$ for 5-substituted 1-acetyl-2-thioxoimidazolidin-4-ones. The rate constant for H/D exchange of 5-((tetrahydrofuran-3-yl)methyl)-2-thioxoimidazolidin-4-one was the highest, with the lowest rate constant for H/D exchange found for 5-isopropyl-2-thioxoimidazolidin-4-one. The phenyl substituent at the N-3 position slows down H/D exchange of 5-benzyl-3-phenyl-2-thioxoimidazolidin-4-one in comparison with 5-benzyl-2-thioxoimidazolidin-4-one. Our reported data showed that $k_{\text{H/D}}$ was lower for 5-benzylthiazolidine-2,4-dione and 5-(pyridin-2-ylmethyl)thiazolidine-2,4-dione than for the corresponding 5-substituted 2-thioxoimidazolidin-4-ones (thiohydantoin). It can be concluded from comparison with previous reports such as those by Narduolo1, Reist et al.2 and Lazarus3 that the $k_{\text{H/D}}$ and k_{rac} of imidazolidine-2,4-dione (hydantoin) derivatives are lower than for thiazolidine-2,4-dione derivative (Scheme 6.1).
The H/D exchange process was studied for 5-benzyl-2-thiothiazolidin-4-one and 5-(pyridin-2-ylmethyl)-2-thiothiazolidin-4-one and loss of the hydrogen at the asymmetric carbon in less than 10 minutes was observed, corresponding to the fastest exchange measured in this study. The $k_{H/D}$ or k_{rac} can thus be ordered imidazolidine-2,4-dione (hydantoin) < thiazolidine-2,4-dione < 2-thioximidazolidin-4-one (thiohydantoin) < 2-thioxothiazolidin-4-one (rhodanine) derivatives.

6.2 Future work

In order to complete the studies on 2-thioximidazolidin-4-ones (thiohydantoin), it would be interesting to synthesise enantioenriched 5-substituted 2-thioximidazolidin-4-ones by carrying out the reaction at low temperature. Alternatively, using chiral columns such as CHIRALPAK® or CHIRALCEL® to separate racemic 5-substituted 2-thioximidazolidin-4-one and keeping the sample at very low temperature to avoid racemisation could also be attempted. We have already tried the Astec Chirobiotic T chiral column without success for the separation of several racemic 5-substituted 2-thioximidazolidin-4-ones, with the exception of 5-benzyl-2-thioximidazolidin-4-one and 5-(pyridin-2-ylmethyl)-2-thioximidazolidin-4-one. The further preparation of enantioenriched tri-substituted 2-thioximidazolidin-4-one might be carried out by the same procedure described in Chapter 2. Alternatively, enantioenriched N-acetylated 2-thiohydantoins could be prepared by hydrolysis under acidic conditions. The acidic solutions could be mixed rapidly, for example in a stopped-flow apparatus. Solvent kinetic isotope effects for the hydrolysis of substituted 2-thiohydantoin could be carried out in H$_2$O- and D$_2$O based phosphate buffer. The effect of electron-donating and electron-withdrawing groups on the phenyl group attached to the
stereogenic centre of 2-thiohydantoin on racemisation and hydrolysis could be studied by constructing a Hammett plot.

It might well be possible to determine racemisation rate constants for compounds such as those in Scheme 6.2 without need for optical resolution.

Scheme 6.2: Synthesis and racemisation of (S)-5-((R)-phenylmethyl-d)-2-thioximidazolidin-4-one

The “racemisation” could then be followed through the different vicinal J_{HH} for the different diastereoisomers.

Lower concentrations of buffer would be useful to observe the rate constant of the H/D exchange of thioxothiazolidin-4-one (rhodanine) derivatives. It would also be possible to study the hydrolysis of imidazolidine-2,4-dione (hydantoin), thiazolidine-2,4-dione, 2-thioximidazolidin-4-one (thiohydantoin) and 2-thioxothiazolidin-4-one (rhodanine) derivatives using 2D-NMR spectroscopy to confirm the exact structure of the hydrolysed product. Kinetic studies of racemisation of other 5-ring compounds similar to hydantoin derivatives would also be interesting, e.g. 2-thioxoazolidin-4-ones and oxazolidine-2,4-diones.

Future work might involve a study of the binding between our synthesised product and DNA or protein. It would also be fascinating to study metal complexes formed between the synthesised compounds using by X-ray crystallography. Studying the enzyme catalysed racemisation process and comparing with the present results would also be of interest.
6.3 References

1. S. Narduolo, Thesis (Ph D) - Cardiff University, 2011.
Appendices

for

Kinetics and mechanism of racemisation reactions of configurationally labile stereogenic centre in drug-like molecules in aqueous solutions; thiohydantoins and related compounds

Hiwa Omer Ahmad

A thesis submitted for the Degree of Doctor of Philosophy

School of Chemistry
Cardiff University

August 2015
Appendix 1

for Chapter 2

Synthesis of substituted 2-thiohydantoins and related compounds
X-ray for compound 18

<table>
<thead>
<tr>
<th>Table 1. Crystal data and structure refinement for compound 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
</tr>
<tr>
<td>Empirical formula</td>
</tr>
<tr>
<td>Formula weight</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Wavelength</td>
</tr>
<tr>
<td>Crystal system</td>
</tr>
<tr>
<td>Space group</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
</tr>
<tr>
<td>a = 3.8308 (2) Å</td>
</tr>
<tr>
<td>b = 11.0036 (7) Å</td>
</tr>
<tr>
<td>c = 11.3316 (7) Å</td>
</tr>
<tr>
<td>Volume</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>Density (calculated)</td>
</tr>
<tr>
<td>Absorption coefficient</td>
</tr>
<tr>
<td>F(000)</td>
</tr>
<tr>
<td>Crystal size</td>
</tr>
<tr>
<td>Theta range for data collection</td>
</tr>
<tr>
<td>Index ranges</td>
</tr>
<tr>
<td>Reflections collected</td>
</tr>
<tr>
<td>Independent reflections</td>
</tr>
<tr>
<td>Completeness to theta = 67.684°</td>
</tr>
<tr>
<td>Refinement method</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
</tr>
<tr>
<td>Final R indices [I>2sigma (I)]</td>
</tr>
<tr>
<td>R indices (all data)</td>
</tr>
<tr>
<td>Extinction coefficient</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å² x 10³)

For compound 18. U (eq) is defined as one third of the trace of the orthogonalized Uij tensor.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>3327(4)</td>
<td>3388(2)</td>
<td>6536(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>6463(4)</td>
<td>1994(2)</td>
<td>5485(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>5249(4)</td>
<td>1111(2)</td>
<td>6568(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>6048(4)</td>
<td>-141(2)</td>
<td>6727(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>5084(4)</td>
<td>-1067(2)</td>
<td>7789(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>6049(5)</td>
<td>-2349(2)</td>
<td>7870(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>5165(5)</td>
<td>-3195(2)</td>
<td>8913(2)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>3375(5)</td>
<td>-2738(2)</td>
<td>9835(2)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>2494(5)</td>
<td>-1444(2)</td>
<td>9672(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>5197(4)</td>
<td>3219(1)</td>
<td>5536(1)</td>
<td>24(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>3305(4)</td>
<td>-614(1)</td>
<td>8670(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>8324(3)</td>
<td>1738(1)</td>
<td>4667(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>S(1)</td>
<td>1704(1)</td>
<td>4750(1)</td>
<td>6822(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>S(2)</td>
<td>2849(1)</td>
<td>1944(1)</td>
<td>7532(1)</td>
<td>22(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for compound 18

