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ULK1 - Unc-51 like kinase.




52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

FLCN is a novel regulator of autophagy

Abstract

Birt-Hogg-Dubé (BHD) syndrome is a rare autosomal dominant condition caused byonsuatithe
FLCN gene and characterised by benign hair follicle tumours, pneumothorax and renal caricelinFoll
(FLCN), the protein product of thELCN gene, is a poorly characterised tumour suppressor protein,
currently linked to multiple cellular pathways. Autophagy maintains cellular hdas®9y removing
damaged organelles and macromolecules. Although the autophagy kinase, ULK1, is knowe to dr
autophagy, the mechanisms are not fully elucidated and few ULK1 substrates have bdeeditent
date. Here, we identify that loss of FLCN moderately impairs basal autophagiavHile re-expression

of FLCN rescues autophagy. We reveal that FLCN is a new substrate of Wdkdluidate three novel
ULK1-mediated phosphorylation sites (Ser406, Ser537 and Ser542) within FLCN. In additioK1-
mediated phosphorylation of FLCN, our findings demonstrate that FLCN interitlcta gecond integral
component of the autophagy machinery, GABARAP. The FLCN-GABARAP associatioodiglated by

the presence of either FNIP1 or FNIP2. This FLCN-GABARAP interaction is furthelated by ULK1
through ULK1 phosphorylation of FLCN. As observed by elevation of GABARAP, SQSTM1 and LC3 in
chromophobe and clear cell tumours from a BHD patient, we uncover that autophagy rednipai
BHD-associated renal tumours. Consequently, this work reveals a novel facet of auteghéation by
ULK1 and substantially contributes to our understanding of FLCN functionribyng it directly to

autophagy through GABARAP and ULK1.

Keywords: Autophagy, FLCN, ULK1, GABARAP, BHD, SQSTM1, LC3B
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Introduction

Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conpeoeceds where
intracellular lipid and protein components are broken down to replenish cellular emergymino acid
supplies. Autophagy also removes protein aggregates, redundant macromolecules andiotgéfunct
organelles that, if not efficiently recycled, contribute to cell stress andequantly diseaseFor
example, autophagy plays both pro- and anti-oncogenic roles in cancer developmergvfw seeref.

1), while defects result in age-related cardiomyogfatind can lead to marked neurodegeneratfon.
Autophagy involves sequestering cytoplasmic material in double-membraned svekimen as
autophagosomes, which subsequently fuse with lysosomes to form autolysosomes. Onazctussyon
lysosomal hydrolases degrade sequestered material allowing permeases to transpogcatsi and
lipids into the cytoplasm for use in either biosynthesis or the geoeratienergy (for a revieweeref.

5).

Yeast screens uncovered over 30 autophagy-rel&t€6)(genes, many of which are recruited to the
phagophore assembly site, a pre-autophagosomal membrane structure. ATG8 is conjugated to
phosphatidylethanolamine (PE) and selectively incorporated into autophagosomes,inaakarmgmonly

used autophagy marker. Mammals have two ATG8 subfamilies, the microtubule-associated pgitein 1 li
chain 3 (MAP1LC3, commonly called LC3) subgroup and #aminobutyric acid receptor-associated
protein (GABARAP)/Golgi-associated ATPase enhancer of 16 kDa (GATEsL®family. Both
mammalian ATG8 subfamilies are modified by PE conjugation, localise to autophagbsomesre
essential for autophagy. Current evidence indicates that LC3 and GABAR/AR different stages of

autophagosome formatidn.

The Unc-51 like kinase (ULK1) (the mammalian equivalent tflA acts at the most upstream step of

autophagy. ULK1 is a serine/threonine kinase that functions within a complex containir@13,
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FIP200 and ATG101 to drive autophagosome formafiohThis kinase complex is positively regulated
by many internal ULK1-mediated phosphorylation events, including ULK1 autophosphoryfafiofiin
addition, when energy and nutrients are plentiful, the mechanistic targetpamycin complex 1
(MTORCL1) promotes cell growth in part by inhibiting autophagy via phosphanylafi ULK1 X!
Conversely, during energy and nutrient stress when cell growth is not fedditffedependent protein
kinase (AMPK) interacts with and phosphorylates ULK1 to enhance autophiddgyownstream ULK1
substrates have remath largely elusive. AMBRAL1 was the first ULK1 substrate identified tisat
integral to the autophagy machinErput is not a component of the ULK1-ATG13-FIP200 complex.
More recently, ULK1 phosphorylation of ATG9 has been identified as an importantdategm
expansion of the isolation membrafie ULK1 is known to indirectly impact autophagy avi

phosphorylation of both AMPR and Raptor within mTORC*:%

Mutations inFLCN are responsible for Birt-Hogg-Dubé (BHD) syndrome (MIM #135150), characterised
by benign hair follicle tumours, pneumothorax, cysts and renal c&r#ED is a ciliopathy and FLCN is
localised at primary ciliag®® Interestingly, a compromised ability to activate autophagy has been
hypothesised to underlie some ciliopatHfesising the possibility that autophagy may be altered in BHD
syndrome. In support of this autophagy connection, FLCN was recently shown to localisestorigs

and modulate nutrient sensing through the Rag small G prétéisiven these findings, we wanted to
ascertain whether autophagy is compromised in BHD syndrome. Our study uncdirdebetween
autophagy and BHD syndrome, revealing that FLCN is an important component afittphagy

machinery and is a downstream substrate of ULK1.
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Results

