Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Simulation of repository gas migration in a bentonite buffer

Vardon, Philip James, Nicholson, Duncan, Chen, Qing, Masum, Shakil Al and Thomas, Hywel Rhys 2014. Simulation of repository gas migration in a bentonite buffer. Proceedings of the Institution of Civil Engineers Engineering and Computational Mechanics 167 (1) , pp. 13-22. 10.1680/eacm.12.00018

Full text not available from this repository.

Abstract

The inventory of high-level radioactive waste in the UK is likely to be disposed of in a geological disposal facility, which will generate gases due to processes such as anoxic metal corrosion and water radiolysis. Such gases have the potential to migrate through the repository system and may be detrimental to the engineered barrier system by damaging the physical fabric of the buffer material through the build-up of pressure. An investigation into the migration of gases and the ranges of gas pressures expected in such a repository is presented. A model of gas transport is presented to simulate the transport of gases in conjunction with coupled thermo-hydro-chemical-mechanical processes. This model includes a boundary condition linking the corrosion behaviour to gas generation and water supply. A realistic range of gas generation rates has been established from available data alongside realistic ranges of material properties of a bentonite buffer. Numerical simulations were then undertaken for a range of realistic scenarios considering the corrosion processes and buffer properties. It was found that in all realistic cases, including realistic maxima and minima considered, the risk of pneumatic fracture was negligible.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Engineering
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Publisher: ICE Publishing
ISSN: 1755-0777
Date of Acceptance: 28 January 2013
Last Modified: 21 Feb 2019 17:17
URI: http://orca.cf.ac.uk/id/eprint/83286

Citation Data

Cited 11 times in Google Scholar. View in Google Scholar

Cited 9 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item