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance [Å]</th>
<th>Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)-N(1)</td>
<td>1.357(2)</td>
<td></td>
</tr>
<tr>
<td>C(1)-S(1)</td>
<td>1.6482(17)</td>
<td></td>
</tr>
<tr>
<td>C(1)-S(2)</td>
<td>1.7510(17)</td>
<td></td>
</tr>
<tr>
<td>C(2)-O(1)</td>
<td>1.214(2)</td>
<td></td>
</tr>
<tr>
<td>C(2)-N(1)</td>
<td>1.389(2)</td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.481(2)</td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.345(2)</td>
<td></td>
</tr>
<tr>
<td>C(3)-S(2)</td>
<td>1.7508(17)</td>
<td></td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.457(2)</td>
<td></td>
</tr>
<tr>
<td>C(4)-H(4)</td>
<td>0.9500</td>
<td></td>
</tr>
<tr>
<td>C(5)-N(2)</td>
<td>1.344(2)</td>
<td></td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.397(2)</td>
<td></td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.387(3)</td>
<td></td>
</tr>
<tr>
<td>C(6)-H(6)</td>
<td>0.9500</td>
<td></td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.386(3)</td>
<td></td>
</tr>
<tr>
<td>C(7)-H(7)</td>
<td>0.9500</td>
<td></td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.394(3)</td>
<td></td>
</tr>
<tr>
<td>C(8)-H(8)</td>
<td>0.9500</td>
<td></td>
</tr>
<tr>
<td>C(9)-N(2)</td>
<td>1.338(2)</td>
<td></td>
</tr>
<tr>
<td>C(9)-H(9)</td>
<td>0.9500</td>
<td></td>
</tr>
<tr>
<td>N(1)-H(1)</td>
<td>0.8800</td>
<td></td>
</tr>
<tr>
<td>N(1)-C(1)-S(1)</td>
<td>126.08(13)</td>
<td></td>
</tr>
<tr>
<td>N(1)-C(1)-S(2)</td>
<td>110.97(12)</td>
<td></td>
</tr>
<tr>
<td>S(1)-C(1)-S(2)</td>
<td>122.95(11)</td>
<td></td>
</tr>
<tr>
<td>O(1)-C(2)-N(1)</td>
<td>122.98(15)</td>
<td></td>
</tr>
<tr>
<td>O(1)-C(2)-C(3)</td>
<td>127.50(15)</td>
<td></td>
</tr>
<tr>
<td>N(1)-C(2)-C(3)</td>
<td>109.50(14)</td>
<td></td>
</tr>
<tr>
<td>C(4)-C(3)-C(2)</td>
<td>121.54(15)</td>
<td></td>
</tr>
<tr>
<td>C(4)-C(3)-S(2)</td>
<td>128.27(13)</td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)-S(2)</td>
<td>110.18(12)</td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>124.83(16)</td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)-H(4)</td>
<td>117.6</td>
<td></td>
</tr>
<tr>
<td>C(5)-C(4)-H(4)</td>
<td>117.6</td>
<td></td>
</tr>
<tr>
<td>N(2)-C(5)-C(6)</td>
<td>123.07(16)</td>
<td></td>
</tr>
<tr>
<td>N(2)-C(5)-C(4)</td>
<td>116.47(15)</td>
<td></td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>120.45(16)</td>
<td></td>
</tr>
<tr>
<td>C(7)-C(6)-C(5)</td>
<td>118.51(17)</td>
<td></td>
</tr>
</tbody>
</table>
C(7)-C(6)-H(6) 120.7
C(5)-C(6)-H(6) 120.7
C(8)-C(7)-C(6) 118.92(17)
C(8)-C(7)-H(7) 120.5
C(6)-C(7)-H(7) 120.5
C(7)-C(8)-C(9) 118.68(16)
C(7)-C(8)-H(8) 120.7
C(9)-C(8)-H(8) 120.7
N(2)-C(9)-C(8) 123.25(17)
N(2)-C(9)-H(9) 118.4
C(8)-C(9)-H(9) 118.4
C(1)-N(1)-C(2) 117.41(14)
C(1)-N(1)-H(1) 121.3
C(2)-N(1)-H(1) 121.3
C(9)-N(2)-C(5) 117.56(15)
C(3)-S(2)-C(1) 91.87(8)

Symmetry transformations used to generate equivalent atoms:
Table 4. Anisotropic displacement parameters (Å\(^2\times10^3\)) for compound 18. The anisotropic displacement factor exponent takes the form: -2p\(^2\) \[h^2 a^* U_{11} + ... + 2hk a^* b^* U_{12} \]

<table>
<thead>
<tr>
<th></th>
<th>U(^{11})</th>
<th>U(^{22})</th>
<th>U(^{33})</th>
<th>U(^{23})</th>
<th>U(^{13})</th>
<th>U(^{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>24(1)</td>
<td>22(1)</td>
<td>23(1)</td>
<td>-6(1)</td>
<td>3(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>26(1)</td>
<td>21(1)</td>
<td>20(1)</td>
<td>-6(1)</td>
<td>2(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>23(1)</td>
<td>21(1)</td>
<td>21(1)</td>
<td>-6(1)</td>
<td>3(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>25(1)</td>
<td>21(1)</td>
<td>21(1)</td>
<td>-7(1)</td>
<td>4(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>25(1)</td>
<td>21(1)</td>
<td>23(1)</td>
<td>-6(1)</td>
<td>0(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>34(1)</td>
<td>23(1)</td>
<td>26(1)</td>
<td>-7(1)</td>
<td>3(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>42(1)</td>
<td>20(1)</td>
<td>35(1)</td>
<td>-4(1)</td>
<td>-1(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>39(1)</td>
<td>29(1)</td>
<td>26(1)</td>
<td>0(1)</td>
<td>3(1)</td>
<td>-9(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>35(1)</td>
<td>29(1)</td>
<td>22(1)</td>
<td>-5(1)</td>
<td>6(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>30(1)</td>
<td>18(1)</td>
<td>23(1)</td>
<td>-4(1)</td>
<td>6(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>28(1)</td>
<td>22(1)</td>
<td>24(1)</td>
<td>-5(1)</td>
<td>4(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>38(1)</td>
<td>24(1)</td>
<td>25(1)</td>
<td>-7(1)</td>
<td>10(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>S(1)</td>
<td>34(1)</td>
<td>19(1)</td>
<td>32(1)</td>
<td>-9(1)</td>
<td>10(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>S(2)</td>
<td>25(1)</td>
<td>19(1)</td>
<td>21(1)</td>
<td>-6(1)</td>
<td>6(1)</td>
<td>-3(1)</td>
</tr>
</tbody>
</table>

Table 5. Hydrogen coordinates (x 10\(^4\)) and isotropic displacement parameters (Å\(^2\)x 10\(^3\)) for compound 18.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(4)</td>
<td>7335</td>
<td>-444</td>
<td>6101</td>
<td>27</td>
</tr>
<tr>
<td>H(6)</td>
<td>7282</td>
<td>-2636</td>
<td>7225</td>
<td>33</td>
</tr>
<tr>
<td>H(7)</td>
<td>5777</td>
<td>-4074</td>
<td>8995</td>
<td>39</td>
</tr>
<tr>
<td>H(8)</td>
<td>2761</td>
<td>-3296</td>
<td>10562</td>
<td>38</td>
</tr>
<tr>
<td>H(9)</td>
<td>1256</td>
<td>-1135</td>
<td>10304</td>
<td>35</td>
</tr>
<tr>
<td>H(1)</td>
<td>5593</td>
<td>3860</td>
<td>4943</td>
<td>29</td>
</tr>
</tbody>
</table>
Appendix 2

for Chapter 3

Hydrolysis of substituted 2-thiohydantoins and related compounds
A.3.1 Kinetics and mechanism of base-catalysed hydrolysis of 5-substituted 1-acetyl-2-thiohydantoins

Figure a3.1: Hydrolysis of 3.1 at 286 nm in H₂O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.2: Hydrolysis of 3.2 at 289 nm in H$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.3: Hydrolysis of 3.3 at 291 nm in H₂O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.4: Hydrolysis of 3.4 at 283 nm in H$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.5: Hydrolysis of 3.5 at 288 nm in H$_2$O-phosphate buffer in a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo first-order kinetics.
Figure a3.6: Hydrolysis of 3.6 at 290 nm in H₂O-phosphate buffer in a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M \(I \), pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.7: Hydrolysis of 3.7 at 290 nm in H$_2$O-phosphate buffer in a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Table a3.1: Pseudo-first-order rate constants of hydrolysis k_{hyd} determined by UV-visible spectroscopy of 1-acetyl-2-thioxoimidazolidin-4-one (3.1) in H$_2$O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate</th>
<th>k_{hyd} H$_2$O/ 10^{-6} s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>0.036</td>
<td>14.2 ± 0.3 (± 0.02)a</td>
</tr>
<tr>
<td>0.09</td>
<td>0.072</td>
<td>16.8 ± 0.3 (± 0.03)a</td>
</tr>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>21.1 ± 0.4 (± 0.05)a</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>25.7 ± 0.5 (± 0.07)a</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>35.2 ± 0.7 (± 0.07)a</td>
</tr>
</tbody>
</table>

b) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.