Loss of FLCN affects SQSTM1 expressiofSequestome-1 (SQSTM1, also known as p62) is an
established marker of autophagy, which associates with autophagosomes and is degraded during
autophagy?® Of interest, SQSTML1 is often ampéfiin renal cell carcinom#. Given that BHD syndrome
predisposes patients to renal cell carcinoma, we analysed wiiG& loss could enhance SQSTM1
protein levels. Previously, it was observed that tumour initiation via cystogenesis occuriedrleith/-

mice upon loss oFlcn in renal proximal tubule celfé. Therefore, we utilised human renal proximal
tubule (HK2) cells with stabld=LCN knockdown for our studies. We observed higher endogenous
SQSTM1 protein expression iRLCN-deficient cells compared to control cells, which was more
pronounced under normal growth conditions (Fig. 1A), implying FLCN may play & inolbasal
autophagy, but may be dispensable for acute starvation-induced autophagy. We also obserlad a simi
pattern inFlcn” mouse embryonic fibroblasts (MEFs) (Fig. S1A). We treeexpressed FLCN iffLCN-
deficient HK2 cells under normal growth conditions and co-expressed HA-SQSTM1 toicsyigcif
measure autophagy in the transfected cells. As indicated by reduced SQ®&¥EMfression of FLCN
restored a higher level of basal autophagy (Fig. 1B). Immunohistochemistry reveabted SQSTM1
protein levels in a BHD patient renal tumour (with a ¢.499C>T mutation encodingcatedn-LCN
mutant, pGIn167X) when compared to unaffected tissue (Fig. 1C). Collectivelgathiseveals that the

protein expression of SQSTML1 is negatively regulated by FLCN.

FLCN-deficient cells exhibit impaired autophagyWe wanted to examine whether this elevation of
SQSTML1 protein might be due to autophagy defects ifrti@EN-deficient cells. We assessed autophagic
flux using a vector expressing tandem red and green fluorescent proggd-taG3 (RFP-GFP-LC3),
which works on the principle that the GFP signal is less stable in the awidicranent of the lysosome
than the RFP signdf. Of the cells displaying multiple puncta under normal growth conditions, we
detected proportionally fewer red puncta in #ieCN knockdown HK2 cells (Fig. 2A-B), indicating

impaired maturation of autophagosomes (reduced fusion of autophagosomes with lysosomes), and
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therefore reduced autophagic flux. This fits with our finding of SQSTM1 accuowldtie to lack of
degradation in lysosomes. Interestingly, in both HK2 cells (Fig. 2C) and HEK#S3Fig. 2D) FLCN
knockdown causes a reduction in LC3B-IlI conversion following chloroquine treatmenterfurbation

of autophagosome maturation would be expected to allow an accumulation ofilL, @&3iB-suggests that
autophagosome synthesis may also be modestly impaireEdGhl-deficient cells. Analysis of another
mammalian ATG8 orthologue, GABARAP, which has a potential role in régglthe sealing process
needed for autophagosome maturafisavealed enhanced endogenous GABARAP expression in both
FLCN-deficient HK2 and HEK293 cells (Fig. 20}. This elevation of GABARAP protein was not due to
enhancedGABARAPgene expression, as mRNA levels were comparable between the cell lines (Fig.
S1B). Overall, this data indicates an impaired autophagy pathway operates bseheeaof FLCN,

along with altered GABARAP processing.

FLCN interacts with GABARAP in the presence of FNIP1 andil-FLCN binding partner, FNIP1, was
recently shown to interact with GABARAP Combined with our finding of enhanced GABARAP levels
in FLCN-deficient cells, we wished to explore this connection further. Unbiased GABAR®&raction
mass spectrometry was performed, and we identified eight high-confidearting proteins (Fig. 3A),
including both FNIP1 and FLCN (FLCN peptide identification shown in Fig. S¥¥g confirmed the
FLCN-GABARAP interaction using ain vitro binding assay and could detect endogenous FLCN
interaction with bacterially generated recombinant GABARAP protein (Fig. BB}N interacted more
strongly with GABARAP than LC3B, a member of the other ATG8 subfamily (&), suggesting
enhanced specificity for GABARAP family members. Interestingly, the inierabetween FLCN and
GABARAP in vivo in mammalian cells was not detectable unless FNIP1/2 was also present. FNIP2
especially was able to potently enhance the interaction (Fig. 3D). Thectiderna mammalian cells was
clearly specific for GABARAP, and not LC3B. We further confirmed this stongteraction of
GABARAP to FLCN-FNIP1/2 by usingn vitro binding assays with recombinant GABARAP protein

(Fig. S2B). Immunofluorescence analysis revealed co-localisation of FLCN WBARAP at punctate
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structures when co-expressed with FNIP2 (Fig. 3E). Overall, these data rev&alGNIENIP interacts

with the autophagy machinery via GABARAP.

