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Abstract:

In this paper the relative effectiveness of top-down (TD) versus bottom-up (BU) approaches is
compared for cross-sectionally forecasting aggregate and sub-aggregate demand. We assum
that the sub-aggregate demand follows a non-stationary Integrated Moving Average (IMA)
process of order one and a Single Exponential Smoothing (SES) procedure is used to
extrapolate future requirements. Such demand presass often encountered in practice and

SES is one of the standard estimators used in industry (in addition to being the optimal
estimator for an IMA process). Theoretical variances of forecast error are derived for the BU
and TD approach in order to contrast the relevant forecasting performances. The theoretical
analysis is supported by an extensive numerical investigatiboth the aggregate and sub-
aggregate level, in addition to empirically validating our findings on a real dataset from a
European superstore. The results demonstrate the increased benefit resulting from cross-
sectional forecasting in a non-stationary environment than in a stationary one. Valuable
insights are offered to demand planners and the paper closes with an agenda for further
research in this area.

Keywords. Demand Forecasting; Cross-sectional aggregation; Non-Stationary Processes;
Single Exponential Smoothing

" Corresponding author: Mohamed Zied BABAI; e-maibhamed-zied.babai@kedgebs.com

E-mail addressesac1055@coventry.ac.uk (Bahman ROSTAMI-TABAR), SyntetosA@carditika(Aris A. SYNTETOS),
yves.ducqg@ims-bordeaux.fr (Yves DUCQ).



1. INTRODUCTION

Demand forecasting is the starting point for most planning and control organizational
activities.A considerable part of the forecasting literature has been dedicated to strategies and
methods for single time series, but in reality there are often many related time series that can
be organized hierarchically and aggregated at several different levels in groups based on
products, customers, geography or other featdres hierarchical level at which forecasting
is performed then it will depend on the function the forecasts are fed into. With regards to
products (or Stock Keeping Units - SKUS) in particular, forecasting at the individual SKU
level is required for inventory control, product family forecasts may be required for Master
Production Scheduling, forecasts across a group of items ordered from the same supplier may
be required for the purpose of consolidating orders, forecasts across the items sold to a
specific large customer may determine transportation and routing decisions etc.

One intuitively appealing approach to obtain higher level forecasts sdsg-sectional
(also referred to as hierarchical) aggregatiowhich involves aggregating different items
(i.e. aggregating the requirements for different items usually in one specific time period) to
reduce variability. Existing approaches to cross-sectional forecasting usually initbbreae
bottom-up (BU) or a top-down (TD) approach (or a combination of the two). When
forecasting at the aggregate level is of interest, the former involves the aggregation of
individual SKU forecasts to the group level whereas the latter relates to forecasting directly at
the group level (i.e. first aggregate requirements and then extrapolate directly at the aggregate
level). When the emphasis is on forecasting at the sub-aggregate level, then bottom-up relates
to direct extrapolation at the sub-aggregate level whereas top-down involees th
disaggregation of the forecasts produced directly at the group level (Gross and Schl, 1990
Widiarta et al., 2007). An important issue that has attracted the attention of many researchers
as well as practitioners over the last few decades is the (relative) effectiveness @bsach
sectional forecasting approaches.

TD and BU are extremely useful towards improving the accuracy of forecasts and plans
when leveraged within an S&OP (Sales and Operations Planning) process (Lapide, 2006)
The S&OP is a multi-functional process that involves managers from all departments (Sales,
Customer Service, Supply Chain, Matkg, Manufacturing, Logistics, Procurement and
Financ@, where each department requires different levels of demand forecasts (Lapide, 2004).
For example, in marketing, forecasting of revenues by product groups and brands is needed,

sales departments deal with sales forecasts by customer accounts and/or sales channels,



supply chain managers request SKU level forecasts, while finance requires forecasts that are
aggregated into budgetary units in terms of revenues and costs (Bozos and Nikolopoulos,
2011).

In this paper, we study analytically the relative effectiveness of the BU and TD approach
when the underlying series follows a non-stationary Integrated Moving Average process of
order one, ARIMA(0,1,1), and the forecasting method is the Single Exponential Smoothing
(SES) which is the optimal estimator for the process under consideration (Box et al., 2008)
Both assumptions bear a significant degree of realism. There is evidence to support the fact
that demand often follows non-stationary proesqplease refer also to subsectiarl).
Moreover, SES is a very popular forecasting method in industry (Acar and Gardner, 2012
Gardner, 1990, 200Q6raylor, 2003). In terms of the practical relevance of our research we
refer to a set of SKUs where a large proportion of them folloARIMA(0,1,1) process; this
is not an untypical scenario as demonstrated by analysis of empirical datasets including our
own empirical investigation.

The question is whether it is appropriate to use sub-aggregate data or one should rather
aggregate data to derive the individual and aggregate forecasts. In addition, we analyse the
case of non-stationary processo reveal whether there is an increased benefit resulting from
cross-sectional forecasting when departing from the stationarity assumption. To do so we
compare the variance of the forecast error obtained based on the aggregate dep)aind (V
that of the sub-aggregate demangyV Comparisons are performed at both the aggregate
and sub-aggregate level, in the former case usingaitbtboretical andh numerical analysis
while in the latter case only by means of a numerical simulation (since the mathematical
results in that case are intractable). Our analysis is consistent with the fact that companies are
often using both levels of forecasting to support different decision-making processes. In
addition, it renders the comparison between the two approaches a more fair exercise since one
might expect that BU provides more accurate forecasts at the sub-aggregate level and TD
works betteatthe aggregate level (Zotteri et al., 2005).

We mathematically show that the ratio of the variance of forecast error of the top-down to
that of the bottom-up approach is equal to one for identical process parameters when
compared at the aggregate level. The mathematical analysis is complemented by a numerical
experiment to evaluate in detail the conditions under which one approach outperforms the
other. Such an experiment also allows the introduction of non-identical process parameters of
the sub-aggregate series (a condition that cannot be considered mathematically) and the
comparison at the sub-aggregate level. In addition, an empirical investigation is also
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conducted to assess the validity of the results on real data from a European superstore.
Important managerial insights are derived based on the above research and tangible
suggestions are offered to practitioners dealing with inventory forecasting psoblem

To the best of our knowledge, the only papers directly relevant to our work are those by
Widiarta et al. (2007, 2008, 2009) and Sbrana and Silvestrini (2013). The researchers
evaluated analytically at the aggregate level the effectiveness of the TD and BU approaches
under the assumption of AR(1) (Auto-Regressive process of order 1), MA(1) and IMA(1,1)
proceses Our additional contribution to the literature is threefold: (i) we analyse the
superiority conditions of BU and TD approaches at both the aggregate and the sub-aggregate
levels of forecasting by means of both analytical and simulation work, (ii) through a more
detailed sensitivity analysis using simulation, we investigate the impact of all the process and
control parameters on the comparative performance of the two approaches, and (iii)) we
analyse and validate empirically our theoretical results on real data noting that none of the
previous theoretical work comparing BU and TD approaches has been validated empirically.

