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On the Asymptotics of the Spectral Density
of Radial Dirac Operators with Divergent
Potential

Karl Michael Schmidt

Dedicated to the memory of Michael S. P. Eastham

Abstract. The radial Dirac operator with a potential tending to infinity
at infinity and satisfying a mild regularity condition is known to have
a purely absolutely continuous spectrum covering the whole real line.
Although having two singular end-points in the limit-point case, the
operator has a simple spectrum and a generalised Fourier expansion in
terms of a single solution. In the present paper, a simple formula for the
corresponding spectral density is derived, and it is shown that, under
certain conditions on the potential, the spectral function is convex for
large values of the spectral parameter. This settles a question considered
in earlier work by M. S. P. Eastham and the author.
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1. Introduction

The one-dimensional Dirac operator (2.1) with a potential q tending to −∞
(or ∞) at infinity and satisfying the Erdélyi condition, which essentially says
that 1/q has bounded variation at infinity, is known to have a purely ab-
solutely continuous spectrum covering the whole real line ([6], [12], [13]).
In [3], the properties of the spectral density were studied in greater detail
for the case of a regular end-point 0 (corresponding to angular momentum
quantum number k = 0 ). It was shown that under certain regularity and
growth conditions on the potential function, the spectral density has no local
extrema for large spectral parameter; this can be interpreted as an absence
of high-energy points of spectral concentration. In [4], an analogous study



2 Karl Michael Schmidt

was undertaken for the operator with angular momentum, a differential ex-
pression with two singular end-points in the limit-point case. Asymptotics
for the spectral matrix with respect to expansion in terms of the canonical
fundamental system at an arbitrary intermediate point c were derived, under
slightly less restrictive conditions on the potential q than in the regular case;
however, the resulting spectral density shows oscillatory behaviour for large
spectral parameter and, moreover, depends in an essential way on the choice
of c, which stands in the way of a clear interpretation of the result. It is the
purpose of the present note to amend this unsatisfactory outcome and indeed
prove the absence of high-energy local extrema of an appropriately defined
spectral density.

The key observation is that, despite the two singular end-points, this
operator has a simple spectrum and admits a generalised Fourier expansion in
terms of a single solution, with a real-valued spectral function, as opposed to
the general case of expansion in terms of a fundamental system of solutions,
with a corresponding matrix-valued spectral function. Differential operators
(mostly of Sturm-Liouville type) with this property have, after an early ob-
servation by I. S. Kac on the Bessel equation [10], attracted considerable
attention in recent years. The existence of a solution square-integrable at one
of the singular end-points and analytic in the spectral parameter was identi-
fied as an important indicator in [9], [11]; see also [7], [8], [1] and references
cited therein.

In contrast to these studies, which involve a generalised Titchmarsh-
Weyl function for the singular boundary value problem in one way or another,
the present paper uses oscillation theory for real spectral parameter only.
Section 2 reviews the required tools from [4], in particular (Theorem 2.1) the
existence of a distinguished solution at the singular end-point 0. In analogy to
the regular case, where a λ-independent initial condition is used, we normalise
the solutions for different values of the spectral parameter λ by imposing the
condition of a particular, λ-independent leading asymptotic at 0. (Clearly, a
λ-dependent boundary condition would be reflected directly in the shape of
the spectral function.) In Section 3, we derive (Theorem 3.1) a neat formula
for the spectral density for expansion in terms of the distinguished solution
and show how it relates to the spectral matrix of [4]. In Section 4, we state
and prove the main result (Theorem 4.1) on the absence of local extrema of
the spectral density.

2. Preliminaries

Consider the one-dimensional radial Dirac operator

− iσ2
d

dr
+mσ3 +

k

r
σ1 + q(r) (r ∈ (0,∞)), (2.1)
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where

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

are the Pauli matrices. This operator arises from variable separation in polar
coordinates of the Dirac operator in R

n (n ≥ 3) with mass m and rotationally
symmetric potential V (x) = q(|x|) (x ∈ R

n). The angular momentum quan-
tum number k takes non-zero integer values if n is odd, half-integer values if
n is even, so |k| ≥ 1

2 in all cases. The results of the present paper hold for all
real k > 0; we focus on the case of positive k for definiteness and convenience,
but note that analogous, qualitatively identical results hold true for k < 0.