FLCN does not function upstream of ULKULK1 is a key activator of the autophagy cascade aand
known GABARAP interactof> We observed a weak interaction betwaéhtagged ULK1 and HA-
FLCN (Fig. 4A), which suggests that FLCN might influence autophagy at the level of ULK%. Th
FLCN-ULK1 interaction was markedly enhanced when ULK1 contained a kinasevatengi mutation
(K46l, referred to as kinase-dead). In a reciprocal experiment, immunopataipHA-FLCN similarly

showed a more robust interaction with kinase-dead ULK1 (Fig).S3A

To determine whether this observed FLCN-ULK1 interaction had a cellular funet®nanalysed
whether ULK1 activity could be modulated B5LCN knockdown. To do this, & examined the
comparative activity of both AMPK and mTORCL1, as these signalling pathavayknown to impact
autophagy through ULK1 phosphorylatitht? *>*’ AMPK activates autophagy via phosphorylation of
ULK1 at Ser555° while Ser758 phosphorylation of ULK1 by mTORC1 is inhibitory and appears to
modulate ULK1-AMPK interaction®!’ Both AMPK and mTORC1 have also been previously linked to
FLCN.2"% 3% |n control HK2 cells, starvation potently induced the phosphorylation of ULKtheat
AMPK-mediated site (Ser555), while growth media induced the phosphorylation of the niTSHRC
(Ser758) (Fig. 4B). Importantly, we did not notice any marked differences inetleés of ULK1
phosphorylation upoRLCN knockdown, except a modest elevation in ULK1 phosphorylation at Ser758
under starvation conditions. Through ULK1 kinase assays, we further confinateehdogenous ULK1

activity was not significantly impacted upon los=CN (Fig. 40.

ULK1 phosphorylates FLCN Unlike wild-type ULK1, kinase dead ULK1 is predominantly found in a
larger 1.2 MDa complex, suggesting that autophosphorylation as well as substrate phogphasylat

necessary for normal interaction dynamics between ULK1 and sub&fratesild-type ULK1 appears
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to weakly interact with FLCN compared to kinase-dead ULK1 (Fig. 4A), this &naingiteraction might

be modulated through ULK1 phosphorylatidro determine whether ULK1 phosphorylates FLCN w

[ 3*?PJ-orthophosphate radiolabelled HEK293 cells expressing HA-FIrONvo and determined $P)-
incorporation into HA-FLCN in the presence or absence of ULK1l. We observed tidt phtently
induced FLCN phosphorylatian vivo (Fig. 5A), implying that ULK1 might function upstream of FLCN.
To test whether ULK1 directly phosphorylates FLCN, we perforimnedtro ULK1 kinase assays towards
FLCN and a known ULK1 substrate, ATGY3! We found that wild-type ULK1 robustly
phosphorylated both FLCN and ATG#8 vitro, whereas no phosphorylation was detected with kinase
dead ULK1 (Fig. 5B). This data reveals that FLCN is directly phosphorylated byl ULlrough mass
spectrometry, we identified multiple ULK1-mediated phosphorylation evemtartls FLCN in cells
Within the C-terminus of FLCN, we observed three new phosphorylation sites (Ser406, Ser537 and
Ser542), which were unique to FLCN when co-expressed with wild-type ULK1 butimegekdead
ULK1 (Fig. 5C and S3B-D). The Ser406 signal was not localised, but the chisrsiative candidate
phosphorylation site is Ser407, which is not as well conserved between species (FithesGther two
localised ULK1 sites, Ser537 and Ser542, are well conserved between species (Figddtinal
ULK1-mediated phosphorylation sites were observed in the linker region of FLCNLE6BENB317), but
theseresidues are poorly conserved amongst species (Fig. 83 ructural model showing the three
best conserved ULK1l-mediated phosphorylation sites of FLCN was generated frorecémtly
determined C-terminal crystal structure of FLCN (Fig. 2Dfrom the crystal structure [PDB Id: 3V42],
we observed that all three ULK1 phosphorylation sites are solvent exposed to rihending

environment, making them accessible for phosphorylation.

ULK1 modulates the FLCN-GABARAP complex o determine whether FLCN phosphorylation by
ULK1 had a functional consequence, we analysed the FLCN-FNIP2-GABARAP complex in the presence
of over-expressed ULK1. We found that expression of wild-type ULK1 impaired tBeadtion of

GABARAP with FLCN/FNIP2, whereas ithinteraction remained intact in the presence of kinase dead
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ULK1 (Fig. 6A). In agreement with the literatuf®, ULK1 was also found in the GABARAP
immunoprecipitates. In support of the finding that ULK1 modulates the FLCNARX® interaction,
knockdown of endogenous ULK1 expression by shRNA under normal growth conditions markedly
strengtherd the interaction between FLCN/FNIP2 and GABARAP (Fig).6Collectively, this data
implies that the kinase activity of ULK1 is required for FLCN/FNIP2 dissimeisfrom GABARAP. To
determine whether the three identified phosphorylation sites in FLCNimpogtant for modulating the
interaction, we tested the vitro binding of both wild-type and a triple seritealanine FLCN mutant

(3A) to bacterially expressed GST-GABARAP or GST-LC3B as bait. Loss df {itessphorylation sites
modestly enhanced binding of FLCN to GABARAP and LC3B (Fig. 6C). As obserestpsly (Fig.