With regards to this last point, it is important to note that rather recently Athanasopoulos et
al. (2009) andHyndman et al. (2011) have proposed a new approach to handling hierarchical
time series forecasting. This approach does not emphasise the estimator being used to
extrapolate requirements (i.e. any forecasting method may actually be used) but rather the
weighted contribution of the forecasts produced at all levels of a given hierarchy (to
appropriately retain important information that may be available at any hierarchical level) for
the purpose of producing a required forecast at a particular level. Despite the fact that this
approach lacks analytical insights it has been shown to perform well in practice andghus it
further considered (in addition to the BU and TD approaches) in the empirical part of our
investigation.

The remainder of our paper is structured as follows. In Section 2 we provide a review of the
literature on demand aggregation related issues. In Section 3 we describe the assumptions and
notations used in this study and we conduct an analytical evaluation of the variance of the
forecast error related to both the BU and TD approaches, followed by a simulation study
performed in Section 4. We conduct an empirical investigation in Section 5 and the paper
concludes in Section 6 with the implications of our work for real world practices along with

an agenda for further research in this area.



2. LITERATURE REVIEW

Demand forecasting for sales and operations management often concerns many items,
perhaps hundreds of thousands, simultaneously. The conventional forecasting approach is to
extrapolate the data series for each SKU individually. However, most businesses have natural
groupings of SKUs; that is, the SKUs may be aggregated to get higher levels of forecasts
across different dimensions such as product families, geographical areas, customer types
supplier types etc. (Chen and Boylan, 2007). Such an approach enables the potential
identification of time series componesixh as trend or seasonality that may be hidden or not
particularly prevalent at the individual SKU level. Group approaches for example are known
to offer considerable benefits towards the estimation of seasonal indices (Chen and Boylan
2008). Most of the forecasting literature in this area has looked at the comparative
performance of the top-down (TD) and the bottom-up (BU) approach. The findings with
regards to the performance of these approaches are mixed.

Many researchers have provided evidence in favour of the TD approach. Gross and Sohl
(1990) for example, numerically found that the TD approach (in conjunction with an
appropriate disaggregation method) provided better estimates than BU forecasting in two out
of three product lines examined. Fliedner (1999) evaluated by means of simulation the
forecast system performance at the aggregate level resulting from varying degrees of cross
correlation between two sub-aggregate time series. The sub-aggregate items were assumed to
follow a Moving Average process of order one, MA(1), and the forecasting methods
considered were SES and the Simple Moving Average (SNIAk research showed the
forecast performance at the aggregate level to benefit from the TD approach. Barnea and
Lakonishok (1980) examined the effectiveness of BU and TD on forecasting corporate
performance. They reported that positive cross-correlation contributes to the superiority of
forecasts based on aggregate data (TD).

On the other hand, Orcutt et al. (1968) and Edwards and Orcutt (1969) argued that
information loss is substantial when aggregating and therefore the bottom-up approach
provides more accurate forecasts. Dangerfield and Morris (1992) and Gordon et al. (1997)
used a subset of the M-competiflodata (Makridakis et al., 1982) to examine the
performance of TD and BU approaches on sub-aggregate demand forecasting. They found

that forecasts by thBU approach were more accurate in most situations especially when

® The M Competition is an empirical forecast accuracy comparison exercise inttdnjuBeof. Makridakis.
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items were highly correlated or when one item dominated the aggregate series. Weatherford et
al. (2001) evaluated the performance of BU and TD appesatth obtain the required
forecasts for hotel revenue management. The data they considered was perceived as very
typical within the hotel industry. They experimented with four different approaches (fully
disaggregated, aggregating by rate category only, aggregating by length of stagnoinl
aggregating by both rate category (i.e. the price per night) and length of stay)d&iagled

forecass by day of arrival, duration of stay and rate category. The results of their study
showed that a purely sub-aggregate forecast strongly outperformed even the best aggregate
forecast.

Some authors take a contingent approach and analyse the conditions under which one
method produces more accurate forecasts than the other. Shlifer and Wolff (1979) evaluated
analytically the superiority of BU and TD on forecasting sales for specific and entire market
segments. They specified the conditions under which BU is preferred to TD and vice versa.
Such superiority was found to be a function of the number of markets, market size and
forecast horizon. They mentioned that BU is preferable for the purpose of forecasting the
aggregate series based on their observations in real situations. However, when the comparison
was performed at the sub-aggregate level, they found that BU performs better for small
marker segments, while both BU and TD perform equally well for large segments. Lutkepohl
(1984) evaluated the performance of BU and TD approaches for forecasting at the aggregate
level by using the mean squared error. It was shown that it might be preferable to forecast
aggregate time series usingBdJ strategy when the data generation process is known.
However, if the ARIMA processes used for forecasting, including the order of process and
parameters, were estimated from a given set of time series data then the TD approach
outperformedU. Widiarta et al. (2007) studied analytically the conditions under which one
approach outperforms the other for forecasting the item level demands when the sub-
aggregate items follow a first-order autoregressive [AR(1)] process with the same
autoregressive parameter for all the items and when SES is used to extrapolate future demand
requirements. They found that the superiority of each approach is a function of the
autoregressive parameter. Widiarta et al. (2008, 2009) also evaluated analytically the
effectiveness of TD and BU approachasthe sub-aggregate and aggregate level. They
showed that when aiub-aggregate items follow an MA(1) process with identical moving
average parameters, there is no difference in the relative performance of TD and BU
forecasting as long as the optimal smoothing constant is used in both approaches.
Subsequently, they conducted a simulation analysis considering non-identical process
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parameters for sub-aggregate items and concluded that there is significant difference between
the two approaches. The superiority of each approach was a function of the moving average
parameter,the cross-correlation and the proportion of a sgbregate component’s
contribution to the aggregate demand. Sbrana and Silvestrini (2013) evaluated the
effectiveness of BU and TD approaches when forecasting the aggregate demand using a
multivariate exponential smoothing framework. They established the necessary and sufficient
condition for the equality of mean squared errors (MSES) of the two approaches. In addition,
they showed that the relative forecasting accuracy of TD and BU depends on thetnmarame
structure of the underlying framework.