We take m to be a positive constant. Regarding the potential function q,
we assume that lim

r→∞
q(r) = −∞, that q ∈ ACloc(0,∞) and that the Erdélyi

condition

∫ ∞ |q′|

q2
< ∞ ([6]) is satisfied. For our main result, Theorem 4.1, we

assume furthermore that q is constant on the interval [0, r0], for some r0 > 0;
and that it satisfies further regularity and growth conditions, see conditions
(P) and (E) in Section 4. (Similar, though slightly stronger conditions were
shown in [3] to imply the high-energy concavity or convexity of the spectral
function of the half-line Dirac equation without the angular momentum term
and with a regular boundary condition at 0.)

Under these assumptions, for |k| ≥ 1
2 , the formal differential expression

(2.1) is in the limit-point case both at 0 and at ∞ and therefore gives rise
to a unique self-adjoint operator H in the Hilbert space L2(0,∞)2. If |k| ∈
(0, 1

2 ), the end-point 0 is in the limit-circle case, and we impose the boundary
condition (3.1) corresponding to the distinguished solution of Theorem 2.1
to obtain a self-adjoint operator H.

We shall use the Prüfer transformation, writing an R
2-valued solution

of the Dirac equation (2.3) in the (polar-coordinate) form

u(r) = |u(r)|

(

sinϑ(r)
cosϑ(r)

)

(r > 0)

with the Prüfer angle function ϑ, which is uniquely defined up to an additive
offset of an integer multiple of 2π. The Dirac equation (2.3) is then equivalent
to the Prüfer equations

ϑ′(r) = λ− q(r) +m cos 2ϑ(r)−
k

r
sin 2ϑ(r),

(log |u|)′(r) =
k

r
cos 2ϑ(r) +m sinϑ(r); (2.2)

clearly the latter equation can easily be integrated to give |u| in terms of ϑ.

The starting point for the present study is the following fundamental obser-
vation on the existence of a distinguished solution of the eigenvalue equation
(2.3) for the radial Dirac operator, proved as Theorem 1 of [4] (where k ≥ 1

2
is assumed, but the proof is identical for k > 0).
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Theorem 2.1. Let m > 0, q ∈ L1
loc[0,∞) and k > 0. Then, for each λ ∈ R,

the Dirac equation
(

−iσ2
d

dr
+mσ3 +

k

r
σ1 + q(r)

)

u(r) = λu(r) (r ∈ (0,∞)) (2.3)

has a unique (R2-valued) solution w(·, λ) such that

w(r, λ) =

(

o(1)
1 + o(1)

)

rk (r → 0).

For each r > 0, w(r, ·) is differentiable, and

∂

∂λ
w(r, λ) = o(rk) (r → 0).

The Prüfer angle ϑ of w, with suitably chosen offset, has the properties

lim
r→0

ϑ(r, λ) = 0, lim
r→0

∂ϑ

∂λ
(r, λ) = 0.

The following formulae can be shown by integration of the variational equa-
tion obtained by formal differentiation of the differential equation for the
Prüfer angle with respect to λ, and using the asymptotics of Theorem 2.1.
They can be found in Lemma 1 and Corollary 1 of [4], respectively.

Lemma 2.2. Let ϑ be the Prüfer angle of the distinguished solution w of
Theorem 2.1, and let x0 > 0. Then

(a)
∂ϑ

∂λ
(x, λ) =

|w(x0, λ)|
2

|w(x, λ)|2
∂ϑ

∂λ
(x0, λ) +

∫ x

x0

|w(t, λ)|2

|w(x, λ)|2
dt (x > 0, λ ∈ R);

(b)
∂ϑ

∂λ
(x, λ) =

1

|w(x, λ)|2

∫ x

0

|w(t, λ)|2 dt (x > 0, λ ∈ R).

In the following we fix λ0 > m+ |k|
r0

+ sup q.

Lemma 2.3. Let w be the distinguished solution of Theorem 2.1. There is a
constant C > 1 such that

1

C
≤

|w(r, λ)|

|w(r0, λ)|
≤ C (r ≥ r0, λ ≥ λ0).