3C), FLCN preferentially bound to GABARAP. However, when we tested the girefd-LCN(3A)-
GABARAP binding in mammalian cells, we found that ULK1 expression could stilecdisassembly of

the complex (data not shown). This suggests that additional ULK1-mediated phospiogyatits (i.e.,
additional sites within FLCN and/or FNIP2) further regulate formation oftteN-FNIP2-GABARAP
complex in cells. However, we observed slight impairment in the ability of the FLCN(3A) muitdnive
autophagy in cells, as determined by a modest repression of SQSTM1 expression when compared to wild-

type FLCN (Fig. 6D).

Patient tumours show autophagy defeai§o determine whether our findings translated to clinical
samples, we analysed SQSTML1 protein levels along with the ATG8yfamsimbers, GABARAP and
LC3, in a BHD patient renal tumour containing two mutated copieBLGIN (a ¢.499C>T mutation
(encoding a truncated FLCN mutant, pGIn167X) in one allele and deletion of exon @®thehalleld.*

We found that SQSTM1 an@ABARAP proteins were elevated in both chromophobe and clear cell
sections of the tumour when compared to normal control kidney tissue, with stightiah of LC3 (Fig.
7A). The observation of raised LC3 and SQSTM1 protein levels could indicate a ldotkabe
autophagic pathway, preventing proper autophagic flux. We next determined whether FL&MNsmut

exhibited altered association with ULK1 and GABARAP. We tested ULK1 interagtith a panel of

10
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BHD-patient derived mutations (curated in the Leiden Open Variation DataWseliscovered that the
C-terminal truncating mutations (Y463X and H429X) interacted more avidly with ULK1 ttteaT evild-
type FLCN or a BHD patient-derived point mutation, K508R (Fig. 7B). This stgyges the extreme C-
terminus of FLCN does not bind directly to ULK1 and may play a role in dissatifidon ULK1. In
contrast, these truncation mutants of FLCN show impaired binding to GABARAP (Fig. 7C
Additionally, the mutants were not able to repress SQSTM1 levels as effi@snthld-type FLCN (Fig.
7D). Collectively, our data suggest that FLCN functions as a positive madotatotophagy, where loss

of FLCN impairs basal autophagy, bathvitro and in the disease setting.

Discussion

In this study, we discover that FLCN is a new ULK1 substrate, and Ru@Nphorylation by ULK1
modulates the interaction of FLCN-FNIP2 with the autophagy component, GABARAP aalysis
reveals that multiple residues within FLCN are phosphorylated in an ULKidepemanner. We also
uncover that FLCN plays a positive role in autophagy, where loss of FLCNteadpaired autophagic

flux.

The binding partners of FLCN, FNIP1 and FNIP2, have previously been connected to B-cell

development? autophagy via GABARAP and the induction of apoptosis followinBNA-base

mispairing®* We reveal that FNIP2 (and to a lesser extent FNIP1) enhances FLCN-GABARAP binding

implying that FLCN functions as a complex with FNIP proteins to regulate autapbhagl of this
functional complex due t&LCN mutations in BHD syndrome could explain the impaired autophagy

observed in tumour tissue from BHD syndrome patients.

GABARAP subfamily members appear to function downstream of autophagosome menhdmgagon

in a step coupled to dissociation of the ATGIP@S-ATG16L compleX and have been hypothesised to

11



286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

FLCN is a novel regulator of autophagy

recruit and anchor the ULK1 complex on autophagosdm&sULK1, along with its binding partners,
ATG13 and FIP200, contain LC3-interacting region (LIR) motifs which prefergnt@hd to the

GABARAP subfamily of AG8 proteins™ *? As FLCN appears to ke a preference for binding
GABARAP over LC3B, it is likely that FLCN modulates autophagy throughBGRAP-dependent
processes. Additionally, FNIP2 has a potential LIR motif (Fig. S4), whil®®ENMoes not, which might

explain why FNIP2 further enhances the FLCN-GABARAP interaction.

We detected elevated SQSTML1 protein levels, as well as GABARAP and LC3Drki8Hey tumours
compared with normal kidney tissue. Interestingly, upregulation of SQSTM1 is eliservseveral
cancers, including glioblastoma multiforfiegolorectal cancét and hepatocellular carcinom&syhile
genomic amplification of th8QSTMIgene is seen in some clear cell renal cell carcin6h8@STM1 is

also overabundant in breast carfewhere its expression level correlates with poorer disease-free
survival?’ Similarly, elevated SQSTM1 is associated with poor prognosis in lung cancer patleigs
known that genetic inactivation @itg7 in mice leads to SQSTM1 accumulation and generation of
ubiquitin-positive inclusions in the liver. This then sequentially leads to adation of nuclear Nrf2,
enhanced cellular stress and hepatotox{éitgustained SQSTM1 expression has also been linked to
tumorigenesis via elevated levels of reactive oxygen species and DNA damnaagdition to enhanced

cellular migration and invasiol.A similar mechanism could operate FL.CN-deficient kidney cells,

whereby inactivation oFFLCN causes autophagy deficiencies and elevated SQSTM1 levels, and the

resulting cellular stress could promote tumour development.