In summary, both BU and TD approashappear to be associated with more accurate
forecasts depending on the level of comparison, structure of the series and cross-correlation
related assumptiondt. is easy to observe that most of the literature dealing with the issue of
aggregation for forecasting purposes focuses only on stationary series and it does not consider
the most realistic case of non-stationary proegskhere is considerable evidence to suggest
that inventory demand is non-stationary and thus relevant processes could be eventually
assumed for representing their underlying structartéhe following subsection we provide a
overview of the literature on the validity of the nonstationary assumption for real world
applications.

Before we close this section it should be noted that recently Athanasopoulos et al. (2009)
and Hyndman et al. (2011have proposed a new approach, referred to as ‘the optimal
method’, to handling hierarchical time series forecasting. As discussed in the previous section,
the approach under concern is based on independently forecasting the series at all levels of a
given hierarchy and then using a regression model to optimally combine and reconcile these
forecasts at a particular desired forecast output level. By means of a simulation study using
ARIMA type series and an empirical investigation using Australian tourism demand data,
Hyndman et al.(2011) have shown that the optimal method outperforms both the TD and the
BU approaches and as such we further consider it as a benchmark in the empirical part of our

work.

2.1. Thevalidity of the non-stationary demand assumption

Compared to stationary demand proegssionstationary processes have received less
attention in the academic literature (Bijvank and Vis, 2011) although iheredence that

most of the forecasting and inventory control problems occur in situations where demand is



nonstationary (and partially observed) (Treharne and Sox, 2002). Naturally this may be
attributed to the fact that the nonstationarity assumption complicates the relevant analyses and
limits the theoretical results that may be obtained making it very difficult to determine an
optimal forecast and stocking levels (Shang, 2012).

Nonstationary demand is the rule rather than the exception in most industries nowadays. The
nonstationarity may arise due to many reasons such as: (1) product life cycles with multi-
stages, (2) technological innovation and reduced product life, (3) seasonal effects, (4) volatile
customer preferences, (5) changes in economic condif®rexchange rate fluctuations, etc.

(Li et al., 2011). Companies in all markets are introducing new products at a higher frequency
with increasingly shorter life cycles. For instance, in the high-tech industry, the prodeets ha
relatively short life cycles and their demand patterns are generally considered as nonstationary
(Chien et al., 2008Graves and Willems, 2000, 2Q@aghunathan, 2001).

Furthermore, nonstationary demand proesssve been observed in the wholesaling and
retailing industry. Martel et al. (1995) argued thathe grocery distribution, because of the
various promotion mechanisms such as weekly special promotions, national television
advertising campaigns, etc., demand gets clearly nonstationary. Erkip et al. (1990) and Lee et
al. (1997) empirically found that demands of consumer products are nonstationary and highly
auocorrelated. Lee et al. (2000) used panel data to examine the weekly sales patterns of 165
SKUs at a supermarket. They found that 150 out of the 165 SKUs analysed demonstrated
nonstationary behaviour with high autocorrelation. Ali et al. (2011) experimented with a
demand dataset of 1798 SKUs from a major European supermarket in Germany. They found
that around 30% of the SKUs follow a nonstationary process and further an 80% of them
follow an ARIMA(O,1,1) process. Moreover, Mitchell and Niederhausen (2010) noted that the
nature of a nonstationary demand proesssconsistent with the nature of retail demand for a
wide variety of merchandise including apparel, consumer electronics, toys and other holiday
items, patio furniture and other summer seasonal merchandise and school supplies.

Another sector where it was reported that demand follows a nonstationary process is the
tourism (Goh and Law, 2002). Finally, Tunc et al. (2011) confirmed that nonstationary
stochastic demands are very common in all industrial settings associated with seasonal
patterns, trends, business cycles, and limited-life items.

There is also evidence that demand may followA®IMA(0,1,1) process in particular
(which is the process considered in this study). This process has often been found to be useful

in inventory control problems and econometrics (Box et al., 2008). More generally, Mahajan



and Desai (2011) argued that retailers often fac®nstationary demand that follows an
ARIMA(0,1,1) process.

In this study we compare the performance of BU and TD approaches on demand
forecasting under the assumption afnonstationary ARIMA(0,1,1) process. In the next

section we analyse theoretically the forecasting effectiveness of these approaches.

3. THEORETICAL ANALYSIS

In this section we derive the variance of the forecast error associated with the TD and BU
approaches. These approaches work as follows:

The top-down approach consists of the following steps: i) sub-aggregate demand items are
aggregated; ii) the forecast of aggregate demand is produced by applying SES at the aggregate
level, and iii) the forecast is disaggregated back to the original level by applying an
appropriate disaggregation method, a sub-aggregate forecast is needed. Various
proportional approaches may be used to disaggregate the TD forecasts. The reader is referred
to Gross and Sohl (1990) for more details about such approaches.

In the bottom-up approach: i) sub-aggregate demand forecasts are produced directly for the
sub-aggregate items; ii) the aggregate fottg@laseeded) is obtained by combining individual
forecasts for each SKU, i.e. potentially a separate forecasting model is used for each item in
the product family (Zotteri et al., 2005). These approaches are presented schematically in

Figure 1. The presentation style follows that adopted by Mohammadipour et al. (2012).

Aggregate forecast is calculated

] ! )

Sub-aaareaate items Sub-aggregate forecasts Subaggregate items Sub-aaareaate forecasts

000 000 00O 'Y 34
O~00 O V ® O 0O [ ) :QQ
O 0.0

O (] >

Demand Forecast Demand Forecast

Aaareaate Level

Sub-aggregate items
ara annranatad
Aggregate forecast is
sub-aaarenate forecasts
by summing up the sub-
aggregate forecasts

disaggregated to obtain
Aggregate forecast is calculatec

Sub-aggregate Level

Figure 1. Graphical representation of e (left) and BU (right) approach
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Comparisons may be performed at both the aggregate and sub-aggregate level although in
our theoretical analysis the comparisons are performed only at the former level since
(analytical) results regarding the latter are intractable. However, in the simulation study that
follows the theoretical analysis we relax various assumptions and we also present results for
both levels of comparison.

3.1. Notation and Assumptions

We denote by:

di«: Sub-aggregate item demaind periodt

pij: Correlation between the error term of sub-aggregateiiterd;j (cross-correlation)
D.: Aggregate demand in peribd

&, -Independent random variable for sub-aggregate item demangeriodt, normally
distributed with zero mean and variangé

& . Independent random variable for aggregate demand in pemadmally distributed
with zero mean and varianeg?

fit : Forecast of sub-aggregate demand in petjatie forecast produced iRl for the

demand irt.