Moreover, the limit |w(∞, λ)| = lim
r→∞

|w(r, λ)| exists for all λ ≥ λ0.

These statements are proved as part of Lemma 4 in [4]. We remark that the
following asymptotics for λ → ∞ hold (cf. Theorem 2, Lemma 4 of [4]),

∂ϑ

∂λ
(r, λ) = r (1 + o(1)),

|w(r, λ)|

|w(r0, λ)|
= 1 + o(1),

both with o(1) term uniform in r ≥ r0, and

|w(∞, λ)|

|w(r0, λ)|
= 1 + o(1).

These asymptotics are used in the proof (detailed in [4]) of Lemma 4.2 below.
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3. The spectral density of the half-line operator

We now consider a self-adjoint realisation H of the Dirac operator (2.1) in
the Hilbert space L2(0,∞)2. If k ≥ 1

2 , then the differential expression is in
the limit-point case both at 0 and at ∞, so there is a unique self-adjoint
realisation; if k ∈ (0, 2), we have the limit-circle case at 0 and impose the
boundary condition

lim
r→0

[u,w](r) = 0, (3.1)

where w is the distinguished solution of Theorem 2.1 and [u,w] = det(u,w)
is the Liouville bracket.

Theorem 3.1. The self-adjoint operator H has purely absolutely continuous
spectrum in (λ0,∞) with spectral density

̺′(λ) =
1

π|w(∞, λ)|2
(λ ≥ λ0),

where w is the distinguished solution of Theorem 2.1.

Note that here ̺ is the spectral function for expansion with respect to the
solution w, in the form

f(x) =

∫

R

(
∫ ∞

0

f(y)Tw(y, λ) dy

)

w(x, λ) d̺(λ) (x ∈ R; f ∈ L2(0,∞)2).

Proof. We start from the boundary-value problem on (0, b) with boundary
condition

u(b)T
(

cosβ
− sinβ

)

= 0 (3.2)

for some β ∈ [0, π) (and with the boundary condition (3.1) at 0 if k ∈ (0, 1
2 )).

The spectrum of this boundary-value problem is purely discrete, with simple
eigenvalues determined by the condition ϑ(b, λ) = βmodπ. (Indeed, for the

other values of λ, the solution w and the solution y such that y(b) =

(

sinβ
cosβ

)

are linearly independent and can be used to construct the resolvent (Hb−l)−1,
where Hb is the self-adjoint operator on (0, b) with the boundary condition
(3.2) at the right-hand end-point.)

The eigenvalues can be indexed as {λj | j ∈ Z}, where ϑ(b, λj) = β+jπ.
For the eigenvalue λj , clearly

w(·, λj)
√

∫ b

0
|w(t, λj)|2 dt
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is a normalised eigenfunction, so we obtain the expansion formula for f ∈
L2(0, b)2,

f =
∑

j∈Z

1
√

∫ b

0
|w(t, λj)|2 dt

(

∫ b

0

f(t)Tw(t, λj) dt

)

w(·, λj)

=

∫

R

(

∫ b

0

f(t)Tw(t, λ) dt

)

w(·, λ) d̺b(λ)

with the spectral function

̺b(λ) =















∑

λj∈σ(Hb)∩(λ0,λ]

(

∫ b

0
|w(t, λj)|

2 dt
)−1

if λ ≥ λ0,

−
∑

λj∈σ(Hb)∩(λ,λ0]

(

∫ b

0
|w(t, λj)|

2 dt
)−1

if λ < λ0.

Now consider the spectral function averaged over the boundary condition
parameter β,

˜̺b(λ) =
1

π

∫ π

0

̺b(λ) dβ.

As the jth eigenvalue branch Λj(β) satisfies ϑ(b,Λj(β)) = β + jπ, it follows,
using Lemma 2.2 (b), that

1 =
∂

∂λ
ϑ(b,Λj(β)) Λ

′
j(β) =

Λ′
j(β)

|w(b,Λj(β))|2

∫ b

0

|w(t,Λj(β))|
2 dt,

and hence by a change of integration variables

˜̺b(λ) =
1

π

∫ π

0

∑

j:Λj(β)∈(λ0,λ]

Λ′
j(β)

|w(b,Λj(β))|2
dβ =

1

π

∫ λ

λ0

dµ

|w(b, µ)|2
(λ ≥ λ0).