Table a3.2: Pseudo-first-order rate constants of hydrolysis k_{hyd} determined by UV-visible spectroscopy of (S)-1-acetyl-5-benzyl-2-thioxoimidazolidin-4-one (3.2) in H$_2$O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer</th>
<th>k_{hyd} H$_2$O/ 10^{-6} s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>0.036</td>
<td>5.0 ± 0.1 (± 0.008)a</td>
</tr>
<tr>
<td>0.09</td>
<td>0.072</td>
<td>5.2 ± 0.1 (± 0.008)a</td>
</tr>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>5.9 ± 0.1 (± 0.004)a</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>6.7 ± 0.1 (± 0.008)a</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>7.6 ± 0.2 (± 0.007)a</td>
</tr>
</tbody>
</table>

a) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.
Table a3.3: Pseudo-first-order rate constants of hydrolysis k_{hyd} determined by UV-visible spectroscopy of 1-acetyl-5-phenyl-2-thioxoimidazolidin-4-one (3.3) in H$_2$O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer</th>
<th>k_{hyd} H$_2$O/ 10$^{-6}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>0.036</td>
<td>$5.3 \pm 0.1 , (\pm 0.003)^a$</td>
</tr>
<tr>
<td>0.09</td>
<td>0.072</td>
<td>$6.1 \pm 0.1 , (\pm 0.003)^a$</td>
</tr>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>$7.6 \pm 0.2 , (\pm 0.003)^a$</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>$9.1 \pm 0.2 , (\pm 0.004)^a$</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>$10.4 \pm 0.2 , (\pm 0.01)^a$</td>
</tr>
</tbody>
</table>

a) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.

Table a3.4: Pseudo-first-order rate constants of hydrolysis $k_{	ext{hyd}}$ determined by UV-visible spectroscopy of (S)-5-(((1H-indol-3-yl)methyl)-1-acetyl-2-thioxoimidazolidin-4-one (3.4) in H$_2$O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer</th>
<th>k_{hyd} H$_2$O/ 10$^{-6}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>0.036</td>
<td>$4.0 \pm 0.08 , (\pm 0.007)^a$</td>
</tr>
<tr>
<td>0.09</td>
<td>0.072</td>
<td>$4.5 \pm 0.09 , (\pm 0.005)^a$</td>
</tr>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>$5.1 \pm 0.1 , (\pm 0.007)^a$</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>$5.8 \pm 0.1 , (\pm 0.006)^a$</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>$6.8 \pm 0.1 , (\pm 0.005)^a$</td>
</tr>
</tbody>
</table>

a) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.
Table a3.5: Pseudo-first-order rate constants of hydrolysis k_{hyd} determined by UV-visible spectroscopy of (S)-1-acetyl-5-isopropyl-2-thioxoimidazolidin-4-one (3.5) in H$_2$O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer</th>
<th>k_{hyd} H$_2$O/ 10^{-6} s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>0.036</td>
<td>5.7 ± 0.1 ($±$ 0.003)a</td>
</tr>
<tr>
<td>0.09</td>
<td>0.072</td>
<td>6.5 ± 0.1 ($±$ 0.002)a</td>
</tr>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>8.0 ± 0.2 ($±$ 0.004)a</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>9.9 ± 0.2 ($±$ 0.010)a</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>11.8 ± 0.2 ($±$ 0.020)a</td>
</tr>
</tbody>
</table>

a Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.

Table a3.6: Pseudo-first-order rate constants of hydrolysis k_{hyd} determined by UV-visible spectroscopy of (S)-1-acetyl-5-(2-(methylthio)ethyl)-2-thioxoimidazolidin-4-one (3.6) in H$_2$O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer</th>
<th>k_{hyd} H$_2$O/ 10^{-6} s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>0.036</td>
<td>7.7 ± 0.2 ($±$ 0.007)a</td>
</tr>
<tr>
<td>0.09</td>
<td>0.072</td>
<td>8.8 ± 0.2 ($±$ 0.005)a</td>
</tr>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>10.9 ± 0.2 ($±$ 0.008)a</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>13.1 ± 0.3 ($±$ 0.009)a</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>15.7 ± 0.3 ($±$ 0.010)a</td>
</tr>
</tbody>
</table>

a Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.
Table a3.7: Pseudo-first-order rate constants of hydrolysis \(k_{\text{hyd}}\) determined by UV-visible spectroscopy of (S)-1-acetyl-5-methyl-2-thioxoimidazolidin-4-one (3.7) in H\(_2\)O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer</th>
<th>(k_{\text{hyd}}) H(_2)O/ (10^{-6}) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>0.036</td>
<td>10.9 ± 0.2 (± 0.010)(^a)</td>
</tr>
<tr>
<td>0.09</td>
<td>0.072</td>
<td>12.2 ± 0.2 (± 0.006)(^a)</td>
</tr>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>14.5 ± 0.3 (± 0.007)(^a)</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>17.1 ± 0.3 (± 0.008)(^a)</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>20.3 ± 0.4 (± 0.020)(^a)</td>
</tr>
</tbody>
</table>

\(^a\) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.
Figure a3.8: Observed rate constants of hydrolysis of a) 3.1, b) 3.2, c) 3.3, and d) 3.4 as a function of the concentration of the basic components of (H$_2$O-based phosphate buffer at 37 °C, 0.9 M I, pH 7.4, 0.36 M, 0.27 M, 0.18 M, 0.09, and 0.045 M.
Figure a3.9: Observed rate constants of hydrolysis of a) 3.5, b) 3.6, and c) 3.7 as a function of the concentration of the basic components of (H$_2$O-based phosphate buffer at 37 °C, 0.9 M I, pH 7.4, 0.36 M, 0.27 M, 0.18 M, 0.09 and 0.045 M.
A.3.2 Determination of the rate constant for hydrolysis of 1-acetyl-5-isopropyl-2-thiohydantoin by NMR spectroscopy

Figure a3.10: The hydrolysis process of 3.5 by using a) 0.008 M of D$_2$O-phosphate buffer, 0.8 M I, pH 7.4 at 37 °C (using 80% of 0.01 M of D$_2$O-phosphate buffer, 1 M I, pH 7.4 at 37 °C, with 20% of d$_3$-acetonitrile), and b) 0.36 M of D$_2$O-phosphate buffer, 0.9 M I, pH 7.4 at 37 °C (No d$_3$-acetonitrile). (■) the relative area 3H of H$_3$CCO decreased over time, and (●) the relative area of 3H of H$_3$CCO (one hydrogen disappeared in regards with the integration) increased over time. The squares (●) and (■) are the experimental points, and the red solid
A.3.3. Brønsted plot for hydrolysis of (S)-1-acetyl-5-methyl-2-thioimidazolidin-4-one

Figure a3.11: Hydrolysis of 3.7 at 290 nm in H$_2$O acetate buffer in a) 0.18 M, b) 0.27M and c) 0.36 M total acetate buffer with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.12: Hydrolysis of 3.7 at 290 nm in H2O TRIS buffer in a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total TRIS with ionic strength of 0.9 M I, pH 8.2 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.13: Hydrolysis of 3.7 at 290 nm in H₂O methyl amine buffer in, a) 0.09 M, b) 0.18 M, c) 0.27 M and d) 0.36 M total methyl amine with ionic strength of 0.9 M I, pH 9.7 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.14: rate constants of hydrolysis of 3.7, in H₂O a) acetate buffers, pH²⁵ 5.0 b) phosphate buffer pH²⁵ 7.4, c) TRIS buffer pH²⁵ 8.2, and d) methyl amine buffer pH²⁵ 9.7 at 37 °C plotted as a function of the concentration of basic buffer components considering values of pKₐ of a) 4.59 b) 6.8 c) 7.88 , and d) 10.4
Figure a3.15: Bronsted plot for the base-catalysed hydrolysis of 3.7.
A.3.4. Kinetics of acid and base-catalysed hydrolysis of 1-acetyl-5-phenyl-2-thioxoimidazolidin-4-one