Fi : Forecast of aggregate demand in petjdde forecast produce tAl for the demand in
t.

ai: Smoothing constant used in the Single Exponential Smoothing method for each sub-

aggregate itemin theBU approach0< ¢, <1

arp: Smoothing constant used in the Single Exponential Smoothing method for aggregate
demand in TD approacl) <o, <1

pi: the relative weight of sub-aggregate itel® contribution tothe aggregate family,
WhereZiN=1 p =1

Vgy: Variance of Forecast Error of the BU approach

V1p: Variance of Forecast Error of the TD approach

Vop: Variance of Forecast Error of the optimal method

¢, : Moving average parameter of sub-aggregate item deiyjayjck 1
¢': Moving average parameter of aggregate demiarid; 1

C, : Constant value of sub-aggregate item demand

1C



C' : Constant value of aggregate demand.

N: the total number of sub-aggregate items.

We assume that all the sub-aggregate demand sdriesollow an Integrated Moving

Average process of order one, ARIMA(0,1,1), that can be mathematically writteh by (1

d,=d. +&,-6¢,., i=12 ,N;t=23 @)

{dm:Ci+di’O i=12 ,N
From (1) it is obvious that the demand in the next period is the demand in the current
period plus an error term. By writing and expanding (1) in a recursive form we have:

di,t :(Ci +di,o)+5i,t toE T oE L, T TaE, (2)

where ¢, =1-6,. We note that only under this condition o, SES is optimal ag
provides the minimum mean square error forecasts for the ARIMA(0,1,1) process. Here we
consider the smoothing constant values as a control parameter determined by forecasters

which varies between 0 and 1. Obviously, under this condition $irce, <1, & will only

take values between 0 and 1 and does not cover the whole rangé et -1

However, the theoretical analysis is still valid for the whole range<a#<1. In addition,
in the simulation analysis we will relax this assumption to cover the whole range&x1-1
when the value of the smoothing constant is fixed.

We assume that all the sub-aggregate demand process parameters are identical
(6,=6,=6,= =¢,). This assumption is considered only for the purpose of the theoretical
analysis and, as above, it is also relaxed in the simulation part of our Mnerlassumption
under concern implies that the aggregate demand also follows an ARIMA (0,1,1) process. If
6,+0,#0,= =6, then the sum of the sub-aggregate items is not necessarily an
ARIMA(0,1,1) process (Granger and Morris, 1976).

The aggregate demand in peripd, can be expressed as the sum of the demands of the

sub-aggregate items, i.®, =ZN d

=1 It
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The forecasting method considered in this study is the Single Exponential Smoothing
(SES); this method is being applied in very many companies and in particular in an inventory
production planning environment due to its simplicity (Gardner, 1990). At this point we

should mention that the MSE is formally defined MSE=Var(d, — f, )+ Bias®,whereBias
is definedasthe expected forecast error and eqtmi(d, — f,) (Syntetos, 2001).

Note that under the condition that =1-6,, SES is an unbiased estimator of the demand
process considered in this study. TherefBias = 0 which means that the variance of the
forecast error is equal to the mean square error. USkEfg the forecast of sub-aggregate
demand in periodt produced at the end of peribtd is

fi,t :(Ci +di,0)+ai Eipa T A&, ,+ +O&, 3)

I
We further assume that the standard deviation of the error term in (1) is significantly

smaller than the expected value of the demand, so should demand be generated the probability

of a negative value is negligible.

3.2. Comparison of the Variance of Forecast Error

We calculate the ratio of the variance of the forecast error corresponding to the TD
approach Vrp) to the variance of the forecast error associated with the BU appMaghA
ratio that is lower than one implies a benefit in favour of the TD approach. Conversely, if the
ratio is greater than one then the BU approach performs better (and if the ratio is equal to one
both strategies perform the same).

We begin the analysis by deriving thgy which is defined as follows:

Vg =Var(Dt —i fmj=Var(ZN:dm —i fivtj=Var(ZN:(diyt -t )j (4)

i=1 i=1 i=1

by substituting (2) and (3) in (4) we have:

i=1

VBU = Var(i Eit ] 5)

12



SinceVal’(gi’t):og2 and CO\,(si’t,gjyt)=p,’jaiaj we have:

N N-1 N
\"S :Zai2+22 Zp,’jo]oj (6)
i1 ENER

We now derive the variance of the forecast error for the TD approach. As discussed above,
it has been shown that when the sub-aggregate items follow an IMA (1,1) process, the
aggregate family demand also follows an IMA (1,1) process (Granger and Morris, 1976). The
family aggregate process is defined as follows:

D, =C+D,
7
D, =Dy +& —(l—ap)e, t=23.. @
whered=1-orp.
Consideringg, =6,=6,= =6, =0 results in the same theta also in the aggregate demand

so, & =6. Now by consideringd’ =1-a,p,and @ =46", it is obvious that the optimal
smoothing constant for the aggregate demand.is=1—6&, which is equal to the optimal

smoothing constant for the sub-aggregate process.
The aggregate demand aitslforecast can be expressed as a function of the error tsoms,

we have:

1 ’ ! ! 1
D, = (C + Do)"‘ E T Apéi g T Opéy , + +Up&,y (8)

N

Knowing that&{ = _&;, , we obtain
i=1

9)
N N-1 N
Var(s!) = Z:Var(gi ¢ )+ ZZ Z:CO\(gi € j’t)
i=1 i=1 j=i+l
The aggregate forecast is
F = (C’ + D0)+aTD€t,—l tapé,t  tapE (10)
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The variance of the TD forecast error is defined as:
V,, =Var[D, - F,] (11)
By substituting (8) and (10) into (11), we have:
V,, =Varlg!] (12)

By substituting (9) into (12) we have:

N N-T N
VTD=ZGi2+ZZ Zpl,jaiaj (13)
i1 Y

Proposition. If all the sub-aggregate demand items follow an ARIMA(O,1,1) process with

identical moving average parametess{9, =0, = =¢,) and the optimal smoothing constant

value is used to forecast both the sub-aggregate and aggregate demand, then the performance
of the TD and BU approaches for forecasting aggregate demand is idevitical\(gy). The
proof of the proposition follows directly from (6) and (13).

This finding is in agreement with the results reported by Widiarta et al. (2009) which
theoretically show that there is no significant difference between the TBlarapproaches
on forecasting aggregate demand when all sub-aggregate items follow an MA(1) process with

identical process parameters.

4. SSIMULATION STUDY

In this section, we perform a simulation study to evaluate the relative performance of the
TD over the BU approach under some more realistic assumptions. In particular we consider
the following scenariosi) a simulation study at the aggregate level for non-identical
(61=6=... #6\) process parameters) a simulation investigation to discuss the effectiveness
of the BU and TD approach compared at the sub-aggregate level for non-identical
(6h=0=... #60\) process parameters. In both cases, the search procedure has been performed in

the whole range of <4 <1.

