Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

The POLARBEAR-2 experiment

Suzuki, A., Ade, Peter, Akiba, Y., Aleman, C., Arnold, K., Atlas, M., Barron, D., Borrill, J., Chapman, S., Chinone, Y., Cukierman, A., Dobbs, M., Elleflot, T., Errard, J., Fabbian, G., Feng, G., Gilbert, A., Grainger, W., Halverson, N., Hasegawa, M., Hattori, K., Hazumi, M., Holzapfel, W., Hori, Y., Inoue, Y., Jaehnig, G., Katayama, N., Keating, B., Kermish, Z., Keskitalo, R., Kisner, T., Lee, A., Matsuda, F., Matsumura, T., Morii, H., Moyerman, S., Myers, M., Navaroli, M., Nishino, H., Okamura, T., Reichart, C., Richards, P., Ross, C., Rotermund, K., Sholl, M., Siritanasak, P., Smecher, G., Stebor, N., Stompor, R., Suzuki, J., Takada, S., Takakura, S., Tomaru, T., Wilson, B., Yamaguchi, H. and Zahn, O. 2014. The POLARBEAR-2 experiment. Journal of Low Temperature Physics 176 (5-6) , pp. 719-725. 10.1007/s10909-014-1112-x

Full text not available from this repository.

Abstract

We present an overview of the design and development of the POLARBEAR-2 experiment. The POLARBEAR-2 experiment is a cosmic microwave background polarimetry experiment, which aims to characterize the small angular scale B-mode signal due to gravitational lensing and search for the large angular scale B-mode signal from inflationary gravitational waves. The experiment will have a 365 mm diameter multi-chroic focal plane filled with 7,588 polarization sensitive antenna-coupled Transition Edge Sensor bolometers and will observe at 95 and 150 GHz. The focal plane is cooled to 250 mK. The bolometers will be read-out by SQUIDs with 32× frequency domain multiplexing. The experiment will utilize high purity alumina lenses and thermal filters to achieve the required high optical throughput. A continuously rotating, cooled half-wave plate will be used to give stringent control over systematic errors. The experiment is designed to achieve a noise equivalent temperature of 5.7 μ Ks √ , and this allows us to constrain the signal from the inflationary primordial gravitational corresponding to a tensor-to-scalar ratio of r=0.01 (2σ ). POLARBEAR-2 will also be able to put a constraint on the sum of neutrino masses to 90 meV (1σ ) with POLARBEAR-2 data alone and 65 meV (1σ ) when combined with the Planck satellite. We plan to start observations in 2014 in the Atacama Desert in Chile.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Subjects: Q Science > QC Physics
Publisher: Springer
ISSN: 0022-2291
Date of Acceptance: 23 January 2014
Last Modified: 20 Feb 2019 15:47
URI: http://orca.cf.ac.uk/id/eprint/79284

Citation Data

Cited 9 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item