Figure a3.16: Hydrolysis of 3.3 at 279 nm in a) 0.24 M, b) 0.48 M, c) 0.72 M, and d) 0.96 M of HCl at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.17: Hydrolysis of 3.3 at 290 nm in a) 0.0017 M, b) 0.0025 M, c) 0.0033 M, d) 0.0042 M, and e) 0.005 M of NaOH at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.18: Rate constants of hydrolysis of 3.7, in a) HCl, and b) NaOH plotted as a function of the concentration of HCl and NaOH, respectively at 37 °C.
A.3.5. Kinetics and mechanism of base-catalysed hydrolysis of 5-substituted 2-thioxoimidazolidin-4-ones

Figure a3.19: Hydrolysis of 3.8 at 259 nm in H₂O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.20: Hydrolysis of 3.9 at 262 nm in H$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.21: Hydrolysis of 3.10 at 262 nm in H₂O phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.22: Hydrolysis of 3.11 at 262 nm in H₂O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (\square) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.23: Hydrolysis of 3.12 at 264 nm in H₂O-phosphate buffer at a) 0.09 M, b) 0.18 M, c) 0.27 M and d) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.24: Hydrolysis of 3.13 at 264 nm in H2O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.25: Hydrolysis of 3.14 at 264 nm in H2O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a3.26: Hydrolysis of 3.15 at 262 nm in H2O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Table a3.8: Pseudo-first-order rate constants \(k_{\text{hydro}} \) determined by UV-visible spectroscopy for 2-thioximidazolidin-4-one (3.8) in H\(_2\)O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate with ionic strength of 0.9 M \(I \), pH 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer/M</th>
<th>(k_{\text{hyd}}) H(_2)O/ (\times 10^{-6}) s(^{-1})</th>
</tr>
</thead>
</table>
| 0.045 | 0.036 | 24.2 ± 0.5 (± 0.08)
| 0.09 | 0.072 | 39.5 ± 0.8 (± 0.1)
| 0.18 | 0.14 | 44.9 ± 0.9 (± 0.2)
| 0.27 | 0.22 | 45.1 ± 0.9 (± 0.2)
| 0.36 | 0.29 | 57.8 ± 1.2 (± 0.2) |

a) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.

Table a3.9: Pseudo-first-order rate constants \(k_{\text{hydro}} \) determined by UV-visible spectroscopy for 5-benzyl-2-thioximidazolidin-4-one (3.9) in H\(_2\)O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate with ionic strength of 0.9 M \(I \), pH 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer/M</th>
<th>(k_{\text{hyd}}) H(_2)O/ (\times 10^{-6}) s(^{-1})</th>
</tr>
</thead>
</table>
| 0.045 | 0.036 | 12.2 ± 0.2 (± 0.1)
| 0.09 | 0.072 | 17.5 ± 0.4 (± 0.06)
| 0.18 | 0.14 | 19.9 ± 0.4 (± 0.05)
| 0.27 | 0.22 | 25.9 ± 0.5 (± 0.04)
| 0.36 | 0.29 | 33.0 ± 0.7 (± 0.06) |

a) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.
Table a3.10: Pseudo-first-order rate constants k_{hyd} determined by UV-visible spectroscopy for 5-(pyridin-2-ylmethyl)-2-thioxoimidazolidin-4-one (3.10) in H$_2$O phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer/M</th>
<th>k_{hyd} H$_2$O/ 106 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>0.036</td>
<td>$12.9 \pm 0.3 \ (\pm 0.02)^a$</td>
</tr>
<tr>
<td>0.09</td>
<td>0.072</td>
<td>$13.6 \pm 0.3 \ (\pm 0.05)^a$</td>
</tr>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>$13.7 \pm 0.3 \ (\pm 0.04)^a$</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>$17.2 \pm 0.4 \ (\pm 0.03)^a$</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>$25.8 \pm 0.5 \ (\pm 0.05)^a$</td>
</tr>
</tbody>
</table>

a) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.

Table a3.11: Pseudo-first-order rate constants k_{hyd} determined by UV-visible spectroscopy for 5-((1-methyl-1H-pyrrol-2-yl)methyl)-2-thioxoimidazolidin-4-one (3.11) in H$_2$O phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M total phosphate with ionic strength of 0.9 M I, pH 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer/M</th>
<th>k_{hyd} H$_2$O/ 106 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>0.036</td>
<td>$39.4 \pm 0.8 \ (\pm 0.5)^a$</td>
</tr>
<tr>
<td>0.09</td>
<td>0.072</td>
<td>$41.5 \pm 0.8 \ (\pm 0.5)^a$</td>
</tr>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>$43.0 \pm 0.9 \ (\pm 0.4)^a$</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>$44.7 \pm 0.9 \ (\pm 0.5)^a$</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>$46.3 \pm 0.9 \ (\pm 0.5)^a$</td>
</tr>
</tbody>
</table>

a) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.
Table a3.12: Pseudo-first-order rate constants of hydrolysis k_{hyd} determined by UV-visible spectroscopy for 5-(4-methoxybenzyl)-2-thioxoimidazolidin-4-one (3.12) in H$_2$O phosphate buffer at 0.36 M, 0.27 M, 0.18 M, and 0.09 M total phosphate with ionic strength of 0.9 M I, pH 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer / M</th>
<th>k_{hyd} H$_2$O/ 10$^{-6}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>0.09</td>
<td>0.072</td>
<td>7.9 ± 0.2 (\pm 0.04)a</td>
</tr>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>10.2 ± 0.2 (\pm 0.05)a</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>11.3 ± 0.2 (\pm 0.06)a</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>11.4 ± 0.2 (\pm 0.04)a</td>
</tr>
</tbody>
</table>

a) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.

Table a3.13: Pseudo-first-order rate constants of hydrolysis k_{hyd} determined by UV-visible spectroscopy for 5-((tetrahydrofuran-3-yl)methyl)-2-thioxoimidazolidin-4-one (3.13) in H$_2$O phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total with ionic strength of 0.9 M I, pH 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer/M</th>
<th>k_{hyd} H$_2$O/ 10$^{-6}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>0.036</td>
<td>52.7 ± 1.1 (\pm 0.09)a</td>
</tr>
<tr>
<td>0.09</td>
<td>0.072</td>
<td>54.0 ± 1.1 (\pm 0.1)a</td>
</tr>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>56.1 ± 1.1 (\pm 0.2)a</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>57.7 ± 1.2 (\pm 0.2)a</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>59.9 ± 1.2 (\pm 0.3)a</td>
</tr>
</tbody>
</table>

a) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.
Table a3.14: Pseudo-first-order rate constants of hydrolysis k_{hyd} determined by UV-visible for 5-methyl-2-thioxoimidazolidin-4-one (3.14) in H$_2$O phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer/M</th>
<th>$k_{\text{hydro} \ H_2O}$ / 10$^{-6}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>0.036</td>
<td>17.5 ± 0.4 (± 0.1)a</td>
</tr>
<tr>
<td>0.09</td>
<td>0.072</td>
<td>22.0 ± 0.4 (± 0.1)a</td>
</tr>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>31.7 ± 0.6 (± 0.1)a</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>33.0 ± 0.7 (± 0.1)a</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>36.7 ± 0.7 (± 0.3)a</td>
</tr>
</tbody>
</table>

a Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.