14



When the underlying process follows an ARIMA(0,1,1) representatiof), m®ves from
+1 toward-1 the resulting underlying structure changes considerably. Whsmegative, the
autocorrelation parameter exhibits a smooth exponential decay with positive values and the
autocorrelation spans all time lags (not only lag 1). For example 6f010.9 the
autocorrelation is very close #d. As we move up towardd=+1 the autocorrelation reduces
but still remains positive and for high positive valuegiat becomes close to zero meaning
that the series are random.

By considering many SKUs in the simulation experiment, the presentation of results and
the evaluation of the impact of different parameters on the ratigref/ Vsy becomes
complex. Therefore, we restricted the simulation analysis to a family of two SKUs to obtain
meaningful insights. This is in concordance with most of the earlier papers using simulation
approacksas they have also restricted the number of items to two (Dangerfield and Morris,
1992 Fliedner, 1999Widiarta et al., 2008, 2009).

The parameter values for our simulation experiment are presented in Table 1.

Table 1.Parameters of the simulation experiment

) N° Sub- N° N° Time

Hi O 6 Pj o .
Aggregate  Replications Periods
400 900 -0.9:+0.9 -0.9: +0.9 2 100 1000

The sub-aggregate demands in each period are generated randomly subject to the
parameters described in Table 1.

The value ofg, is set to be quite smaller than to avoid the generation of negative sub-
aggregate demand values. Experiments have also been conducted with other valaesl of
o, but theeare not reported here as they lead to the same insights.

To generate the demands in each petjage first generate randomly the error teems
ands, with a cross-correlation coefficient pf, and then we use (1) to generate the

correlated sub-aggregate demands Mitialise the generated demand at the value of the
mean plusanerror term. The simulation experiment has been designed and run in the forecast
package in R. For each parameter combination described in Table 1, a demand series of 1000
observations is generated and we introduce 100 replications.

We split the generated demand for each series at both the sub-aggregate and aggregate

level, into two parts. The first part (within sample) consists of 700 time periods and is used in
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order to fit the model and estimate the parameters. The smoothing constant and the initial
value are found based on Maximum Likelihood estimation (Hyndman et al., B968man
et al., 2002). Note that for the BU approach, the smoothing constants are optimized for each
item individually. Finally, in order to evaluate the performance of the two forecasting
approaches, we calculate the value of the variance of the forecast error for the last 300 periods
of the simulation (out-of-sample).

The relative benefit of one forecasting approach over the atmeeasured bWp / Vpu.
As previously discussed, a ratio lower than one implies that the TD approach outperforms the

BU one whereas a ratio greater than one implies the opposite.

4.1. Comparison at the Aggregate L evel

We first analyse the relative performance of the two forecasting approaches at the aggregate
level when the sub-aggregate process parameters are not necessarily identical. For each
experiment, the ratio of the variance of the forecast error is calculated as

Var(D, - E)/Var[ D, _221: fiytj .

The simulation results show that when the process parameters are identical there is no
difference between the BU and the TD approach. Whereas, when the process parameters are
not identical, which is more realistic, the results are different. The results for the latter case
are presented in Figure 2.

We see that as the cross-correlation coefficient changes-&@toward+0.9 the ratio of
V1p/Veuy is being reduced. The ratio is higher than or equals to 1 when the cross-correlation is
negative, equals to zero or takes low positive values. The ratio is lower than 1 only if the
cross-correlation is (highly) positive.

The detailed results show that when the moving average param@tessd 6, take
negative values, the performance of BU and TD approaches is always identical regardless of
the values of the cross-correlation. One possible explanation for this result is that when the
MA parameters of sub-aggregate series take negative values, the optimal value of the
smoothing constans setat the highest value in the considered range which is equab®
for both approaches. As the smoothing constant for both BU and TD approaches is equal and
the same procedure of forecasting is used for the sub-aggregate items and the aggregate one,
the aggregate forecast under both BU and TD appro#&tiessame.
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Figure 2. Relative performance of the TD and BU approach in forecasting aggregate

demand under different combinationséf & andp:»
When the cross-correlation is positive the superiority of each approach depends on the

value and the sign of the moving average parame®@rsand &. The TD approach
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outperforms the BU one only when the cross-correlation is (highly) positive and the moving
average parameters take high values and have opposite signs, i.efgithand >0 or
6:>0 and 6,<0.

Note that as the cross-correlatidecreases the superiority of the TD approach decreases
too. For highly positive cross-correlation, TD outperforms BU with a forecast error variance
reduction that can go up to 15%. By decreasing the cross-correlation to 0.5, the maximum
benefit of the TD approach decreases to 5% and it tends toward zero when the cross-
correlation tends towards zero as well. Under negative cross-correlation, BU outperforms TD.

When the two moving average parameters take opposite signs under the ARIMA(0O,1,1)
process, this means that one series has positive autocorrelation while the other has a low
autocorrelation (series with random fluctuations). In addition, when the cross-correlation is
positive there is a tendency for the pair of series to move together in the same direction, so the
demand series have the same pattern. When using TD, we sum up all sub-aggregate series to
get an aggregate one, so the fluctuations from one series may be cancelled out by those of
another resulting in a less random series associated with a lower forecast error.

When the cross-correlation coefficient is negative, for all valueé, aind 6, with the
exception of the case when both are negative, the BU approach performs bettangPedor
differences are further inflated when the moving average parameters have opposite signs in
which case the variance reduction achieved by the BU approach can be as high &sr500%
highly negative cross-correlation. For negative cross-correlation, the pair of series moves in
the opposite direction, (i.e. if one increases the other decreases), so the sub-aggregate demand
series have different patterns of evolution. Combination of different patterns of variation and
opposite autocorrelation values lead @darge forecast error for the TD approach and
consequently large values 6fp / Vgy for very high negative cross-correlation. In these cases
it is better to forecast sub-aggregate requirements separately and then aggregate them to get
the aggregate forecast.

When theé, and & values are positive, the ratio is almost equal to 1 forlyigbsitive
cross-correlation and greater than 1 for less positive and negative cross-correlation. In the
latter case, the ratio &frp / Vgy IS increased aé, takes low values ané is high and vice
versa.

In summary, when the sub-aggregate items follow an ARIMA(0,1,1) process and the goal is
to forecastat the aggregate demand level, thgnf the autocorrelation of all items is highly
positive, the performance of BU and TD is always identigdl;if items have different
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autocorrelation patterns, one hasery high positive autocorrelation while the other has an
autocorrelation close to zero, the superiority of each approach is affected by the cross-
correlation between item#or ahighly positive cross-correlation, TD outperforms BU and for
a highly negative cross-correlation BU outperforms TiD); when the autocorrelation for all
items is low, BU generally dominates TD, although for higbositive cross-correlation the
difference is very low.