As the Dirac equation (2.3) is in the limit-point case at ∞ (see e.g. Theorem
6.8 in [14]), the spectral function for the half-line problem will be the limit
̺(λ) = lim

b→∞
̺b(λ) (λ ≥ λ0) for any choice of boundary condition β. This

implies ̺(λ) = lim
b→∞

˜̺b(λ) (λ ≥ λ0) by the Lebesgue dominated convergence

theorem, as there is a locally integrable majorant of ̺b which is independent
of b and of β. (Indeed, the number of eigenvalues in (λ0, λ] can be estimated
above by

1 +
1

π
(ϑ(b, λ)− ϑ(b, λ0)) = 1 +

1

π

∫ λ

λ0

∂ϑ

∂λ
(b, µ) dµ

= 1 +
1

π

∫ λ

λ0

(

|w(r0, µ)|
2

|w(b, µ)|2
∂ϑ

∂λ
(r0, µ) +

∫ b

r0

|w(t, µ)|2

|w(r0, µ)|2
|w(r0, µ)|

2

|w(b, µ)|2
dt

)

dµ

≤ 1 +
1

π
(C2(ϑ(r0, λ)− ϑ(r0, λ0)) + C4(b− r0)(λ− λ0)),
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where we used Lemma 2.2 (a) and Lemma 2.3. The latter lemma also gives

a lower estimate for

∫ b

r0

|w(t, µ)|2 dt, and hence

̺b(µ) ≤
1 + 1

π
(C2(ϑ(r0, µ)− ϑ(r0, λ0)) + C4(b− r0)(µ− λ0))
∫ r0

0
|w(t, µ)|2 dt+ C−2|w(r0, µ)|2(b− r0)

;

this bound is independent of β and remains bounded as b → ∞.)

Thus we have

̺(λ) = lim
b→∞

˜̺b(λ) =
1

π

∫ λ

λ0

dµ

|w(b, µ)|2
=

1

π

∫ λ

λ0

dµ

|w(∞, µ)|2
(λ ≥ λ0),

using Lebesgue’s dominated convergence theorem again with the estimate
from Lemma 2.3,

1

|w(b, µ)|2
≤

C2

|w(r0, µ)|2
(b ≥ r0). �

Remark. In [4] Theorem 3, it was shown that the spectral matrix for ex-
pansion with respect to the canonical fundamental system Φ at some point
c ∈ (0,∞) (according to the treatment of the boundary-value problem with
two singular end-points as outlined e.g. in [2]) has the matrix density

̺′Φ(λ) =
w(c, λ)w(c, λ)T

π|w(∞, λ)|2
(λ ≥ λ0).

This corresponds to the expansion of f ∈ L2(0,∞)2,

f =

∫

R

Φ(·, λ) d̺Φ(λ)

∫ ∞

0

Φ(y, λ)T f(y) dy,

where
(

− iσ2 +mσ3 +
k

r
σ1 − λ

)

Φ(·, λ) = 0, Φ(c, λ) =

(

1 0
0 1

)

.

Let Ψ be the fundamental system

Ψ =

(

w1 z1
w2 z2

)

,

where w is the special solution of Theorem 2.1 and z is another solution
of (2.3) such that the Wronskian detΨ = 1. Then Ψ(x, λ) = Φ(x, λ)Ψ(c, λ)
(x > 0), and we can rewrite the expansion formula as

f =

∫

R

Ψ(·, λ)Ψ(c, λ)−1 d̺Φ(λ)

∫ ∞

0

(Ψ(c, λ)−1)TΨ(y, λ)T f(y) dy

=

∫

R

Ψ(·, λ) d̺Ψ(λ)

∫ ∞

0

Ψ(y, λ)T f(y) dy,
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where

d̺Ψ(λ) = Ψ(c, λ)−1 d̺Φ(λ) (Ψ(c, λ)−1)T

=

(

z2 −z1
−w2 w1

)

(c, λ)

(

w2
1 w1w2

w1w2 w2
s

)

(c, λ)

(

z2 −w2

−z1 w1

)

(c, λ)
dλ

π|w(∞, λ)|2

=

(

1 0
0 0

)

dλ

π|w(∞, λ)|2
=

(

1 0
0 0

)

d̺(λ),

with ̺ as in Theorem 3.1 above. This shows clearly how the spectral matrix
degenerates to a single spectral function for an expansion in terms of w only.