Table a3.15: Pseudo-first-order rate constants of hydrolysis k_{hyd} determined by UV-visible for 5-((1H-indol-3-yl)methyl)-2-thioxoimidazolidin-4-one (3.15) in H$_2$O phosphate buffer at 0.36, 0.27, 0.18, 0.09 and 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer</th>
<th>$k_{\text{hydro} \ H_2O}$ / 10$^{-6}$ s$^{-1}$ M$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>0.036</td>
<td>13.2 ± 0.3 (± 0.04)a</td>
</tr>
<tr>
<td>0.09</td>
<td>0.072</td>
<td>14.2 ± 0.3 (± 0.04)a</td>
</tr>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>22.5 ± 0.5 (± 0.09)a</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>25.6 ± 0.5 (± 0.1)a</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>27.5 ± 0.6 (± 0.2)a</td>
</tr>
</tbody>
</table>

a Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.
Figure a3.27: Observed rate constants of hydrolysis of a) 3.8, b) 3.9, c) 3.10, and d) 3.11 as a function of the concentration of the basic components of (H$_2$O-based phosphate buffer at 37 °C, 0.9 M I, pH 7.4, 0.36 M, 0.27 M, 0.18 M, 0.09, and 0.045 M.
Figure a3.28: Observed rate constants of hydrolysis of a) 3.12, b) 3.13, c) 3.14, and d) 3.15 as a function of the concentration of the basic components of (H$_2$O-based phosphate buffer at 37 °C, 0.9 M I, pH 7.4, 0.36 M, 0.27 M, 0.18 M, 0.09, and 0.045 M.
A.3.6. Kinetics and mechanism of base-catalysed hydrolysis of 3,5-di-substituted 2-thiohydantoins

Figure a3.29: Hydrolysis of 3.16 at 265 nm in H$_2$O-phosphate buffer at a) 0.009 M, b) 0.018 M, c) 0.027 M and d) 0.036 M, and e) 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Table a3.16: Pseudo-first-order rate constants of hydrolysis k_{hyd} determined by UV-visible spectroscopy for 5-benzyl-3-phenyl-2-thioxoimidazolidin-4-one (3.16) in H₂O-phosphate buffer at 0.009 M, 0.018 M, 0.027 M, 0.036 M and 0.045 M total phosphate and 0.0072 M, 0.014 M, 0.021 M, 0.028 M and 0.035 M phosphate basic, respectively with ionic strength of 0.9 M I, pH 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Buffer conc./M</th>
<th>Basic phosphate buffer</th>
<th>k_{hydro} H₂O/ 10⁶ s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.009</td>
<td>0.0072</td>
<td>29.5 ± 0.6 (0.03)ᵃ</td>
</tr>
<tr>
<td>0.018</td>
<td>0.014</td>
<td>31.2 ± 0.6 (0.05)ᵃ</td>
</tr>
<tr>
<td>0.027</td>
<td>0.022</td>
<td>39.4 ± 0.8 (0.05)ᵃ</td>
</tr>
<tr>
<td>0.036</td>
<td>0.029</td>
<td>55.7 ± 1.1 (0.05)ᵃ</td>
</tr>
<tr>
<td>0.045</td>
<td>0.036</td>
<td>57.0 ± 1.1 (0.07)ᵃ</td>
</tr>
</tbody>
</table>

a) Where the error from the data fit is less than 2% of the error of the rate constants have been set to 2%. Values in brackets are the errors from the data fit which are less than 2%.

Figure a3.30: Observed rate constants of hydrolysis of 3.16 as a function of the concentration of the basic components of (H₂O-based phosphate buffer at 37 °C, 0.9 M I, pH 7.4 at 37 °C.
Appendix 3

for Chapter 4

Kinetics and mechanism for racemisation of substituted 2-thiohydantoin
A4.1 Racemisation of 5-substituted 1-acetyl-2-thiohydantoins

Figure a4.1: Change in ellipticity over time for solutions of 4.1 in H$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.2: Change in ellipticity over time for solutions 4.1 in D$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH* 7.4 at 37 °C.
Figure a4.3: Change in ellipticity over time for solutions of 4.2 in H$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.4: Change in ellipticity over time for solutions of 4.2 in D$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.5: Change in ellipticity over time for solutions of 4.3 in H$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.6: Change in ellipticity over time for solutions of 4.3 in D$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.7: Change in ellipticity over time for solutions of 4.4 in H₂O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.8: Change in ellipticity over time for solutions of 4.4 in D$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.9: Change in ellipticity over time for solutions of 4.5 in H$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.10: Change in ellipticity over time for solutions of 4.5 in D$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH* 7.4 at 37 °C.
Figure a4.11: The ellipticities of 4.1 at 262 nm versus time in H$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.12: The ellipticities of 4.1 at 262 nm versus time in D$_2$O-phosphate buffer at a) 0.09 M, b) 0.18 M, c) 0.27 M and d) 0.36 M total phosphate with ionic strength of 0.9 M I, pH* 7.4 at 37 °C.
Figure a4.13: The ellipticities of 4.2 at 265 nm versus time in H$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.14: The ellipticities of 4.2 at 265 nm versus time in D\textsubscript{2}O-phosphate buffer at a) 0.09 M, b) 0.18 M, c) 0.27 M and d) 0.36 M total phosphate with ionic strength of 0.9 M \(I\), pH* 7.4 at 37 °C.
Figure a4.15: The ellipticities of 4.3 at 268 nm versus time in H₂O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.16: The ellipticities of 4.3 at 268 nm versus time in D$_2$O-phosphate buffer at a) 0.09 M, b) 0.18 M, c) 0.27 M and d) 0.36 M total phosphate with ionic strength of 0.9 M I, pH* 7.4 at 37 °C.
Figure a4.17: The ellipticities of 4.3 at 290 nm versus time in H$_2$O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.18: The ellipticities of 4.4 at 290 nm versus time in D$_2$O-phosphate buffer at a) 0.09 M, b) 0.18 M, c) 0.27 M and d) 0.36 M total phosphate with ionic strength of 0.9 M I, pH* 7.4 at 37 °C.
Figure a4.19: The ellipticities of 4.5 at 263 nm versus time in H₂O-phosphate buffer at a) 0.045 M, b) 0.09 M, c) 0.18 M, d) 0.27 M and e) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.20: The ellipticities of 4.5 at 263 nm versus time in D$_2$O-phosphate buffer at a) 0.09 M, b) 0.18 M, c) 0.27 M and d) 0.36 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Table a4.1: Pseudo-first-order rate constants k_o determined by CD spectroscopy of (S)-1-acetyl-5-methyl-2-thioxoimidazolidin-4-one (4.1) in H$_2$O- and D$_2$O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate and 0.29 M, 0.22 M, 0.14 M, 0.072 M and 0.036 M phosphate basic, respectively with ionic strength of 0.9 M I, pH and pH* 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Total buffer con./M</th>
<th>k_o (H$_2$O)/106 S$^{-1}$</th>
<th>k_o (D$_2$O)/106 S$^{-1}$</th>
<th>k_H/k_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>43.7 ± 0.9 (± 0.7)a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.09</td>
<td>72.9 ± 1.5 (± 0.9)a</td>
<td>68.5 ± 1.4 (± 0.8)a</td>
<td>1.06 ± 0.03</td>
</tr>
<tr>
<td>0.18</td>
<td>123.6 ± 2.5 (± 1.5)a</td>
<td>122.3 ± 2.5 (± 1.6)a</td>
<td>1.01 ± 0.02</td>
</tr>
<tr>
<td>0.27</td>
<td>174.0 ± 3.7 (± 3.6)a</td>
<td>174.0 ± 3.7 (± 3.6)a</td>
<td>1.00 ± 0.03</td>
</tr>
<tr>
<td>0.36</td>
<td>251.5 ± 6.2 (± 5.4)a</td>
<td>262.6 ± 5.3 (± 4.0)a</td>
<td>0.96 ± 0.02</td>
</tr>
</tbody>
</table>

Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.

c) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.