Our findings are somehow in agreement with some of the earlier studies in thisyarea
Barnea and Lakonishok (1980) and Fliedner (198#hough we do note that our results are
not directly comparable to these studies as we analyse a non-stationary case). Theo&nalysis
Barnea and Lakonishok (1980) based on an empirical evaluation showed that positive cross-
correlation contributes to the superiority of forecasts based on aggregate data (TD), which is
also the case in our study. Fliedner (1999) used a simulation study to compare the
performance of TD and BU in forecasting aggregate series where the two sub-aggregate items
follow an MA(1) process. He found thatD dominatedBU regardless of the values of the
cross-correlation coefficient. They have not reported the valugs ahd & used in their
study, so our interpretation is that this work considered only the opposing sighsafat &

Should this be the case then these findings are in agreement with ours.

4.2. Comparison at the Sub-Aggregate L evel

In this subsection wevaluate the relative performance of the TD and BU approaches in
forecasting sub-aggregate demand when the moving average parameters are not necessarily
identical. The simulation structure in terms of within and out-of-sample arrangements is as
discussed in the previous sub-section. Under the BU approach, we generate 300 one step-
ahead forecasts for each item individually using the optimal smoothing constant. Under the
TD approach, we first sum up the demand of all sub-aggregate items to obtain aggregate
series, we then produce the aggregate forecast and finally we break down (disaggregate) that
to sub-aggregate forecasts by using proportional factors based on the historical contribution of

each series. For each experiment, the ratio of the variance of forecast error is calculated
as zizzlvar(di,l - pl * Ft)/ziz:lvar(di,t - fi ,l) '

Figure 3 shows the ratio of the variance of forecast error of the TD over the BU approach at
the sub-aggregate level for different valuesdgf & , p1 and p; when the sub-aggregate
items follow an ARIMA(0,1,1) process with non-identical moving average parameters

(61=6). Different levels of item proportiorg;, are used to reflect the cases where the sub-

19



aggregate items contribute almost equally to the aggregate forecast and cases witere one
dominates the aggregation process. The results show that the BU approach always
outperforms TD in forecasting the sub-aggregate items regardlessm$ trelp;.
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Figure 3. Relative performance of TD and BU approaches in forecasting sub-aggregate

items under different values 6f, &, p1» andp;.
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In Figure 3 we show that by moving from a cross-correlation of -0.9 toward +0.9 the ratio of
V1o/Veu is generally reduced but it always remains greater than 1 regardless of the cross-
correlation coefficient and the items’ contributory power.

When the cross-correlation and the moving average paramétefs, are highly positive,

i.e. 6,20.99,6,20.99andp;,20.99, the ratio oiV1p/Vsy becomes close to one.

Figure 3a shows also that BU outperforms TD by a maximum of about 50% for highly
negative cross-correlation; the rate of superiority of BU becomes very highayaedé, are
not highly positive (see Figure 3b, c, d). Widiarta et al. (2009) reported that when demand
follows an MA(1) process, BU outperformed TD by a maximum of 4% whe0.3 and 6,=-

0.8 and the cross-correlation is negative. The superiority of BU at the sub-aggregate level can
be attributed to the potentially high positive autocorrelation between demand periods. When
the series follow an ARIMA(0,1,1) process, the autocorrelation is (highly) positive unless the
moving average parameter takes high positive values, in which cases autocorrelation becomes
close to zero. Generally, &smoves from positive toward negative values, the autocorrelation
between two consecutive observatidnspositively increases, in addition to spanning higher
time lags (not only a lag of 1). This makes it much more difficult to apportion the resulting
aggregate forecadft, to each item in the family based on the historical demand proportion,
pi. As a result, the performance of the TD approach is affected adversely. The perfasfnance
the BU approach, however, is not affected as it forecasts the demand for each item
individually.

Our findings are in accordance with those previously reported in the academic literature.
Widiarta et al. (2007) argued that when the sub-aggregate time series follow an AR(1) process
and the value of the autocorrelation is high, there is a sharp deterioration in the relative
performance of TD. Gordon et al. (1997) and Dangerfield and Morris (1992) used empirical
data from the M-competition database and stated that BU dominated TD when forecasting the
sub-aggregate time series. Weatherford et al.(2001) have shown that a purely disaggregate
forecast (BU) strongly outperformed even the best aggregate forecast (TD) at the sub-
aggregate level.

These results generally confirm our findings although we must note (as we did in the
previous sub-section) that there is not a direct comparison between these studies and ours due
to the consideration of a non-stationary ARIMA(0,1,1) time series proCeegrasting our
results with those reported by Widiarta et al. (2007, 2009) on stationary MA(1) and AR(1)

processes, we observe that the rates of superiority of the BU approach when the process is
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non-stationary is much higher than the stationary case. When the demand follows a stationary
AR(1) process, the maximum ratio @fp/Vsy equals to 2 and is obtained with series with
high positive autocorrelation (high positive autoregressive parameter valygsand highly

negative cross-correlation, while this ratio for the IMA(1,1) process is higher than 50.

5. EMPIRICAL ANALYSIS

In this section, we assess the empirical validity of our results on the comparative
performance of the TD and BU approaches. In addition, the empirical performanceseof the
approaches are compared to that of the optimal approach proposed by Hyndman et al. (2011),
at both the aggregate and subaggregate leveddirgV provide details of the empirical data
available for the purposes of our investigation along with the experimental structure employed
in our work. We then present the actual empirical results.

The demand dataset available for the purposes of our research consists of 103 weekly sales
observations (i.e. it spans a period of two years) for 1,798 SKUs from a European grocery
store. Theauto.arimafunction of the forecast package in R has been used to identify the
underlying ARIMA demand process for each series and to estimate the relevant parameters.
This function uses a variation of the Hyndman and Khandakar (2008) algorithm which
combines unit root tests, minimization of the Akaike's Information Criteki€q) and
maximume-likelihood estimationLE) to identify an ARIMA(p,d,q) model. First, the number
of differenced is determined using unit-root tests by applying repeated KPSS tests
(Kwiatkowski et al., 1992). Then, the value of process ordef@dq, are chosen by
minimizing the AICc after differencing the dathtimes. Please refer to Hyndman and
Khandakar (2008) for a discussion on ARIMA identification methodology related issues.

Based on the identification process discussed above, it was found that around 24% of the
series (424 series) may be represented by the process considered in this research,
ARIMA(0,1,1). In Table 2 we summarize the characteristics of the SKUs relevant to our study
by indicating the estimated parameters for the MR(0,1,1) process. It is important to note
that these results are sensitive to the modelling methodology being used to identify the series
in the first place. If the methodology employed by th#o-arima function potentially
identifies ARIMA(0,1,1) series incorrectly then our results will be obviously subject to
relevant errors.