Recently, both SQSTM1 and FLCN have been linked to amino acid sensing through tiretBiag and
MTORC1. SQSTM1 was found to bind the Rag protdmsfavour formation of the active Rag
heterodimer, thereby helping activate mTORC1 at the lysosbfteee publications have now linked the
FLCN/ENIP complex to the Rags at the lysosome, linking FLCN to amimbdependent mTORC1

signalling®’?° We did not detect substantially altered mTORC1 signalling folloib@N loss in our

12
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312 cell line model under normal or starved conditions, while other publications have founaceshha
313 mTORCI1 activity in animal models lackingLCN, at least in certain cell typéS.> It appears that
314 mTORCL1 signalling in the context BLLCN-deficiency is cell type dependent acan also alter during
315 tumour development in response to accumulation of other genetic mutations.

316

317 BHD syndrome has lately been reported to be a ciliopidthg, alteration to FLCN levels can cause
318 changes to the onset of ciliogenesis. Changes in FLCN levels are also associatextupition of planar
319 cell polarity and dysregulation of the canonical Wnt signalling pathwaya Aompromised ability to
320 activate the autophagic response may be an underlying feature in some cilidathgppssible that
321 there is also an association between cilia and autophagy in BHD syndrome. For iristgaded
322 autophagy could be a contributing factor to ciliary defects and renal cyst fonmatBHD syndrome
323 patients.

324

325 While our work helps refine our understanding of FLCN by revealing that FL@&racts with
326 components integral to autophagy, it is important to highlight that FLCN funigtinot just restricted to
327 autophagy or the lysosome. For instance, FLCN also interacts with p0071 (also known as piaKophil
328 involved in desmosomal and adherens junctidrié.Additionally, multiple pathways that drive cancer
329 progression can become dysregulated when FLCN expression is lost, including def&fEimediated
330 signalling®>*°enhanced hypoxia inducible factor activitagnd TFE3 activity® Therefore, FLCN appears
331 toplayabroadept KRXVHNHHSLQJY UROH LQ WKH FH pl&eDiQa@tophag@and H O\ WR
332 cellular homeostasis outside the disease setting. Although further studies aeslyéiggeems reasonable
333 to assume that impaired autophagy upon loss of FLCN expression contributes in parteto canc
334  progression in BHD patients.
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Materials and Methods

Cell Culture -StableFLCN knockdown in HK2 cells was previously descrife@lcn+/+ and -/- MEF

cells were gifted by Prof. Arnim Pause (McGill University, Canada) derivech fmice described
previously®? All cell lines were cultured in DMEM supplemented with 10 % (v/v) foetdl sium, 100

8 PO SHQLFLOOLQ DQG J PO VWU HigofgdRaire l2Q00 triamsfectiohPi ) RO R J L
used unless otherwise stated and performed according to the manufeftureSURWRFRO /)LIH 7HFKC
Cells were harvested 286 h post-transfection. Experiments were performed under normal growth
conditions, unless otherwise stated. For complete starvation, cells were washedh twlmsphate

buffered saline (PBS) and incubated in Krebs Ringer buffer (KRB) (20 mM HERHES.4), 115 mM

NaCl, 5 mM KCI, 10 mM NaHCg 2.5 mM MgC}, 2.5 mM CadJ) for 4 h.

Plasmids -V5-ULK1 wild-type and kinase dead (K46l) and GST-ATG13 have been described
previously?” HA-FLCN was generated in the pN3HA backbone (a kind gift from Dr. Sylvia Neumann,
The Scripps Research Institute, San Diego, USA) and untagged-FLCN in the pcDNA3.1 @&Jer
FLCN in pDEST27 and V5-FNIP1 in pcDNA3.1/nV5-DEST were generated using tlesv@asystem
(Life Technologies)HA-FNIP1 was a kind gift from Dr. Laura Schmidt (National Institutes e#lth,
Bethesda, USA) and myc-FNIP2 was a kind gift from Dr. O. Hino (Juntendeekdity School of
Medicine, Tokyo, Japarij. HA-SQSTM1 (Plasmid #2802%)and ptfLC3 vector (Plasmid #2107%)
were from Addgene. LC3B and GABARAP (from pDORRwere cloned into pDEST15 (Life
Technologies) or pcDNA-HA, respectively. Mutations were introduced using the QuikElitey

directed mutagenesis kit (Stratagene, Agilent Technolpgies

Antibodies Anti-HA antibody (11867423001) was purchased from Roche. fatitin (4967), phospho-
ULK1 Ser555 (5869) and Ser758 (6888) and total ULK1 (4773) antibodies were from Cell Signaling.
Anti-V5 (46-0705) vas from Life Technologies. Anti-Myc clone 9E10 antibody (M5546) was from

Sigma-Aldrich and anti-GST antibody (05-782) was from Merck Millipore. AGN was gifed from
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Prof. Arnim Pause (McGill University, Canada). Anti-SQSTML1 (p62) C-ternantéibody (GP62-C/DS-

160211) was from Progen Biotechnik GmbH. Anti-LC3 antibody for immunofluorescence and

immunohistochemistry was from Novus Biologicals (NB100-2220), for westernrigdtttm Nanotools

(0260-100/LC3-2G6). GABARAP antibody (AP1821a) was from Abgent.

shRNA knockdownJetPEI transfection mixtures containing® of scrambled shRNA or ULK1 shRNA

(MISSION shRNA 1-

VOFO 6LJPD ZHUH SUHSDUHG DFFRUGLQJ WR WKH F

transfection) and reverse transfected into HEK293 cells. Following incubation & f&f 24 h, plates

were then transfected with V5-FLCN, myc-FNIP2 and HA-GABARAP using thEEleprotocol

(forward transfection) and incubated for a further 28 h prior to lysis.