4. High-energy convexity of the spectral function

In addition to the general hypotheses on q, we shall use either of the following
growth conditions, roughly corresponding to polynomial growth (P) or expo-
nential growth (E). These conditions are identical to those used in [4]; in the
case of a regular end-point 0, analogous conditions on the third derivative of
q were required in addition [3].

Condition (P). Assume q, q′ ∈ ACloc(0,∞) and that there are positive con-
stants a,C1, C2 such that

−q(r) ≥ C1r
a, |q′(r)| ≤ C2r

a−1, |q′′(r)| ≤ C2r
a−2

for sufficiently large r > 0.

Condition (E). Assume q, q′ ∈ ACloc(0,∞) and that there are positive con-
stants a,C1 such that

−q(r) ≥ C1r
a

for sufficiently large r > 0. Moreover, assume that for some δ ∈ (0, 1) and
any ε > 0,

∫ ∞ r|q′(r)|

|q(r)|1+δ
dr < ∞,

∫ ∞ r|q′′(r)|

|q(r)|1+δ
dr < ∞

and

q′(r)

|q(r)|1+ε
= O(1) (r → ∞).

Theorem 4.1. Suppose that q is constant on [0, r0] and satisfies either (P) or
(E). Let k > 0. Then there is λ1 ≥ λ0 such that the spectral function ̺ is
strictly convex on [λ1,∞).
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By Theorem 3.1 and the Prüfer equation (2.2),

̺′(λ) =
1

π
exp

(

− 2 log |w(r0, λ)|

− 2

∫ ∞

r0

(k

r
cos 2ϑ(r, λ) +m sin 2ϑ(r, λ)

)

dr

)

> 0,

so

̺′′(λ)

̺′(λ)
= −2

(

d

dλ
log |w(r0, λ)|

+
d

dλ

∫ ∞

r0

(k

r
cos 2ϑ(r, λ) +m sin 2ϑ(r, λ)

)

dr

)

, (4.1)

and hence, to prove Theorem 4.1, it suffices to show that the expression on
the right-hand side of (4.1) is positive from some λ1 onwards.

The integral term in (4.1) was studied in [4] Section 4 (where it was
assumed that k ≥ 1

2 , but the proof for k > 0 is identical). The key idea is to
introduce the factor (obtained from the differential equation for the Prüfer
angle)

1 =
ϑ′(r) + k

r
sin 2ϑ(r)−m cosϑ(r)

λ− q(r)

into the integrand and integrate by parts. This brings in an additional factor
of order 1

λ
and, upon repetition, higher powers of 1

λ
. It can be shown that,

after a suitable (depending on the constants a, δ, possibly very considerable)
number of such integrations by parts, the λ-derivatives of all resulting inte-
grals and boundary terms are of higher order, as λ → ∞, than the leading
term which arises as the boundary term at r0 from the first integration by
parts. This gives the following result.

Lemma 4.2. Let m > 0, k > 0 and suppose that q satisfies either (P) or (E).
Then, as λ → ∞,

d

dλ

∫ ∞

r0

(k

r
cos 2ϑ(r, λ) +m sin 2ϑ(r, λ)

)

dr

= −
mr0 sin 2ϑ(r0, λ) + k cos 2ϑ(r0, λ)

λ− q(r0)
+ o
( 1

λ

)

.