To facilitate a clear presentation, the estimated parameters are grouped in intervals and the

corresponding number of SKUs is given for each such interval. The averagdue per
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interval is also presented. This categorisation allows us to compare the empirical results with
the theoretical findings. We must remark that th@arameter values are all positive, except

for two SKUs, and most of them take highly positive values. As such, the data do not cover
the entire theoretically feasible range of the parameters.

Table 2.Processes present in the empirical data s

Group 0 intervals Average of9 No. of SKUs

1 [0.1,0.3] 0.2097 4

2 [0.3,0.4] 0.3652 8

3 [0.4,0.5] 0.4656 17

4 [0.5,0.6[ 0.5591 32

5 [0.6,0.7] 0.6561 67

6 [0.7,0.8] 0.7503 108

7 [0.8,0.9] 0.8467 141

8 [0.9,1] 0.9534 47
Total number of SKUs: 424

The data series have been divided into two parts. The first part (within sample) consists of
70 time periods and is used in order to estimat&StH8parameters. The second part consists
of 33 time periods which are used to evaluate the performance of each approach (out-of-
sample). The geometric mean (across SKUS) oWa8/op and Veu/Vop ratios is considered
for comparison purposes at the disaggregate level (Whgres the variance of the forecast
errors resulting from the implementation of the optimal approach). Note that theitigy
can be directly deduced from the two variance ra&(¥rp/Vop) / (Vau/Vop).

The empirical results presented in Table 3skavn for the same intervals considered in
Table 2. With regards to the comparative performance of BU and TD, we can see that when
the smoothing constant values are optimised for both apgdbk variance ratio is greater
than 1 when the comparison is undertaken at the sub-aggregate level, whereas when the
comparison is undertaken at the aggregate level, the difference between BU and TD is
insignificant. This means that overall one can consider that the BU approach provides more
accurate forecasts. Furthermore, when the smoothing constants used for BU and TD are equal,
the ratio ofV1p/Vey equals to 1 in the case of disaggregate demand forecasting. As discussed
above, the moving average parameies highly positive for most SKUs considered in this
research. More than 85% of the SKUs have a moving average parameter greater than 0.6 (see
Table 2). In addition, the sub-aggregate cross-correlation coefficients between SKUs vary
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between -0.5 and +1; however most of those coefficiard positive. By referring to the
detailed results of the simulation study we see that for this range of moving average parameter
values, 0€<1, the BU approach performs better than TD at the subaggregate level. However,
for the comparison at the aggregate level, the rati&efVgy is close to one, and the
superiority of each approach depends on the cross-correlation. TD may outperform BU for
highly positive cross-correlation. In an empirical context, the average of the variance of
forecast error reduction may be as high as 1.01% when the comparison is performed at the
aggregate level, whil@0% variance error reduction may be achieved for the comparison at

the sub-aggregate level.

Table 3. Empirical variance ratios for an ARIMA(0,1,1) process

Comparison Level

Group 0 intervals Aggregate Disaggregate

Vio/Vop VeulVop Vro/Vop Veu/Vop

1 [0.1,0.3] 0.998 1.020 2.391 0.990
2 [0.3,0.4] 1.001 1.022 2.078 0.993
3 0.4.05[ 1.000 1.005 1.880 0.997
4 [0.5,0.6] 1.000 1.002 1.727 0.994
5 [0.6,0.7] 1.000 1.020 1.629 0.990
6 [0.7,0.8] 1.000 1.008 1.428 1.003
7 [0.8,0.9 1.000 1.007 1.290 0.996
8 0.9.1] 1.001 1.000 1.162 0.999
Average 1.000 1.011 1613 0.995

With regards to the implementation of the optimal approach, the hierarchy structure of our
data consists of two levels. At the top level we have aggregated all series to get one single
series while at the bottom level we have 424 series, so we have 425 series in total for
forecasting purposes. First, we generated forecasts for all 425 series using SES. Next, we have
used thecombinef functionin thehts package (Hyndman et al., 2014) of R to reconcile these
forecasts using the optimal method to obtain forecasts at both aggregate and sub-aggregate
levels.

With regards to the comparative performance of the optimal approach (as reported based on
its variance of forecast errofggp), Table 3 shows that for comparison at the aggregate level,
the optimal method performs better than BU; however there is no significant difference
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between the performance of the optimal method and the TD approach. When the comparison
is undertaken at the sub-aggregate level, the optimal method significantly outperforms TD,
whereas BU works slightly better than the optimal method (the difference is less than 1%).
Generally, for the empirical data used in this study, either the TD or the optimal method can
be used for forecasting at the aggregate level, wdiilthe sub-aggregate level, BU is
preferable, although the optimal approach may also be used as the difference is less than 1%.
In Table 3, we report ratios of the variance of forecast errors in specific moving average
parameter interval. In Table 4, we report collective performance across different possible
(ranges of) moving average parameter values and we evaluate the impact of such values on
the superiority of each approach. To do so we create a category containing groups 1, 2 and 3
that includes 29 SKUs; this is regarded as a category with the lowest valdesAs we
move from this category to groups 4, 5 and 6 the valuginéreases. We aggregate all these
groups with group 8 that represents the highest valués e ratiosVeu/Vop and Vrp/Vop

are then presented for both levels of comparison.

Table 4. Empirical variance ratios by reporting performance across different groups

(intervals of@ values)

Comparison Leve Group 1,2,3 4 5 6
VooV or 1.001 1.001 1.000  1.000
Aqggregate
VaulVor y 0.855 0902 0977 _ 0.998
VooV or 1.484 1.435 1.399 1.366
Subaggr egate VaulVor 0.956 0976 0987 _ 0.998

With regards to the comparative performance of BU and TD, the results indicate that when
two groups with different moving average parameters are considered (Group 1,2,3 with 8)
then the variance rativrp/Vgy is high and as thé@ values increases (tending towards the
values covered by group 8) the ratio decreases. This implies that when we aggregate groups of
SKUs with low and higho values there is a greater benefit of using the BU approach in terms
of accuracy. This is exactly what we have observed in the simulation results for 2 SKUs (one
associated with a small and one with a h@glvalue) These empirical results generally
confirm the findings of the simulation study. With regards to the performance of the optimal
approach, Table 4 shows that for comparisons at the sub-aggregate level, the optimal method
outperforms TD. However, BU performs better than the optimal approach. When
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performances are contrasted at the aggregate level, both optimal and TD approaches perform

equally well and BU outperforms them.

6. DISCUSSION, CONCLUSION AND FURTHER RESEARCH

In this paper we have evaluated analytically the effectiveness of the bottom-up (BU) and
top-down (TD) approache® forecasting aggregate and subaggregate demand when the
subaggregate series follow a first order integrated moving average [ARIMA(0,1,1)] process.
Forecasting was assumed to be relying upon a Single Exponential Smoothing (SES)
procedure and the analytical results were complemented by a simulation expeititmetit
the aggregate and sub-aggregate level as well as experimentation with an empirical dataset
from a European superstore.