Immunoprecipitation, GST-pulldown and western blotti@gHs were lysed in BHD lysis buffer (20 mM

Tris, 135 mM NacCl, 5 % (v/v) glycerol, 50 mM NaF and 0.1 % (v/v) Triton X-1007@plus protease

inhibitors), centrifuged and protein quantified using Bradford reagent (Siddvact. Anti-HA and

anti-V5 coupled to Protein G-Sepharose beads (GE Healthcare Life Sciences) wereo used t

immunoprecipitate HA and V5-tagged proteins as appropriate. Immunoprecipietesvashed three

times in lysis buffer and resuspended in NUPAGE LDS sample buffer (Life Technpldggesples for

GST-pulldown were lysed in Buffer B (40 mM HEPES (pH 7.5), 120 mM NaCl, 1 mM EDTA,MO0 m

S\UR SKRVSKD WylcerophBdphate, 50 mM NaF, 1.5 mMiM@&,, 0.3% (w/v) CHAPS plus

protease inhibitors) and incubated with glutathione-Sepharose beads (GE Healtfeabeidmnces)

Beads were washed three times in lysis buffer, and GST-tagged proteins wereusinged0 mM

glutathione. Western blotting was performed as previously descfiltidts shown are representative of

at least three independent experiments.

ULK1 kinase assay Cell lysates from nutrient-replete or starved HK2 cells were immunopiageigpi

using anti-8/.

DQWLERG\

7

0XUUD\

4XHHQYYV 8QLYHUVLW\H%HOIDV!

15



390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

FLCN is a novel regulator of autophagy

captured using protein G-Sepharose (GE Healthcare Life Sciences), washed three tuowsSalt

Buffer (50 mM Tris-Cl (pH 7.5), 1 mM EGTA, 1 mM EDTA, 0.3 % (w/v) CHAPsmMM sodium
orthovanadate, 50 mM sodium fluoride, 5 mM sodium pyrophosphate, 0.27 M sucrose, 0.1 % (v/v) 2-
mercaptoethanol) and twice in Assay Buffer (20 mM HEPES (pH 7.5), 150 mM NaCl, OH %
mercaptoethanol, 25 mMeglycerophosphate, 100M orthovanadate)ln vitro ULK1 kinase assays
against GST-FLCN and GST-ATG13 (purified from HEK293 cells), were carried usitg
immunoprecipitated V5-tagged ULK1. The assay mix of immunoprecipitated ULK1, 10 mM MgAc,
substrate3 B} MBP, GST-FLCN or GST-ATG13 as required) and 180 [3*P] ATP in Assay Buffer

was incubated at 30 °C for 10 min, then quenched with sample buffer (Life Tedksplagd subjected

to SDS-PAGE. Relative levels ofPJ-incorporation were determined by autoradiography.

Immunofluorescence and image analydi#k2 cells were transfected with RFP-GFP-LC3 for 24 h, fixed
with paraformaldehyde and imaged under oil immersion at 20°C using a Leica E-&(fBcal laser
VFDQQLQJ AXRUHYV F HQ E¢icaPshffwdr® (L Eicd HNRBE)Y, Confocal images were stacked
and merged using ImageJ v1.43 software. Puncta were counted manually across fieldspté view

from >10 cells per condition, over three independent experiments. The proportiarh afea of puncta

was calculated and plotted. For co-localisation experiments, MDCK cells were transfihtepE GFP-
FLCN-WT, myc-FNIP2 and HA-GABARAP using MetaFectene Pro. After 46 h, cells washed twice

in PBS and starved in KRB containing 4.5 g/l glucose. Cells were stainednaitke-anti-HA (Cell
Signaling, 2367) and polyclonal FNIP2 antibody directed against AA117-131 of human FNIP2.
Secondary antibodies were goat-anti-rabbit-Alexa568 (Life Technologies, A11036) and goat-anti-mouse

Cy5 (Southern Biotech, 1034-15), with DAPI counterstain.

Binding of FLCN to GST-baits Bacterially expressed GST, GST-LC3B and GST-GABARAP were

purified using glutathione beads, washed in BHD lysis buffer and then incubated sate yom
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HEK293 cells transfected with HA-FLCN (WT or 3AA-FNIP1 or myc-FNIP2. Beads were washed

three times in lysis buffer, and GST-tagged proteins eluted using 10 mM glutathione.

In vivo radiolabelling- Transfected HEK293 cells were incubated in phosphate-free medium containing

0.2 mCi f?PJ-orthophosphate (PerkinElmer) for 4 h. These cells were harvested using BislDugfer.
HA-FLCN was immunoprecipitated with anti-HA antibody bound to protein G-Dynabeaifis (L

Technologies) and washed in lysis buffer.

