Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Silica hydrate preserved with δ18O-rich quartz in high-temperature hydrothermal quartz in the high sulfidation copper-gold deposit at El Indio, Chile

Tanner, Dominique ORCID: https://orcid.org/0000-0001-5080-4697, Henley, Richard W., Mavrogenes, John A., Holden, Peter and Mernagh, Terrence P. 2015. Silica hydrate preserved with δ18O-rich quartz in high-temperature hydrothermal quartz in the high sulfidation copper-gold deposit at El Indio, Chile. Chemical Geology 391 , pp. 90-99. 10.1016/j.chemgeo.2014.11.005

Full text not available from this repository.

Abstract

Quartz microcrystals from the El Indio Au-Ag-Cu deposit (Chile) preserve a rare glimpse into the high-temperature evolution of silica. Here, we show for the first time that aggregates of euhedral quartz microcrystals preserve cryptocrystalline cores that contain silica hydrates “opal” and moganite. We propose that these phases are metastable remnants of progressive dehydration from a precursor silica hydrate phase. Evidence for sequential dehydration to from silica hydrate to quartz (silica hydrate⌫opal⌫moganite⌫quartz) is provided by SHRIMP 18O microanalytical data that show oscillatory isotopic zoning from 3.6‰ to 16.2‰ δ18O (± 0.5‰) coupled with K and Al variations. We estimate that the precursor silica hydrate deposited between ~ 480–680 °C and contained 32–63 wt% H2O. Silica hydrate is metastable with respect to quartz and forms during rapid deposition of silica at high silica supersaturation, a consequence of rapid expansion of magmatic fluid into the fracture array that hosts the El Indio copper-gold deposit. Modern understanding of ore-forming fluids in hydrothermal ore deposits is largely underpinned by the assumption that quartz and its included fluids faithfully record depositional conditions. The discovery of silica hydrate affects the paragenetic and geochemical interpretation of quartz and included fluids. Quartz matured from silica hydrate would record “pseudo-primary” fluid inclusions such that homogenization temperatures record retrograde rather than depositional conditions while δ18O data may bias fluid provenance interpretation within sub-volcanic systems.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Earth and Environmental Sciences
Subjects: Q Science > QE Geology
Uncontrolled Keywords: Quartz; Silica hydrate; High sulfidation; Dehydration; Oxygen isotope; Non-equilibrium
Publisher: Elsevier
ISSN: 0009-2541
Date of Acceptance: 5 November 2014
Last Modified: 31 Oct 2022 10:05
URI: https://orca.cardiff.ac.uk/id/eprint/83571

Citation Data

Cited 5 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item