Table a4.2: Pseudo-first order rate constants k_o determined by CD spectroscopy of (S)-1-acetyl-5-benzyl-2-thioxoimidazolidin-4-one (4.2) in H$_2$O- and D$_2$O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate and 0.29 M, 0.22 M, 0.14 M, 0.072 M and 0.036 M phosphate basic, respectively with ionic strength of 0.9 M I, pH and pH* 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Total buffer con./M</th>
<th>k_o (H$_2$O)/106 S$^{-1}$</th>
<th>k_o (D$_2$O)/106 S$^{-1}$</th>
<th>k_H/k_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>65.3 ± 1.3 (± 0.5)a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.09</td>
<td>105.6 ± 2.1 (± 1.2)a</td>
<td>105.3 ± 2.1 (± 1.0)a</td>
<td>1.00 ± 0.03</td>
</tr>
<tr>
<td>0.18</td>
<td>201.4 ± 4.0 (± 2.2)a</td>
<td>205.0 ± 4.1 (± 2.3)a</td>
<td>0.98 ± 0.03</td>
</tr>
<tr>
<td>0.27</td>
<td>296.5 ± 5.9 (± 4.3)a</td>
<td>334.7 ± 6.7 (± 5.0)a</td>
<td>0.89 ± 0.03</td>
</tr>
<tr>
<td>0.36</td>
<td>453.4 ± 9.1 (± 7.6)a</td>
<td>458.7 ± 9.2 (± 7.4)a</td>
<td>0.99 ± 0.03</td>
</tr>
</tbody>
</table>

a) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.
Table a4.3: Pseudo-first order rate constants k_o determined by CD spectroscopy of (S)-1-acetyl-5-isopropyl-2-thioxoimidazolidin-4-one (4.3) H2O- and D2O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, and 0.09 M total phosphate 0.29 M, 0.22 M, 0.14 M, 0.072 M and 0.036 M phosphate basic, respectively with ionic strength of 0.9 M I, pH and pH* 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Total buffer con./M</th>
<th>k_o (H2O)/ 10^{-6} s$^{-1}$</th>
<th>k_o (D2O)/ 10^{-6} s$^{-1}$</th>
<th>k_H/k_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>11.6 ± 0.2 (± 0.2)a</td>
<td>11.1 ± 0.2 (± 0.1)a</td>
<td>1.29 ± 0.04</td>
</tr>
<tr>
<td>0.18</td>
<td>14.3 ± 0.3 (± 0.1)a</td>
<td>14.6 ± 0.3 (± 0.2)a</td>
<td>1.32 ± 0.04</td>
</tr>
<tr>
<td>0.27</td>
<td>19.2 ± 0.4 (± 0.2)a</td>
<td>19.0 ± 0.4 (± 0.2)a</td>
<td>1.38 ± 0.04</td>
</tr>
<tr>
<td>0.36</td>
<td>26.2 ± 0.5 (± 0.3)a</td>
<td>26.1 ± 0.5 (± 0.3)a</td>
<td></td>
</tr>
</tbody>
</table>

a) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.

Table a4.4: Pseudo-first order rate constants k_o determined by CD spectroscopy of (S)-5-((1H-indol-3-yl)methyl)-1-acetyl-2-thioxoimidazolidin-4-one (4.4) in H2O- and D2O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate 0.29, 0.22, 0.14, 0.072 and 0.036 M phosphate basic, respectively with ionic strength of 0.9 M I, pH and pH* 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Total buffer con./M</th>
<th>k_o (H2O)/ 10^{-6} s$^{-1}$</th>
<th>k_o (D2O)/ 10^{-6} s$^{-1}$</th>
<th>k_H/k_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>32.0 ± 0.6 (± 0.5)a</td>
<td>57.1 ± 1.2</td>
<td>1.02 ± 0.03</td>
</tr>
<tr>
<td>0.09</td>
<td>58.5 ± 1.2 (± 1.1)a</td>
<td>57.1 ± 1.2</td>
<td>1.02 ± 0.03</td>
</tr>
<tr>
<td>0.18</td>
<td>99.8 ± 2.0 (± 2.0)a</td>
<td>104.9 ± 2.2</td>
<td>0.95 ± 0.03</td>
</tr>
<tr>
<td>0.27</td>
<td>148.3 ± 3.5</td>
<td>153.9 ± 4.1</td>
<td>0.96 ± 0.04</td>
</tr>
<tr>
<td>0.36</td>
<td>196.4 ± 5.8</td>
<td>225.9 ± 6.2</td>
<td>0.87 ± 0.04</td>
</tr>
</tbody>
</table>

a) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.
Table a4.5: Pseudo-first-order rate constants k_o determined by CD spectroscopy of (S)-1-acetyl-5-(2-(methylthio)ethyl)-2-thioxoimidazolidin-4-one (4.5) in H$_2$O- and D$_2$O-phosphate buffer at 0.36 M, 0.27 M, 0.18 M, 0.09 M and 0.045 M total phosphate 0.29 M, 0.22 M, 0.14 M, 0.072 M and 0.036 M phosphate basic, respectively with ionic strength of 0.9 M I, pH and pH* 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Total buffer con./M</th>
<th>k_o (H$_2$O)/10$^{-6}$s$^{-1}$</th>
<th>k_o (D$_2$O)/10$^{-6}$s$^{-1}$</th>
<th>k_H/k_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.045</td>
<td>134.3 ± 2.7(± 2.3)a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.09</td>
<td>213.8 ± 4.3 (± 3.8)a</td>
<td>214.0 ± 4.3</td>
<td>1.00 ± 0.02</td>
</tr>
<tr>
<td>0.18</td>
<td>395.3 ± 10.2</td>
<td>430.3 ± 9.6</td>
<td>0.92 ± 0.02</td>
</tr>
<tr>
<td>0.27</td>
<td>558.7 ± 15.8</td>
<td>642.9 ± 16.0</td>
<td>0.87 ± 0.02</td>
</tr>
<tr>
<td>0.36</td>
<td>840.0 ± 23.9</td>
<td>869.9 ± 28.3</td>
<td>0.97 ± 0.03</td>
</tr>
</tbody>
</table>

a) Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.

Figure a4.21: Observed rate constants k_o of (S)-1-acetyl-5-methyl-2-thioxoimidazolidin-4-one (4.1) as a function of the concentration of the basic components of a) (H$_2$O-based phosphate buffer at 37 °C, 0.9 M I, pH 7.4, 0.36 M, 0.27 M, 0.18 M, 0.09, and 0.045 M, and b) D$_2$O-based phosphate buffer at 37 °C, 0.9 M I, pH* 7.4, 0.36 M, 0.27 M, 0.18 M, and 0.09 M.
Figure a4.22: Observed rate constants k_α of (S)-1-acetyl-5-benzyl-2-thioxoimidazolidin-4-one (4.2) as a function of the concentration of the basic components of a) (H$_2$O- based phosphate buffer at 37 °C, 0.9 M I, pH 7.4, 0.36 M, 0.27 M, 0.18 M, 0.09, and 0.045 M, and b) D$_2$O-based phosphate buffer at 37 °C, 0.9 M I, pH 7.4, 0.36 M, 0.27 M, 0.18 M, and 0.09 M.

Figure a4.23: Observed rate constants k_α of (S)-1-acetyl-5-isopropyl-2-thioxoimidazolidin-4-onein (4.3) as a function of the concentration of the basic components of a) (H$_2$O- based phosphate buffer at 37 °C, 0.9 M I, pH 7.4, 0.36 M, 0.27 M, 0.18 M, and 0.09, and b) D$_2$O-based phosphate buffer at 37 °C, 0.9 M I, pH 7.4, 0.36 M, 0.27 M, and 0.18 M.
Figure a4.24: Observed rate constants k_o of (S)-5-((1H-indol-3-yl)methyl)-1-acetyl-2-thioxoimidazolidin-4-one (4.4) as a function of the concentration of the basic components of a) (H$_2$O- based phosphate buffer at 37 °C, 0.9 M I, pH 7.4, 0.36 M, 0.27 M, 0.18 M, 0.09, and 0.045 M, and b) D$_2$O-based phosphate buffer at 37 °C, 0.9 M I, pH$^+$ 7.4, 0.36 M, 0.27 M, 0.18 M, and 0.09 M.