Mass spectrometryGST-FLCN was purified from HEK293 cells co-expressing wild-type or kidase
ULK1. Samples were separated by SDS-PAGE and excised bands were subjected to a mauified in
trypsin digestion procedufé.Eluted peptides were subjected to electrospray ionization prior to LTQ-
Orbitrap mass spectrometry (Thermo Fisher). Peptide sequences wereraetdsynimatching protein or
translated nucleotide databases with the acquired fragmentation pattern by SEuemsoFinnigan§?
Modification of 79.9663 mass units to serine, threonine and tyrosine was included diatéthase

searches to determine phosphopeptides and manually inspected to ensure confidence.

Structural modelling Crystal structure coordinates used in the current manuscript are a#etbjpothe

protein data barik (PDB Id: 3V42). The model was generated using Pymol.

Immunostaining of patient tumour Fissue sections were processed using standard methoddlogy.

Sections were incubated with antibodies for LC3, GABARAP and p62/SQSTM1 antibody (610832, BD

Bioscience) in 3% (w/v) bovine serum albumin overnight at 4 °C.

GABARAP Interaction networkGABARAP interaction mass spectrometry was performed and analysed
as described previousi with the exception that autophagy interaction network baits (33 thereof) w

stably expressed using the MSCV NTAP system in A549 non-small cell lung carcinoma cell lines.
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Densitometry and statistical analysis Densitometry was performed using ImageJ v1.43 software.
6 W X G H&3Wofl sheWray ANOVA followed by LSD post-hoc testing (as appropnedeg used for

statistical analysis, with p < 0.05 taken to be significant.
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Figure Legends

Figure 1. SQSTM1 levels are elevated iFLCN-deficient cells and BHD-tumour derived tissue

(A) Control HK2 cells (non-target (NT) shRNA) and those with stable knockdowi.©N were starved
for4 hin KUHETV 5L QJHRB) % XidwhUn normal media and SQSTM1 levels were analysed.
Data is mean + S.E.M of 3 independent experiments. (B) HA-FLCN was re-expfe#ibecb-expressed
HA-SQSTM1) inFLCN knockdown HK2 cells and HA-SQSTM1 levels were analysed by western blot.
Data is mean + S.E.M of 3 independent experiments. *** p < 0.001. (C) A tumour samgleo{inhg
mixed histology of clear and chromophobe cells, and surrounding normal tissue (N\j Bbid patient

was stained for SQSTML1. The scale bar is B0

Figure 2: FLCN is a positive driver of autophagy
(A) HK2 control andFLCN knockdown cells were transfected with the ptfLC3 vector, fixed and

examined by confocal microscopy. Representative maximpltafection images of cells showing the

RFP-GFP-LC3 puncta are shown. Scale bar is?h0 Red and yellow puncta were scored across three
independent experiments (at least 30 cells per cell line in total) apdbttesl in (B) mean £ S.E.M. (C)
Control HK2 cells and those with stable knockdownFofCN were treated with 100 chloroquine
(CQ) for the indicated times. Samples were probed for conversion of LC3B (gramppadel below,
mean = S.E.M.) and GABARAP expression. (D) As for (C) but in HEK293 amills transient

knockdown ofFLCN expression. For all graphs * p < 0.05, ** p < 0.01.

Figure 3: FLCN interacts with GABARAP, which is enhanced in the presence of FNIP1/2
(A) A network of GABARAP interactors, as determined by mass spectranBir GST alone or GST-
GABARAP was used as bait, and bound endogenous FLCN was detected by westéd) Blatterially

expressed GST, GST-LC3B and GST-GABARAP was used as bait for lysatesrwitithout over-
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expression of HA-FLCN. Following GST purification, bound HA-FLCN was detectedidstern blot.
(D) V5-FLCN, HA-LC3B or HAGABARAP were expressed in HEK293 cells with FNIP proteins where
indicated. Following an HA immunoprecipitation, V5-FLCN was detected by webtet. Total blots
represent 30 % of IP input. (E) MDCK cells were transfected with EGFP-FLCNHYE-FNIP2 and
HA-GABARAP. Cells were stained with mouse-anti-HA and polyclonal FNIP2 antibody. Scake 2ar

Fm.

Figure 4: FLCN interacts with ULK1 but does not alter ULK1 activity

(A) FLCN was co-expressed with V5-tagged wild-type (WT) or kinase d€@)l (LK1 as indicated in
HEK293 cells, and subjected to V5 immunoprecipitation. FLCN bound to ULK1 was detected ésnwest
blotting. Total blots represent 40 % of IP input. (B) Control Hi€lls and those with stable knockdown
of FLCN were transfected with kinase dead ULK1 for 24 h, followed by starvatichti in KRB where
indicated. V5-tagged ULK1 was immunoprecipitated and probed for phosphorylation at @eb55
Ser758. (C) Endogenous ULK1 activity was measured by incorporatifPbfrto myelin basic protein
(MBP). The graph shows relative ULK1 activity across three independent expearimean + S.E.M.

NS = not significant, * p < 0.05.