It remains to find the behaviour, for large λ, of the derivative of log |w(r0, λ)|.
In view of the success of the approach of [4] outlined above, it seems a tempt-
ing idea to apply a similar process of repeated integrations by parts to the
corresponding integral over [0, r0]. However, here the difficulty arises that
some terms of the resulting integrals are singular at 0, due to the pole of
the angular momentum term, and the very existence of the integral depends
on a subtle cancellation of the singularities between terms, based on the
asymptotics of the Prüfer angle at 0. While this is more in the character of
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a technical nuisance, there is the more fundamental problem that apparently
some terms of the resulting integral will always remain that do not have a
small λ-derivative as λ → ∞, so not even a large number of integrations by
parts will give a useful asymptotic series.

Therefore a radically different approach to study the first term on the
right-hand side of (4.1) is used in the following. We require the assumption
that q is constant near 0; it would be interesting to know to what extent the
asymptotics for the derivative of the spectral density, which is derived below,
carries over to the more general case of non-constant (e.g. continuous) q. As,
under our assumption, the differential equation has constant coefficients on
[0, r0], the solution w could be expressed explicitly in terms of Bessel func-
tions. However, this fully explicit form of the solution is not convenient for
comparison with the asymptotic found for the integral term; for this pur-
pose it is better to relate this derivative to the Prüfer angle of the solution.
As a preliminary step, we consider the differential equation on (0, r0] with-
out the mass term (the constant potential can be subsumed in the spectral
parameter); it has a scaling symmetry which allows for an exact expression
of the logarithmic derivative of the Prüfer radius of the solution in term of
the Prüfer angle (Lemma 4.3). Subsequently, we include the mass term to
obtain an asymptotic form of such a relationship for large spectral parame-
ter (Lemma 4.4), which combines with Lemma 4.2 to complete the proof of
Theorem 4.1.

Lemma 4.3. Let k > 0. For any λ > 0, let w0(·, λ) be the distinguished
solution, according to Theorem 2.1, of

−iσ3w
′
0 +

(

k

r
σ1 − λ

)

w0 = 0 (4.2)

and ϑ0 the Prüfer angle of w0. Then

∂

∂λ
log |w0(r, λ)| = −

k

λ
+

k

λ
cos 2ϑ0(r, λ) (r > 0, λ > 0). (4.3)

Proof. We observe that w0 takes the form w0(r, λ) = λ−ku(λr) due to a
symmetry of the very simply structured equation (4.2). Indeed, substituting
this ansatz in the differential equation, we find

λ−k

(

−iσ2λu
′(λr) +

(

kλ

λr
− λ

)

u(λr)

)

= 0,

which is an identity if we take u to be the distinguished solution of equation
(4.2) with λ = 1.

Therefore the partial derivatives of w0(r, λ) with respect to r and to λ are
related, and we obtain

∂

∂λ
w0(r, λ) = −

k

λ
w0(r, λ) +

r

λ

∂

∂r
w0(r, λ)

= −
k

λ
w0(r, λ) + riσ2w0(r, λ)−

k

λ
σ3w0(r, λ), (4.4)
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using (4.2) and the identity iσ2σ1 = σ3. Consequently,

∂

∂λ
|w0(r, λ)|

2 = 2w0(r, λ)
T ∂

∂λ
w0(r, λ)

= −
2k

λ
|w0(r, λ)|

2 −
2k

λ
w0(r, λ)

Tσ3w0(r, λ).

This gives (4.3), using Prüfer variables

w0 = |w0|

(

sinϑ0

cosϑ0

)

. �

Lemma 4.4. Let k > 0, m > 0. For any λ > m, let w(·, λ) be the distinguished
solution, according to Theorem 2.1, of

−iσ2w
′ +

(

mσ3 +
k

r
σ1 − λ

)

w = 0 (4.5)

and ϑ the Prüfer angle of w. Then, for any r > 0,

∂

∂λ
log |w(r, λ)| = −

k

λ
+

k

λ
cos 2ϑ(r, λ) +

rm

λ
sin 2ϑ(r, λ) +O

( 1

λ2

)

(λ → ∞).