Figure a4.25: Observed rate constants k_o of (S)-1-acetyl-5-(2-(methylthio)ethyl)-2-thioxoimidazolidin-4-one (4.5) as a function of the concentration of the basic components of a) (H$_2$O- based phosphate buffer at 37 °C, 0.9 M I, pH 7.4, 0.36 M, 0.27 M, 0.18 M, 0.09, and 0.045 M, and b) D$_2$O-based phosphate buffer at 37 °C, 0.9 M I, pH$^+$ 7.4, 0.36 M, 0.27 M, 0.18 M, and 0.09 M.
Figure a4.26: Observed rate constants of racemisation k_{rac} determined by Equation 4.5 for compounds a) 4.1, b) 4.2, c) 4.3, d) 4.4 and e) 4.5 as a function of the concentration of the basic components of (H$_2$O-based total phosphate buffer at 37 °C, 0.9 M I, pH 7.4, 0.36 M, 0.27 M, 0.18 M, 0.09, and 0.045 M.
Table a4.6: Second-order rate constants for buffer-catalysed k_o, determined from Figures a4.21-a4.25 and k_{rac} obtained in Figure a4.26 and the combined uncatalysed, deuteroxide-catalysed and hydronium-catalysed k_{in} observed in Figures a4.21-a4.26 for 4.1-4.5 in H$_2$O phosphate buffers, 0.9 M I, pH and pH 7.4 at 37 °C.

<table>
<thead>
<tr>
<th>Comp.</th>
<th>k_o / 10^{-6} s$^{-1}$ M$^{-1}$</th>
<th>k_{in} / 10^{-6} s$^{-1}$</th>
<th>k_{rac,H_2O} / 10^{-6}M$^{-1}$ s$^{-1}$</th>
<th>k_{in} / 10^{-6} s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>763 ± 29</td>
<td>16.5 ± 2.3</td>
<td>735 ± 30</td>
<td>6.5 ± 2.5</td>
</tr>
<tr>
<td>4.2</td>
<td>1356 ± 86</td>
<td>14 ± 6.7</td>
<td>1347 ± 86</td>
<td>9.3 ± 6.7</td>
</tr>
<tr>
<td>4.3</td>
<td>61.3 ± 9.4</td>
<td>6.6 ± 1.5</td>
<td>45.0 ± 9.0</td>
<td>0.4 ± 1.7</td>
</tr>
<tr>
<td>4.4</td>
<td>646 ± 19.4</td>
<td>9.3 ± 1.4</td>
<td>636 ± 19</td>
<td>5.7 ± 1.4</td>
</tr>
<tr>
<td>4.5</td>
<td>2495 ± 131</td>
<td>41.7 ± 9.0</td>
<td>2465 ± 131</td>
<td>35.0 ± 9.0</td>
</tr>
</tbody>
</table>
A4.2. Brønsted plot for proton transfer

Figure a4.27: Observed rate constants of racemisation determined by Equation 4.5 for 4.1 a) acetate, b) phosphate, and c) TRIS buffer as a function of the concentration of the basic components of (H₂O-based buffer at 37 °C, 0.9 M I, pH 5.0, 7.4, and 8.2, respectively.
Table a4.7: The pKₐ, kₒ, and krac of 4.1 in acetate, phosphate, and TRIS buffers at 0.9 M I, pH 5.0, 7.4, 8.2 and 9.7, respectively.

<table>
<thead>
<tr>
<th>Buffers</th>
<th>pKₐ</th>
<th>kₒ (H₂O) / 10⁶ s⁻¹ M⁻¹</th>
<th>krac (H₂O) / 10⁶ s⁻¹ M⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetate</td>
<td>4.59ᵃ</td>
<td>246.0 ± 18.0</td>
<td>253.5 ± 13.0</td>
</tr>
<tr>
<td>phosphate</td>
<td>6.8ᵇ</td>
<td>763 ± 28</td>
<td>735 ± 30</td>
</tr>
<tr>
<td>TRIS</td>
<td>7.88ᵃ</td>
<td>1381 ± 127</td>
<td>1248 ± 139</td>
</tr>
</tbody>
</table>

Figure a4.28: Bronsted plot for the base-catalysed racemisation of a) deprotonated 4.1 data and b) protonated 4.1 data from Table h 4.7.
A4.3. Racemisation of tri-substituted 2-thiohydantoin

Figure a4.29: Change in ellipticity over time for solutions of 4.7 in H$_2$O-phosphate buffer at a) 0.009 M, b) 0.018 M, c) 0.027 M, d) 0.036 M and e) 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.30: Change in ellipticity over time for solutions of 4.7 in D$_2$O-phosphate buffer at a) 0.009 M, b) 0.018 M, c) 0.027 M, d) 0.036 M and e) 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.31: Change in ellipticity over time for solutions of 4.8 in H$_2$O-phosphate buffer at a) 0.009 M, b) 0.018 M, c) 0.027 M, d) 0.036 M and e) 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.32: Change in ellipticity over time for solutions of 4.8 in D$_2$O-phosphate buffer at a) 0.009 M, b) 0.018 M, c) 0.027 M, d) 0.036 M and e) 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.33: The ellipticities of 4.7 at 272 nm versus time in H2O-phosphate buffer at a) 0.009 M, b) 0.018 M, c) 0.027 M, d) 0.036 M and e) 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.34: The ellipticities of 4.7 at 272 nm versus time in D$_2$O-phosphate buffer at a) 0.009 M, b) 0.018 M, c) 0.027 M, d) 0.036 M and e) 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.35: The ellipticities of 4.8 at 271 nm in H$_2$O-phosphate buffer at a) 0.009 M, b) 0.018 M, c) 0.027 M, d) 0.036 M and e) 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.36: The ellipticities of 4.8 at 271 nm in D$_2$O-phosphate buffer at a) 0.009 M, b) 0.018 M, c) 0.027 M, d) 0.036 M and e) 0.045 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C.
Figure a4.37: Observed rate constants of racemisation of (R)-5-benzyl-3-phenyl-1-(pyridin-2-ylmethyl)-2-thioxoimidazolidin-4-one (4.7) at 272 nm as a function of the concentration of the basic components of a) (H₂O- based phosphate buffer at 37 °C, 0.9 M I, pH 7.4, 0.045 M, 0.036 M, 0.027 M, 0.018 M, and 0.09 and b) D₂O-based phosphate buffer at 37 °C, 0.9 M I, pH* 7.4, 0.045 M, 0.036 M, 0.027 M, 0.018 M, and 0.09 M.

Figure a4.38: Observed rate constants of racemisation of (S)-5-isopropyl-3-phenyl-1-(pyridin-2-ylmethyl)-2-thioxoimidazolidin-4-one (4.8) at 271 nm as a function of the concentration of the basic components of a) (H₂O- based phosphate buffer at 37 °C, 0.9 M I, pH 7.4, 0.045 M, 0.036 M, 0.027 M, 0.018 M, and 0.09 and b) D₂O-based phosphate buffer at 37 °C, 0.9 M I, pH* 7.4, 0.045 M, 0.036 M, 0.027 M, 0.018 M, and 0.09 M.
Table a4.8: Pseudo-first-order rate constants \(k_0 \) determined by CD spectroscopy of \((R)-5\)-benzyl-3-phenyl-1-(pyridin-2-ylmethyl)-2-thioxoimidazolidin-4-one (4.7) at 272 nm in H\(_2\)O and D\(_2\)O phosphate buffer at 0.045, 0.036 M, 0.027 M, 0.018 M, and 0.09 M total phosphate and 0.036, 0.029, 0.022, 0.014 and 0.0072 M phosphate basic, respectively with ionic strength of 0.9 M \(I \), pH and pH* 7.4 at 37 °C.

<table>
<thead>
<tr>
<th>Comp. (4.7)</th>
<th>(k_0 (H_2O) / 10^6 \text{ s}^{-1})</th>
<th>(k_0 (D_2O) / 10^6 \text{ s}^{-1})</th>
<th>(k_H/k_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.009</td>
<td>3005 ± 96</td>
<td>2703 ± 86</td>
<td>1.11 ± 0.05</td>
</tr>
<tr>
<td>0.018</td>
<td>3147 ± 90</td>
<td>2894 ± 99</td>
<td>1.09 ± 0.05</td>
</tr>
<tr>
<td>0.027</td>
<td>4060 ± 163</td>
<td>3670 ± 126</td>
<td>1.11±0.06</td>
</tr>
<tr>
<td>0.036</td>
<td>4460 ± 147</td>
<td>4130 ± 181</td>
<td>1.08 ± 0.06</td>
</tr>
<tr>
<td>0.045</td>
<td>5360 ± 198</td>
<td>4890 ± 214</td>
<td>1.10 ± 0.06</td>
</tr>
</tbody>
</table>

Table a4.9: Pseudo-first-order rate constants \(k_0 \) determined by CD spectroscopy of \((S)-5\)-isopropyl-3-phenyl-1-(pyridin-2-ylmethyl)-2-thioxoimidazolidin-4-one (4.8) at 271 nm in H\(_2\)O and D\(_2\)O-phosphate buffer at 0.045, 0.036 M, 0.027 M, 0.018 M, and 0.09 M total phosphate and 0.036, 0.029, 0.022, 0.014 and 0.0072 M phosphate basic, respectively with ionic strength of 0.9 M \(I \), pH and pH* 7.4 at 37 °C.