Figure 5: ULK1 phosphorylates FLCN

(A) Incorporation of ?P] into HA-FLCNin vivo was determined in the presence and absence of ULK1.

(B) Both ATG13 and FLCN can be phosphorylated by wild-type (WT) but maiski dead (KD) ULK1
in vitro. (C) A multi-species alignment of FLCN proteins using Clustal Omega shows éh&eti406,
Ser537 and Ser542 phosphorylation sites are well conserved between species. (D)r€fasentation
of the mapped phosphorylation sites on the crystal structure of the FLCN @&kduomain (PDB Id:

3V42). The insets show a closer view of the serine residues, which are represented as sticks.
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Figure 6: ULK1 modulates the FLCN-GABARAP interaction

(A) V5-FLCN and myc-FNIP2 bound to HA-GABARAP in the presencabsence of wild-type (WT) or
kinase dead (KDNV5-ULK1 were determined by immunoprecipitating HA-GABARAP and detecting
bound proteins by western blot. Total blots represent 20% of IP input. (B) Weile transfected with
control orULK1 shRNA, along with V5-FLCN, myc-FNIP2 and HA-GABARAP and grown in complete
DMEM. Following an HA immunoprecipitationy5-FLCN and myc-FNIP2 were detected by western
blot. Total blots represent 20 % of IP input. The graphs show relative bindiNg-FLCN to HA-
GABARAP and myc-FNIP2 to HA-GABARAP as determined by densitometry acrossrfdependent
experiments, mean = S.E.M. * p < 0.05. (C) Bacterially expressed GST, GEHH «&WGGST-GABARAP
was used as bait for lysates containing HA-FLCN (WT or 3A mutant). FolpST purification,
bound HA-FLCN was detected by western blot (right panel). GST loading conga$f@wn in the left-
hand panel. (D) Wild-type (WT) FLCN, or the seriteealanine (3A) FLCN mutant, were re-expressed in
FLCN-deficient HK2 cells, along with HA-SQSTM1. HA-SQSTML1 levels were deteethby western
blot and densitometry of SQSTM1 levels from three independent experiments are ipldktedyraph

mean + S.E.M. *p < 0.05, *** p < 0.001.

Figure 7: Patient tumours and patient-derivedFLCN mutations show autophagy defects

(A) Kidney tumour tissues from a BHD patient showing mixed histologye#ratell and chromophobe
cells, were stained for SQSTM1, GABARAP and LC3 and compared to normal kitineyscale bar is
50 Fn. (B) HA-FLCN (wild-type or patient-derived mutants) was co-expressed wittay@ed wild-type
(WT) ULK1 in HEK293 cells, and subjected to V5 immunoprecipitation. FLCN bound to1UlvKs
detected by western blotting. Total blots represent 40 % of IP inputHACGABARAP was co-
expressed with untagged-FLCN (wild-type or patient-derived mutants) and mip&HNHEK293 cells,
and subjected tblA immunoprecipitation. FLCN bound 8ABARAP was detected by western blotting

Total blots represent 5 % of IP input. (D) Untagged FLCN (wiftetor mutants) was re-expressed (with
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co-expressed HA-SQSTM1) IBLCN knockdown HK2 cells and HA-SQSTML1 levels were analysed by

western blot. Data is mean + S.E.M of 5 independent experiments. * p < 0.05, ** p < 0.01.

Supplementary Figure Legends

Fig. S1: Autophagy is impaired inFlcn-deficient MEF cells

(A) FLCN-expressing or deficient MEF cells were given normal growth media oedtanKRB for 4 h.
Total cell lysates were analysed for SQSTML1 levels by western bldReigtive levels were determined
by densitometry and are plotted as mean + S.E.M. for three independent experimert£).05p(B)
GABARAPMRNA expression levels in HK2 cells expressing and deficierftlf@N were determined by

Q-PCR.

Fig. S2: The FLCN/FNIP complex binds to GABARAP

(A) The peptide sequence of the longest isoform of human FLCN is shown. Highlighteeé aeptides
identified in two technical replicate LC-MS/MS analyses of NTAP-GABKRmmunoprecipitates (first
replicate is bold, second replicate is underlined). (B) Bacterially expresSEd5BBARAP was used as
bait for lysates containing HA-FLCN with or without FNIP1 or FNIP2, wherecatéd. Following GST

purification, bound HA-FLCN was detected by western blot.

Fig. S3: Mass spectrometry reveals three ULK1-mediated phosphorylation sites on FLCN

(A) HA-FLCN was co-expressed with V5-tagged wild-type (WT) or kinase dead (KD) ULK1 astedic

in HEK293 cells, and subjected to HA immunoprecipitation. ULK1 bound to FLCN wastetbteyg
western blotting.(B-D) Mass spectrometry (LC-MS/MS) was used to determine the phosphorylated
residues of FLCN co-expressed with ULK1. (E) A multi-species alignment ofNFpteins using
Clustal Omega shows that the potential ULK1-mediated phosphorylation sites, Ser316 and Thr3l7 are no

well conserved.
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Fig. S4: FNIP2 contains a potential LIR motif
The canonical LIR motif together with a sequence comparison of LIR motifsfidénn ULK1, ATG13

and FIP200, as well as a potential LIR motif within FNIP2.
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Figure 3
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