Admittedly, the current fast changing market environments result in many demand
processes being non-stationary in nature. Some empirical pieces of work discussed in
subsection 2.1 confirm such a statement and provide support for the frequency with which
ARIMA(0,1,1) processes are encountered in real world applications. In addition, SES is a
most commonly employed forecasting procedure in industry and its application implies a non-
stationary behaviour (SES is optimal for an ARIMA(0,1,1) process). Both BU and TD
approaches are very useful in practice when dealing with Sales and Operations Planning
systems in which forecasting is requiratl both aggregate and subaggregate levels. In
summary, we feel that the problem setting we have comsidera very realistic one
Analytical and simulation developments were based on the consideration of the variance of
forecast error for the TD and BU approaches and comparisons were undertaken at the
aggregate leveh the theoretical part of this work and at both the subaggregate and aggregate
level in the simulation investigation. The conditions under which one approach outperforms
the other were identified and the main findings can be summarized as follows:

e When the moving average parameter for all the subaggregate items is identical
(6= 6=...=6\), there is no significant difference between TD and BU in forecasting
the aggregate level, as long as the optimal smoothing constant is used for both
approaches. When the smoothing constant used for all the subaggregate items and the
aggregate level is set to be identi¢ak arp), TD and BU perform the same in
forecasting the demand at the aggregate level regardless of the values of the moving

average parameters and the cross-correlation between items. In addition when the
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observations of the subaggregate items are highly auto-correlated (nedatikie
performance of BU and TD is also the same for all autocorrelation values.

e TD performs better than BU at the aggregate level when the subaggregate moving
average parameters take relatively high values of an opposing sign and the cross-
correlations between sub-aggregate items are (highly) positive. Otherwise, when
cross-correlation is positive low or takes negative values, BU is preferable. Therefore,
using the aggregate data to produce top level forecasts is preferablé thelysub-
aggregate items follow similar series evolution with combination of high vs. low
autocorrelation. Th&D appears not to be very accurate when the sub-aggregate items
consist of different patterns of fluctuation.

e BU outperforms TD when forecasting at the sub-aggregate level and when the
smoothing constant is set to its optimal value for both approaches, regardless of the
cross-correlation, the disaggregation weight and the values of the process parameters.
It’s not preferable to use the aggregate data to derive the individual forecasts, when the
autocorrelation of subaggregate items is highly positive, in which cases subaggregate
data provide more accurate forecasts. The degree of superiority of the BU approach
for non-stationary processis much higher compared to stationary ones.

e The performance oBU improves as the cross-correlation decreases, moving from
positive toward negative values. For highly negative cross-correlation values BU is
always preferable; this is generally true for comparistbsth the aggregate and sub-
aggregate level.

e The benefit achieved by BU and TD for non-stationary demands in terms of forecast
accuracy is higher than that associated with stationary cases.

e The optimal approach performs well at both levels of comparison as indicated by the
empirical results. When considering ratios of the variance of forecast errors in
particular moving average parameter intervals or different possible (ranges of) moving
average parameter values, the optimal approach is superior as it performs as well as
the BU at both levels but significantly better than the TD at the disaggregate level. It
should be noted though that the optimal approach bears considerable relevance to
many realistic cases when: i) more than two levels of hierarchy need to be considered,
and ii) (more than one) various forecasting methods need to be employed.

Please also note that since the optimal approach is not always superior to the BU and TD

approaches, the comparative performance between BU and TD needs to be carefully
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considered in order to inform real world applications. In addition, and even when the optimal
approach outperforms both BU and TD, the latter approaches still remain of explicit interest
to practitioners (because of the simplicity characterising their implementation, their intuitive
appeal and their support by most inventory software) but also to academics (because of the
insights that the mathematical analysis of those cases may-aff@ontrast with the optimal
approach where the optimisation procedure hinders any explicit messages as to what is going
on with the underlying properties of the series.) The major difficulty associated with the
optimal approach is the computation of the reconciliation weights used to form a weighted
average of forecasts at an individual node and the non-transparent nature of the regression
analysis taking place. Another difficulty is the fact that forecasts from all levels need to be
taken into account when producing the final (reconciled) forecasts which obviously increases
the computational effort and managerial involvement beyond that required by either BU or
TD.

If the practitioners require demand forecasts at the SKU level when demand is non-
stationary (and highly autocorrelated) then it would always be preferable to use the BU
approach. If a higher level demand forecast is needed then the BU approach should be
considered when the individual items are associated with different patterns of evolution, and
the TD or the optimal approach when they have the same patterns but are associated with
different autocorrelation values. In addition, if one uses the same value of smoothing
constants for both BU and TD, then both approaches perform the same in forecasting
aggregate demand.

In this paper we have considered the case of non-stationary demand gwadoess
conjunction with the SES forecast method to evaluate the comparative performance of TD and
BU in forecasting aggregate and item level demand. Naturally, there are many othes avenue
for further research and the following possibilities should be very important in terms of
advancing the current state of knowledge in this area.

e The consideration of more extensive datasets that cover the whole range of the process
parameters should allow a better understanding of the comparative benefits of the TD
and BU approach.

e The extension of the work described here to cover inventory/implication metrics
would allow a linkage between forecasting and stock control. Cross-sectional
aggregation is known to be very helpful in inventory applications and it is indeed
being covered by relevant software packages. Further work into the interactions
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between forecasting and stock control in a cross-sectional setting should add value to
real world practices.

e The interface between (and the potential of combining) temporal and cross-sectional
aggregation has received minimal attention both in academia and industry and is an
issue that we are to take further in the next steps of our res@ancified approach-
one that simultaneously considers choices of aggregation levels and frequency along
multiple dimensions- would seem to be a valuable step in the right direction. The
problem with the separation of the cross-sectional and temporal dimensions is that the
right level of cross-sectional aggregation may vary across time frequencies and vice
versa. Procedures that combine forecasts for a cross-sectional hierarchy, such as the
optimal approach discussed in this paper, and procedures that combine forecasts over
time frequencies, such as the multiple temporal-aggregation technigue disbbyssed
Kourentzes et al. (2014), may conceivablydmmledto form a holistic strategy for
forecasting hierarchies (see also the Introduction of Tashman et al. (2015)).

e Finally, the analytical and empirical consideration of Integer ARMA (INARMA)
processes offers a great opportunity for advancements in the area of aggregation. Such
processes bear a considerable relevance to intermittent demands where the benefits of
aggregation may be even higher due to the reduction of zero observations
(Mohammadipour and Boylan, 2012).
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