Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Frost for the trees: did climate increase erosion in unglaciated landscapes during the late Pleistocene?

Marshall, J. A., Roering, J. J., Bartlein, P. J., Gavin, D. G., Granger, D. E., Rempel, A. W., Praskievicz, S. J. and Hales, Tristram 2015. Frost for the trees: did climate increase erosion in unglaciated landscapes during the late Pleistocene? Science Advances 1 (10) , e1500715. 10.1126/sciadv.1500715

Full text not available from this repository.

Abstract

Understanding climatic influences on the rates and mechanisms of landscape erosion is an unresolved problem in Earth science that is important for quantifying soil formation rates, sediment and solute fluxes to oceans, and atmospheric CO2 regulation by silicate weathering. Glaciated landscapes record the erosional legacy of glacial intervals through moraine deposits and U-shaped valleys, whereas more widespread unglaciated hillslopes and rivers lack obvious climate signatures, hampering mechanistic theory for how climate sets fluxes and form. Today, periglacial processes in high-elevation settings promote vigorous bedrock-to-regolith conversion and regolith transport, but the extent to which frost processes shaped vast swaths of low- to moderate-elevation terrain during past climate regimes is not well established. By combining a mechanistic frost weathering model with a regional Last Glacial Maximum (LGM) climate reconstruction derived from a paleo-Earth System Model, paleovegetation data, and a paleoerosion archive, we propose that frost-driven sediment production was pervasive during the LGM in our unglaciated Pacific Northwest study site, coincident with a 2.5 times increase in erosion relative to modern rates. Our findings provide a novel framework to quantify how climate modulates sediment production over glacial-interglacial cycles in mid-latitude unglaciated terrain.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Earth and Ocean Sciences
Sustainable Places Research Institute (PLACES)
Subjects: Q Science > QE Geology
Publisher: American Association for the Advancement of Science
ISSN: 2375-2548
Date of Acceptance: 21 September 2015
Last Modified: 13 Mar 2019 10:37
URI: http://orca.cf.ac.uk/id/eprint/83357

Citation Data

Cited 19 times in Google Scholar. View in Google Scholar

Cited 25 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item