<table>
<thead>
<tr>
<th>Comp. (4.8)</th>
<th>(k_0 (H_2O) / 10^6 \text{ s}^{-1})</th>
<th>(k_0 (D_2O) / 10^6 \text{ s}^{-1})</th>
<th>(k_H/k_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.009</td>
<td>380.4 ± 7.2</td>
<td>327.3 ± 5.5</td>
<td>1.16 ± 0.03</td>
</tr>
<tr>
<td>0.018</td>
<td>387.3 ± 7.9</td>
<td>375.3 ± 6.7</td>
<td>1.03 ± 0.03</td>
</tr>
<tr>
<td>0.027</td>
<td>452.4 ± 11.3</td>
<td>395.9 ± 7.5</td>
<td>1.14 ± 0.04</td>
</tr>
<tr>
<td>0.036</td>
<td>508.0 ± 10.7</td>
<td>433.0 ± 7.7</td>
<td>1.17 ± 0.03</td>
</tr>
<tr>
<td>0.045</td>
<td>513.0 ± 13.8</td>
<td>462.5 ± 8.8</td>
<td>1.11 ± 0.04</td>
</tr>
</tbody>
</table>
A4.4. Racemisation of 5-substituted 2-thiohydantoins

Figure a4.39: Chromatogram of compounds a) 4.15 and b) 4.16 by using 70% of Water and 30% of methanol with the flow rate of 1.0 ml/min at room temperature. The chiral column of Astec CHIROBIOTIC T, 25 cm x 4.6 mm, 5 μm particles.
Appendix 4

for Chapter 5

Kinetics of H/D exchange and racemisation for substituted 2-thiohydantoin and related compounds
A5.1 The hydrogen/deuterium exchange of 5-substituted 1-acetyl-2-thiohydantoins

Figure a5.1: Relative integration of 5.1 in D2O-phosphate buffer at a) 0.09 M, b) 0.18 M, c) 0.27 M and d) 0.36 M total phosphate with ionic strength of 0.9 M I, pH* 7.4 at 37 °C obtained by 1H-NMR spectroscopy plotted versus time. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo first-order kinetics.
Figure a5.2: Relative integration of 5.3 in D$_2$O-phosphate buffer at a) 0.18 M, b) 0.27 M and c) 0.36 M total phosphate with ionic strength of 0.9 M I, pH* 7.4 at 37 °C obtained by 1H-NMR spectroscopy plotted versus time. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Table a5.1: Pseudo-first-order rate constants $k_{\text{H/D}}$ determined by 1H-NMR spectroscopy of (S)-1-acetyl-5-methyl-2-thioxoimidazolidin-4-one (5.1) in D$_2$O phosphate buffer at 0.36, 0.27, 0.18, and 0.09 total phosphate and 0.29, 0.22, 0.14, and 0.072 M basic phosphate buffer, respectively with ionic strength of 0.9 M I, pH* 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Total phosphate</th>
<th>Basic phosphate</th>
<th>$k_{\text{H/D}}$ (D$_2$O)/10^6 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.072</td>
<td>83.5 ± 3.2</td>
</tr>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>144.4 ± 5.1</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>210.9 ± 6.7</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>274.0 ± 11.1</td>
</tr>
</tbody>
</table>

Table a5.2: Pseudo-first-order rate constants $k_{\text{H/D}}$ determined by 1H-NMR spectroscopy of (S)-1-acetyl-5-isopropyl-2-thioxoimidazolidin-4-one (5.3) in D$_2$O-phosphate buffer at 0.36, 0.27, and 0.18, total phosphate and 0.29, 0.22, and 0.14 basic phosphate buffer, respectively with ionic strength of 0.9 M I, pH* 7.4 and 37 °C.

<table>
<thead>
<tr>
<th>Total phosphate</th>
<th>Basic phosphate</th>
<th>$k_{\text{H/D}}$ (D$_2$O)/10^6 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.14</td>
<td>11.7 ± 0.2 (± 0.1)a</td>
</tr>
<tr>
<td>0.27</td>
<td>0.22</td>
<td>14.8 ± 0.3 (± 0.2)a</td>
</tr>
<tr>
<td>0.36</td>
<td>0.29</td>
<td>21.1 ± 0.4</td>
</tr>
</tbody>
</table>

Where the error from the data fit is reported as less than 2% of the rate constant, an error of 2% was assumed. Values in brackets are the errors from the data fit which are less than 2%.
Figure a5.3: Second-order rate constants for buffer-catalysed of H/D exchange by 1H-NMR spectroscopy of a) 5.1, and b) 5.3 in D$_2$O-phosphate buffers, 0.9 M I, pH* 7.4 at 37 °C.

Figure a5.4: Relative integration of a) 5.2 and b) 5.4 in D$_2$O-phosphate buffer at 0.09 M total phosphate with ionic strength of 0.9 M I, pH* 7.4 at 37 °C obtained by 1H-NMR spectroscopy plotted versus time by using 10% of d$_3$-ACN. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a5.5: Relative integration of 5.5 with a) correcting phase b) without correcting the phase of base line of 1H-NMR spectra by Mestrenova in D$_2$O-phosphate buffer at 0.09 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C obtained by 1H-NMR spectroscopy plotted versus time by using 10% of d$_3$-ACN. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics. The weight average equation (See Chapter 5) for rate constant of a) and b) was used to obtained the observed rate constant of H/D exchange and reported in Table 5.3.

Figure a5.6: Relative integration of 5.6 in D$_2$O-phosphate buffer at 0.09 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C obtained by 1H-NMR spectroscopy plotted versus time by using 10% of d$_3$-ACN. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
A5.2. The H/D exchange process of 5-substituted 2-thiohydantoin s

Figure a5.7: Relative integration of a) 5.7, b) 5.8, c) 5.9, and d) 5.10 in D₂O-phosphate buffer at 0.009 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C obtained by ⁱH-NMR spectroscopy plotted versus time by using 10% of d₃-ACN. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a5.8: Relative integration of a) 5.11, b) 5.12, c) 5.13, and d) 5.14 in D$_2$O-phosphate buffer at 0.009 M total phosphate with ionic strength of 0.9 M I, pH$^\circ$ 7.4 at 37 °C obtained by 1H-NMR spectroscopy plotted versus time by using 10% of d$_3$-ACN. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
A5.3. The H/D exchange process of 3-phenyl-5-benzyl-2-thiohydantoin

Figure a5.9: Relative integration of 5.15 in D$_2$O-phosphate buffer at 0.008 M total phosphate with ionic strength of 0.8 M I, pH 7.4 at 37 °C obtained by 1H-NMR spectroscopy plotted versus time by using 20% of d$_3$-ACN. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
A5.4. The H/D exchange process of 5-substituted thiazolidine-2,4-diones

Figure a5.10: Relative integration of 5.21 in D$_2$O-phosphate buffer at a) 0.09 M, b) 0.18 M, and c) 0.27 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C obtained by 1H-NMR spectroscopy plotted versus time. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a5.11: Relative integration of 5.22 in D$_2$O-phosphate buffer at a) 0.09 M, b) 0.18 M, and c) 0.27 M total phosphate with ionic strength of 0.9 M I, pH 7.4 at 37 °C obtained by 1H-NMR spectroscopy plotted versus time. The squares (■) are the experimental points, and the red solid lines are the fits to pseudo-first-order kinetics.
Figure a5.12: Second-order rate constants for buffer-catalysed of H/D exchange by 1H-NMR spectroscopy of a) 5.21, and b) 5.22 in D$_2$O-phosphate buffers, 0.9 M I, pH* 7.4 at 37 °C.