Proof. We begin by observing that the differential equation (4.5) can be
rewritten as

w′(r, λ) =

(

−k
r

m+ λ
m− λ k

r

)

w(r, λ) (4.6)

and, as a special case, the differential equation (4.2) will be

w′
0(r, λ) =

(

−k
r

λ
−λ k

r

)

w0(r, λ) (4.7)

(the dash denoting the partial derivative w.r.t. r). The solution w can be
expressed as

w(r, λ) =

(

τ(λ)1−k 0
0 τ(λ)−k

)

w0(τ(λ)r, λ−m), (4.8)

where τ(λ) =
√

λ+m
λ−m

and w0 is the solution of (4.2) considered in Lemma

4.3. Indeed, it is a straightforward calculation to check that w, as defined by
this formula (4.8), satisfies (4.6) on the basis that w0 satisfies (4.7), and has
the correct asymptotic

w(r, λ) =

(

τ(λ)1−k 0
0 τ(λ)−k

)(

o(1)
1 + o(1)

)

(τ(λ)r)k =

(

τ(λ) o(1)
1 + o(1)

)

rk
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(r → 0). Differentiation of (4.8) w.r.t. λ gives, denoting by ∂1 and ∂2 the
partial derivative w.r.t. the first and second argument, respectively,

∂

∂λ
w(r, λ) =

τ ′(λ)

τ(λ)

(

1− k 0
0 −k

)

w(r, λ)

+

(

τ(λ)1−k 0
0 τ(λ)−k

)

(

rτ ′(λ)∂1w0(τ(λ)r, λ−m) + ∂2w0(τ(λ)r, λ−m)
)

.

As

w′(r, λ) =

(

τ(λ)1−k 0
0 τ(λ)−k

)

τ(λ)∂1w0(τ(λ)r, λ−m),

we see from the differential equation (4.6) that
(

τ(λ)1−k 0
0 τ(λ)−k

)

rτ ′(λ)∂1w0(τ(λ)r, λ−m)

=
τ ′(λ)

τ(λ)

(

−k r(m+ λ)
r(m− λ) k

)

w(r, λ);

moreover, we have from (4.4) the identity
(

τ(λ)1−k 0
0 τ(λ)−k

)

∂2w0(τ(λ)r, λ−m)

=

(

−k

λ−m
(1 + σ3) + r

(

0 τ(λ)2

−1 0

))

w(r, λ).

Hence we find

∂

∂λ
w(r, λ) =

1

λ2 −m2

(

−m− 2kλ rλ (λ+m)
−rλ (λ−m) 0

)

w(r, λ).

Therefore, using the Prüfer representation

w(r, λ) = |w(r, λ)|

(

sinϑ(r, λ)
cosϑ(r, λ)

)

,

we obtain

∂

∂λ
log |w(r, λ)|2 =

2

|w(r, λ)|2
w(r, λ)T

∂

∂λ
w(r, λ)T

=
2

λ2 −m2

(

− (m+ 2kλ) sin2 ϑ(r, λ) + 2rλm sinϑ(r, λ) cosϑ(r, λ)
)

=
2kλ

λ2 −m2
(cos 2ϑ(r, λ)− 1) +

2rmλ

λ2 −m2
sin 2ϑ(r, λ) +O

( 1

λ2

)

as λ → ∞. The statement of Lemma 4.4 now follows in view of

λ

λ2 −m2
=

1

λ
+O

( 1

λ3

)

(λ → ∞). �

Now, combining the statements of Lemma 4.2 and Lemma 4.4 (where we
take r = r0 and replace λ with the constant λ− q = λ− q(r0) on the interval
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[0, r0]) with formula (4.1), we find that

̺′′(λ)

̺′(λ)
=

2k

λ− q(r0)
+ o
( 1

λ

)

=
2k

λ
+ o
( 1

λ

)

(λ → ∞). (4.9)

In particular, there is some λ1 > 0 such that ̺′′(λ) > 0 for all λ > λ1. This
completes the proof of Theorem 4.1.

Remark. Upon integrating the asymptotic (4.9), we see that for any ε > 0,
there are constants c1, c2 > 0 such that the spectral density satisfies

c1 λ
2k−ε ≤ ̺′(λ) ≤ c2 λ

2k+ε

for sufficiently large λ. In this context it may be of interest to note the
asymptotic of the spectral function itself,

|̺(λ)| ∼ const |λ|2k+1 (|λ| → ∞),

shown (for more general potentials and k ∈ R \ (Z+ 1
2 )) in [5], Theorem 4.2.
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